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Abstract—This paper analyzes strategic overtaking equilibria

price is different from the profit maximizing price, because

in a single server queue, where customers observe the queuethe server cannot fully extract the customers’ welfare by a

length and have the option of overtaking some of the customer
already present in the queue by paying a fixed amount per
overtaken customer. Customers incur linear waiting costsand

act to minimize their expected total cost. Characterizing he

symmetric Nash equilibrium strategies is much harder than n

other priority queueing systems analyzed in the literature The

paper generates two sets of results: (i) customer equilibuim

characterization for a fixed overtaking fee C,. The set of
equilibrium symmetric strategies is rich and includes surpisingly

odd strategies. Some may look counter-intuitive. (ii) selhg a

position in the queue could be more profitable to the server tan

selling a priority.

Index Terms—Queues: Priority, optimization, Nash equilib-
rium

I. INTRODUCTION

The subject of this paper is a new mechanism for pricing
ordering service in the M/M/1 observable queue, such as

main attraction in a theme park. In such systems, custom

the time of their arrival. We focus on monopolistic model

where customers have no choice but to obtain the serv
from this server. (This terminology is borrowed from [1],can firs
it simply means that customers must buy the service,) This
contrastsnon-monopolistic modelahere customers attribute
some value to obtaining the service, and can balk (possibly
obtain the service elsewhere) if they find that their expct

waiting costs exceed that value. We start by surveying the i

ature on non-monopolistic and monopolistic queueing mndefm

This survey helps in positioning our contribution, but is@l
contains novel observations regarding profit maximization
observable queues.

A. Non-monopolistic systems

a‘ﬁe two conditions will be achieved (R is a customers benefit

single price, and therefore its objective differs from tloeial
objective. In particular, customers who arrive while theege
is short enjoy higher net utility than those who arrive to a
longer queue (utility functions of individual customersear
identical and additive, from the public (social) point oéwi).
The server's profit is bounded by the maximum social
welfare generated by the system. A server can collect this
amount iff two conditions are satisfied: (i) The sociallyiopsl
behavior is maintained, in particular customers join adooy
to the thresholdn*, and (ii) the server can fully extract the
customers’ welfare. This is not achievable in Naor's system
with a single price. However, we make the straightforward
observation that if the server could set dynamic pricesn the
by chargingp(n) = R—C’-”I—f1 from a customer who observes
n < n* customers upon arrival, and a higher price otherwise,

&m completed service). Thus, dynamic pricing can achieve
upper bound on server’s profits, and also social opttynali

?a%itmission fees are considered transfer payments and do not

affect social welfare). This scheme is not restricted to the
E&Fs regime. We refer to its implementation in the last-come
t-served (LCFS) queue below.

Following a natural objection to price discrimination, one
may claim that dynamic pricing is unfair in addition to being
Hard to implement, and hence Naor’s profit maximizing price

%an be considered as second-best optimization.

Priority sale in queueing systems is commonly used to
prove service and increase profits. In such regimes, a
customer has the option of purchasing priority, out of a menu
of options, and overtake others who arrived earlier. Of seur

a low priority customer may be overtaken by later arrivaloowh
purchase higher priority, and this serves as a further itieen

to purchase priority. Customers take all this into consatien

Naor [29] was the first to consider pricing in such systemd#hen choosing their purchase strategy. Since a customer's
Naor's model assumes an M/M/1 system with service raférategy responds to other customers’ strategy, the résult
1, homogeneous customers, a first-come first-served (FCRS{Nash) equilibrium strategic behavior.

regime, a fixed value of service, and linear cost®fper

Adiri and Yechiali [1] considered another second-best-opti

time unit of waiting. Naor showed that if the overall (sogialmization problem. There is a given numben, of priority
welfare (which is defined as the total expected net beneflsses. The server sets prices for these classes. Arriving
of the members of the society, including both customers aftistomers observe the number of customers in each class, and

servers) is to be maximized then for some threshold valye
customers should join the queue iff its length is at most 1.

decide what priority to buy. The equilibrium has the follogi
structure: For some vector of: thresholds, one for each

However, self-interested customers use, in general, aehigRriority class, a new customer buys the lowest priority such
threshold. A single admission price is sufficient to inducat the number of existing customers in this class is smalle
optimal joining behavior of self-optimizing customers.igh than its threshold.
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Hassin [14] proved that social optimality can be achieved
without the use of any pricesimply by implementing a LCFS
regime with service preemption. The last customer in the
gueue (the one who arrived first among current customers)



decides whether or not to balk, and this decision has no impatanagers ... (and) is less likely to cause dissonance among
on other customers. Hence the decision affects the custornestomers who experience widely varying prices ...” Cachon
exactly in the same way that it affects social welfare, arehd Feldman [6] (p. 245) write that “a two-part tariff may
it is carried out in the socially optimal way. A consequenceot be desirable ... a customer may dislike being charged
is that if the server installs a LCFS regime and chargestwice for the same service ... firms might prefer to forgo
single non-refundablentry fee equal to the expected utilitythe additional revenues from using a two-part tariff to save
of a joining customer, then the joining process will be ogtim the transaction costs and the administrative burden reduir
and the servers profit equal to its upper bound (the maximubor its implementation. Disney, for example, initially acgad
possible social welfare). Hassin discussed the drawbatksconsumers both to get into the park and for specific rides
such a model: it might be considered unfair, it is difficult tavithin the park, but later it abandoned per-ride charges.”
maintain, and customers may leave the system and try taret&@imilarly, Tong and Rajagopalan [34] is focused on obtajnin
as new arrivals. second-best solutions that use a single price (fixed or per
Alperstein [4] considered profit maximization in the sam#éme unit) rather than the non-practical complicated optim
model. While the derivation there is technical, the qutliea solution.
results can be easily explained. Suppose that the threshold
are 1 for priority classes = 1,...,n* so that an arriving
customer buys the lowest priority that has no current custom
and balks if alln* priorities are taken. To achieve this strategy The prices set by monopolies are usually regulated. A
set the price for priorityi to be the expected utility of a common rule is that the lowest quality/priority service lied,
customer who buys this priority assuming that all othef@’ almost free, of charge. This is the case, for example, in
behave according to the unit threshold strategy. This biehavthe observable model of [1], and in the unobservable models
is an equilibrium under the stated strategy: Buying the kweof [17] §4.2, Gilland and Warsing [12], and Guo, Lindsey and
available priority (or balking when all priorities have aalst Zhang [13], butit is not satisfied in Alperstein’s two-paatiff.
one present customer) gives zero net expected utility,andrily Assuming that customers are homogeneous, and since balking
other act gives non-positive net expected utility. The lteisu IS not possible, any time conserving priority rule is asatex
a LCFS regime, customers behavior is Socia”y OptimaL arthh the same eXpeCted social welfare. The main question in
the servers profit attains its upper bound. An advantage 8ch models is therefore profit maximization.
this model is that although the outcome is again LCFS amongAdiri and Yechiali gave special attention to the monopalist
the customers who obtain service, customers may not feeV@rsion of their model withn = 2, and the lower priority is
is unfair because they choose the type of priority to purehagostless. Therefore, as in Naor's model, there is just aleing
Also, those who pay eventually obtain service and those wRgCe to be set. They numerically solved an example depjctin
balk do not incur any costs, whereas under the LCFS regirﬁ'@ server’s profit as a function of the fee and identified its
with a single price, the waiting costs of reneging custome@®timum. Hassin and Haviv [16] showed that the equilibrium

B. Monopolistic systems

are not refunded. strategy is not unique, and in fact the number of such stiegeg
Alperstein’s price for class is 0, = R— C pj is unbounded. They left the question of profit maximization
P= 1. _ Note thatl Z pJ is the expgctea fength under multiplicity of equilibria open, and we treat it below
- 0

The subject of this paper is a different mechanism that
allows overtaking, and we focus our research on the mo-
opolistic version. The overtaking model which we offer in
is paper can also be viewed as having many classes with
one customer per each class, but this is achieved with just
a single price. In our system, customers observe the queue
length upon arrival, and have the option of overtaking some o
Cpr" k. Thus, the cost of overtaking a customer increas@f of the customers already present in the queue. Ovegakin
With the number of overtaken customers. is associated with a fixed price per overtaken customer. If a

Alperstein did not prove uniqueness of the claimed equiustomer chooses to overtake some but not all of the present
librium. In fact, the equilibrium is not unique, since bugin customers, overtaking applies to the last customers in the
any higher than the lowest available priority is also a begueue. Customers incur a fixed cost per every unit of sojourn
response. But it can be made unique by an appropriate smiaHe in the system, and their goal is to minimize their own
perturbation of the prices that slightly discourages adrg. expected total cost. As more customers overtake others, the
After such a perturbation the claimed equilibrium is uniguemore inclined an individual should be to do so himself. In

This solution is that it requires implementing a whole menather words, the nature of the situation isfoflow the crowd
of n* priorities and prices, and this is a well recognize{FTC) behavior [16] which typically leads to a multiplicityf
drawback. For example, the paper of Cachon and Zhang [7]gguilibrium solutions.
devoted to replacing an optimal menu of contracts in a supplyAs in any priority discipline, the benefit of using our
chain by a suboptimal but simple alternative mechanisml, Hgbroposed scheme may be enhanced when customers are het-
Kopalle, and Pyke [19] (p. 421) write that “the constantimic erogeneous, but we prefer to emphasis the potential benefits
policy is much easier to compute and communicate to relevandtthis novel regime by assuming homogeneous customers.

of a busy penod in an MlM/l/system, which is exactly the
expected waiting time of a customer who buyth priority.

Therefore, the net expected utility of the customer is 0.
can be viewed as wo-part tariff consisting of a fixed cost
0o = R— % Z;‘:gl p?, andnonlinearovertaking charge. The

cost of the first overtaking i§ p" ~1, thek-th overtaking costs
C



C. Main goals and results it.

1)

2)

3)

4)

5)
6)

7

8)

We are interested in a simple single price mechanlsm
that increases the server’s profits.

We assume a monopolistic firm, and therefore customersWe now describe additional literature on equilibrium in
must have the option of obtaining the service at a fixgatiority queues. Dolan [9] considers an observable quetie wi
cost which we assume without loss of generality to beustomers that are homogeneous except for that they have
0. different waiting costs which are their private informatio
The proposed model results in a rich collection dBalking is not allowed, and social welfare is maximized
equilibrium solutions, and we would like to characterizevhen customers with higher waiting cost obtain priority ove
the symmetric equilibrium strategies. However, it turnthose with a lower cost. This can be achieved by the use of
out that this mission is much harder in our system thablarke prices each customer declares his waiting cost, obtains
in related priority queueing systems analyzed in thgriority accordingly, and pays for the externalities he osps
literature. We consider several types of strategies amdsuming that all customers truthfully declare their coHts
find out that the set of equilibrium strategies is quiteurns out that under these prices, truthful declarationris a
rich and includes surprisingly odd strategies. We charaeguilibrium strategy. Mendelson and Whang [27] analyze the
terize some particular families of equilibrium strategiesquilibrium behavior in an unobservable queue where hetero
but it is clear that these are not the only equilibriungeneous customers choose their priority out of a menu set by
strategies. For example, a strategy like: overtaking the server. They show that the: priority rule can be used
single customer when observing one customer in theth an appropriate price menu to maximize social welfare
system upon arrival, overtaking none when observirggen when the customer’s type is her private information.
two or three, overtaking four customers when observingfeche [2] considers the same model and shows that in certai
four, overtaking three customers when observing fiveases revenue maximization is obtained by the same priority
and not overtaking any customer otherwise, can be ame but while also artificially inflating the service time af
equilibrium. low priority class. Gilland and Warsing [12] consider reuen
One of the counter-intuitive findings in our work is thamaximization in a multi-priority unobservable system with
sometimes it is worthwhile to arrive to a longer queuwaiting cost rates that are uniformly distributed over [0,1
since then the customers’ expected cost is lower. and show that the solution also minimizes the expected total
We solve the maximum profit among all possible pricedelay costs. Lui [25] Glazer and Hassin [11], Hassin [151 an
and equilibria in the Adiri and Yechiali model. Afeche, and Mendelson [3] consider an auctioning scheme,
We show that charging a single price for overtaking givashere each customer chooses the amount he wishes to pay
higher profits than charging a single price for priority. for priority and then he is placed in the queue ahead of
Our model is fundamentally different from that ofthose who paid smaller amounts. Myrdal [28] claimed that
Alperstein, though some of the equilibrium policiexorrupt officials may deliberately cause administrativéage

we investigate resemble the behavior induced by tlie service so as to attract more bribe payments. Hassin [15]
optimal pricing in Alperstein’s paper. In particular, whercompared the service rate chosen by a profit maximizer to
the number of priority classes is restricted kothe the socially optimal rate, showing that from this point of
customers’ induced strategy has unit thresholds at all beiew Myrdal’'s hypothesis is correct. In this paper we show
the highest priority, exactly as the strategy which we that when the service is slower, i.q.,is lower, the server’s
consider in Section IV. However, this behavior resultprofit is higher. Rosenblum [31] explores a market model
in Alperstein’s paper from a completely different gamewhere customers trade queue positions. The result is teat th
in which customers buy priorities, and a higher prioritcustomers will be served in decreasing order of value of time
supplies a stronger protection against overtaking lwhich is the socially optimal order. This model is a kind of
future arrivals. For example, a customer who purchasesertaking model where a customer overtakes other cusemer
the highest priority is assured of never being overtakeanly if both agree to this overtaking. Larson [24] describes
In our model, this is not possible. Also, in contrast t@an example of tugboats that may increase their speed to the
the (nonlinear) costs assumed by Alperstein, our analysiaximum (while increasing their fuel consumption) to avoid
concentrates on the case where the cost of overtakinging overtaken, resulting in a socially suboptimal eduilim.

a customer is at least/u. Thus the question is how Similarly, Hassin and Haviv [1734.2 analyze the unobserv-
many of the existing customers it is worth overtaking imble version of Adiri and Yechiali’'s model, and show that it
equilibrium, whereas with Alperstein’s prices, all of themight be that all customers purchase priority in equilibrito
existing customers are always overtaken. For exampfaotect themselves from being overtaken. The result is FCFS
not overtaking any customer is always an equilibrium idiscipline, but all customers are now worse-off. In our mode
our model, but never so under optimal priority pricing.costly overtaking of others in order to avoid being overtalse

Itis important to emphasize that overtaking in our moda key phenomenon. In Section IV we describe an infinite set of
is a result of strategic choice of customers and notexquilibrium solutions that may be viewed as generalization
consequence of a given structure, such as, for examplee one observed by Larson. Shenker [32] considers a finite
in the model of Whitt [36] and the work which followed number of customers whose utility is a convex function of

. Additional literature



their demand rate and their expected queueing demarfidir A the main results and computational experiments are better
share service disciplinégs used to regulate the equilibriumexpressed with the normalized parameters.

rates of demand: Every customer obtains the highest priorithe caseC, < <= has a trivial unique equilibrium since
for a portion of its demand of the size of the smallest demamndertaking all present customers is clearly a dominantesgsa
rate of any customer. Then, recursively, the customers wittherefore, we assum@uM < C,, or equivalently

higher demand are given the lower priority levels. Hassid an

Haviv citeHHO6 and Hayel and Tuffin [21] show that using

relative priorities can improve both social welfare andffiro |, 5 (Nash) equilibrium no customer has anything to gain by
maximization when the choice of. prices is rgstncted. Hass'_changing his or her own strategy unilaterally. In a (symiogtr
Puerto and Fernandez [20] consider a multiclass model Wﬁlauilibrium all customers use the same strategy.

relative priorities, wh_ere the prio_rity giv_en to a classals ~qnsider astatic version of the model, where a queue is
depends on state variables associated with other clasSeg. Tyeqentially formed but the number of customers to be served

show that relative priority in am-class q}Jeueing System cafg fivad and they are all present at the time the service begins
reduce both the server's and customers’ costs. Sun, Guo, Tigny nq fyture arrivals are expected. In this case there is a

and Li SGT09 extend this model allowing class-depende@ﬁique equilibrium in which no customer overtakes any other

service rates. Equilibrium behavior in priority queuesti®t ¢ siomer. To see why this is true note that by (1), a dominant
subject of Chapter 4 of Hassin and Haviv [10zekici, Li gt response of tHast customeis not overtaking, therefore
and Chou [30] consider a model mhpolite custometsvhere pagt response of the customer whose position before the las
a customer who arrives when there are customers in the e js not overtaking either, and if we continue this way the
queue joins thé-th position { < k < m+1) with probability gt js that there is no overtaking. In the sequel we show
P(m, k). They show that the more impolite are the customeffa; while never overtaking is always an equilibrium stggte

the bigger is the variance of the waiting times. in the dynamic model there are numerous other equilibrium

strategies.

v>1. (1)

E. Organization of the paper

In Section Il we formally present our model. In Section IlI Ill. PURE EQUILIBRIUM STRATEGIES

we numerically compute equilibrium strategies in our model In our model, customers observe the queue and then decide
In Section IV we consider strategies of overtakingustomers how many to overtake. In our terminology, the number of
if there are at least customers in the system, and overtakingustomers that an arriving customebservesincludes the

all of them otherwise. In Subsection IV-A we ask whether itustomer in service, but not the new customer himself. Is thi
is worthwhile to encounter a longer queue when all customessction we analyze strategies defined by a ve@torks, . . .),
follow this strategy, and the answer is sometimes positiveherek; is the number of customers that an arriving customer
In Subsections IV-B and IV-C we consider mixed strategiesho observes customers, overtakes. Clearly, < i.

equilibria where at most one customer is overtaken. In 8ecti Let f; ; denote the expected waiting time of a customer
V we compare the server's maximum expected profit pgiven that there aré customers in front of him (including a
customer under equilibrium conditions in two models. Theustomer in service) angl customers behind him, so that the
first is our model, and the second is the model analyzed twtal number of customers in the systemi-isl + ;. In addition

[1] and [17], in which there are two priority classes. Figall define f_; ; = 0. Then,

Section VI contains suggestions for future research.

1 I A
i = ~—— +~—fic1;+~——Ffi+15, Kirj+1 > 7,
II. M ODEL DESCRIPTION Jii A+ /\+Mf b )\+Mf+1’J IARR
1 I A
In our observable M/M/1 model, customers purchase prf;,;, = ——+——fi 1+ ——Ffiit1, kirijr1 <J.
p pf,] /\+,u+/\+uf 1,J+)\+Mf,J+1 +i+1 =7

ority, and this priority enables overtaking present cuson
A new customer observes the queue length and announceslthg; < K for all ¢ for some K, this provides boundary
number of customers that he overtakes. There is a fixed®&pstconditionsf; ; = %,Vj > K.

per overtaken customer. We assume that there is no balkinglf a new customer observes customers, and decides to
and a customer cannot renege or overtake after joining theertakek customers, his expected waiting costls f;_ » +
gueue. The service discipline is preemptive resume.dgt kC,.

denote the cost per unit of time to a customer for stayingén th The strategy(k1, k2, ks, . . .) defines an equilibrium if over-

system (waiting or in service). All customers have the santakingk; customers is a best response of a new customer who

value C,,. We denote the rate of arrival by, and the service observes; customers fori = 1,2,.... Therefore, the condi-
rate by . tions for equilibrium are:Cy, fi—k, x; + kiCo < Cuy fi—k i +
Remark 2.1: There are four parameters in our modekC,, fori=1,2,... andk=0,1,... 4.

namely,\, 1, C, and C,,. By normalizing time and cost we We could not give analytic characterization to the equilib-
remain with just two,p = % and v = £, as in Naor's rium strategies. However, we applied numerical analysiet®

Cw . . . . oy .
model. In some cases, especially when the recursive eqgatiehich strategies are equilibrium for some values\ofi and

are involved, we prefer the four parameter representatin, g—w



Table | contains a list of all strateqi€s, , ko, ks, k4, k5, ke)

with k;, = 0,Vi > 7, i.e 7! = 5040 options, such that at least [k1 [ k2 [ ks [ ka | ks | ke |
for some values of < v <2 and0.1 < p < 0.9 they define 0 0 0 0 0 0,6
an equilibrium. Figure 1 shows the values(gf 1) for which 8 8 8 8 ; %
the strategieg0, 2,0, 0, 5,5), (1,0,0,4, 3,0), (1,0, 3,3,0,0), o T o 1T o 1 o 3 3
and(1,2, 3,4, 4,0) are equilibrium. Actually, table I and figure 0l 0] 0] O 4 3,4
1 present you the potential to many equilibrium strategies. 8 8 8 (1) i ngﬁ
IV. OVERTAKING k CUSTOMERS 8 8 8 ; ; 8%%
In this section we consider the stratedy, of the form: 8 8 8 j g 066
k; = min{k, i}, i.e., overtakingk customers if there are o T o0 T o 1 2 i 034
at leastk customers, and overtaking all of them otherwise. 0] 0| 0| 4 5 0,5
We observe that if the strategy of all customerssig, i.e., oo )11 0 0
not overtaking others, then from (1) it follows that the best 8 8 % ; 011 0(’)1
response of a new customer is also not overtaking. In aditio 0 0 2 3 5 012
we have already mentioned that,, or equivalentlyk; = ¢ oo 212 3 3
for all i, is the only equilibrium strategy when (1) is violated, 8 8 g g 2 1'2'3
ie., C, < == M . Theorem 4.1 states that,, £ = 1,2,. 01 0 3[40 © 5
equilibrium strategies wheﬁ— <(C, < C . These results cfo]3]O0 5 5
are summarized in Figure 2. 8 8 g i 0’2'3 024
Theorem 4.1:3;, k =1,2,..., defines an equilibrium iff 5T o 3 12 £ =
1 0| 1] 1 ][0I O 0
1<v<—— (2) 0 1|11 1 0,1
l—p 0| 1] 1] 2| 2 2
The proof is given in the thesis [10], Theorem 5.1. 0] 21010 0 0
0O 2070 5 5,6
0| 204 4 0,4
A. Overtakingk customers -Is it preferable to encounter a 8 g C2> O41 8 g
longer queue? o T2 T2 T3 01 0
One of the interesting questions abadiy strategy is: Is it 0 2272 2 012
preferable to encounter a longer queue? Straiggprescribes 0| 2]2 ]3] 3 03
a customer who observes at leastustomers upon arrival to 8 g g g g g
overtakek of them, and by that to ensure that future customers 01 21 3 3 3 [ 0123
will not overtake him. In contrast, a customer who observes O] 23] 4 4 04
less thank customers upon arrival cannot ensure that. He can 2 (2) g g 8 g
only overtake all present customers, but all future custsme T T o 1 o0 10 Z 34
will overtake him till his service completion. We find thattte T 10| 0O 5 456
are input parameters for which a customer prefers to observe 1] 007 4 3 0
a longer queue. i 8 8 i g 0(’)35’4
Theorem 4.2:Suppose thatl < v < ﬁ, and that all T o 3 13 0 0
customers follow theX, strategy. Denote the number of T 17033 3 02,3
observed customers by Then: i 8 g i ‘5‘ ;‘
1) The expected cost as a functionjdé built of two linear T 1 1 0 0 0 0
functions, one forj < k, and the second fof > k. 1] I1[]0]O0 2 2
2) If v > £, then the function is monotone increasing 1/ 1] 1701 0 0
for anyk (JFlgure R). i i % ; ; 8:;
3 Ifrv< k<1 L then the gIobaI minimum is &t (Figure 1 [12] 3 | 3 3 023
3h). Otherwise, if > 75y then the global minimum i % 032 g g g
is at 0 (Figure 8). T T B O o
4) Ifv< W for somej > k andg < k, then T T2 2 2 2 [ 012
a new customer prefers to obseryeto j' customers, 1] 212 ]3 3 3
in other words prefers to observe a longer queue. (For i g g g g g
example, Figure § with ;' = 3 andj = 13). 11T 2 1 3 | 2 Z 0.4

The proof is given in the thesis [10], Theorem 5.2.
For example, in Figure & (where k = 4), the function is TABLE |
. . . .. EACH OF THE ABOVE IS AN EQUILIBRIUM FOR SOMEp AND v.
monotone increasing which means that an arriving customer
always prefers to observe a shorter queue. In Figbré&8ain
with & = 4) an arriving customer prefers to observe 4 rather
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Fig. 3. Expected cost as a function of the number of obserustbmers (the
red circles represent the comparison in example that islelétafter theorem
4.2).

than O customers in the system. If he observes 4 customers,
then he overtakes all of them and all future arrival cust@ner
do not overtake him, and his expected costis+ kC, = 5.
Otherwise, if he observe® customers, then all future arrival
customers overtake him, and his expected cosfﬁ = 8.
In Figure ¥ (wherek = 12) an arriving customer prefers to
observe) rater thanl 2 customers in the system. If he observes
12 customers, then he overtakes all of them and all future
arrival customers do not overtake him, and his expected cost
is x4 kC, = 13. Otherwise, If he observe® customers,

2 . .
then all of them and all future arrival customers overtake,hi
and his expected cost I§_w—>\ =8.



B. Overtakingk customers - two actions mixed strategy =~ C. Overtakingk customers - three actions mixed strategy

In this section we check whether there is an equilibrium

_ The mixed strategy’y. , is defined as follows: For a given gy a40qy where customers are indifferent between ovieigak
integerk > 1 and a vectorp = (pk,pr+1,.-.) such that E k—1ork—2 customers.

pi € [O’_l] for everyi = k’_' - a customer_who qbserves UPOTNow the mixed strategy., p is defined as follows: For a
arrival i > k customers in the system (including the one in ’ Pl
service) overtakeg customers with probability; andk — 1 . : . 1

. . iven integerk > 1 and a matrixP = i such
customers otherwise. If there are at mést 1 customers in ° gem = Pk_ﬁ p?ﬂ

the system, the customer overtakes them all.

Theorem 43X, , defines an  equilibrium iff
1 < v < L, and for some x such that,

thatpf~",p% € [0,1] for everyi =k —1,... andj =k, ...
A customer who observes upon arrival k customers in the

Lor system (including the one in service) overtakesustomers
max {0, (\/ﬁ + \/L_) (ﬁ - %)} < T < with probabilitypf, k — 1 customers with probability)’gfl,
N andk — 2 customers with probability? ™2 = 1 — p¥ — pF~*.
min {1, (\/,5 4 \/L_) (1 — l) }; A customer who observes upon arrival- 1 customers in the
- g P system (including the one in service) overtakesl customers
Pk ' . . . with probabilityp’,zj, andk — 2 customers otherwise. If there
Pr+1 = (1 + ;) (1 - ;) Tl are at mostk — 2 customers in the system, the customer
Proj=1— %, Vi > 2. overtakes them all.

Theorem 4.6:: ¥, p defines a unique equilibrium where
customers are indifferent between overtaking: — 1 or k —2

2 .
N L) (1-1)if 1 << L2 customers iffl < -,

In particular, the condition om is:

o<z

< ( \/;32 1+p+p? " K k—1 _ 1 _
2 0w <lif s <v<i+p. P 1 y(’lpk 1)_ o
2 : pk+1:(1+‘) v T T
1 1 1 P P

3) (\/ﬁ+ W) (m - ;) <z <1lifl4+p<v < Pl = (402 (1=2)—ploz+(1+0)y] 14 ;

: 2 k+1 ™ p(1+p)(1+p+p?) I+p+p?

mm{1 p7(1+P)}. pﬁﬂ_:l_%’ Vi > 2,

The proof is given in the thesis [10], Theorem 5.3. Pi; =0 Vi>2,

Observation 4.4: Theorem 4.3 shows that fordnyr 1 0<2<1,0<y<1,0<2<1,0<py,, <1,0<
andj > 2, py4; =1 — 1 . This can be explained as follows:pﬁ;} <1,
A customer who observgst k — 1 customers, and overtakest + 2z < 1,
only k — 1 of them will be overtaken till a new arrival choose®; +pf,,; <1 Vj > 1.
to overtakek — 1 customers. The time until this happens has a The proof is given in the thesis [10], Theorem 5.6.
geometric distribution, with probability — p,, for success, ~We note that the equilibrium conditions are not an empty
and probabilityp;, for failure. Hence, the expected numbefange.
of customers who overtake is _Z}_ — 1. Therefore, the

. o Y
residual expected waiting time of a customer who observes Overtaking a single customer

j + k — 1 customers, and overtakds— 1 of them, consists

of the service times of these customers, pliservice times

of customers that were before him, plus one service time
i+t )+

We consider pure and mixed threshold strategies with at
mPst one overtaken customer, and give necessary and suffficie
conditions for these strategies to define an equilibrium.

himself. Hence, whe — oo fj ;1 = ——*—— = Under the pure threshold strategy,, a new customer
T N , , overtakes one customer if there ateor more customers in
—— . Substitutingf; ;1 from (8) gives wherj — oo yhe system, and does not overtake any customer otherwise.
pj=1- &= =1~ which is proved in Theorem 4.3 . Theorem 4.7:0,, defines an equilibrium iff> < v <

A (symmetric) equilibrium strategy is, by definition, a besl}ﬁ.
response against itself. However, it need not be the uniquefhe proof is given in the thesis [10], Theorem 7.1.
best response. Specifically, lgtbe an equilibrium strategy.
There may be a best response strategy y such thatz is ~ The mixed threshold strategy, , where0 < p < 1, is
strictly a better response against itself thars. In this case, defined as follows: a new customer overtakes one customer
y is unstable in the sense that when starting withit may if there are at least + 1 customers in the system, does not
be that the players adopt the best responsand then a new gyertake any customer if there are at mast 1 customers in
equilibrium, atz, will be reached. If no such exists theny  the system, and if there are exactlycustomers in the system
is said to be areVOlUtionarily stable Strategy)r ESS. Note he overtakes one customer with probab”jiyand does not
that if y is an equilibrium strategy and it is the unique besjvertake any customer otherwise.
response against itself, then it is necessarily ESS. Theorem 4.8:,,, defines an equilibrium ifflTlp <v<
Observation 4.5:The equilibrium mixed strategyXy }f—ﬁ andp = (11% (1 —p-1

) p) \7 v/
(p # 0,1) is not ESS. The proof is given in the thesis [10], Theorem 7.2.



V. PROFIT MAXIMIZATION priority customers and the other for ordinary customers. Fo

In this section we compare two models of profit maxi@ given threshold value. > 0, an arriving customer buys
mization using a single price. In both of them the customepgiority iff the number of customers in the ordinary queue is
purchase priority, customers are identical except theivalr at leastn. This is an absolute priority discipline, and therefore
time, there is no balking or reneging, and decisions a¥¢e denote this model b&P. If a customer purchases priority
made upon arrival and cannot be changed later. The senAB&n he overtakes all customers in the ordinary queue, and
disciplines are preemptive resume. We compare the servdt@comes the last customer in the priority queue. The price fo
maximum expected profiper customerunder equilibrium becoming a lower priority ordinary customer is 0, and there

conditions. is no balking or reneging.
Denote by the price of purchasing priority, and By (n)
A. Maximum profit in the current priorityGP) model the expected time in the system of the last customer in the

The first model is the model of Section I1. In this model pufrdinary queue when there are no customers in the priority
chasing priority enables overtaking present customersanUpdUuéue and in the ord!nary one, an.d all use the pure threshold
arrival, a new customer decides on the number of currefifateégyn. The following theorem is proved in [16]:
customers that he overtakes, and pays a fixed cost per eachh€orem 5.3:The integer threshold strategy, n > 1,
overtaken customer. In this model an arriving customer -ovéiPecifies an equilibrium if) + % - ,Lc_wx < CuW(n) <
takes customers who are currently in the system, but futufer <=. The thresholdn = 0 specifies an equilibrium iff

customers may overtake him. Therefore, we call this diguipl ¢ + <= < -Cu.
current priority disciplineand denote this model b@P. The profit from a customer is the cost which this customer

We have already shown that there may be numeropays. In theAP model it is 4, if a customer buys priority,
equilibria in this models. For example, always overtaking otherwise it is zero. Denote bjfi*” (n) the server's expected
customers, i.e.Xx, k= 0,1,2..., are equilibrium strategies. profit per customerin the AP model as a function of a
In particular strategy®.,, in which an arriving customer thresholdn, and by 6,,.. the maximum price for buying
overtakes all customers who are currently in the systemwiority which satisfies the equilibrium conditions. Sugpo

inducgs a Iast—come first-served order of service. that all customers use the pure threshold strategy= 0,
Notice thatC, is a parameter that can be changed by ig., the strategy is always buying priority. From Theorei®, 5
server, as opposed 1©,, which is a given parameter. Oman = mc“” so thatlTA? (0) = 0,az-

The profit from a cu;tqmer is the cost which this customer gjo ( k—x) C, < ( _A}\)QCW it follows that, ITAP (0) <
pays. In theCP model it isC, per each overtaken customer. B -

. TI°P, i.e., the server's expected profit per arrival in 6@
The server's expected profit per customer under g P P P

strategy isC, L. where I, — %p is the expected numbermodel is greater than the server's expected profit per drriva

1 i i —
of customers in the system. By Theorem 4.1, the maximu% the AP model with threshold: = 0.

price for overtaking any customer such thas, still defines
an equilibrium is-£x.. This gives the following theorem:  C. Maximum profit in the absolute priorityAP) model with

Theorem 5.1:'IJF1e expected maximum profit in th€P  thresholdn > 1

model among alky, k =0, 1,2,..., strategies is Denote byP, the probability that the number of customers

TI€P — #Cu}- (3) in the system (both ordinary and priority queues) is at least
(1 —A)? n, in the AP model under the threshold strategy P, =
It is received fromS., with C, = S (or, v = L) P(L > n) = (2)*. We assume that all customers use the
. . © CTEY J —p/- m . .
The proof is given in the thesis [10], Theorem 6.1. pure threshold strategy > 1. From Theorem 5.3, in this case
Omaz = Cu W(TL) + ﬁ — ;_1L:| = Cy W(TL) + m}

We assume that the server can choose the equilibrium whigihce an arriving customer buys priority iff the number of
maximizing its expected profit. This assumption is standareéustomers in the queue is at |ea5t1‘[AP(n) = OmazPn =
see for example [26] p. 867 and p. 910. Hence, amBpg 4 (A)” or equivalently
k=0,1,2,..., it will chooseX, strategy in theCP model. "

Remark 5.2: It may come as a surprise that it is possible A A\
that pure strategies, not one of the, type, give higher 4 (n) = Cy [W(TLH— 7/\] (—) : (4)
profit than II°F for some parameter values. We found pure e =N An
strategies from Table | and parametersp that satisfyC\, L > Lemma 5.4:
I = 2550y, or v > 1. For example, strategy W(l) = e andHAP(l):Cw%%;

(0,0é3t,_3,3,li,_0,0,...) withh = 2 and v = 4.77 satisfies the W(2) = i"{tj;z andITAP(2) = C,, 2;5(4;3;;3;2(%)2;
conaiton. 3 2 2 3
WE) = MSDeEALIA and TIAP(3)
B. Maximum profit in the absolute priorityAP) model with C,, 3““”2{;1%2?5&@?““4 (%)%
threshold n=0 In these caseB P (n) < II°F.

The second model is that of [1], [16] In this model two The proof is given in the thesis [10], Lemma 6.3.

FCFS queues are formed in front of a single server, one for




P HAP(4) HAP(7) HAP(IO) HCP . . .. . .

0T 00004 T 0.0000 T 00000 T 0.0123 conte_xt of evaluatlng gueueing policies and its resolu_is)n

02 [ 0.0073 | 0.0001 0.0000 | 0.0675 not simple at all. Avi-ltzhak and Levy [5] propose a fairness
0.3 | 0.0406 | 0.0018 | 0.0001 | 0.1837 measure enabling to quantitatively measure and compare the
04| 01452 | 00143 | 0.0012 | 0.4444 level of fairness associated with various queueing systems
05| 0.4149 | 0.0768 | 0.0126 | 1.0000 oth h d ived in th 351 | :
06 10556 T 03241 00895 | 22500 er approaches are described in e survey [ ]._ n qoguei
0.7 | 25746 | 1.2067 | 05149 | 5.4444 systems with priorities which involve costs (waiting cost,
0.8 | 6.5393 | 4.4083 | 2.7315 | 16.0000 priority cost) such as our model, the issue of how priorities
0.9 | 20.8894 | 19.3777 | 16.6511 | 81.0000 and preferential service affect fairness has not been eagblo

TABLE I and evaluated at all. This is an interesting subject forriutu

SERVER' S EXPECTED PROFIT PER CUSTOMER ISP AND AP MODELS, research.
Cw=1
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Networks14, 411-426. a global minimum if a new customer prefers to obsekve
rather than an empty queue, i.€7,+ ik kC, < Cy w w
PROOFS or equwalently, = < r(’\ NE If a new customer prefers
o . to observe an empty queue rather thamhen 0 is a global
Proof of Theorem 4.1:We divide the proof into two parts. mjinimum and then”,, — =5 < Cpt L 4 kC,, or equivalently,

« Suppose that a new customer obseryes k customers. m < g—w
By overtakingk, he guarantees his place in the queue, A new customer prefers to observe a longer queue, i.e.,
because behind him there afke customers, and only prefers to observg > k customers rather thay < k, if
they will be overtaken by new customers. Overtaking ang,, 7% + 1C, < C,, -1 + 5'C,, or equivalently if S= <
additional customer costs, and save@ By (1) there X—(u ‘NG=k " h

u(p—=X)(k—j") * "
is no reason to overtake more tharcustomers Proof of Theorem 4.3: A customer is in statéi, j) if there
If he overtakesk customers, his expected cost

%

11—k X i ) re exactly; customers in front of him (including the one in
th T l]iCO.”Cf)ttt'terwrse,tlf he overtftlj(es hqjst."servrce) and exactly customers behind him. We denote by
omers, i < all future customers overtake him the expected (residual) waiting time of a customer in state

he finishes his service and leaves the system. Theref ré /) given that all future customers adopt the stratéyy,
his expected waiting time ig + 1 — ¢ busy periods, In addition let f_, ; = 0. P
-1, =

and his expected cost i, 22— + iC,. The strategy _ _
i Tbrium iff oventaki - Consider a customer in staté, j) wherej < k — 2:
defines an equilibrium iff overtaking customers is a ° €)J J= :

best response of a new customer Her@e,,% + i+1
kC, < O, = Z+ZC OI’ +2 AJ+1-—Fk) fOI’ fig = =\ Vji<k-2. (5)
= o1 = = = w(p—N)(k=1) H

1_01 k—land]_kk+1 he minimum ) ) ) ] _
of 125+ 7(#(71;;(;)1)} over i = 0,1,...,k—1 and ° ?onsrderi CEOTel‘féta(@ _Ji’]fp;klf)ff], > i
i =k,k+1,... is obtained ati = 0 andj = k. xj(l_i’pk.:,l)_j S Mt Jikl
Therefore the condition ige < L5+ TR =t % J =1, orequivalently,

o Suppose that a new customer obseryvesl 2,..., k=1 1
customers, and chooses to overtake all of them His fik—1= )\7[(/\+u)fj,1,k,1—
expected cost i€, — + j Co. Otherwrse if he chooses Pj+k—1 , (6)
to overtake; customers; =0,1,...,7—1, his expected wfjon1—1—(1- ka_l))‘_J]’ j>1.
waiting time isj +1 — ¢ busy penods, and his expected
cost is C,, le L +iC,. In equilibrium overtaking all In particular,

customers in the queue should be a best response of a new

customer. Thereforé€', C, < Cy 3“ L0, for 1 A
p= it e fik—1=— |+ Nfor—1—1=0=pr)=|. (7)
i=12,... k- 1andz—01 L j= 1orc°§ e APk H
= « Consider now a customer who observkst+ j — 1
Proof of Theorem 4.2:If a new customer observes > k customers upon arrival, wherg > 1. If he overtakes
customers, then according t8; he overtakest of them. k customers, he guarantees his position in the queue

Future customers do not overtake him, and therefore, his and his expected cost i§,,< + kC,. Otherwise, if he
expected cost ig’, 7“ k4 kC,. overtakes onlyk — 1 customers, his expected cost is



Cwfjk—1 + (k—1)C,. For £, to define an equilib-

rium strategy, it must be that the customer is indifferent _1___1

between the two options, hence
Co  J

11

k—1 _Jok—r o k—1 _
N1 R-1-1 = (=™ (=10

S Foio = , and we get (12).
. The last case that we should check is if a new cus-
tomer observesi > k customers and chooses over-

him. Therefore

fik—1= C—O + . Vi > 1. (8) taking only m < k — 2 customers, then his expected
o w_ _ cost is Cy fj—m,m + mC,. In equilibrium the best re-
Substitutingf1 x—1 from (8) in (7) gives sponse is overtaking customers and not less. Therefore
Lc, N cfjmm+mc > C = 4 kCo, OF fi o >
bk = XC, A+ ) for—1—1- ul 9) (k m) + L=kt k“ Substitutingf7 m.m from (5) we
o ] . t Jj—m+1 k j—k+1
Substitutingf; x—1 from (8) in (6) for j = 2 gives gce p=X _Ag ,EH) Wll)Jr w0 O AG_kil) 1
1 A % _T“hAJi o we get th and’éitﬁ G
erefore we get the condition
Pk+1=1+/\—X?{Mf0k 1+ } (10) H= g (12). .

For j > 2, substitutingf; x—1, fj—1,k—1, and f;_o p—1 from
(8) in (6) gives,

Proof of Theorem 4.7:When all others apply the pure thresh-
old strategys,,, a new customer’s best response overtakes
at most one customer, since by overtaking one customer the

Praj =1— C L Wi>2. (11) New customer guarantees his plaee_ in the queue and by the
Copt assumption (1) there is no benefit in overtaking more than
We denotep;, by . Substitutingp, from (9), andpkﬂ from One. In addition, if a customer observes—j custom_ers,
(10), in pj + 2t2 A+u 1 _ Cu B j = 2,3,...,n,. then not overtaking any customer is the
' # Con| ~Atn best response since the customer will never be overtaken, an
Since0 < pr4+1 < 1, we get that(’\:—A“) {ﬁ - COH} <z < Dby the same assumption, in this case there is no benefit in
Ap)? Cu _ overtaking.
: #f) B C_#} @ = px, hence we must get thats = < 1. Suppos?e that a new customer obserwes 1 customers.
Therefor(eA,Jr#)z o In equilibrium the best response of a new customer is not
max{O, il beurie coﬂ} szs overtaking. Hence—(—+n 1) < Cyp ™4 +Co, and this
min< 1, (A::—f)z 1— % inequality gives the first condition for an equmbrium— <
We consider these cases: g—w
1) i g_ < % In this case0) < z < Suppose that a new customer obsemwes; customers; =
Opa)? [i“ Cw] 0,1,2,..., and doesn’t overtake any customer. His expected
M(AM L2 B Coﬂc cost is then— (7” +n-— 1) Otherwise, if a new customer
2) Wiﬂ% Son s H2 In this case) <z < 1. overtakes a srngle customer, his expected cosm,él— +
3) A;;“ < g—z < mm{ﬁ,“:ﬁ) } In this case C,. In equilibrium the best response is overtaking Hence,
(A+/;\L)2 {/\i _ Cc } <r<1 Cw"T“ +C, < C— (% +n— 1), or equwalentlyc—w <
Iz M |l =7 = . .
We now analyze the other equilibrium conditions and shO\l/;rziji)A andw:Jrii\ is minimum fory = 0. Therefore,g—i <

that they are satisfied if= <

L is the second condition for equilibrium.
w(p—2X)

o The best response of a new customer who observes

j < k — 2 customers is overtaking all of them. Hence}

Proof of Theorem 4.8: Define f;(p) to be the expected
waiting time in positioni, wheni is the last customer in the

Cuwfoj+Coj < Cufimii+Col, 1 =0,1,2,...,5—1.

Substitutingf, ; and f;_,; from (5), this gives gueue, given that all customers/\follow the strategy,. Then,
o fulp) = H+Ai—H+A";1i—;;;pﬁ¢+ap>+<1—z»ﬁi
c. < Y (12)  Substituting, fn+1(p) = &+ 12 + fu(p) = 25 + fu(p) gives

« Consider the best response for a new customer who Fa(p) =
observest — 1 customers. If he overtakes all of them,

Ap
_|_
p=A=Ap p=A

n
+u—m7i.(m)

his expected cost i€y, fo,r—1 + Co(k — 1). Otherwise, ynder the pure threshold strategy , the new customer does

if he overtakes only < k — 2 customers, his expectednot overtake more than one customer, since by overtaking one
waiting time is f;_,, SUbSt'tUt'ngfa 11 from (5) we  cystomer the new customer guarantees his place in the queue
get that his expected cost i, 2= + C,l. In equi- and from (1), there is no benefit in overtaking more than one.

librium the best response is overtaking all customers, . Suppose that a new customer obsenzesustomers. In

k
hcenceC fokk ll +Co (]Jf — 1) = Cuymx + Gl or equilibrium he is indifferent between overtaking a single
oo < ooy~ rerr Jok IS bounded from customer or not overtaking. Hena&, f.+1(p) = Cu 2+

)
above by the expected length of a busy period, because
it is the maximum time till a customer in service leaves
the system, even if all new arrival customers overtake

C,, or C, {ﬁ + fn(p)} = Cu% + C,. Substituting

AN (Co(u=N)=Cw)
Cor(n—X)

fn(p) from (13) gives the price. =
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« Becausep. is a probability, we require thdt < p. < 1. Therefore,

The denominator of. is always positive, so the numera- 1 A

tor must be positive too. Therefof&, (1 — \) — C,, > 0, fo,i(n) = m+mf0,j+l(n)7 JE€O0,1,...,n—2.
or g—w > H—iA and this is one of the conditions for an 17
equilibrium in a pure threshold strategy. Now we give the proof to the Lemma:

The condition fop. < 1is (u+A) (Co(p —A) = Cuw) < W(1) = ﬁ andIIAP (1) = cw%%;

Col(p = ), or &= < 5, and this is the additional W(2) = 25, andTIAP(2) = O, 25PN (A2,

condition for an equiligrium in a pure threshold strategy. uo—x2 5 N R

« If p is an equilibrium strategy, then the best response b (3) = 3#(;252 Jﬁiﬁ%ﬂ and TI*7(3) =
a new customer who observes— 1 customer is not to ¢, 3ﬂ4+8kﬁ;3+7§2u§+§33u+%4 (23,
overtake:Cy, f.(p) < Cw"Tf +C,, or % >0,and | these“éagé%[%PEn))< HCPH_

this is always true.

Proof of Lemma 5.4: A customer in the ordinary queue is If n =1, then all new arrivals buy priority and overtake the
in state(i, j) if there are exactly customers in front of him present ordinary customer. In this case when the ordinasy cu
in the ordinary queue (including the one in service), exagtl tomer’s service ends the system becomes empty. Thus his wait

customers behind him in the ordinary queue, and no customilg time amounts to a busy period. Thereforg(1) = 1.

in the priority queue. We denote by ;(n) the expected supstituting in (4) givesTAP (1) = C,, [ﬁ I (/\_/\)} 2 or
(residual) waiting time of a customer in stdig j) given that ! HAH !

equivalently,
all future customers adopt the pure threshold strategyn N N
addition letf_; ;(n) = 0. HenceW (n) = fn_1.0(n). AP (1) = O 12 (18)
We now express the equations for calculatifgn). plp —A) p

« Suppose that the state (g j) such thati +j < n — 1, ngparingl‘éﬁp(l) from (18) toTI°" from (3) we get that
i=1,...,n—2andj =0,...,n—2. The expected time 11"~ (1) <II"". _
till the next arrival or service completion igi—. With Observation 6.1:W(2) = f1,0(2).

probability £ the service completion occurs before Now we computelV(2).

new arrival, and then the customers expected residual® SUPPOSe a customer is in state (0,0). The expected time
waiting time is f;_; j(n). With probability ﬁ a new till the next arrival or service completion occursﬁ—u.
customer arrives before a service completion occurs and With probability W/\u a new customer arrives before a
sincei +j < n — 1, i.e., there are less thancustomers service completion occurs. Then, the new arrival observes

in the system, a new customer does not overtake any one customer upon arrival, therefore he does not buy
customer and the customer’s expected residual waiting priority and does not overtake the present customer in

time is f; j+1(n). Therefore, fori, j such thati + j < the ordinary queue. Hence,
n—1,i=1,...,n—2andj=0,...,n—2, ) 1 A 0 19
1 ) ) fo,0(2) )\+M+ )\+Mf0,1( )- (19)
fij(n) = Nt + ﬁfifl,j(n) + ﬁfi,jﬂ(n)- « Suppose a customer is in state (0,1). All future arrivals
. H H (14) will observe two customers or more upon arrival, there-
« Suppose that the state(sn —i—1) ,i=1,...,n—1, fore, they will buy priority and overtake the present cus-

i.e., there arex customers in the system. Then, all future ~ tomers in the ordinary queue till the number of customers
arrivals will overtake the customer, till the number of  in the ordinary queue is reduced by one, and it is equal
customers in the queue is reduced by one. This is a busy to a busy period. Hence,

period. Hence, foi = 0,...,n — 2, 1

f01(2) = —. (20)

1 A
fin—i—1(n) = T + ficin—i—1(n).  (15) o Suppose a customer is in state (1,0). All future ar-

A . ) .
rivals will observe two customers or more upon arrival,

In particular, therefore, they will buy priority and will overtake the
present customers in the ordinary queue till the number of
1 customers in the ordinary queue is reduced by one, and it
W(n) = fa-10(n) = TS +fn20(n).  (16) is equal to a busy period. Hench,o(2) = 25+ f0,0(2)-
Substituting in (19) gives,
« If the state is(0,5), j € 0,1...,n — 2, the expected
ime ti i i ion is? f(2)=1+A=M (21)
time till the next arrival or service completion IS 0,0 P v Ry v

With probability ﬁ a new customer arrives before a
service completion occurs and singe< n — 1, i.e,,
there are less thamn customers in the system, a new W(2) = f1,0(2),

arriving customer does not overtake any customer and the A+ 2u
customer’s expected residual waiting time fig;1+1(n). (2) = w2 =X

Substituting (21) in (20) givesf; ¢(2) = 24 Since

PEESvE

(22)



@ gives AF(2) =
A)} (%) , or equivalently,

20 + 22 + N2 <A>2

e RS e 23
pp? =A%) \p “

ComparingIIA? (2) from (23) to II°" from (3) we get
that ITAF (2) < TICF.

Observation 6.2:W(3) = f20(3).

Now we computédl/(3).

« Suppose a customer is in state (0,0). The expected time
till the next arrival or service completion occursﬁ_j.

With probability ﬁ a new customer arrives before a
service completion occurs. Then, the new arrival observes
one customer upon arrival, therefore he does not buy
priority and does not overtake the present customer in

Substituting

A2
Cuw [ﬁ—,;\g +

(22) in
A
plp—

P e2) =c,

the ordinary queue. Hence,
1 A
)= —n+ —— 3). 24
fo,0(3) /\+u+)\+ﬂf0’l() (24)

Suppose a customer is in state (0,1). The expected time
till the next arrival or service completion occursﬁ—u.

With probability ﬁ a new customer arrives before a
service completion occurs. Then, the new arrival observes
two customer upon arrival, therefore he does not buy
priority and does not overtake the present customer in

the ordinary queue. Hence,
1 A
) =—+ —— 3). 25
fo.1(3) AJFM+/\+Nf0,2() (25)

Suppose a customer is in state (0,2). All future ar-
rivals will observe three customers or more upon arrival,
therefore, they will buy priority and will overtake the
present customers in the ordinary queue till the number
of customers in the ordinary queue is reduced by one,
and it is equal to a busy period. Hence,

1
fo,2(3) = P

Suppose a customer is in state (1,0). The expected time
till the next arrival or service completion occursﬁ—u.

With probability ﬁ a new customer arrives before a
service completion occurs. Then, the new arrival observes
two customer upon arrival, therefore he does not buy
priority and does not overtake the present customer
in the ordinary queue. With probabilitxi—# a service
completion occurs before an arrival of a new customer,
then the customer’s expected timefigo(3). Hence,

1 1 A
J10(3) = Nt R +ﬂf0,0(3) + —/\+#f1,1(3)- (27)

Suppose a customer is in state (1,1). All future arrivals
will observe three customers or more upon arrival, there-
fore, they will buy priority and overtake the present
customers in the ordinary queue till, the number of
customers in the ordinary queue is reduced by one, and
it is equal to a busy period. Hence,

f148) = =5 + foa®)

(26)

(28)
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e Suppose a customer is in state (2,0). All future ar-

rivals will observe three customers or more upon arrival,
therefore, they will buy priority and will overtake the
present customers in the ordinary queue till the number
of customers in the ordinary queue is reduced by one,
and it is equal to a busy period. Hence,

1

f2,0(3) = Tt f1.0(3)- (29)

Substituting (26) in (25), gives
for(3) = ﬁ (30)

Substituting (30) in (28), gives
f11(3) = jfjg (31)

Substituting (30) in (24), gives
Foo3) = AL (32)

(A4 ) (p® =A%)
Substituting (32) gmd (:231) i2n (ZZ) and the result in (29)
gives, f2,0(3) = 2 e Since W (3) = fao,

B3P+ T 4 AN+ N

W(3 33
S S e B &=
Substituting  (33) in  (4) gives3 ITAP (3) =
3B+ T HAN N3 A A
Cu [ OorarGE ey T u(u—/\)} (ﬁ) * or
equivalently,
AP (3) = O, A

3pt 4 A3 + TAZpZ + AN+ At (A°
P+ p)? (% =A%) n)
(34)

ComparingITA? (3) from (34) to II°" from (3) we get
that ITAP (3) < TICP.
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Fig. 4. The server's expected profit* (n) as a function of the threshold
n andp, Cy, = 1.
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Fig. 5. The server's expected profit per customeAR model as a function
of u, Cy =1, A =0.1.
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