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Strategic overtaking in a monopolistic M/M/1 queue
Jenny Erlichman and Refael Hassin

Abstract—This paper analyzes strategic overtaking equilibria
in a single server queue, where customers observe the queue
length and have the option of overtaking some of the customers
already present in the queue by paying a fixed amount per
overtaken customer. Customers incur linear waiting costs,and
act to minimize their expected total cost. Characterizing the
symmetric Nash equilibrium strategies is much harder than in
other priority queueing systems analyzed in the literature. The
paper generates two sets of results: (i) customer equilibrium
characterization for a fixed overtaking fee Co. The set of
equilibrium symmetric strategies is rich and includes surprisingly
odd strategies. Some may look counter-intuitive. (ii) selling a
position in the queue could be more profitable to the server than
selling a priority.

Index Terms—Queues: Priority, optimization, Nash equilib-
rium

I. I NTRODUCTION

The subject of this paper is a new mechanism for pricing and
ordering service in the M/M/1 observable queue, such as the
main attraction in a theme park. In such systems, customers
make strategic decisions based on the state of the queue at
the time of their arrival. We focus on amonopolistic model
where customers have no choice but to obtain the service
from this server. (This terminology is borrowed from [1], and
it simply means that customers must buy the service,) This
contrastsnon-monopolistic modelswhere customers attribute
some value to obtaining the service, and can balk (possibly to
obtain the service elsewhere) if they find that their expected
waiting costs exceed that value. We start by surveying the liter-
ature on non-monopolistic and monopolistic queueing models.
This survey helps in positioning our contribution, but it also
contains novel observations regarding profit maximizationin
observable queues.

A. Non-monopolistic systems

Naor [29] was the first to consider pricing in such systems.
Naor’s model assumes an M/M/1 system with service rate
µ, homogeneous customers, a first-come first-served (FCFS)
regime, a fixed value of service, and linear cost ofC per
time unit of waiting. Naor showed that if the overall (social)
welfare (which is defined as the total expected net benefit
of the members of the society, including both customers and
servers) is to be maximized then for some threshold valuen∗,
customers should join the queue iff its length is at mostn∗−1.
However, self-interested customers use, in general, a higher
threshold. A single admission price is sufficient to induce
optimal joining behavior of self-optimizing customers. This
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price is different from the profit maximizing price, because
the server cannot fully extract the customers’ welfare by a
single price, and therefore its objective differs from the social
objective. In particular, customers who arrive while the queue
is short enjoy higher net utility than those who arrive to a
longer queue (utility functions of individual customers are
identical and additive, from the public (social) point of view).

The server’s profit is bounded by the maximum social
welfare generated by the system. A server can collect this
amount iff two conditions are satisfied: (i) The socially optimal
behavior is maintained, in particular customers join according
to the thresholdn∗, and (ii) the server can fully extract the
customers’ welfare. This is not achievable in Naor’s system
with a single price. However, we make the straightforward
observation that if the server could set dynamic prices, then
by chargingp(n) = R−C · n+1

µ
from a customer who observes

n < n∗ customers upon arrival, and a higher price otherwise,
the two conditions will be achieved (R is a customers benefit
from completed service). Thus, dynamic pricing can achieve
the upper bound on server’s profits, and also social optimality
(admission fees are considered transfer payments and do not
affect social welfare). This scheme is not restricted to the
FCFS regime. We refer to its implementation in the last-come
first-served (LCFS) queue below.

Following a natural objection to price discrimination, one
may claim that dynamic pricing is unfair in addition to being
hard to implement, and hence Naor’s profit maximizing price
can be considered as second-best optimization.

Priority sale in queueing systems is commonly used to
improve service and increase profits. In such regimes, a
customer has the option of purchasing priority, out of a menu
of options, and overtake others who arrived earlier. Of course,
a low priority customer may be overtaken by later arrivals who
purchase higher priority, and this serves as a further incentive
to purchase priority. Customers take all this into consideration
when choosing their purchase strategy. Since a customer’s
strategy responds to other customers’ strategy, the resultis
a (Nash) equilibrium strategic behavior.

Adiri and Yechiali [1] considered another second-best opti-
mization problem. There is a given number,m, of priority
classes. The server sets prices for these classes. Arriving
customers observe the number of customers in each class, and
decide what priority to buy. The equilibrium has the following
structure: For some vector ofm thresholds, one for each
priority class, a new customer buys the lowest priority such
that the number of existing customers in this class is smaller
than its threshold.

Hassin [14] proved that social optimality can be achieved
without the use of any prices, simply by implementing a LCFS
regime with service preemption. The last customer in the
queue (the one who arrived first among current customers)
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decides whether or not to balk, and this decision has no impact
on other customers. Hence the decision affects the customer
exactly in the same way that it affects social welfare, and
it is carried out in the socially optimal way. A consequence
is that if the server installs a LCFS regime and charges a
single non-refundableentry fee equal to the expected utility
of a joining customer, then the joining process will be optimal
and the servers profit equal to its upper bound (the maximum
possible social welfare). Hassin discussed the drawbacks of
such a model: it might be considered unfair, it is difficult to
maintain, and customers may leave the system and try to return
as new arrivals.

Alperstein [4] considered profit maximization in the same
model. While the derivation there is technical, the qualitative
results can be easily explained. Suppose that the thresholds
are 1 for priority classesi = 1, . . . , n∗, so that an arriving
customer buys the lowest priority that has no current customer,
and balks if alln∗ priorities are taken. To achieve this strategy
set the price for priorityi to be the expected utility of a
customer who buys this priority assuming that all others
behave according to the unit threshold strategy. This behavior
is an equilibrium under the stated strategy: Buying the lowest
available priority (or balking when all priorities have at least
one present customer) gives zero net expected utility, while any
other act gives non-positive net expected utility. The result is
a LCFS regime, customers behavior is socially optimal, and
the server’s profit attains its upper bound. An advantage of
this model is that although the outcome is again LCFS among
the customers who obtain service, customers may not feel it
is unfair because they choose the type of priority to purchase.
Also, those who pay eventually obtain service and those who
balk do not incur any costs, whereas under the LCFS regime
with a single price, the waiting costs of reneging customers
are not refunded.

Alperstein’s price for classi is θi = R − C
µ

∑i−1
j=0 ρj ,

i = 1, . . . , n∗. Note that 1
µ

∑i−1
j=0 ρj is the expected length

of a busy period in an M/M/1/i system, which is exactly the
expected waiting time of a customer who buysi-th priority.
Therefore, the net expected utility of the customer is 0. It
can be viewed as atwo-part tariff consisting of a fixed cost
θ0 = R− C

µ

∑n∗−1
j=0 ρj , andnonlinearovertaking charge. The

cost of the first overtaking isC
µ

ρn∗−1, thek-th overtaking costs
C
µ

ρn∗−k. Thus, the cost of overtaking a customer increases
with the number of overtaken customers.

Alperstein did not prove uniqueness of the claimed equi-
librium. In fact, the equilibrium is not unique, since buying
any higher than the lowest available priority is also a best
response. But it can be made unique by an appropriate small
perturbation of the prices that slightly discourages overtaking.
After such a perturbation the claimed equilibrium is unique.

This solution is that it requires implementing a whole menu
of n∗ priorities and prices, and this is a well recognized
drawback. For example, the paper of Cachon and Zhang [7] is
devoted to replacing an optimal menu of contracts in a supply
chain by a suboptimal but simple alternative mechanism. Hall,
Kopalle, and Pyke [19] (p. 421) write that “the constant pricing
policy is much easier to compute and communicate to relevant

managers ... (and) is less likely to cause dissonance among
customers who experience widely varying prices ...” Cachon
and Feldman [6] (p. 245) write that “a two-part tariff may
not be desirable ... a customer may dislike being charged
twice for the same service ... firms might prefer to forgo
the additional revenues from using a two-part tariff to save
the transaction costs and the administrative burden required
for its implementation. Disney, for example, initially charged
consumers both to get into the park and for specific rides
within the park, but later it abandoned per-ride charges.”
Similarly, Tong and Rajagopalan [34] is focused on obtaining
second-best solutions that use a single price (fixed or per
time unit) rather than the non-practical complicated optimal
solution.

B. Monopolistic systems

The prices set by monopolies are usually regulated. A
common rule is that the lowest quality/priority service is free,
or almost free, of charge. This is the case, for example, in
the observable model of [1], and in the unobservable models
of [17] §4.2, Gilland and Warsing [12], and Guo, Lindsey and
Zhang [13], but it is not satisfied in Alperstein’s two-part tariff.
Assuming that customers are homogeneous, and since balking
is not possible, any time conserving priority rule is associated
with the same expected social welfare. The main question in
such models is therefore profit maximization.

Adiri and Yechiali gave special attention to the monopolistic
version of their model withm = 2, and the lower priority is
costless. Therefore, as in Naor’s model, there is just a single
price to be set. They numerically solved an example depicting
the server’s profit as a function of the fee and identified its
optimum. Hassin and Haviv [16] showed that the equilibrium
strategy is not unique, and in fact the number of such strategies
is unbounded. They left the question of profit maximization
under multiplicity of equilibria open, and we treat it below.

The subject of this paper is a different mechanism that
allows overtaking, and we focus our research on the mo-
nopolistic version. The overtaking model which we offer in
this paper can also be viewed as having many classes with
one customer per each class, but this is achieved with just
a single price. In our system, customers observe the queue
length upon arrival, and have the option of overtaking some or
all of the customers already present in the queue. Overtaking
is associated with a fixed price per overtaken customer. If a
customer chooses to overtake some but not all of the present
customers, overtaking applies to the last customers in the
queue. Customers incur a fixed cost per every unit of sojourn
time in the system, and their goal is to minimize their own
expected total cost. As more customers overtake others, the
more inclined an individual should be to do so himself. In
other words, the nature of the situation is offollow the crowd
(FTC) behavior [16] which typically leads to a multiplicityof
equilibrium solutions.

As in any priority discipline, the benefit of using our
proposed scheme may be enhanced when customers are het-
erogeneous, but we prefer to emphasis the potential benefits
of this novel regime by assuming homogeneous customers.
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C. Main goals and results

1) We are interested in a simple single price mechanism
that increases the server’s profits.

2) We assume a monopolistic firm, and therefore customers
must have the option of obtaining the service at a fixed
cost which we assume without loss of generality to be
0.

3) The proposed model results in a rich collection of
equilibrium solutions, and we would like to characterize
the symmetric equilibrium strategies. However, it turns
out that this mission is much harder in our system than
in related priority queueing systems analyzed in the
literature. We consider several types of strategies and
find out that the set of equilibrium strategies is quite
rich and includes surprisingly odd strategies. We charac-
terize some particular families of equilibrium strategies,
but it is clear that these are not the only equilibrium
strategies. For example, a strategy like: overtaking a
single customer when observing one customer in the
system upon arrival, overtaking none when observing
two or three, overtaking four customers when observing
four, overtaking three customers when observing five,
and not overtaking any customer otherwise, can be an
equilibrium.

4) One of the counter-intuitive findings in our work is that
sometimes it is worthwhile to arrive to a longer queue
since then the customers’ expected cost is lower.

5) We solve the maximum profit among all possible prices
and equilibria in the Adiri and Yechiali model.

6) We show that charging a single price for overtaking gives
higher profits than charging a single price for priority.

7) Our model is fundamentally different from that of
Alperstein, though some of the equilibrium policies
we investigate resemble the behavior induced by the
optimal pricing in Alperstein’s paper. In particular, when
the number of priority classes is restricted tok the
customers’ induced strategy has unit thresholds at all but
the highest priority, exactly as the strategyΣk which we
consider in Section IV. However, this behavior results
in Alperstein’s paper from a completely different game,
in which customers buy priorities, and a higher priority
supplies a stronger protection against overtaking by
future arrivals. For example, a customer who purchases
the highest priority is assured of never being overtaken.
In our model, this is not possible. Also, in contrast to
the (nonlinear) costs assumed by Alperstein, our analysis
concentrates on the case where the cost of overtaking
a customer is at leastc/µ. Thus the question is how
many of the existing customers it is worth overtaking in
equilibrium, whereas with Alperstein’s prices, all of the
existing customers are always overtaken. For example,
not overtaking any customer is always an equilibrium in
our model, but never so under optimal priority pricing.

8) It is important to emphasize that overtaking in our model
is a result of strategic choice of customers and not a
consequence of a given structure, such as, for example,
in the model of Whitt [36] and the work which followed

it.

D. Additional literature

We now describe additional literature on equilibrium in
priority queues. Dolan [9] considers an observable queue with
customers that are homogeneous except for that they have
different waiting costs which are their private information.
Balking is not allowed, and social welfare is maximized
when customers with higher waiting cost obtain priority over
those with a lower cost. This can be achieved by the use of
Clarke prices: each customer declares his waiting cost, obtains
priority accordingly, and pays for the externalities he imposes
assuming that all customers truthfully declare their costs. It
turns out that under these prices, truthful declaration is an
equilibrium strategy. Mendelson and Whang [27] analyze the
equilibrium behavior in an unobservable queue where hetero-
geneous customers choose their priority out of a menu set by
the server. They show that thecµ priority rule can be used
with an appropriate price menu to maximize social welfare
even when the customer’s type is her private information.
Afèche [2] considers the same model and shows that in certain
cases revenue maximization is obtained by the same priority
rule but while also artificially inflating the service time ofa
low priority class. Gilland and Warsing [12] consider revenue
maximization in a multi-priority unobservable system with
waiting cost rates that are uniformly distributed over [0,1],
and show that the solution also minimizes the expected total
delay costs. Lui [25] Glazer and Hassin [11], Hassin [15], and
Afèche, and Mendelson [3] consider an auctioning scheme,
where each customer chooses the amount he wishes to pay
for priority and then he is placed in the queue ahead of
those who paid smaller amounts. Myrdal [28] claimed that
corrupt officials may deliberately cause administrative delays
in service so as to attract more bribe payments. Hassin [15]
compared the service rate chosen by a profit maximizer to
the socially optimal rate, showing that from this point of
view Myrdal’s hypothesis is correct. In this paper we show
that when the service is slower, i.e.,µ is lower, the server’s
profit is higher. Rosenblum [31] explores a market model
where customers trade queue positions. The result is that the
customers will be served in decreasing order of value of time,
which is the socially optimal order. This model is a kind of
overtaking model where a customer overtakes other customers
only if both agree to this overtaking. Larson [24] describes
an example of tugboats that may increase their speed to the
maximum (while increasing their fuel consumption) to avoid
being overtaken, resulting in a socially suboptimal equilibrium.
Similarly, Hassin and Haviv [17]§4.2 analyze the unobserv-
able version of Adiri and Yechiali’s model, and show that it
might be that all customers purchase priority in equilibrium to
protect themselves from being overtaken. The result is FCFS
discipline, but all customers are now worse-off. In our model,
costly overtaking of others in order to avoid being overtaken is
a key phenomenon. In Section IV we describe an infinite set of
equilibrium solutions that may be viewed as generalizations of
the one observed by Larson. Shenker [32] considers a finite
number of customers whose utility is a convex function of
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their demand rate and their expected queueing demand. Afair
share service disciplineis used to regulate the equilibrium
rates of demand: Every customer obtains the highest priority
for a portion of its demand of the size of the smallest demand
rate of any customer. Then, recursively, the customers with
higher demand are given the lower priority levels. Hassin and
Haviv citeHH06 and Hayel and Tuffin [21] show that using
relative priorities can improve both social welfare and profit
maximization when the choice of prices is restricted. Hassin,
Puerto and Fernandez [20] consider a multiclass model with
relative priorities, where the priority given to a class also
depends on state variables associated with other classes. They
show that relative priority in ann-class queueing system can
reduce both the server’s and customers’ costs. Sun, Guo, Tian,
and Li SGT09 extend this model allowing class-dependent
service rates. Equilibrium behavior in priority queues is the
subject of Chapter 4 of Hassin and Haviv [17].Özekici, Li
and Chou [30] consider a model ofimpolite customers, where
a customer who arrives when there arem customers in the
queue joins thek-th position (1 ≤ k ≤ m+1) with probability
P (m, k). They show that the more impolite are the customers
the bigger is the variance of the waiting times.

E. Organization of the paper

In Section II we formally present our model. In Section III
we numerically compute equilibrium strategies in our model.
In Section IV we consider strategies of overtakingk customers
if there are at leastk customers in the system, and overtaking
all of them otherwise. In Subsection IV-A we ask whether it
is worthwhile to encounter a longer queue when all customers
follow this strategy, and the answer is sometimes positive.
In Subsections IV-B and IV-C we consider mixed strategies
equilibria where at most one customer is overtaken. In Section
V we compare the server’s maximum expected profit per
customer under equilibrium conditions in two models. The
first is our model, and the second is the model analyzed in
[1] and [17], in which there are two priority classes. Finally,
Section VI contains suggestions for future research.

II. M ODEL DESCRIPTION

In our observable M/M/1 model, customers purchase pri-
ority, and this priority enables overtaking present customers.
A new customer observes the queue length and announces the
number of customers that he overtakes. There is a fixed costCo

per overtaken customer. We assume that there is no balking,
and a customer cannot renege or overtake after joining the
queue. The service discipline is preemptive resume. LetCw

denote the cost per unit of time to a customer for staying in the
system (waiting or in service). All customers have the same
valueCw. We denote the rate of arrival byλ, and the service
rate byµ.

Remark 2.1: There are four parameters in our model,
namely,λ, µ, Co and Cw. By normalizing time and cost we
remain with just two,ρ = λ

µ
and ν = Coµ

Cw
, as in Naor’s

model. In some cases, especially when the recursive equations
are involved, we prefer the four parameter representation,but

the main results and computational experiments are better
expressed with the normalized parameters.
The caseCo < Cw

µ
has a trivial unique equilibrium since

overtaking all present customers is clearly a dominant strategy.
Therefore, we assumeCw

µ
< Co, or equivalently

ν > 1. (1)

In a (Nash) equilibrium no customer has anything to gain by
changing his or her own strategy unilaterally. In a (symmetric)
equilibrium all customers use the same strategy.

Consider astatic version of the model, where a queue is
sequentially formed but the number of customers to be served
is fixed and they are all present at the time the service begins,
and no future arrivals are expected. In this case there is a
unique equilibrium in which no customer overtakes any other
customer. To see why this is true note that by (1), a dominant
best response of thelast customeris not overtaking, therefore
a best response of the customer whose position before the last
one is not overtaking either, and if we continue this way the
result is that there is no overtaking. In the sequel we show
that while never overtaking is always an equilibrium strategy,
in the dynamic model there are numerous other equilibrium
strategies.

III. PURE EQUILIBRIUM STRATEGIES

In our model, customers observe the queue and then decide
how many to overtake. In our terminology, the number of
customers that an arriving customerobservesincludes the
customer in service, but not the new customer himself. In this
section we analyze strategies defined by a vector(k1, k2, . . .),
whereki is the number of customers that an arriving customer
who observesi customers, overtakes. Clearly,ki ≤ i.

Let fi,j denote the expected waiting time of a customer
given that there arei customers in front of him (including a
customer in service) andj customers behind him, so that the
total number of customers in the system isi+1+j. In addition
definef−1,j = 0. Then,

fi,j =
1

λ + µ
+

µ

λ + µ
fi−1,j +

λ

λ + µ
fi+1,j, ki+j+1 > j,

fi,j =
1

λ + µ
+

µ

λ + µ
fi−1,j +

λ

λ + µ
fi,j+1, ki+j+1 ≤ j.

If ki ≤ K for all i for some K, this provides boundary
conditionsfi,j = i+1

µ
, ∀j ≥ K.

If a new customer observesi customers, and decides to
overtakek customers, his expected waiting cost isCwfi−k,k +
kCo.

The strategy(k1, k2, k3, . . .) defines an equilibrium if over-
takingki customers is a best response of a new customer who
observesi customers fori = 1, 2, . . .. Therefore, the condi-
tions for equilibrium are:Cwfi−ki,ki

+ kiCo ≤ Cwfi−k,k +
kCo, for i = 1, 2, . . . andk = 0, 1, . . . , i.

We could not give analytic characterization to the equilib-
rium strategies. However, we applied numerical analysis tosee
which strategies are equilibrium for some values ofλ, µ and
Co

Cw
.
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Table I contains a list of all strategies(k1, k2, k3, k4, k5, k6)
with ki = 0, ∀i ≥ 7, i.e 7! = 5040 options, such that at least
for some values of1 ≤ ν ≤ 2 and0.1 ≤ ρ ≤ 0.9 they define
an equilibrium. Figure 1 shows the values of

(

ρ, 1
ν

)

for which
the strategies(0, 2, 0, 0, 5, 5), (1, 0, 0, 4, 3, 0), (1, 0, 3, 3, 0, 0),
and(1, 2, 3, 4, 4, 0) are equilibrium. Actually, table I and figure
1 present you the potential to many equilibrium strategies.

IV. OVERTAKING k CUSTOMERS

In this section we consider the strategyΣk of the form:
ki = min {k, i}, i.e., overtakingk customers if there are
at leastk customers, and overtaking all of them otherwise.
We observe that if the strategy of all customers isΣ0, i.e.,
not overtaking others, then from (1) it follows that the best
response of a new customer is also not overtaking. In addition,
we have already mentioned thatΣ∞, or equivalently,ki = i
for all i, is the only equilibrium strategy when (1) is violated,
i.e., Co < Cw

µ
. Theorem 4.1 states thatΣk, k = 1, 2, . . . are

equilibrium strategies whenCw

µ
≤ Co ≤ Cw

µ−λ
. These results

are summarized in Figure 2.
Theorem 4.1:Σk, k = 1, 2, . . . , defines an equilibrium iff

1 ≤ ν ≤ 1

1 − ρ
. (2)

The proof is given in the thesis [10], Theorem 5.1.

A. Overtakingk customers -Is it preferable to encounter a
longer queue?

One of the interesting questions aboutΣk strategy is: Is it
preferable to encounter a longer queue? StrategyΣk prescribes
a customer who observes at leastk customers upon arrival to
overtakek of them, and by that to ensure that future customers
will not overtake him. In contrast, a customer who observes
less thank customers upon arrival cannot ensure that. He can
only overtake all present customers, but all future customers
will overtake him till his service completion. We find that there
are input parameters for which a customer prefers to observe
a longer queue.

Theorem 4.2:Suppose that1 ≤ ν ≤ 1
1−ρ

, and that all
customers follow theΣk strategy. Denote the number of
observed customers byj. Then:

1) The expected cost as a function ofj is built of two linear
functions, one forj < k, and the second forj ≥ k.

2) If ν ≥ ρ
1−ρ

, then the function is monotone increasing
for any k (Figure 3a).

3) If ν < ρ
k(1−ρ) , then the global minimum is atk (Figure

3b). Otherwise, ifν > ρ
k(1−ρ) , then the global minimum

is at 0 (Figure 3c).
4) If ν < ρ−(1−ρ)(j−k)

(1−ρ)(k−j′) for somej ≥ k and j′ < k, then
a new customer prefers to observej to j′ customers,
in other words prefers to observe a longer queue. (For
example, Figure 3c, with j′ = 3 andj = 13).

The proof is given in the thesis [10], Theorem 5.2.
For example, in Figure 3a (where k = 4), the function is
monotone increasing which means that an arriving customer
always prefers to observe a shorter queue. In Figure 3b (again
with k = 4) an arriving customer prefers to observe 4 rather

k1 k2 k3 k4 k5 k6

0 0 0 0 0 0,6
0 0 0 0 1 1
0 0 0 0 2 2
0 0 0 0 3 3
0 0 0 0 4 3,4
0 0 0 0 5 0,4,5,6
0 0 0 1 1 0,1
0 0 0 2 2 0,1,2
0 0 0 3 3 0,2,3
0 0 0 4 0 0,6
0 0 0 4 3 0
0 0 0 4 4 0,3,4
0 0 0 4 5 0,5
0 0 1 1 0 0
0 0 1 1 1 0,1
0 0 2 2 0,1 0
0 0 2 2 2 0,1,2
0 0 2 2 3 3
0 0 3 3 3 1,2,3
0 0 3 3 4 4
0 0 3 4,0 0 0
0 0 3 0 5 5
0 0 3 3 0,2,3 0
0 0 3 4 4 0,3,4
0 0 3 4 5 5
0 1 1 0,1 0 0
0 1 1 1 1 0,1
0 1 1 2 2 2
0 2 0 0 0 0
0 2 0 0 5 5,6
0 2 0 4 4 0,4
0 2 0 4 5 5
0 2 2 0,1 0 0
0 2 2 2 0,1 0
0 2 2 2 2 0,1,2
0 2 2 3 3 0,3
0 2 2 4 4 4
0 2 3 3 0 0
0 2 3 3 3 0,1,2,3
0 2 3 4 4 0,4
0 2 3 4 5 5
1 0 0 0 0 0
1 0 0 0 4 3,4
1 0 0 0 5 4,5,6
1 0 0 4 3 0
1 0 0 4 4 0,3,4
1 0 0 4 5 0,5
1 0 3 3 0 0
1 0 3 3 3 0,2,3
1 0 3 4 4 4
1 0 3 4 5 5
1 1 0 0 0 0
1 1 0 0 2 2
1 1 1 0,1 0 0
1 1 1 1 1 0,1
1 1 2 2 2 0,2
1 1,2 3 3 3 0,2,3
1 1 3 4 4 4
1 2 0,2 0 0 0
1 2 2 2 0,1 0
1 2 2 2 2 0,1,2
1 2 2 3 3 3
1 2 2 4 4 4
1 2 3 3 0 0
1 2 3 4 4 0,4

TABLE I
EACH OF THE ABOVE IS AN EQUILIBRIUM FOR SOMEρ AND ν .
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C

Fig. 3. Expected cost as a function of the number of observed customers (the
red circles represent the comparison in example that is detailed after theorem
4.2).

than 0 customers in the system. If he observes 4 customers,
then he overtakes all of them and all future arrival customers
do not overtake him, and his expected cost isCw

µ
+ kCo = 5.

Otherwise, if he observes0 customers, then all future arrival
customers overtake him, and his expected cost isCw

µ−λ
= 8.

In Figure 3c (wherek = 12) an arriving customer prefers to
observe0 rater than12 customers in the system. If he observes
12 customers, then he overtakes all of them and all future
arrival customers do not overtake him, and his expected cost
is Cw

µ
+ kCo = 13. Otherwise, If he observes0 customers,

then all of them and all future arrival customers overtake him,
and his expected cost isCw

µ−λ
= 8.
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B. Overtakingk customers - two actions mixed strategy

The mixed strategyΣk,p is defined as follows: For a given
integer k ≥ 1 and a vectorp = (pk, pk+1, . . .) such that
pi ∈ [0, 1] for everyi = k, . . ., a customer who observes upon
arrival i ≥ k customers in the system (including the one in
service) overtakesk customers with probabilitypi andk − 1
customers otherwise. If there are at mostk − 1 customers in
the system, the customer overtakes them all.

Theorem 4.3:Σk,p defines an equilibrium iff
1 ≤ ν ≤ 1

1−ρ
, and for some x such that,

max

{

0,
(√

ρ + 1√
ρ

)2 (

1
1+ρ

− 1
ν

)

}

≤ x ≤

min

{

1,
(√

ρ + 1√
ρ

)2 (

1 − 1
ρ

)

}

:

pk = x,

pk+1 =
(

1 + 1
ρ

)

(

1 − 1
ν

)

− 1
1+ρ

x,

pk+j = 1 − 1
ν
, ∀j ≥ 2.

In particular, the condition onx is:

1) 0 ≤ x ≤
(√

ρ + 1√
ρ

)2
(

1 − 1
ν

)

if 1 ≤ ν ≤ (1+ρ)2

1+ρ+ρ2 .

2) 0 ≤ x ≤ 1 if (1+ρ)2

1+ρ+ρ2 ≤ ν ≤ 1 + ρ.

3)
(√

ρ + 1√
ρ

)2 (

1
1+ρ

− 1
ν

)

≤ x ≤ 1 if 1 + ρ ≤ ν ≤
min

{

1
1−ρ

, (1 + ρ)2
}

.

The proof is given in the thesis [10], Theorem 5.3.

Observation 4.4: Theorem 4.3 shows that for anyk ≥ 1
and j ≥ 2, pk+j = 1 − 1

ν
. This can be explained as follows:

A customer who observesj + k − 1 customers, and overtakes
only k−1 of them will be overtaken till a new arrival chooses
to overtakek−1 customers. The time until this happens has a
geometric distribution, with probability1 − pj+k for success,
and probabilitypj+k for failure. Hence, the expected number
of customers who overtakek is 1

1−pj+k
− 1. Therefore, the

residual expected waiting time of a customer who observes
j + k − 1 customers, and overtakesk − 1 of them, consists
of the service times of these customers, plusj service times
of customers that were before him, plus one service time of

himself. Hence, whenj → ∞ fj,k−1 =
j+

“

1
1−pj+k

−1
”

+1

µ
=

j+ 1
1−pj+k

µ
. Substitutingfj,k−1 from (8) gives whenj → ∞

pj = 1 − Cw

Coµ
= 1 − 1

ν
which is proved in Theorem 4.3 .

A (symmetric) equilibrium strategy is, by definition, a best
response against itself. However, it need not be the unique
best response. Specifically, lety be an equilibrium strategy.
There may be a best response strategyz 6= y such thatz is
strictly a better response against itself thany is. In this case,
y is unstable in the sense that when starting withy, it may
be that the players adopt the best responsez, and then a new
equilibrium, atz, will be reached. If no suchz exists theny
is said to be anevolutionarily stable strategyor ESS. Note
that if y is an equilibrium strategy and it is the unique best
response against itself, then it is necessarily ESS.

Observation 4.5:The equilibrium mixed strategyΣk,p

(p 6= 0, 1) is not ESS.

C. Overtakingk customers - three actions mixed strategy

In this section we check whether there is an equilibrium
strategy, where customers are indifferent between overtaking
k, k − 1 or k − 2 customers.
Now the mixed strategyΣk,P is defined as follows: For a

given integerk ≥ 1 and a matrixP =





p
k−1

k−1
0

p
k−1

k
pk

k

p
k−1

k+1
pk

k+1

. .

. .



 such

that pk−1
i , pk

j ∈ [0, 1] for every i = k − 1, . . . and j = k, . . ..
A customer who observes upon arrivali ≥ k customers in the
system (including the one in service) overtakesk customers
with probability pk

i , k − 1 customers with probabilitypk−1
i ,

andk − 2 customers with probabilitypk−2
i = 1 − pk

i − pk−1
i .

A customer who observes upon arrivalk− 1 customers in the
system (including the one in service) overtakesk−1 customers
with probabilitypk−1

k−1, andk−2 customers otherwise. If there
are at mostk − 2 customers in the system, the customer
overtakes them all.

Theorem 4.6:: Σk,P defines a unique equilibrium where
customers are indifferent between overtakingk, k−1 or k−2
customers iff1 ≤ 1

1−ρ
,

pk
k = x, pk−1

k−1 = y, pk−1
k = z,

pk
k+1 =

(

1 + 1
ρ

)

(

1 − 1
ν

)

− 1
1+ρ

x,

pk−1
k+1 =

(1+ρ)2(1− 1
ν )−ρ[ρx+(1+ρ)y]

ρ(1+ρ)(1+ρ+ρ2) − 1+ρ
1+ρ+ρ2 z,

pk
k+j = 1 − 1

ν
, ∀j ≥ 2,

pk−1
k+j = 0 ∀j ≥ 2,

0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1, 0 ≤ pk
k+1 ≤ 1, 0 ≤

pk−1
k+1 ≤ 1,

x + z ≤ 1,
pk−1

k+j + pk
k+j ≤ 1 ∀j ≥ 1.

The proof is given in the thesis [10], Theorem 5.6.
We note that the equilibrium conditions are not an empty

range.

D. Overtaking a single customer

We consider pure and mixed threshold strategies with at
most one overtaken customer, and give necessary and sufficient
conditions for these strategies to define an equilibrium.

Under the pure threshold strategyσn, a new customer
overtakes one customer if there aren or more customers in
the system, and does not overtake any customer otherwise.

Theorem 4.7:σn defines an equilibrium iff 1
1−ρ

≤ ν ≤
1+ρ
1−ρ

.
The proof is given in the thesis [10], Theorem 7.1.

The mixed threshold strategyσn,p where 0 < p < 1, is
defined as follows: a new customer overtakes one customer
if there are at leastn + 1 customers in the system, does not
overtake any customer if there are at mostn− 1 customers in
the system, and if there are exactlyn customers in the system
he overtakes one customer with probabilityp, and does not
overtake any customer otherwise.

Theorem 4.8:σn,p defines an equilibrium iff 1
1−ρ

≤ ν ≤
1+ρ
1−ρ

andp = 1+ρ
ρ(1−ρ)

(

1 − ρ − 1
ν

)

.
The proof is given in the thesis [10], Theorem 7.2.
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V. PROFIT MAXIMIZATION

In this section we compare two models of profit maxi-
mization using a single price. In both of them the customers
purchase priority, customers are identical except their arrival
time, there is no balking or reneging, and decisions are
made upon arrival and cannot be changed later. The service
disciplines are preemptive resume. We compare the server’s
maximum expected profitper customerunder equilibrium
conditions.

A. Maximum profit in the current priority (CP) model

The first model is the model of Section II. In this model pur-
chasing priority enables overtaking present customers. Upon
arrival, a new customer decides on the number of current
customers that he overtakes, and pays a fixed cost per each
overtaken customer. In this model an arriving customer over-
takes customers who are currently in the system, but future
customers may overtake him. Therefore, we call this discipline
current priority disciplineand denote this model byCP.

We have already shown that there may be numerous
equilibria in this models. For example, always overtakingk
customers, i.e.,Σk, k = 0, 1, 2 . . ., are equilibrium strategies.
In particular strategyΣ∞, in which an arriving customer
overtakes all customers who are currently in the system,
induces a last-come first-served order of service.

Notice thatCo is a parameter that can be changed by a
server, as opposed toCw which is a given parameter.

The profit from a customer is the cost which this customer
pays. In theCP model it isCo per each overtaken customer.
The server’s expected profit per customer under theΣ∞

strategy isCoL, where L = ρ
1−ρ

is the expected number
of customers in the system. By Theorem 4.1, the maximum
price for overtaking any customer such thatΣ∞ still defines
an equilibrium is Cw

µ−λ
. This gives the following theorem:

Theorem 5.1:The expected maximum profit in theCP
model among allΣk, k = 0, 1, 2, . . ., strategies is

ΠCP =
λ

(µ − λ)2
Cw. (3)

It is received fromΣ∞ with Co = Cw

µ−λ
(or, ν = 1

1−ρ
).

The proof is given in the thesis [10], Theorem 6.1.

We assume that the server can choose the equilibrium which
maximizing its expected profit. This assumption is standard,
see for example [26] p. 867 and p. 910. Hence, amongΣk,
k = 0, 1, 2, . . ., it will chooseΣ∞ strategy in theCP model.

Remark 5.2: It may come as a surprise that it is possible
that pure strategies, not one of theΣk type, give higher
profit than ΠCP for some parameter values. We found pure
strategies from Table I and parametersν, ρ that satisfyCoL >
ΠCP = λ

(µ−λ)2 Cw, or ν > 1
1−ρ

. For example, strategy
(0,0,3,3,3,1,0,0,. . . ) withρ = 2 and ν = 4.77 satisfies the
condition.

B. Maximum profit in the absolute priority (AP) model with
threshold n=0

The second model is that of [1], [16] In this model two
FCFS queues are formed in front of a single server, one for

priority customers and the other for ordinary customers. For
a given threshold valuen ≥ 0, an arriving customer buys
priority iff the number of customers in the ordinary queue is
at leastn. This is an absolute priority discipline, and therefore
we denote this model byAP. If a customer purchases priority
then he overtakes all customers in the ordinary queue, and
becomes the last customer in the priority queue. The price for
becoming a lower priority ordinary customer is 0, and there
is no balking or reneging.

Denote byθ the price of purchasing priority, and byW (n)
the expected time in the system of the last customer in the
ordinary queue when there are no customers in the priority
queue andn in the ordinary one, and all use the pure threshold
strategyn. The following theorem is proved in [16]:

Theorem 5.3:The integer threshold strategyn, n ≥ 1,
specifies an equilibrium iffθ + Cw

µ
− Cw

µ−λ
≤ CwW (n) ≤

θ + Cw

µ
. The thresholdn = 0 specifies an equilibrium iff

θ + Cw

µ
≤ Cw

µ−λ
.

The profit from a customer is the cost which this customer
pays. In theAP model it is θ, if a customer buys priority,
otherwise it is zero. Denote byΠAP(n) the server’s expected
profit per customerin the AP model as a function of a
thresholdn, and by θmax the maximum price for buying
priority which satisfies the equilibrium conditions. Suppose
that all customers use the pure threshold strategyn = 0,
i.e., the strategy is always buying priority. From Theorem 5.3,
θmax = λ

µ(µ−λ)Cw, so thatΠAP(0) = θmax.

Since λ
µ(µ−λ)Cw < λ

(µ−λ)2 Cw, it follows that, ΠAP(0) <

ΠCP, i.e., the server’s expected profit per arrival in theCP
model is greater than the server’s expected profit per arrival
in the AP model with thresholdn = 0.

C. Maximum profit in the absolute priority (AP) model with
thresholdn ≥ 1

Denote byPn the probability that the number of customers
in the system (both ordinary and priority queues) is at least
n, in the AP model under the threshold strategyn. Pn =
P (L ≥ n) = (λ

µ
)n. We assume that all customers use the

pure threshold strategyn ≥ 1. From Theorem 5.3, in this case
θmax = Cw

[

W (n) + 1
µ−λ

− 1
µ

]

= Cw

[

W (n) + λ
µ(µ−λ)

]

.
Since an arriving customer buys priority iff the number of
customers in the queue is at leastn, ΠAP(n) = θmaxPn =

θmax

(

λ
µ

)n

, or equivalently

ΠAP(n) = Cw

[

W (n) +
λ

µ(µ − λ)

] (

λ

µ

)n

. (4)

Lemma 5.4:
W (1) = 1

µ−λ
andΠAP(1) = Cw

λ+µ
µ(µ−λ)

λ
µ

;

W (2) = 2µ+λ
µ2−λ2 andΠAP(2) = Cw

2µ2+2λµ+λ2

µ(µ2−λ2) (λ
µ
)2;

W (3) = 3µ3+7λµ2+4λ2µ+λ3

(λ+µ)2(µ2−λ2) and ΠAP(3) =

Cw
3µ4+8λµ3+7λ2µ2+4λ3µ+λ4

µ(λ+µ)2(µ2−λ2) (λ
µ
)3.

In these casesΠAP(n) < ΠCP.
The proof is given in the thesis [10], Lemma 6.3.
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ρ ΠAP(4) ΠAP(7) ΠAP(10) ΠCP

0.1 0.0004 0.0000 0.0000 0.0123
0.2 0.0073 0.0001 0.0000 0.0625
0.3 0.0406 0.0018 0.0001 0.1837
0.4 0.1452 0.0143 0.0012 0.4444
0.5 0.4149 0.0768 0.0126 1.0000
0.6 1.0556 0.3241 0.0895 2.2500
0.7 2.5746 1.2067 0.5149 5.4444
0.8 6.5393 4.4083 2.7315 16.0000
0.9 20.8894 19.3777 16.6511 81.0000

TABLE II
SERVER’ S EXPECTED PROFIT PER CUSTOMER INCP AND AP MODELS,

Cw = 1

Since it is difficult to find general expressions toW (n),
we numerically compute these values. In all cases we found
that ΠAP(n) < ΠCP. Some results are illustrated in the next
Subsection V-D.

D. Numerical Analysis of profit maximization

The graphs in Figure 4 present the server’s expected profit
per customer in theAP model as a function of the threshold
n and arrival rateλ. For everyλ the server’s expected profit
is higher when the thresholdn is smaller. There areλ values
for which the function is convex, for exampleλ = 0.3. There
are λ values for which the function is concave, for example
λ = 0.99, and there areλ values for which the function is
neither convex nor concave, for exampleλ = 0.9.

As presented in Table II,ΠCP is much greater thanΠAP(n)
for all presented parameters. Therefore, the server can obtain
a higher profit in our model.

In addition, we see in Figure 5, as expected, that when the
service is slower, i.e.,µ is lower, the server’s profit is higher.
This result is expected since there is no balking.

VI. CONCLUDING REMARKS

In this paper, we formulated a novel mechanism for allo-
cating priorities in a queue. As with other mechanisms that
are now widely acceptable in theme parks, communication
systems and other complex queueing systems, this new regime
may seem odd at first. We prefer to express in this paper some
of its advantages, for example the fact that it uses a single price
and increases the system’s profits, together with interesting
theoretical results associated with it, which are quite different
from regular priority regimes.

A natural variation of our model allows customers to
overtake not just at their arrival time but also later. Such
opportunities make the game more complicated and different
solution concepts may be required.

Another natural continuation of our research includes over-
taking when balking is possible and when customers are
heterogeneous. Such models also involve interesting questions
regarding social optimization that were not raised in our
model.

Fairness among customers is a fundamental issue for queue-
ing systems. The issue of fairness is raised frequently in the

context of evaluating queueing policies and its resolutionis
not simple at all. Avi-Itzhak and Levy [5] propose a fairness
measure enabling to quantitatively measure and compare the
level of fairness associated with various queueing systems.
Other approaches are described in the survey [35]. In queueing
systems with priorities which involve costs (waiting cost,
priority cost) such as our model, the issue of how priorities
and preferential service affect fairness has not been explored
and evaluated at all. This is an interesting subject for future
research.
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[30] Özekici S. ,J. Li, and F. S. Chou (1994), “Queues with impolite
customers,”Queueing Systems15 261-277.

[31] Rosenblum, D.M. (1992), “Allocation of waiting time bytrading in
position on a G/M/s queue,”Operations Research40, 338-342.

[32] Shenker, S. J. (1995), “Making greed work in networks: agame-theoretic
analysis of switch service disciplines,”IEEE/ACM Transactions on
Networking3, 819-831.

[33] Sun, W. P. Guo, N. Tian, and S. Li (2009), “Relative policies for
minimizing the cost of queueing systems with service discrimination,”
Applied Mathematical Modelling33 4241-4258.

[34] Tong, C. and S. Rajagopalan (2012), “Pricing and operational perfor-
mance in discretionary services,”.

[35] Wierman, A. (2011), “Fairness and scheduling in singleserver queues,”
Surveys in Operations Research and Management Science16 39-48.

[36] Whitt, W. (1983) “The amount of overtaking in a network of queues,”
Networks14, 411-426.

PROOFS

Proof of Theorem 4.1:We divide the proof into two parts.

• Suppose that a new customer observesj ≥ k customers.
By overtakingk, he guarantees his place in the queue,
because behind him there arek customers, and only
they will be overtaken by new customers. Overtaking any
additional customer costsCo and savesCw

µ
. By (1) there

is no reason to overtake more thank customers.
If he overtakesk customers, his expected cost is
Cw

j+1−k
µ

+ kCo. Otherwise, if he overtakesi cus-
tomers, i < k, all future customers overtake him till
he finishes his service and leaves the system. Therefore
his expected waiting time isj + 1 − i busy periods,
and his expected cost isCw

j+1−i
µ−λ

+ iCo. The strategy
defines an equilibrium iff overtakingk customers is a
best response of a new customer. Hence,Cw

j+1−k
µ

+

kCo ≤ Cw
j+1−i
µ−λ

+ iCo, or Co

Cw
≤ 1

µ−λ
+ λ(j+1−k)

µ(µ−λ)(k−i) for
i = 0, 1, . . . , k − 1 and j = k, k + 1, . . .. The minimum
of

{

1
µ−λ

+ λ(j+1−k)
µ(µ−λ)(k−i)

}

over i = 0, 1, . . . , k − 1 and
j = k, k + 1, . . . is obtained ati = 0 and j = k.
Therefore the condition isCo

Cw
≤ 1

µ−λ
+ λ

µ(µ−λ)k .
• Suppose that a new customer observesj = 1, 2, . . . , k−1

customers, and chooses to overtake all of them. His
expected cost isCw

1
µ−λ

+ jCo. Otherwise, if he chooses
to overtakei customers,i = 0, 1, . . . , j − 1, his expected
waiting time isj + 1 − i busy periods, and his expected
cost is Cw

j+1−i
µ−λ

+ iCo. In equilibrium overtaking all
customers in the queue should be a best response of a new
customer. ThereforeCw

1
µ−λ

+jCo ≤ Cw
j+1−i
µ−λ

+iCo for
j = 1, 2, . . . , k−1 andi = 0, 1, . . . , j−1, or Co

Cw
≤ 1

µ−λ
.

Proof of Theorem 4.2: If a new customer observesj ≥ k
customers, then according toΣk he overtakesk of them.
Future customers do not overtake him, and therefore, his
expected cost isCw

j+1−k
µ

+ kCo.

If a new customer observesj < k customers, then according
to Σk he chooses overtaking all of them. Future customers
overtake him, and therefore, his expected cost isCw

1
µ−λ

+jCo.
Hence, the expected cost of a new customer is

Cw

j + 1 − k

µ
+ kCo, j ≥ k,

Cw

1

µ − λ
+ jCo, j < k.

The functionsCw
j+1−k

µ
+kCo andCw

1
µ−λ

+ jCo are both

monotone increasing inj. If Cw
1

µ−λ
+j′Co ≤ Cw

j+1−k
µ

+kCo

when j′ = k − 1 and j = k, or equivalently λ
µ(µ−λ) ≤ Co

Cw

then the expected cost of a new customer as a function
of the number of customers in the system is a monotone
and increasing. Otherwise, this function is built from two
monotone increasing functions with a break-point atk.

Since both functions are monotone increasing thenk is
a global minimum if a new customer prefers to observek
rather than an empty queue, i.e.,Cw

1
µ

+ kCo < Cw
1

µ−λ
,

or equivalently, Co

Cw
< λ

kµ(µ−λ) . If a new customer prefers
to observe an empty queue rather thank then 0 is a global
minimum and thenCw

1
µ−λ

< Cw
1
µ

+ kCo, or equivalently,
λ

kµ(µ−λ) < Co

Cw
.

A new customer prefers to observe a longer queue, i.e.,
prefers to observej ≥ k customers rather thanj′ < k, if
Cw

j+1−k
µ

+ kCo < Cw
1

µ−λ
+ j′Co, or equivalently if Co

Cw
<

λ−(µ−λ)(j−k)
µ(µ−λ)(k−j′) .

Proof of Theorem 4.3: A customer is in state(i, j) if there
are exactlyi customers in front of him (including the one in
service) and exactlyj customers behind him. We denote by
fi,j the expected (residual) waiting time of a customer in state
(i, j) given that all future customers adopt the strategyΣk,p.
In addition letf−1,j = 0.

• Consider a customer in state(i, j) wherej ≤ k − 2:

fi,j =
i + 1

µ − λ
, ∀j ≤ k − 2. (5)

• Consider a customer in state(j − 1, k − 1), j ≥ 1:
fj−1,k−1 = 1

λ+µ
+ µ

λ+µ
fj−2,k−1 +

λpj+k−1

λ+µ
fj,k−1 +

λ(1−pj+k−1)
λ+µ

j
µ
, j ≥ 1, or equivalently,

fj,k−1 =
1

λpj+k−1
[(λ + µ)fj−1,k−1−

µfj−2,k−1 − 1 − (1 − pj+k−1)
λj

µ
], j ≥ 1.

(6)

In particular,

f1,k−1 =
1

λpk

[

(µ + λ)f0,k−1 − 1 − (1 − pk)
λ

µ

]

. (7)

• Consider now a customer who observesk + j − 1
customers upon arrival, wherej ≥ 1. If he overtakes
k customers, he guarantees his position in the queue
and his expected cost isCw

j
µ

+ kCo. Otherwise, if he
overtakes onlyk − 1 customers, his expected cost is



11

Cwfj,k−1 + (k − 1)Co. For Σk,p to define an equilib-
rium strategy, it must be that the customer is indifferent
between the two options, hence

fj,k−1 =
Co

Cw

+
j

µ
, ∀j ≥ 1. (8)

Substitutingf1,k−1 from (8) in (7) gives

pk =
1

λ

Cw

Co

[

(λ + µ)f0,k−1 − 1 − λ

µ

]

. (9)

Substitutingf1,k−1 from (8) in (6) for j = 2 gives

pk+1 = 1 +
µ

λ
− 1

λ

Cw

Co

[

µf0,k−1 +
λ

µ

]

. (10)

For j ≥ 2, substitutingfj,k−1, fj−1,k−1, andfj−2,k−1 from
(8) in (6) gives,

pk+j = 1 − Cw

Coµ
, ∀j ≥ 2. (11)

We denotepk by x. Substitutingpk from (9), andpk+1 from
(10), in pk + λ+µ

µ
pk+1 givespk+1 = λ+µ

λ

[

1 − Cw

Coµ

]

− µ
λ+µ

x.

Since0 ≤ pk+1 ≤ 1, we get that(λ+µ)2

µλ

[

µ
λ+µ

− Cw

Coµ

]

≤ x ≤
(λ+µ)2

µλ

[

1 − Cw

Coµ

]

. x = pk, hence we must get that0 ≤ x ≤ 1.
Therefore,
max

{

0, (λ+µ)2

µλ

[

µ
λ+µ

− Cw

Coµ

]}

≤ x ≤
min

{

1, (λ+µ)2

µλ

[

1 − Cw

Coµ

]}

.

We consider these cases:

1) 1
µ

≤ Co

Cw
≤ (λ+µ)2

µ(µ2+µλ+λ2) . In this case0 ≤ x ≤
(λ+µ)2

µλ

[

1 − Cw

Coµ

]

.

2) (λ+µ)2

µ(µ2+µλ+λ2) ≤ Co

Cw
≤ λ+µ

µ2 . In this case0 ≤ x ≤ 1.

3) λ+µ
µ2 ≤ Co

Cw
≤ min

{

1
µ−λ

, (λ+µ)2

µ3

}

. In this case
(λ+µ)2

µλ

[

µ
λ+µ

− Cw

Coµ

]

≤ x ≤ 1.

We now analyze the other equilibrium conditions and show
that they are satisfied iffCo

Cw
≤ 1

µ−λ
.

• The best response of a new customer who observes
j ≤ k − 2 customers is overtaking all of them. Hence,
Cwf0,j + Coj ≤ Cwfj−l,l + Col, l = 0, 1, 2, . . . , j − 1.
Substitutingf0,j andfj−l,l from (5), this gives

C0

Cw

≤ 1

µ − λ
. (12)

• Consider the best response for a new customer who
observesk − 1 customers. If he overtakes all of them,
his expected cost isCwf0,k−1 + Co(k − 1). Otherwise,
if he overtakes onlyl ≤ k − 2 customers, his expected
waiting time is fj−l,l, substitutingfj−l,l from (5) we
get that his expected cost isCw

k−l
µ−λ

+ Col. In equi-
librium the best response is overtaking all customers,
hence Cwf0,k−1 + Co(k − 1) ≤ Cw

k−l
µ−λ

+ Col, or
C0

Cw
≤ k−l

(µ−λ)(k−1−l) − f0,k−1

k−1−l
. f0,k−1 is bounded from

above by the expected length of a busy period, because
it is the maximum time till a customer in service leaves
the system, even if all new arrival customers overtake

him. Therefore, k−l
(µ−λ)(k−1−l) −

f0,k−1

k−1−l
≥ k−l

(µ−λ)(k−1−l) −
1

µ−λ
1

k−1−l
= 1

µ−λ
, and we get (12).

• The last case that we should check is if a new cus-
tomer observesj ≥ k customers and chooses over-
taking only m ≤ k − 2 customers, then his expected
cost is Cwfj−m,m + mCo. In equilibrium the best re-
sponse is overtakingk customers and not less. Therefore
Cwfj−m,m + mCo ≥ Cw

j−k+1
µ

+ kCo, or fj−m,m ≥
Co

Cw
(k − m) + j−k+1

µ
. Substitutingfj−m,m from (5) we

get, j−m+1
µ−λ

≥ Co

Cw
(k − m) + j−k+1

µ
, or

Co

Cw
≤ 1

µ−λ
+ λ(j−k+1)

µ(µ−λ)
1

k−m
, and 1

µ−λ
+ λ(j−k+1)

µ(µ−λ)
1

k−m
>

1
µ−λ

. Therefore we get the condition (12).

Proof of Theorem 4.7:When all others apply the pure thresh-
old strategyσn, a new customer’s best response overtakes
at most one customer, since by overtaking one customer the
new customer guarantees his place in the queue and by the
assumption (1) there is no benefit in overtaking more than
one. In addition, if a customer observesn − j customers,
j = 2, 3, . . . , n, then not overtaking any customer is the
best response since the customer will never be overtaken, and
by the same assumption, in this case there is no benefit in
overtaking.

Suppose that a new customer observesn − 1 customers.
In equilibrium the best response of a new customer is not
overtaking. Hence,Cw

µ
( 1
1−ρ

+n−1) ≤ Cw
n−1

µ
+Co, and this

inequality gives the first condition for an equilibrium,1
µ−λ

≤
Co

Cw
.

Suppose that a new customer observesn+j customers,j =
0, 1, 2, . . ., and doesn’t overtake any customer. His expected
cost is thenCw

µ

(

j+2
1−ρ

+ n − 1
)

. Otherwise, if a new customer

overtakes a single customer, his expected cost isCw
n+j

µ
+

Co. In equilibrium the best response is overtaking. Hence,
Cw

n+j
µ

+ Co ≤ Cw

µ

(

j+2
1−ρ

+ n − 1
)

, or equivalently Co

Cw
≤

µ+λ+jλ
µ(µ−λ) , andµ+λ+jλ

µ(µ−λ) is minimum forj = 0. Therefore,Co

Cw
≤

µ+λ
µ(µ−λ) is the second condition for equilibrium.

Proof of Theorem 4.8: Define fi(p) to be the expected
waiting time in positioni, wheni is the last customer in the
queue, given that all customers follow the strategyσn,p. Then,

fn(p) = 1
µ+λ

+ µ
µ+λ

n−1
µ

+ λ
µ+λ

[

pfn+1(p) + (1 − p)n
µ

]

.

Substituting,fn+1(p) = 1
µ

1
1−ρ

+ fn(p) = 1
µ−λ

+ fn(p) gives

fn(p) =
1

µ − λ − λp

[

n +
λp

µ − λ
+ (1 − p)

λn

µ

]

. (13)

Under the pure threshold strategyσn,p the new customer does
not overtake more than one customer, since by overtaking one
customer the new customer guarantees his place in the queue
and from (1), there is no benefit in overtaking more than one.

• Suppose that a new customer observesn customers. In
equilibrium he is indifferent between overtaking a single
customer or not overtaking. Hence,Cwfn+1(p) = Cw

n
µ
+

Co, or Cw

[

1
µ−λ

+ fn(p)
]

= Cw
n
µ

+ Co. Substituting

fn(p) from (13) gives the pricepe = (µ+λ)(Co(µ−λ)−Cw)
Coλ(µ−λ) .
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• Becausepe is a probability, we require that0 < pe < 1.
The denominator ofpe is always positive, so the numera-
tor must be positive too. ThereforeCo(µ−λ)−Cw > 0,
or Co

Cw
> 1

µ−λ
, and this is one of the conditions for an

equilibrium in a pure threshold strategy.
The condition forpe < 1 is (µ+λ) (Co(µ − λ) − Cw) <
Coλ(µ − λ), or Co

Cw
< µ+λ

µ(µ−λ) , and this is the additional
condition for an equilibrium in a pure threshold strategy.

• If pe is an equilibrium strategy, then the best response of
a new customer who observesn − 1 customer is not to
overtake:Cwfn(p) < Cw

n−1
µ

+Co, or Cwλ
Co(µ−λ) > 0, and

this is always true.

Proof of Lemma 5.4: A customer in the ordinary queue is
in state(i, j) if there are exactlyi customers in front of him
in the ordinary queue (including the one in service), exactly j
customers behind him in the ordinary queue, and no customers
in the priority queue. We denote byfi,j(n) the expected
(residual) waiting time of a customer in state(i, j) given that
all future customers adopt the pure threshold strategyn. In
addition letf−1,j(n) = 0. HenceW (n) = fn−1,0(n).
We now express the equations for calculatingW (n).

• Suppose that the state is(i, j) such thati + j < n − 1,
i = 1, . . . , n−2 andj = 0, . . . , n−2. The expected time
till the next arrival or service completion is1

λ+µ
. With

probability µ
λ+µ

the service completion occurs before a
new arrival, and then the customer’s expected residual
waiting time is fi−1,j(n). With probability λ

λ+µ
a new

customer arrives before a service completion occurs and
sincei + j < n− 1, i.e., there are less thann customers
in the system, a new customer does not overtake any
customer and the customer’s expected residual waiting
time is fi,j+1(n). Therefore, fori, j such thati + j <
n − 1, i = 1, . . . , n − 2 andj = 0, . . . , n − 2,

fi,j(n) =
1

λ + µ
+

µ

λ + µ
fi−1,j(n) +

λ

λ + µ
fi,j+1(n).

(14)
• Suppose that the state is(i, n− i− 1) , i = 1, . . . , n− 1,

i.e., there aren customers in the system. Then, all future
arrivals will overtake the customer, till the number of
customers in the queue is reduced by one. This is a busy
period. Hence, fori = 0, . . . , n − 2,

fi,n−i−1(n) =
1

µ − λ
+ fi−1,n−i−1(n). (15)

In particular,

W (n) = fn−1,0(n) =
1

µ − λ
+ fn−2,0(n). (16)

• If the state is(0, j), j ∈ 0, 1 . . . , n − 2, the expected
time till the next arrival or service completion is1

λ+µ
.

With probability λ
λ+µ

a new customer arrives before a
service completion occurs and sincej < n − 1, i.e.,
there are less thann customers in the system, a new
arriving customer does not overtake any customer and the
customer’s expected residual waiting time isf0,j+1(n).

Therefore,

f0,j(n) =
1

λ + µ
+

λ

λ + µ
f0,j+1(n), j ∈ 0, 1, . . . , n − 2.

(17)
Now we give the proof to the Lemma:
W (1) = 1

µ−λ
andΠAP(1) = Cw

λ+µ
µ(µ−λ)

λ
µ

;

W (2) = 2µ+λ
µ2−λ2 andΠAP(2) = Cw

2µ2+2λµ+λ2

µ(µ2−λ2) (λ
µ
)2;

W (3) = 3µ3+7λµ2+4λ2µ+λ3

(λ+µ)2(µ2−λ2) and ΠAP(3) =

Cw
3µ4+8λµ3+7λ2µ2+4λ3µ+λ4

µ(λ+µ)2(µ2−λ2) (λ
µ
)3.

In these casesΠAP(n) < ΠCP.

If n = 1, then all new arrivals buy priority and overtake the
present ordinary customer. In this case when the ordinary cus-
tomer’s service ends the system becomes empty. Thus his wait-
ing time amounts to a busy period. Therefore,W (1) = 1

µ−λ
.

Substituting in (4) givesΠAP(1) = Cw

[

1
µ−λ

+ λ
µ(µ−λ)

]

λ
µ

, or
equivalently,

ΠAP(1) = Cw

λ + µ

µ(µ − λ)

λ

µ
. (18)

ComparingΠAP(1) from (18) to ΠCP from (3) we get that
ΠAP(1) < ΠCP.

Observation 6.1:W (2) = f1,0(2).
Now we computeW (2).

• Suppose a customer is in state (0,0). The expected time
till the next arrival or service completion occurs is1

λ+µ
.

With probability λ
λ+µ

a new customer arrives before a
service completion occurs. Then, the new arrival observes
one customer upon arrival, therefore he does not buy
priority and does not overtake the present customer in
the ordinary queue. Hence,

f0,0(2) =
1

λ + µ
+

λ

λ + µ
f0,1(2). (19)

• Suppose a customer is in state (0,1). All future arrivals
will observe two customers or more upon arrival, there-
fore, they will buy priority and overtake the present cus-
tomers in the ordinary queue till the number of customers
in the ordinary queue is reduced by one, and it is equal
to a busy period. Hence,

f0,1(2) =
1

µ − λ
. (20)

• Suppose a customer is in state (1,0). All future ar-
rivals will observe two customers or more upon arrival,
therefore, they will buy priority and will overtake the
present customers in the ordinary queue till the number of
customers in the ordinary queue is reduced by one, and it
is equal to a busy period. Hence,f1,0(2) = 1

µ−λ
+f0,0(2).

Substituting in (19) gives,

f0,0(2) =
1

λ + µ
+

λ

µ2 − λ2
=

µ

µ2 − λ2
. (21)

Substituting (21) in (20) gives,f1,0(2) = λ+2µ
µ2−λ2 . Since

W (2) = f1,0(2),

W (2) =
λ + 2µ

µ2 − λ2
. (22)
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Substituting (22) in (4) gives ΠAP(2) =

Cw

[

λ+2µ
µ2−λ2 + λ

µ(µ−λ)

] (

λ
µ

)2

, or equivalently,

ΠAP(2) = Cw

2µ2 + 2λµ + λ2

µ(µ2 − λ2)

(

λ

µ

)2

. (23)

ComparingΠAP(2) from (23) to ΠCP from (3) we get
that ΠAP(2) < ΠCP.

Observation 6.2:W (3) = f2,0(3).
Now we computeW (3).
• Suppose a customer is in state (0,0). The expected time

till the next arrival or service completion occurs is1
λ+µ

.
With probability λ

λ+µ
a new customer arrives before a

service completion occurs. Then, the new arrival observes
one customer upon arrival, therefore he does not buy
priority and does not overtake the present customer in
the ordinary queue. Hence,

f0,0(3) =
1

λ + µ
+

λ

λ + µ
f0,1(3). (24)

• Suppose a customer is in state (0,1). The expected time
till the next arrival or service completion occurs is1

λ+µ
.

With probability λ
λ+µ

a new customer arrives before a
service completion occurs. Then, the new arrival observes
two customer upon arrival, therefore he does not buy
priority and does not overtake the present customer in
the ordinary queue. Hence,

f0,1(3) =
1

λ + µ
+

λ

λ + µ
f0,2(3). (25)

• Suppose a customer is in state (0,2). All future ar-
rivals will observe three customers or more upon arrival,
therefore, they will buy priority and will overtake the
present customers in the ordinary queue till the number
of customers in the ordinary queue is reduced by one,
and it is equal to a busy period. Hence,

f0,2(3) =
1

µ − λ
. (26)

• Suppose a customer is in state (1,0). The expected time
till the next arrival or service completion occurs is1

λ+µ
.

With probability λ
λ+µ

a new customer arrives before a
service completion occurs. Then, the new arrival observes
two customer upon arrival, therefore he does not buy
priority and does not overtake the present customer
in the ordinary queue. With probability µ

λ+µ
a service

completion occurs before an arrival of a new customer,
then the customer’s expected time isf0,0(3). Hence,

f1,0(3) =
1

λ + µ
+

µ

λ + µ
f0,0(3) +

λ

λ + µ
f1,1(3). (27)

• Suppose a customer is in state (1,1). All future arrivals
will observe three customers or more upon arrival, there-
fore, they will buy priority and overtake the present
customers in the ordinary queue till, the number of
customers in the ordinary queue is reduced by one, and
it is equal to a busy period. Hence,

f1,1(3) =
1

µ − λ
+ f0,1(3). (28)

• Suppose a customer is in state (2,0). All future ar-
rivals will observe three customers or more upon arrival,
therefore, they will buy priority and will overtake the
present customers in the ordinary queue till the number
of customers in the ordinary queue is reduced by one,
and it is equal to a busy period. Hence,

f2,0(3) =
1

µ − λ
+ f1,0(3). (29)

Substituting (26) in (25), gives

f0,1(3) =
µ

µ2 − λ2
. (30)

Substituting (30) in (28), gives

f1,1(3) =
2µ + λ

µ2 − λ2
. (31)

Substituting (30) in (24), gives

f0,0(3) =
µ2 − λ2 + λµ

(λ + µ)(µ2 − λ2)
. (32)

Substituting (32) and (31) in (27) and the result in (29)
gives,f2,0(3) = 3µ3+7λµ2+4λ2µ+λ3

(λ+µ)2(µ2−λ2) . SinceW (3) = f2,0,

W (3) =
3µ3 + 7λµ2 + 4λ2µ + λ3

(λ + µ)2(µ2 − λ2)
. (33)

Substituting (33) in (4) gives ΠAP(3) =

Cw

[

3µ3+7λµ2+4λ2µ+λ3

(λ+µ)2(µ2−λ2) + λ
µ(µ−λ)

] (

λ
µ

)3

, or
equivalently,

ΠAP(3) = Cw

3µ4 + 8λµ3 + 7λ2µ2 + 4λ3µ + λ4

µ(λ + µ)2(µ2 − λ2)

(

λ

µ

)3

.

(34)
ComparingΠAP(3) from (34) to ΠCP from (3) we get
that ΠAP(3) < ΠCP.
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