
Lecture 5: 
 
The time evolution of the state of a fluid and its motion are described by a set of 
equations for the motion (u,v,w), pressure (p) and temperature (T). The density is 
obtained from p and T, via the ideal gas law.  
 
We apply the following laws:  
1. The laws of motion (Newton's second law) – 3 equations, one for each direction 
x,y,z 
2. Conservation of mass 
3. Law of thermodynamics 
 
Laws of motion:  need to apply to a fluid parcel – constant material. An incremental 
mass pieces of fluid δm: 
 
ρδxδyδz Du/Dt=F 
 
Where D/Dt means differentiation following the fluid parcel- following the motion.  
 
Material derivative: What does that mean?  
For example, lets follow a balloon which measures temperature. At time to it is in 
position xo,yo,zo, and it messures a temperature To. 
At time to+δt it measures a temperature To+δT. What does δT equal? 
 
δT=∂T/∂t δt + ∂T/∂x δx + ∂T/∂y δy + ∂T/∂z δz  
  
For small δt, we assume the velocity field does not change, so the change in zonal 
location δx is determined from its zonal velocity: δx=uδt, and likewise, δy=vδt, 
δz=wδt. 
 

 δT=∂T/∂t δt + ∂T/∂x uδt  + ∂T/∂y vδt + ∂T/∂z wδt   
 
Divide by δt to get:  
δT/δt≡DT/Dt = ∂T/∂t + u∂T/∂x + v∂T/∂y + w∂T/∂z  = ∂T/∂t + (u•∇)Τ 
 
The change in temperature of the balloon is affected both by the heating with time 
(e.g. the day progressing), and since the balloon is moving into a region with different 
temperature (the existence of temperature gradients). An Eularian derivative and an 
advection term. 
 
A nice example from Marshal and Plumb:  
T1- clouds in gravity wave 
The air goes over the mountain and oscillates. Cloud drops form when air ascends and 
evaporate when air descends. Lets assume this reaches a steady state. The cloud 
amount at a given location is thus fixed: ∂C/∂t=0. But following the motion, the cloud 
amount is varying, due to the spatial changes in C, at a pace whic hdepends on the 
fluid velocity, according to the material derivative above.  
 
Note: Dx/Dt=∂x/∂t+u∂x/∂x+v∂x/∂y+w∂x/∂z=u 



 
So Du/Dt=∂u/∂t+(u•∇)u=F/(ρδxδyδz) 
 
This yields 3 equations:  
Du/Dt=∂u/∂t+(u•∇)u=Fx/(ρδxδyδz) 
Dv/Dt=∂v/∂t+u∂v/∂x+v∂v/∂y+w∂v/∂z=Fy/(ρδxδyδz) 
Dw/Dt=∂w/∂t+u∂w/∂x+v∂w/∂y+w∂w/∂z=Fz/(ρδxδyδz) 
 
Forces: 
Body forces – act on center of mass and depend on the mass of the parcel.  Gravity.  
Surface forces – act across the surface of the parcel and are independent of mass: 
pressure gradient force, friction 
 
Gravity: Fgrav=- gδM k= - ρ g δxδyδz k (downward) 
 
Pressure gradient force: 
Consider a cubed fluid parcel at x,y,z, with faces at x+δx/2, x-δx/2, y+δy/2 etc. 
On each face there is a pressure force which equals the pressure at the face center time 
its area. For example: the force in the x direction, at x-δx/2 is: p(x-δx/2,y,z)δyδz. At 
x+δx/2 it is -p(x+δx/2,y,z)δyδz (directed into the parcel). The net force along the x 
direction is:  Fpx=-[p(x+δx/2,y,z)δyδz-p(x-δx/2,y,z)δyδz]= -∂p/∂x δxδyδz i 
Applying to all directions, we get: Fp= -∇p δxδyδz 
 
Friction:  
For atmosphere-ocean flow generally negligible except near the boundaries. Flow in 
boundary layer is very complex. Turbulent. Will just write the frictional force in 
genral terms nad you will learn more in fluid mechanics course next term: 
Ffric= ρF δxδyδz 
 
Note- friction is ultimately responsible for imparting the earth's rotation to the 
atmosphere.  
 
The equations of motion:  
 
Du/Dt= - ∇p/ρ - gk +  F  
 
In cartezian coordinates:  
∂u/∂t+u∂u/∂x+v∂u/∂y+w∂u/∂z = -1/ρ∂p/∂x +  F x
∂v/∂t+u∂v/∂x+v∂v/∂y+w∂v/∂z = -1/ρ∂p/∂y +  F y
∂w/∂t+u∂w/∂x+v∂w/∂y+w∂w/∂z = -1/ρ∂p/∂z  -g +  F x
We will make simplifications later on (e.g. 1/ρ∂p/∂z=-g for w equation) 
Continuity equation (mass conservation): 
 
The mass in a fixed volume cube can change if there is a net mass flux into  or out of 
the volume. 
 
The net zonal mass flux into the volume above is:  
ρu(x-δx/2)δyδz-ρu(x+δx/2)δyδz=-∂(ρu)/∂x δxδyδz 



And similarly for y and z directions, we get that the net flux into the volume is:  
-∂(ρu)/∂x δxδyδz-∂(ρv)/∂y δxδyδz-∂(ρw)/∂z δxδyδz≡-∇⋅( ρu) 
This equals the local change in density: ∂ρ/∂t=-∇⋅( ρu)  
∂ρ/∂t+∇⋅( ρu)= ∂ρ/∂t+ρ∇⋅u+ u⋅∇ρ= Dρ/Dt+ρ∇⋅u=0 
1/ ρ Dρ/Dt=-∇⋅u    The change of density of a fluid parcel following the flow.. 
How does the parcel volume change following the flow?  
D(δV)Dt= D(δx)/Dt δyδz + D(δy)/Dtδxδz+D(δz)δxδy  
 
D(δx)/Dt=D(x+δx/2)/Dt-D(x-δx/2)/Dt=u(x+δx/2)-u(x-δx/2)= ∂u/∂xδx 
 
So D(δV)Dt=∂u/∂x δV+∂u/∂yδV+∂u/∂zδV=δV ∇⋅u 
 
Thus, ∇⋅u=1/δV D(δV)Dt – the fractional change in parcel volume. The fractional 
change in density following the flow equals the fractional change in parcel volume, 
given by the flow convergence (∇⋅u is divergence). 
 
Incompressible flow: Dρ/Dt=0, so ∇⋅u=0. 
Each fluid element is incompressible.  
 
Note: can have incompressible flow ∇⋅u=0 with  Dρ/Dt=Q heating. 
Also, can have Dρ/Dt≈0, meaning it is negligible compared to ρ∇⋅u, but can't neglect 
changes in density in the momentum equation. Can still affect parcel's buoyancy.  
 
Compressible flow:  
 
δM=ρδV= ρδxδyδz = ρδxδyδp δz/δp ≈ - 1/g δxδyδp 
Thus, the mass of a unit volume in pressure coordinates  (where z is replaced by p), is 
constant always, regardless of whether the fluid is compressible or not, or density is 
changing locally or spatially or not.  

 ∂u/∂x+∂v/∂y+∂ω/∂p ≡ ∇p⋅u=0 where ω≡Dp/Dt 
 
The thermodynamic equation:  
δQ= CpdT - dp/ρ = CpT/θ dθ = Τ dη 
Apply the above first law of thermodynamics to obtain a derivative following the 
flow:  
DQ/Dt=CpDT/Dt-1/ρDp/Dt        DT/Dt= Q /Cp + 1/(ρCp)Dp/Dt &

DQ/Dt=Cp (p/po)κ Dθ/Dt            Dθ/Dt =(p/po)−κ Q /Cp &

Q& /Cp is the diabatic heating in K/sec. 
 
The above 5 equations, along with initial and boundary conditions they describe the 
flow. Practically when solving on a grid we assume they apply to an average volume 
and not always true. In particular when have small scale turbulent motions.  
Also- they apply to an inertial frame of reference.  
 
The equations applied to a rotating system:  
More practical. Weather forecast for example. Also- plot of U in rotating frame of 
reference: 
T2- U 



 
In a rotating system we have a centrifugal force.  
Note: a ball rotated with a string feels centripetal acceleration. In the frame of 
reference of the ball, it is not moving so is not accelerating, even though it feels the 
pull of the string. This can only happen if there is an outward centrifugal force 
balancing the pull of the string. This force is said to be apparent, because it exists as a 
force, rather than an acceleration, only in the rotating frame of reference…  
 
We will now examine two lab experiments. 
 
Rotating container- parabolic water level: the surface assumes a parabolic 
structure.  
What is it: assume a circular tank and use cylindrical coordinates. In the frame of 
reference of the rotating tank, there is a radial outward centrifugal force, which has to 
balanced.  
The surface slope induces a pressure gradient force: assuming hydrostatic balance in 
the vertical direction,  p(r,z)=ρg(H(r)-z) and Fpres=-1/ρ∂p/∂r = −g∂H/∂r (inward). 
This balances the outward centrifugal force:  
Fpres+Fcent=-1/ρ∂p/∂r +Ω2r   g∂H/∂r= Ω2r   H(r)=H(0)+Ω2r2/2g  
The surface is tilted such that it is perpendicular to the modified gravity force: 
g*=-gk- ΩxΩxr which points slightly outward: 
parallel to the surface: Ω2rcos(α) = g sin(α) dH/dx= tan(α)=Ω2r/g  
H=H(0)+ Ω2r2/2g  
 

 
 
For our little experiment: Ω=33rpm=33/60*2*π rad/sec≈3.5rad/sec, r≈0.3m 
H(r)-H(0)=Ω2r2/2g≈5cm, and if Ω=45rpm then H(r) ≈10cm. 
Radial inflow experiment:  
T3- experiment setup 
 
No rotation- fluid flows inwards- the surface slope causes the pressure force to vary 
radially: p(r,z)=ρg(H(r)-z). Dur/Dt=Fpres=-1/ρ∂p/∂r = −g∂H/∂r.  
With rotation: There is a centrifugal force acting in the radial direction:      



Dur/Dt=Fpres+Fcent=-1/ρ∂p/∂r + Vθ
2/r  

 
Conservation of angular momentum: 
Vθr = Ωr1

2=(vθ+Ωr)r;  Vθ=Ωr1
2/r    vθ = Ω(r1

2- r2)/r  for Ω=10rpm=10/60*2π rad/sec, 
r1=0.3m, and r=0.05m, we get vθr=0.875 rpm   
 
If the particles  spiral in slowly – vr/vθ<<1, then the following radial balance holds 
approximately (in the inertial reference frame).  
Vθ

2/r =1/ρ∂p/∂r   g∂H/∂r= Vθ
2/r   

In terms of rotating frame, Vθ= Ωr+vθ, vθ being the velocity in the rotating frame of 
reference. 
 
In the rotating fame of reference: 
Vθ

2/r = (Ωr+vθ)2/r = Ω2r+2Ωvθ+vθ
2/r = g∂h/∂r  

Lets define h=H+η, with H(r)=H(0)+ Ω2r2/2g the parabolic shape of the surface if 
vθ=0, and there are no effects of the hole in the center and the radial inflow.  
Then,  2Ωvθ+vθ

2/r = g∂η/∂r, 
vθ

2/r = g∂η/∂r -2Ωvθ

 
This is compared to Vθ

2/r= g∂H/∂r in the inertial frame of reference.  
η instead of H, and have added Coriolis acceleration.   
 
This acceleration, in balance, equals: 2Ωvθ= g∂η/∂r - vθ

2/r 
The velocity relative to the tank increases or decreases the centrifugal acceleration, so 
that the surface needs to adjust relative to its reference state H. This adjustment is 
obtained by a radial flow of material, which is only possible if there is a force to 
induce it.  
 
[Imagine cyclonic flow, on a cyclonically rotating tank, which is in balance. If the 
asymuthal velocity is increased by a bit, there will be an imbalance with the 
centrifugal acceleration being larger than the pressure gradient force, and an outflow 
will be induced. The opposite will happen if the asymuthal flow is reduced. The 
apparent force inducing this is the Coriolis force, 2Ωvθ  which is directed to the right 
of the flow direction. ] 
 


