
Approximations for minimum and min-max vehicle routing

problems

Esther M. Arkin∗ Refael Hassin† Asaf Levin‡

Abstract: We consider a variety of vehicle routing problems. The input to a problem
consists of a graph G = (N,E) and edge lengths l(e) e ∈ E. Customers located at the vertices
have to be visited by a set of vehicles. Two important parameters are k the number of vehicles,
and λ the longest distance traveled by a vehicle. We consider two types of problems: (1) Given
a bound λ on the length of each path, find a minimum sized collection of paths that cover all
the vertices of the graph, or all the edges from a given subset of edges of the input graph. We
also consider a variation where it is desired to cover N by a minimum number of stars of length
bounded by λ. (2) Given a number k find a collection of k paths that cover either the vertex
set of the graph or a given subset of edges. The goal here is to minimize λ, the maximum travel
distance. For all these problems we provide constant ratio approximation algorithms and prove
their NP-hardness.

Keywords: Approximation algorithms, Edge-routing, Vehicle routing problem, Min-max
problems.

∗Department of Applied Mathematics and Statistics, SUNY Stony Brook, Stony Brook, NY 11794-3600,
estie@ams.sunysb.edu. Partially supported by NSF (CCR-0098172).

†Department of Statistics and Operations Research, Tel-Aviv University, Tel-Aviv 69978, Israel,
hassin@post.tau.ac.il

‡Department of Statistics and Operations Research, Tel-Aviv University, Tel-Aviv 69978, Israel,
levinas@post.tau.ac.il

1

1 Introduction

We consider a variety of vehicle routing problems. The input to a problem consists of a graph
G = (N,E) and edge lengths l(e) e ∈ E. In some of the problems we will assume that the edge
lengths satisfy the triangle inequality. Customers located at the vertices have to be visited by
a set of vehicles. Two important parameters are k the number of vehicles, and λ the longest
distance travelled by a vehicle.

We consider two types of problems: (1) Given a bound λ on the length of each walk (path),
find a minimum sized collection of walks (paths) that cover all the vertices of the graph, or all
the edges from a given subset of edges of the input graph. We also consider a variation where
it is desired to cover N by a minimum number of stars of length bounded by λ. (2) Given a
number k find a collection of k walks or paths that cover either the vertex set of the graph or
a given subset of edges. The goal here is to minimize λ, the maximum travel distance.

All graphs considered in this paper are undirected. A path in this paper is a sequence
P = (v0, e1, . . . , ek, vk) such that vi ∈ V , i = 0, . . . , k, ei ∈ E, i = 1, . . . , k and ei = (vi−1, vi)
are distinct (vertices may repeat). A walk is a path possibly with repeated edges. When we
consider the length of a walk, multiple edges are charged multiply. A star is a subset of E
having a common vertex (i.e., a tree with at most one vertex whose degree is greater than one).
The length of a subgraph H with edge set E′ is l(H) =

∑
e∈E′ le. Throughout this paper ε is

an arbitrary positive number.
The problems considered in this paper are:

Minimum rural postmen cover
Input: A complete graph G = (N,E), a length function l : E → IR+, a subset E′ ⊆ E, λ > 0,
such that l(e) ≤ λ, ∀e ∈ E′.
Output: Walks P1, . . . , Pk, l(Pi) ≤ λ, i = 1, . . . , k, such that E′ ⊂ ∪Pi.
Measure: k.
Our approximation ratio: 4.

Minimum path cover
Input: A complete graph G = (N,E), a metric l : E → IR+, λ > 0.
Output: Paths P1, . . . , Pk, l(Pi) ≤ λ, i = 1, . . . , k, such that N ⊆ ∪Pi.
Measure: k.
Our approximation ratio: 3.

Minimum postmen cover
Input: A graph G = (N,E), a function l : E → IR+ (not required to be a metric), λ > 0, such
that l(e) ≤ λ, ∀e ∈ E.
Output: Walks P1, . . . , Pk, l(Pi) ≤ λ i = 1, . . . , k, such that E ⊆ ∪Pi.
Measure: k.
Our approximation ratio: 3.

Minimum star cover
Input: A complete graph G = (N,E), a metric l : E → IR+, λ > 0.
Output: Stars S1, . . . , Sk, l(Si) ≤ λ, i = 1, . . . , k, such that N ⊆ ∪Si.
Measure: k.
Our approximation ratio: (2(3 + 2

k)(1 + ε) + 1).

Minimum tree cover
Input: A complete graph G = (N,E), a metric l : E → IR+, λ > 0.
Output: Trees T1 = (VT1 , ET1), . . . , Tk = (VTk

, ETk
), l(Ti) ≤ λ, i = 1, . . . , k, such that

N ⊆ ∪VTi
.

Measure: k.
Our approximation ratio: 3.

Min-max rural postmen cover
Input: A complete graph G = (N,E), a length function l : E → IR+, a subset E′ ⊆ E, k > 0.
Output: Paths P1, . . . , Pk, such that E′ ⊆ ∪Pi.

2

Measure: maxi l(Pi).
Our approximation ratio: 7.

Min-max path cover
Input: A complete graph G = (N,E), a metric l : E → IR+, k > 0.
Output: Paths P1, . . . , Pk, such that N ⊆ ∪Pi.
Measure: maxi l(Pi).
Our approximation ratio: 4.

Min-max postmen cover
Input: A graph G = (N,E), a length function l : E → IR+ (not required to be a metric),
k > 0
Output: Walks P1, . . . , Pk, such that E ⊆ ∪Pi.
Measure: maxi l(Pi).
Our approximation ratio: 3.

Min-max star cover
Input: A complete graph G = (N,E), a metric l : E → IR+, and an integer k ≥ 1.
Output: A set of stars S1, . . . , Sk, such that N ⊆ ∪Si.
Measure: maxi l(Si).
Our approximation ratio: Bicriteria (3 + ε, 3 + ε).

Min-max tree cover
Input: A complete graph G = (N,E), a metric l : E → IR+, k > 0.
Output: Trees T1, . . . , Tk, such that N ⊆ ∪Ti.
Measure: maxi l(Ti).
Our approximation ratio: 4.

We will also use the following problems:
The Chinese postman path problem
Input: A graph G = (N,E), a function l : E → IR+

Output: A walk P such that E ⊂ P .
measure: l(P).
The problem is polynomially solvable [7].

The rural postman path problem
Input: A complete graph G = (N,E), a length function l : E → IR+, E′ ⊆ E.
Output: A walk P such that E′ ⊂ P .
measure: l(P).
The problem is NP-hard [14] and has a 3

2 -approximation algorithm [10].

Previous work. Several approximation algorithms have been designed for variations of
the problems with the assumption that each path should start and end at a designated depot
vertex.

Li, Simchi-Levi and Desrochers [15] gave an approximation algorithm with bound 1 + β
β−2

where β = λ
dm

, and dm is the maximum distance between the depot and a customer, for the min
path cover with a depot. In this instance the paths should start at the depot but may end
at any point. Notice that when dm approaches λ the approximation ratio approaches infinity.

Applegate, Cook, Dash and Rohe [2] solved an instance of the problem from the Whiz-
zkids’96 competition. The problem they solved is an instance of the problem considered in [15],
with an additional secondary goal which is minimizing the average latency of all the vertices.
They solved to optimality the instance using a branch and bound method.

Fredrickson, Hecht and Kim [9] considered the depot version of min-max path cover and
gave a

(
5
2 −

1
k

)
-approximation algorithm.

Averbakh and Berman [4] considered a variant of min-max path cover where the paths
have to be cycles (i.e., closed paths) and l is a tree metric. They also considered the min-max
postmen cover problem where the walks in the solution have to be closed walks, E′ is the

3

edge set of a tree and l is the metric induced by this tree. For all these variants they gave
2− 2

k+1 -approximation algorithms.
Bellmore and Hong [5] considered the following min-sum path cover variation: given a

graph G = (N,E) and m potential salesmen at a depot, a potential salesman i has an activation
cost Ci. An edge e ∈ E has length le and the objective is to cover all the vertices of the graph
by cycles (“tours”) such that each vertex except for the depot is covered by exactly one tour
and such that the sum of the tour lengths and the activation costs is minimized. They provided
a transformation of this problem to the travelling salesman problem (TSP). We note
that if the triangle inequality is satisfied then the problem is the TSP (any reasonable solution
activates only one salesman).

Even, Garg, Konemann, Ravi and Sinha [8] considered the min-max star cover where it is
named unrooted k-stars cover. They presented a bicriteria (4, 4)-approximation algorithm.
I.e., a polynomial-time algorithm that outputs a solution which covers N with no more than
4k stars, and the cost of the solution is no more than four times the cost of an optimal solution
which uses no more than k stars. Their method is based on LP-rounding. We show how to
use our algorithm for the Minimum star cover problem to obtain a bicriteria (3 + ε, 3 + ε)-
approximation algorithm for this problem. They showed that min-max tree cover problem
is NP-hard, and presented a 4-approximation algorithm for it that runs in weakly-polynomial
time and a strongly-polynomial time (4 + ε)-approximation algorithm for this problem.

Guttmann-Beck and Hassin [12] considered the variant of min-max tree cover problem
where the number of vertices in each tree of the cover is equal to n

k . They showed that without
the triangle inequality unless P = NP the problem cannot be approximated within a constant
factor. Assuming that the length function is a metric, they presented an O(k)-approximation.

Notations. When considering the problems: Minimum rural postmen cover, Mini-
mum path cover, Minimum postmen cover, and Minimum star cover we will denote
by k∗ the value of an optimal solution. When considering the problems: Min-max rural
postmen cover, Min-max path cover, and Min-max postmen cover, we will denote by
λ∗ the value of an optimal solution.

For a path P , we denote by N(P) the vertex multi-set along P (and if a vertex appears
multiple times along P we keep its multiplicity), and by E(P) its edge set. For E′ ⊆ E(P) a
suffix or prefix edge set of P , we denote by P \ E′ the path obtained from P by deleting the
edges in E′ and removing isolated vertices. Similarly, for N ′ ⊆ N(P) that is either a suffix
or prefix vertex set of P we denote by P \ N ′ be the path obtained from P by removing the
vertices in N ′ and their incident edges.

2 Minimum cover problems

In this section we consider the first type of problems, in which we are given a bound λ and
we want to find a minimum sized collection of subgraphs that “cover” the graph. Our method
guesses the optimal solution value k∗, then we solve (or approximate) the problem of covering
the required set of edges or vertices with k∗ subgraphs such that the total length is minimized.
We use the fact that the optimal solution for our original problem, induces a feasible solution to
the new problem with cost at most λk∗. Then, we partition each subgraph into smaller pieces
such that each piece has length at most λ. The partitioning process guarantees that each piece
has length at least αλ, and therefore our partitioning will result at most k∗ + k∗

α subgraphs.

2.1 Minimum rural postmen cover

We use the following auxiliary problem:
k rural postmen problem
Input: A complete graph G = (N,E), E′ ⊆ E , a length function l : E → IR+, k > 0.
Output: Walks P1, . . . , Pk such that E′ ⊂ ∪Pi.
Measure:

∑
i l(Pi).

4

The problem is NP-hard even for k = 1, as the version where the output is a closed walk is
NP-hard, and a standard transformation shows the hardness of the (open) walk problem. We
note that w.l.o.g. for any vertex v ∈ N there is an edge in E′ that is incident in v (otherwise,
v can be removed without affecting the optimal solution, due to the triangle inequality which
we assumed).

Lemma 1 There exists a 2-approximation algorithm for the k rural postmen problem.

Proof: Find a minimum cost subgraph G′′ of G that includes all the edges of E′ and has at
most k connected components. Double this subgraph. The resulting multigraph has even vertex
degrees, and can be covered by k closed walks. For every such walk, delete one of the edges not
in E′ to produce an open walk. This is a 2-approximation algorithm due to the following: The
optimal solution to the problem has at most k connected components and includes all the edges
of E′. Therefore, its length is at least the cost G′′. The length of the approximate solution is
at most twice the length of G′′. It remains to note that G′′ can be computed in polynomial
time by starting with (V,E′) and if (V,E′) has more than k connected components, then add
edges in increasing order of length if they connect distinct connected components in the current
solution, until the resulting graph has exactly k connected components.

Remark 2 We cannot use a Christofides-like approximation for the k-rural postmen prob-
lem, because a minimum cost perfect matching of the odd vertices in G′′ may cost more than
half the optimal solution cost. In particular, we cannot argue that the connected components
of G′′ are exactly the connected component of the optimal solution.

Theorem 3 Algorithm Rural Postmen Min k (see Figure 1) is a 4-approximation algorithm.

Proof: To prove feasibility we notice that if there is a feasible solution then every edge in
E′ has length at most λ. Therefore, the while loop terminates. Since the k-rural postmen
algorithm returns a feasible solution, Algorithm Rural Postmen Min k also returns a feasible
solution.

The algorithm is clearly polynomial-time, and therefore it remains to show the approxima-
tion ratio of the algorithm. Let OPT be an optimal solution. We show that |SOLk∗ | ≤ 4k∗.

Since OPT is a feasible solution to the k∗ rural postmen problem, the length of the optimal
k∗ rural postmen is at most l(OPT) ≤ λk∗. Therefore, the length of the solution returned by
the k∗ rural postmen approximation is at most 2λk∗. Moreover, since OPT covers the edges of
E′, l(E′) ≤ k∗λ. Therefore, the sum of l(E′) and of the total length of the k∗ rural postmen
solution is at most 3λk∗.

Consider a pair of consecutive paths that we add to SOLk∗ during the while loop. Denote
by x the reduction of the length of Pi caused by the first of them. This reduction contains the
length of the edge (vi

j−1, v
i
j) if and only if this edge is not in E′. Denote by y the total length

of edges from E′ in the second path. By the “if (vi
j−1, v

i
j) /∈ E′ ” line, we are guaranteed that

x+ y ≥ λ. This is so because x < λ only if (vi
j−1, v

i
j) ∈ E′, and then x+ l(vi

j−1, v
i
j) > λ. In the

next iteration of the while loop the edge (vi
j−1, v

i
j) ∈ E′ will be in the new path and therefore,

y > λ − x. Note that while partitioning a path, we can use the original path to take care the
last sub-path (that the argument above does not take care of it). Therefore, throughout the
iterations we add to the initial set of k∗ paths at most 3k∗ new paths. Together, the solution
returned by Algorithm Rural Postmen Min k has at most 4k∗ paths.

2.2 Minimum path cover

In this subsection we consider the minimum path cover problem. This problem is a special
case of the minimum rural postmen cover problem where we want to cover all the vertices
of G. We can use Algorithm Minimum Rural Postmen Min k to obtain a 4-approximation. We
present a better approximation for this special case.

5

Rural Postmen Min k
input

A complete graph G = (N,E).
A length function l : N ×N → IR+.
A subset E′ ⊆ E.
A real number λ > 0 such that l(e) ≤ λ ∀e ∈ E′.
returns

A set of walks, each of length at most λ covering E′.
begin

for k = 1, 2, . . . , |E′|
P1, P2, . . . , Pk := a 2-approximation k rural postmen solution.
SOLk := ∅.
for i = 1, 2, . . . , k

while l(Pi) > λ
(vi

1, v
i
2, . . . , v

i
|Pi|) := Pi.

j := the index of the first vertex on Pi such that the length
of the vi

1 − vi
j sub-walk of Pi is greater than λ.

Pi := Pi \ {(vi
1, v

i
2), . . . , (v

i
j−2, v

i
j−1)}.

SOLk := SOLk ∪ {vi
1, (v

i
1, v

i
2), . . . , (v

i
j−2, v

i
j−1), v

i
j−1}.

if (vi
j−1, v

i
j) /∈ E′

then

Pi := Pi \ {(vi
j−1, v

i
j)}.

end if

end while

SOLk := SOLk ∪ {Pi}.
end for

end for

k̄ := argmin|SOLk|.
return SOLk̄.
end Rural Postmen Min k

Figure 1: Algorithm Rural Postmen Min k

This problem is NP-hard even for k = 1, as can be shown by a straightforward reduction
from TSP. In fact deciding whether one path is sufficient or at least two paths are needed is
NP complete, and thus the best approximation factor we can hope for (unless P=NP) is 2.

Theorem 4 Algorithm Path Min k (see Figure 2) is a polynomial time 3-approximation algo-
rithm.

Proof: The algorithm runs in polynomial time since the forest F can be computed in polyno-
mial time (simply stop the greedy minimum spanning tree algorithm after it chooses the first
n− k edges), and the other steps are clearly polynomial.

The feasibility of the returned solution is trivial, and therefore, it remains to prove the
approximation ratio.

The algorithm tries all the possibilities of k and chooses the best one. Consider the iteration
in which k = k∗.

The optimal solution is composed of k paths each of length at most λ. Therefore, l(OPT) ≤
λk. This optimal solution has n − k edges, and since F is a minimum cost forest with n − k
edges, l(F) ≤ λk, implying that

∑k
i=1 l(TOURi) ≤ 2λk.

For every i the following is satisfied:

N(i, k) ≤
⌈

l(TOURi)
λ

⌉
≤ l(TOURi)

λ
+ 1.

6

Path Min k
input

A complete graph G = (N,E).
A metric l : N ×N → IR+.
A real number λ > 0.
returns

A set of paths, each of length at most λ, covering N .
begin

for k = 1, 2, . . . , n
F := a minimum weight forest on G with n− k edges.
C1, C2, . . . , Ck := the connected components of F .
SOLk := ∅.
for i = 1, 2, . . . , k

N(i, k) := 1.
TOURi := a tour on the vertices of Ci obtained by doubling F and shortcutting.
Pi := a path resulting from TOURi by deleting an edge.
while l(Pi) > λ

(vi
1, v

i
2, . . . , v

i
|Pi|) := Pi.

j := the index of the first vertex on Pi such that the length of the
vi
1 − vi

j+1 subpath of Pi is greater than λ.
Pi := Pi \ {(vi

1, v
i
2), (v

i
2, v

i
3), . . . , (v

i
j−1, v

i
j), (v

i
j , v

i
j+1)}.

SOLk := SOLk ∪ {vi
1, (v

i
1, v

i
2), v

i
2, (v

i
2, v

i
3), . . . , (v

i
j−1, v

i
j), v

i
j}.

N(i, k) := N(i, k) + 1.
end while

SOLk := SOLk ∪ Pi.
end for

end for

k̂ := argmink

∑k
i=1 N(i, k).

return SOLk̂.
end Path Min k

Figure 2: Algorithm Path Min k

Therefore,

|SOLk| =
k∑

i=1

N(i, k) ≤ 1
λ

k∑
i=1

l(TOURi) + k ≤ 2λk

λ
+ k = 3k,

and the algorithm returns a solution with at most 3k∗ paths.

Remark 5 If we require each vehicle to return to its starting point, i.e., we are searching for
a set of tours instead of paths that cover all the vertices, we can obtain a 6-approximation as
follows: consider the set of paths returned by Algorithm Path Min k, and partition each path
into two parts, each of length at most λ

2 . Close the obtained paths to form tours, each of length
at most λ. This is a 6-approximation since the size of optimal covering by tours is clearly at
least the size of optimal covering by paths.

2.3 Minimum postmen cover

This problem is a special case of the minimum rural postmen cover problem where
we want to cover a subset E of the edge set of a complete graph, and the metric is de-
fined as shortest path length according to a distance function on E. We can use Algorithm
Minimum Rural Postmen Min k to obtain a 4-approximation. We present a better approxima-
tion for this special case.

7

Lemma 6 Minimum postmen cover is NP-hard.

Proof: The edge partition into 3-edge paths problem is defined as follows: given a
graph G′ = (N,EG′), is there a partition of EG′ into E1, E2, . . . , Ek that each corresponds to
a 3-edge path. This problem is NP-complete (Holyer [13]). Given an instance of the edge
partition into 3-edge paths problem, we define l as

l(u, v) =
{

λ
3 if (u, v) ∈ EG′

λ otherwise
.

Clearly, EG′ can be partitioned into 3-edge paths if and only if G can be covered by |EG′ |
3 +(

N
2

)
− |EG′ | =

(
N
2

)
− 2|EG′ |

3 paths of length at most λ.
We use the following auxiliary problem:

k postmen problem
Input: A graph G = (N,E) , l : E → IR+, k > 0.
Output: Walks P1, . . . , Pk such that E ⊂ ∪Pi.
Measure:

∑
i l(Pi).

Lemma 7 The k postmen problem can be solved in polynomial time.

Proof: The edges of a connected graph can be traversed exactly once using k walks if and only
if the number of odd degree vertices is at most 2k. Therefore, the edges that we need to add
to G in order to get a feasible solution to the k-postmen problem correspond to a minimum
cost matching (in the metric closure of G) over the odd degree vertices that contains exactly
max{0, no−2k

2 } edges (where no is the number of odd degree vertices). Such a minimum cost
matching can be found in polynomial time.

Theorem 8 Algorithm Postmen Min k (see Figure 3) is a 3-approximation algorithm.

Proof: To prove feasibility we note that if there is a feasible solution then every edge in G has
length at most λ. Therefore, every walk we add to the solution has length at most λ. Therefore,
Algorithm Postmen Min k also returns a feasible solution.

The algorithm clearly runs in polynomial time. It remains to analyze its approximation
ratio. Let OPT be an optimal solution. We show that in SOLk∗ there are at most 3k∗ paths.

Since OPT is a feasible solution to the k∗ postmen problem, the length of the k∗ postmen
solution is at most l(OPT) ≤ λk∗. Consider the sum of walk lengths over the walks with
length greater than λ. In the beginning (before the inner for loop) this sum is at most λk∗. In
each iteration of the while loop we add two new walks and we reduce this sum by at least λ.
Therefore, throughout all iterations we add at most 2k∗ paths. With the k∗ initial paths the
resulting solution has at most 3k∗ paths.

2.4 Minimum star cover

Theorem 9 Minimum star cover is NP-hard.

Proof: The vertex partition into 2-edge paths problem is defined as follows: given
a graph G = (N,EG), does there exist a partition of N into N1, N2, . . . , Nk each containing
3 vertices such that the induced subgraph of G over Ni contains a path with 2 edges. This
problem is NP-complete (see [11] page 76).

Given an instance to the vertex partition into 2-edge paths we define a metric

l(u, v) =
{

λ
2 if (u, v) ∈ EG

λ otherwise
.

Clearly, G can be partitioned into paths of length 2 if and only if there is a cover with n
3

stars each of length λ.

8

Postmen Min k
input

A graph G = (N,E).
A length function l : E → IR+.
A real number λ > 0.
returns

A set of walks, each of length at most λ, covering E.
begin

for k = 1, 2, . . . , |E|
P1, P2, . . . , Pk := an optimal k postmen solution.
SOLk := ∅.
for i = 1, 2, . . . , k

while l(Pi) > λ
(vi

1, v
i
2, . . . , v

i
|Pi|) := Pi.

j := the index of the first vertex on Pi such that the length
of the vi

1 − vi
j sub-walk of Pi is at least λ.

Pi := Pi \ {(vi
1, v

i
2) . . . , (vi

j−1, v
i
j)}.

SOLk := SOLk ∪ {vi
1, (v

i
1, v

i
2), . . . , (v

i
j−2, v

i
j−1), v

i
j−1}.

SOLk := SOLk ∪ {vi
j−1, (v

i
j−1, v

i
j), v

i
j}.

end while

SOLk := SOLk ∪ {Pi}.
end for

end for

k̄ := argmink|SOLk|.
return SOLk̄.
end Postmen Min k

Figure 3: Algorithm Postmen Min k

We use the following auxiliary problem:
The minimum metric k-median problem
Input: A complete graph G = (N,E), a metric l : N ×N → IR+, k > 0.
Output: U ⊆ N , |U | ≤ k.
Measure:

∑
v∈N minu∈U l(v, u).

The problem is NP-hard. Charikar and Guha [6] provided a 4-approximation algorithm for this
problem. Arya, Garg, Khandekar Pandit, Meyerson and Munagata [3] gave a (3 + 2

k)(1 + ε)-
approximation algorithm.

Theorem 10 Algorithm Star Min k (see Figure 4) is a (2α + 1)-approximation algorithm,
where α is the approximation ratio for the minimum metric k-median problem.

Proof: Because we sort the nodes according to their distance to their serving facility,
∑|S|

j=s+1 l(vj , ri) ≥
(|S| − s)l(vs, ri). Therefore, by the triangle inequality, any star that is created in the while
loop has length which is at most

∑|S|
j=s l(vj , ri) + (|S| − s)l(vs, ri) ≤ 2

∑|S|
j=s+1 l(vj , ri) ≤ λ, and

therefore the algorithm returns a feasible solution in polynomial time.
We prove the performance ratio. We show that |SOLk∗ | ≤ (2α + 1)k∗. Denote by OPT an

optimal solution.
Since OPT is a feasible solution to the k∗-median problem, the length of the optimal k∗-

median is at most l(OPT). Therefore, the solution returned by the k∗-median approximation
has length at most αλk∗.

Consider the sum of lengths of only the stars with length greater than λ. This sum is
initially (before the inner for loop) at most αk∗λ. Every star we add during the while loop
reduces this sum by at least λ

2 . Therefore, throughout the algorithm we add at most 2αk∗

stars. Therefore, the total number of stars is at most (2α + 1)k∗.

9

Star Min k
input

A complete graph G = (N,E).
A metric l : N ×N → IR+.
A real number λ > 0.
returns

A set of stars, each of length at most λ, covering N .
begin

for k = 1, 2, . . . , n
r1, r2, . . . , rk := a solution returned by an α-approximation algorithm
for the k-median problem on G.
SOLk := ∅.
for i = 1, 2, . . . , k

S := {v1, v2, . . . , v|S|} the set of vertices that are served by ri

in the k-median solution, ordered so that
l(v1, ri) ≤ l(v2, ri) ≤ · · · ≤ l(v|S|, ri).
while

∑
v∈S l(v, ri) > λ

s := the maximum index such that
∑|S|

j=s l(vj , ri) ≥ λ
2 .

SOLk := SOLk ∪ {a star rooted at vs, with a leaf set
{vs+1, vs+2, . . . , v|S|}}.
S := S \ {vs, vs+1, . . . , v|S|}.

end while

SOLk := SOLk ∪ {a star rooted at ri with a leaf set S}.
end for

end for

k̄ := argmin|SOLk|.
return SOLk̄.
end Star Min k

Figure 4: Algorithm Star Min k

Remark 11 The bound in Theorem 10 is the best possible for Algorithm Star Min k. We
now present a bad example with ratio 2α + 1. Assume that the approximation algorithm for
the k-median returned a solution composed of k − 1 singletons and one large star whose total
length is αkλ and each edge has length λ

2 + ε (the non-star edges have length greater than λ).
Our solution adds 2αk−2 new singletons, and returns a solution with (2α+1)k−2. Therefore,
the approximation ratio is 2α + 1.

Remark 12 Note that Algorithm Star Min k returns disjoint stars. This is not required by
the problem, however, we did not find an improved approximation algorithm for the case where
we allowed non-disjoint stars. To emphasize a difficulty arising in the partitioning where we
allow non-disjoint stars, note that in the example of the previous remark the partitioning of
the large star will result a set of (2α + 1)k − 1 stars composed of a single edge (instead of the
singletons).

2.5 Minimum tree cover

The minimum tree cover problem is NP-hard by the same proof as in Theorem 9. Moreover, the
same algorithm given for the minimum cover with paths problem yields a factor 3-approximation
for this problem as well. To see that the approximation ratio still holds note that if the optimal
solution has k trees each of length at most λ, then l(OPT) ≤ λk, and the forest F that is the
minimum cost forest that has n−k edges, satisfies l(F) ≤ λk. The rest of the proof is the same
as the proof of Theorem 4.

We conclude this by the following theorem:

10

Theorem 13 The minimum tree cover problem is NP-hard, and Algorithm Path Min k is a
3-approximation algorithm for it.

3 Min-max problems

In this section we consider the second type of problems, in which we are given a number k
and we want to find a set of k subgraphs that “cover” the graph. In this type of algorithms
we allow the algorithms to return a set of less than k subgraphs, assuming that the remaining
subgraphs are empty subgraph.

3.1 Min-max rural postmen cover

The Min-max rural postmen cover problem is NP-hard, as for k = 1 it is the rural
postman problem.

In this subsection we give a simple algorithm that results in an approximation ratio of 7.
Denote by l1 < l2 < · · · < lm the different lengths of the edges in G. We add an edge m + 1
with cost M such that λ∗ < M . We assume that k < |E′| otherwise the problem is trivial.

Algorithm Min-Max k Rural Postmen (see Figure 5) receives a guess λ of the optimal solu-
tion value λ∗. Given this guess, it either constructs a solution with cost at most 7λ or it returns
that the guessed value is too small, i.e., λ∗ > λ. Note that λ∗ is in the interval [0, n · lm], and
therefore we can apply a binary search to obtain a closed value λ such that the algorithm
returns a solution with cost at most 7λ, and for λ− ε it returns that λ∗ > λ− ε. This will be
a (7 + ε)-approximation algorithm.

Lemma 14 Algorithm Min-Max k Rural Postmen returns a correct answer.

Proof: We claim that if
∑

i Ki > k, then λ∗ > λ. To see this, assume the opposite, that
λ∗ ≤ λ. This implies that in an optimal solution, no path connects two vertices that are in
different connected components of the subgraph induced by the edges of length at most λ, and
so we can solve the problem separately in each connected component. Consider a connected
component Ci with K∗

i walks of the optimal solution. Each walk has length at most λ∗, and the
walks can be connected into a connected subgraph Si of Ci using K∗

i − 1 edges each of length
at most λ, resulting in a subgraph of length at most 2K∗

i λ. Thus l(Si) ≤ 2K∗
i λ, and the cost

of an optimal rural postman walk over Ci is at most 2l(Si) ≤ 4K∗
i λ. Since the approximation

ratio of the rural postman algorithm is 3
2 , l(Pi) ≤ 6K∗

i λ. Thus, Ki = d l(Pi)
6λ e ≤ K∗

i , implying
that

∑
i Ki ≤

∑
i K∗

i ≤ k, which is a contradiction! Therefore, if the algorithm returns that
λ∗ > λ, this is a correct answer.

Assume that for a value λ,
∑

i Ki ≤ k. The length of each edge in a returned walk is at
most λ. The length of a walk vi

1, (v
i
1, v

i
2), . . . , (v

i
p−1, v

i
p), v

i
p is composed of the length of the last

edge (vi
p−1, v

i
p) (which is at most λ) and the length of the rest of the walk (which is at most 6λ).

Therefore, the maximum length of a walk in the resulting solution is at most 7λ. Therefore, in
this case the algorithm also returns a correct answer.

Remark 15 The binary search to find the best solution, can be replaced by a strongly poly-
nomial time procedure that removes the extra error of ε. First, we separately conduct binary
search in each interval [lj , lj+1), for j = 1, . . . ,m. For such an interval the partition into con-
nected components is the same for all values of λ in the interval, and therefore the approximated
rural postman walk in each connected component is the same for all values of λ in the interval.
We note that

∑
i Ki is changed only for values of λ that corresponds to the length of a sub-walk

of the approximated rural postman walk between a pair of nodes. Therefore, the number of
breaking points is at most

(
n
2

)
and we can compute them in strongly polynomial time.

We conclude the following theorem:

Theorem 16 There is a 7-approximation algorithm for the Min-max rural postmen cover
problem.

11

Min-Max k Rural Postmen
input

A complete graph G = (N,E).
A length function l : N ×N → IR+.
A subset E′ ⊆ E.
An integer k.
A guess λ of λ∗

returns

A set of k walks covering E′ each of length at most 7λ, or that λ∗ > λ.
begin

{Ci}
rj

i=1 := the connected components of the subgraph induced by
the edges of length at most λ.
for i = 1, 2, . . . , rj

Pi := an approximate solution to the rural postman path problem
for the induced subgraph of G over Ci with E′ ∩ (Ci × Ci).
Ki := d l(Pi)

6λ e.
end for

if
∑

i Ki > k
then

return “λ∗ > λ.”
end if

SOL := ∅.
for i = 1, 2, . . . , k

while l(Pi) > 6λ
(vi

1, v
i
2, . . . , v

i
|Pi|) := Pi.

p := the index of the first vertex on Pi such that the length of
the vi

1 − vi
p sub-walk of Pi is at least 6λ.

Pi := Pi \ {(vi
1, v

i
2), . . . , (v

i
p−1, v

i
p)}.

SOL := SOL ∪ {vi
1, (v

i
1, v

i
2), . . . , (v

i
p−1, v

i
p), v

i
p}.

end while

SOL := SOL ∪ Pi.
end for

return SOL
end Min-Max k Rural Postmen

Figure 5: Algorithm Min-Max k Rural Postmen

3.2 Min-max path cover

The min-max path cover problem. This problem is NP-hard, as for k = 1 it is the TSP prob-
lem. We can use Algorithm Min-Max k Rural Postmen to obtain a 7-approximation algorithm.
However, in the following we present a 4-approximation algorithm. Denote by l1 < l2 < · · · < lm
the different lengths of the edges in graph G. We assume that k < n otherwise the problem is
trivial. This implies that λ∗ ≥ l1.

Algorithm Min-Max k Paths (see Figure 6) is given a guess λ of λ∗. It returns either that
λ∗ > λ or it returns a cover by k paths each of length at most 4λ. As in the previous sub-
section, for a given ε > 0, we can apply a binary search on the interval [0, n · lm] to find a value
λ such that the algorithm returns a solution with cost at most 4λ, and for λ − ε it returns
that λ∗ > λ − ε. This will provide a polynomial-time 4-approximation algorithm. As in the
previous sub-section, we can replace the binary search by a strongly-polynomial time procedure
by computing a superset of the breaking-points.

Lemma 17 Algorithm Min-Max k Paths returns a correct answer.

Proof: We claim that if for a given value of λ,
∑

i Ki > k, then λ∗ > λ. To see this, assume the

12

Min-Max k Paths
input

A complete graph G = (N,E).
A metric l : N ×N → IR+.
An integer k.
An integer guess λ of λ∗

returns

A set of k paths covering N each of length at most 4λ or returns λ∗ > λ.
begin

{Ci}
rj

i=1 := the connected components of the subgraph induced by
the edges of length at most λ.
for every i = 1, 2, . . . , rj

MSTi := a min weight spanning tree on Ci.
Pi := a path on Ci obtained by doubling MSTi, shortcutting,
and removing one of the edges.

Ki := d l(P j
i
)

4λ e.
end for

if
∑

i Kj
i ≥ k,

then

return λ∗ > λ
end if

SOL := ∅.
for i = 1, 2, . . . , rj

while l(Pi) > 4λ
(vi

1, v
i
2, . . . , v

i
|Pi|) := Pi.

p := the index of the first vertex on Pi such that the length of
the vi

1 − vi
p sub-path of Pi is at least 4λ.

Pi := Pi \ {(vi
1, v

i
2), . . . , (v

i
p−1, v

i
p)}.

SOL := SOL ∪ {vi
1, (v

i
1, v

i
2), . . . , (v

i
p−2, v

i
p−1), v

i
p−1}.

end while

SOL := SOL ∪ Pi.
end for

return SOL.
end Min-Max k Paths

Figure 6: Algorithm Min-Max k Paths

opposite, that λ∗ ≤ λ. This implies that in an optimal solution, no path connects two vertices
that are in different connected components of the subgraph induced by the edges of length at
most λ, and so we can solve the problem separately in each connected component. Consider
a connected component Ci of the optimal solution, and suppose that it has K∗

i paths. Each
path has length at most λ∗, and the paths can be connected into a spanning tree of Ci using
K∗

i − 1 edges each of length at most λ, resulting in a tree of length at most (2K∗
i − 1)λ. Thus

l(MSTi) ≤ 2K∗
i λ, and by the metric assumption l(Pi) ≤ 4K∗

i λ. Thus, Ki =
⌈

l(Pi)
4λ

⌉
≤ K∗

i ,
implying that

∑
i Ki ≤

∑
i K∗

i ≤ k, which is a contradiction! Therefore, λ∗ > λ and the
algorithm returns a correct answer.

Assume that for a value λ we obtain that
∑

i Ki ≤ k, then the algorithm returns k paths
each of length at most 4λ, and therefore it returns a correct answer.

Therefore, we establish the following theorem:

Theorem 18 There is a 4-approximation algorithm for the min-max path cover problem.

13

3.3 Min-max tree cover

In this subsection we note that using the algorithm for the min-max path cover problem, we
get a 4-approximation algorithm for the min-max tree cover problem as well. To see this note
that the proof of Lemma 17 is also correct for this case after the following modification: we
consider a connected component Ci of the optimal solution, and suppose that it has K∗

i trees.
Each tree has length at most λ∗, and the trees can be connected into a spanning tree of Ci

using K∗
i − 1 edges each of length at most λ, resulting in a tree of length at most (2K∗

i − 1)λ.
Then, the rest of the proof goes without any further change. We conclude this in the following
theorem:

Theorem 19 There is a 4-approximation algorithm for the min-max tree cover problem.

3.4 Min-max postmen cover

Min-Max k Postmen
input

A graph G = (N,E).
A length function l : E → IR+.
An integer number k > 0.
returns

A set of k walks covering E.
begin

P := an optimal solution for the Chinese postman walk instance on G.
A := l(P)

k .
SOL := ∅.
while l(P) > A.

(v1, v2, . . . , vn) := P .
j := the index of the first vertex on P such that the length of the
v1 − vj sub-walk of P is at least A.
P := P \ {(v1, v2) . . . , (vj−1, vj)}.
SOL := SOL ∪ {v1, (v1, v2), . . . , (vj−1, vj), vj}.

end while

SOL := SOL ∪ {P}.
return SOL.
end Min-Max k Postmen

Figure 7: Algorithm Min-Max k Postmen

Theorem 20 Algorithm Min-Max k Postmen (see Figure 7) is a 3-approximation algorithm.

Proof: Denote by OPT an optimal solution to the problem. OPT uses k walks and covers E.
Therefore, l(E) ≤ kλ∗.

To construct P from G, we double some of the edges in E, therefore, l(P) ≤ 2l(E), and
A ≤ 2λ∗. Consider an arbitrary walk in SOL. It is composed of the last edge of it and the rest
of the walk. The last edge belongs to E and therefore, its length is at most λ∗. The rest of the
walk has length at most A. Therefore, the total length of the walk is at most 3λ∗.

3.5 Min-max star cover

Let ε > 0. In order to obtain a (3 + ε, 3 + ε)-approximation algorithm for the min-max star
cover problem, we suggest to apply Algorithm Star Min k with λ = 3λ∗ (where λ∗ is a (1 + ε)-
approximation of the optimal cost of the min-max star cover problem, the value of λ∗ is obtained
using a binary search). Then, using the analysis of Algorithm Star Min k, we get that the

14

number of stars is at most (2
3α + 1)k∗ (this is so because each new star that we create in the

while loop reduces the total length of the remaining stars by at least λ
2 = 3λ∗

2 , and the result is
obtained using the fact that the solution to the k∗-median has total length of at most αλ∗k∗).
Using a 3 + ε-approximation for the k-median problem [3], we obtain the following result.

Theorem 21 There is a bicriteria (3+ ε, 3+ ε)-approximation algorithm for the min-max star
cover problem.

References

[1] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin, Network Flows: Theory, Algorithms, and
Applications, Prentice Hall, 1993.

[2] D. Applegate, W. Cook, S. Dash and A. Rohe, “Solution of a min-max vehicle routing
problem,” manuscript 2001.

[3] V. Arya, N. Garg, R. Khandekar, V. Pandit, A. Meyerson and K. Munagata, “Local
search heuristics for k-median and facility location problems,” Proc. STOC 2001,
21-29.

[4] I. Averbakh and O. Berman, “(p− 1)/(p + 1)-approximate algorithms for p-traveling
salesmen problems on a tree with min-max objective,” Discrete Applied Mathematics
75 (1997), 201-216.

[5] M. Bellmore and S. Hong, “Transformation of multisalesmen problem to the standard
traveling salesman problem,” J. of the ACM, 21, (1974), 500-504.

[6] M. Charikar and S. Guha, “Improved complexity algorithms for the facility location
and the k-median problems,” Proc. FOCS 1999, 378-388.

[7] J. Edmonds, “The Chinese postman problem,” Operations Research 13, (1965), B73-
B77.

[8] G. Even, N. Garg, J. Konemann, R. Ravi and A. Sinha, ”Covering graphs using trees
and stars,” In: Proc. APPROX 2003, 24-35, 2003.

[9] G. N. Fredrickson, M. S. Hecht and C. E. Kim, “Approximation algorithms for some
routing problems,” SIAM J. on Computing 7, (1978) 178-193.

[10] G. N. Frederickson, “Approximation algorithms for some postman problems,” J. of
the ACM 26, (1979), 538-554.

[11] M.S. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness, W.H. Freeman, New York, 1979.

[12] N. Guttmann-Beck and R. Hassin, ”Approximation algorithms for min-max tree par-
tition,” Journal of Algorithms 24, 266-286, 1997.

[13] I. Holyer, “The NP-completeness of some edge-partition problems,” SIAM J. on Com-
puting 10, (1981), 713-717.

[14] J. K. Lenstra and A. H. G. Rinnooy-Kan, “On general routing problems,” Networks,
6, (1976), 273-280.

[15] C-L Li, D. Simchi-Levi and M. Desrochers “On the distance constrained vehicle rout-
ing problem,” Operations Research 40 No. 4 (1992), 790-799.

15

