
Θ-Hilbertianity∗

S. Fried†

D. Haran

Abstract

We define Θ-Hilbertianity which generalizes Hilbertianity and show that the absolute
Galois group of a countable Θ-Hilbertian PAC field is an appropriate analogue of a free
profinite group, thus generalizing a result of Fried-Völklein-Pop.

Introduction

A field K is called Hilbertian if the following condition holds: For every irreducible poly-
nomial in two variables f(t,X) ∈ K[t,X], separable in X, there exist infinitely many
a ∈ K such that f(a,X) is irreducible in K[X]. Fields with this property are called
Hilbertian because of Hilbert’s Irreducibility Theorem ([Hil, Satz IV]): Number fields are
Hilbertian.

Algebraic extensions of Hilbertian fields may inherit the Hilbertianity. For example,
every finite separable extension and every abelian extension of a Hilbertian field is Hil-
bertian [FJ, Section 16.11]. Another, more general, examples are the Diamond Theorem
[FJ, Theorem 13.8.3] or extensions of finite abelian-simple length [BFW].

The importance of Hilbertian fields lies in applications to Galois theory. Namely, t 7→ a
defines a K-place of the field of rational functions K(t) with residue field K. If f(t,X)
generates a Galois extension F of K(t) with Galois group G, then this place extends to
a K-place of F ; let F denote its residue field. Now, K is Hilbertian if and only if for all
such F/K(t) we have [F : K(t)] = [F : K]. In particular, the Galois group of F/K is
then isomorphic to G. Thus, realization of G over K(t) implies its realization over K.

One can ask whether something similar holds even if K is not Hilbertian, by requiring
that the above characterization holds only for certain groups G.

In an unpublished paper [Jar5] Jarden gives the following weakening of Hilbertianity:
Given a prime p, a field K is called p-Hilbertian if its absolute Galois group is pro-p
and for every finite Galois extension F/K(t) such that Gal(F/K(t)) is a p-group, there
exist infinitely many a ∈ K such that t 7→ a extends to a K-place F → F ∪ {∞} with
[F : K(t)] = [F : K]. Jarden shows that if K0 is a Hilbertian field, then the fixed field
K of a p-Sylow subgroup of the absolute Galois group of K0 is p-Hilbertian. He actually
shows more, namely that K is strongly p-Hilbertian, i.e. if F/K(t) is a finite Galois
extension and Fp is the fixed field in F of a p-Sylow subgroup of Gal(F/K(t)) then there
exist infinitely many K-places F → F ∪ {∞} such that [F : Fp] = [F : K].

In Section 2 we define Θ-Hilbertianity and strong Θ-Hilbertianity which generalize
Hilbertianity as well as the above mentioned (strong) p-Hilbertianity of Jarden. We do it
by using what we call Sylowian maps Θ, defined in Section 1. Section 3 contains our
main results. We briefly describe them and their historical context.
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In the 1990’s a major problem of Field Arithmetic was solved: It was shown that the
absolute Galois group of a countable Hilbertian PAC field is free of rank ℵ0. M. Fried and
H. Völklein proved it in characteristic 0 ([FV]) and F. Pop in the general case soon after
([P2]). We prove that this holds with Hilbertianity replaced with Θ-Hilbertianity and the
free profinite group replaced with its analogue Êd(C) (Definition 1.6).

In [FV] Fried and Völklein also made the conjecture that the result still holds if the
PAC condition is replaced with projectivity of the absolute Galois group. One way to prove
this conjecture would be to show that every constant finite split embedding problem over
K(t) has a regular solution. Pop ([P1]) showed the latter to hold for a class of fields
he called large—we use the term ample for reasons explained in [Jar6, p. 95]. P. Dèbes
and B. Deschamps ([DD]) made the conjecture that this condition holds for all fields. We
show that under the Dèbes-Deschamps conjecture our generalization of the Fried-Völklein
conjecture is true.

It is an open question whether Qsolv - the maximal pro-solvable extension of Q - is
ample (cf. [Jar6, Example 5.10.6]) but if it is, it follows from our results that its absolute
Galois group Gal(Qsolv) is isomorphic to Êω(C) where C is the class of all finite groups
having no nontrivial solvable quotients.

It is well known that Hilbertian fields are not Henselian with respect to a nontrivial
valuation. We conclude this work with a generalization of this to certain Θ-Hilbertian
fields.

We would like to thank the referee for his/her valuable insights and suggestions.

Notation and conventions. For a field K we denote by Ks its separable closure. If
L/K is a Galois extension of fields, we denote by Gal(L/K) its Galois group; we denote
by Gal(K) the absolute Galois group Gal(Ks/K) of K.

Groups in this work are tacitly assumed to be profinite groups, their subgroups are
assumed to be closed and all the homomorphisms between profinite groups are continuous.
If G is a profinite group, we denote by Im(G) the class of all finite quotients of G. For a
formation C of finite groups we denote by F̂d(C) the free pro-C group of rank d. If d = ℵ0

we write F̂ω(C). If C is the formation of all finite groups, we write F̂d.
If ϕ is a place of a field F and E is a subfield of F , we denote by E the residue field

of E at ϕ, (omitting the reference to ϕ, which will be clear from the context). For a field
K we denote by K(t) the field of rational functions in one variable over K.

1 Group theoretical preliminaries

In this section we recall the definition of quasi-formations and list their properties nec-
essary for later applications. A thorough treatment of quasi-formations may be found in
[FH]. We also introduce what we call Sylowian maps that are needed for our generaliza-
tion of Hilbertianity. Before we do that, let us recall some definitions and facts regarding
profinite groups, most of them are well-known (cf. [FJ] and [RiZ]) but some are new and
taken from [FH]:

Definition 1.1. A commutative diagram of epimorphisms of profinite groups

G
ϕ2 //

ϕ1

��

G2

π2

��
G1 π1

// A

(1)

is called a cartesian square if G ∼= G1 ×A G2, that is, whenever H is a profinite group
and ψ1 : H → G1, ψ2 : H → G2 are homomorphisms such that π1 ◦ ψ1 = π2 ◦ ψ2, there
exists a unique homomorphism π : H → G such that ϕi ◦ π = ψi, i = 1, 2.

2



The cartesian square is compact [FH, Definition 2.2], if there exists no proper sub-
group H of G with ϕi(H) = Gi, i = 1, 2.

Definition 1.2. Let C be a nonempty class of finite groups (this will always mean that
C contains all the isomorphic images of the groups in C).
(a) C is called a formation if it is closed under taking quotients and cartesian squares.

The last condition means that G ∈ C whenever G1, G2 ∈ C in the cartesian square
(1).

(b) Let 1 → N → G → Ḡ → 1 be a short exact sequence of finite groups. We call
C extension-closed if from N, Ḡ ∈ C it follows that G ∈ C. If, in addition, the
converse holds, i.e. from G ∈ C it follows that N, Ḡ ∈ C, we call C a Melnikov
formation. Notice that a Melnikov formation is indeed a formation ([FJ, p. 344]).

(c) A Melnikov formation C which is closed under taking subgroups is called a full
formation.

Definition 1.3. [FH, Definition 4.1] Let G be a profinite group and let C be a class of
finite groups.

(a) An embedding problem for G is a pair

(ϕ : G→ A,α : B → A) (2)

in which ϕ and α are epimorphisms. We call (2) a C-embedding problem if G,A,B
are pro-C groups, finite if B is finite, and split if there exists a homomorphism
α′ : A→ B with α◦α′ = idA. A weak solution to (2) is a homomorphism γ : G→ B
such that α ◦ γ = ϕ. A weak solution γ to (2) is a solution if γ is surjective.

(b) We say that G has the embedding property if every finite embedding problem
(2) for G such that B ∈ Im(G) has a solution.

(c) A profinite group G is C-projective if every C-embedding problem (2) for G has a
weak solution. If G is C-projective and C is the class of all finite groups, then G is
called projective.

Definition 1.4. [FH, Definition 3.1] A class of finite groups C is called a quasi-formation
if it is closed under taking quotients and compact cartesian squares.

A formation C gives rise to free pro-C groups. This remains true, in a sense, if C is
merely a quasi-formation:

Theorem 1.5. [FH, Theorem 4.4] Let C be a quasi-formation. Then there exists a pro-C
group Ê(C) of at most countable rank, unique up to an isomorphism, with the embedding
property and such that Im(Ê(C)) = C.

If C is a quasi-formation and d a finite number, then Cd = {G ∈ C | rank(G) ≤ d} is
also a quasi-formation [FH, Lemma 3.5].

Definition 1.6. In the above notation, we write Êd(C) instead of Ê(Cd) and Êω(C) instead
of Ê(C).

Remark 1.7. Let d ∈ N∪{ω}. The group Êd(C) is an analogue of a free group. Namely,
if C is a formation, then Êd(C) is the free pro-C group F̂d(C) of rank d [FH, Lemma 4.7].

The following Lemma generalizes [FJ, Proposition 22.5.11]:

Lemma 1.8. [FH, Lemma 4.2] Let C be a quasi-formation and let G be a C-projective
group. Suppose every finite split C-embedding problem (ϕ : G → A,α : B → A) for G
such that ker(α) is minimal normal subgroup of B has a solution. Then every finite
C-embedding problem for G has a solution.
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Definition 1.9. Let Θ be a map that assigns to every profinite group G the conjugacy
class Θ(G) of a closed subgroup of G. We call the map Θ Sylowian if the following
conditions are satisfied:

(a) Let ϕ : G→ H be an epimorphism of profinite groups. Then ϕ(Θ(G)) = Θ(H).

(b) Assume U ∈ Θ(G). Then Θ(U) = {U}.
A Sylowian map Θ is consistent if the following condition holds:

(c) Suppose ϕ : H → G is a homomorphism of profinite groups. Then there exist U ∈
Θ(H), V ∈ Θ(G) such that ϕ(U) ≤ V (or, equivalently, for every U ∈ Θ(H) there
exists V ∈ Θ(G) such that ϕ(U) ≤ V ).

If F/E is a Galois extension we write Θ(F/E) instead of Θ(Gal(F/E)). If F = Es,
we write Θ(E) instead of Θ(F/E). For an intermediate field E ⊆ E′ ⊆ F such that
Gal(F/E′) ∈ Θ(F/E), we write E′ ∈ Θ(F/E).

Example 1.10. (a) The trivial (resp. identity) map Θ(G) = {1} (resp. Θ(G) = {G})
for all profinite groups G is a consistent Sylowian map.

(b) Let p be a prime number. For a profinite group G let Θ(G) be the conjugacy class
of all p-Sylow subgroups of G (cf. [FJ, Definition 22.9.1]). It follows from [FJ,
Proposition 22.9.2] that Θ is a consistent Sylowian map.

(c) Let C be a Melnikov formation. For a profinite group G let Θ(G) = {GC} where

GC =
⋂

N/G, G/N∈C

N.

Thus, GC is the normal subgroup of G such that G/GC is the maximal pro-C quotient
of G ([FJ, Definition 17.3.2]). By [RiZ, Lemma 3.4.1](b) and (d), Θ is a Sylowian
map. If C is a full formation, then by [RiZ, Lemma 3.4.1](c), Θ is consistent.

Remark 1.11. In Example 1.10(c), GC is actually defined for a formation C. The Mel-
nikov property is needed for condition (b) in Definition 1.9.

Lemma 1.12. Let Θ be a consistent Sylowian map. Let H ≤ G be profinite groups and
let V ∈ Θ(G) such that V ≤ H. Then V ∈ Θ(H).

Proof. By Definition 1.9(b) , Θ(V ) = {V }. Apply Definition 1.9(c) to the inclusion
V → H to obtain U ∈ Θ(H) such that V ≤ U . Similarly, from the inclusion H → G we
obtain h ∈ H and g ∈ G such that Uh ≤ V g. Then V ≤ U ≤ V gh−1

. Since V ≤ V gh−1

implies (in profinite groups) V = V gh−1
, we get V = U . Thus, V ∈ Θ(H).

Definition 1.13. Let Θ be a Sylowian map. Define

C(Θ) = {U | U ∈ Θ(G) where G is a finite group}.

Clearly, by Definition 1.9(b), C(Θ) = {G |G is a finite group such that Θ(G) = {G}}.

Sylowian maps give rise to quasi-formations:

Proposition 1.14. Let Θ be a Sylowian map. Then C(Θ) is a quasi-formation.

Proof. By Definition 1.9(a), C(Θ) is closed under taking quotients. Consider a compact
cartesian square (1) with G1, G2 ∈ C(Θ) and let U ∈ Θ(G). By Definition 1.9(b), ϕi(U) ∈
Θ(Gi) and therefore, by Definition 1.13, ϕi(U) = Gi, i = 1, 2. By the compactness, U = G,
i.e. G ∈ C(Θ).

Lemma 1.15. Let Θ be a Sylowian map and let G be a pro-C(Θ) group. Then Θ(G) =
{G}.
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Proof. Let N be a basis of open normal subgroups of G such that for every N ∈ N we
have G/N ∈ C(Θ). Let U ∈ Θ(G). By Definition 1.9(a), UN/N ∈ Θ(G/N) = {G/N}.
Hence, UN/N = G/N and therefore UN = G. Since N is directed and

⋂
N∈N N = 1, by

[FJ, Lemma 1.2.2(b)], U =
⋂
N∈N UN =

⋂
N∈N G = G. It follows that Θ(G) = {G}.

Theorem 1.16. [FH, Theorem 5.5] Let C and D be two Melnikov formations and let Θ
be the Sylowian map from Example 1.10(c). Suppose C ∪ C(Θ) ⊆ D and assume that C is
different from the class of all finite groups. Then Êω(C(Θ)) ∼= F̂d(D)C for every cardinal
2 ≤ d ≤ ℵ0 such that there exists G ∈ C with rank(G) ≤ d.

Corollary 1.17. Let C be a Melnikov formation, different from the class of all finite
groups. Then Êω(C(Θ)) ∼= (F̂ω)C .

2 Θ-Hilbertianity

In this section we define Θ-Hilbertianity which generalizes Hilbertianity and show that
finite Galois extensions of a Θ-Hilbertian field inherit similar properties from the base
field (Proposition 2.3). In particular, we give conditions under which an extension of a
Hilbertian field is Θ-Hilbertian (Theorem 2.6).

By [FJ, Lemma 12.1.6] (with the slight adjustment that the extension K(T, y)/K(T)
in their proof should be required to be Galois), a field K is Hilbertian if and only if for
every finite Galois extension F/K(t) there are infinitely many a ∈ K for which there
exists a K-place ϕ : F → F ∪ {∞} with ϕ(t) = a and [F : K] = [F : K(t)].

We use this terminology of places for our generalization of Hilbertianity:

Definition 2.1. Let K be a field and let Θ be a Sylowian map. Let F/K(t) be a finite
Galois extension and let FΘ ∈ Θ(F/K(t)). We denote by HK,Θ(F ) the set of all a ∈ K
such that there exists a K-place ϕ : F → F ∪ {∞} with ϕ(t) = a and [F : FΘ] = [F : FΘ].

We say that K is Θ-Hilbertian if HK,Θ(F ) is infinite for every finite Galois extension
F/K(t) satisfying Gal(F/K(t)) ∈ C(Θ), i.e. Θ(F/K(t)) = {K(t)}. We say that K is
strongly Θ-Hilbertian if HK,Θ(F ) is infinite for every finite Galois extension F/K(t).

Thus, a field K is Hilbertian if and only if it is Θ-Hilbertian, where Θ is the identity
Sylowian map (Example 1.10(a)).

In Definition 2.1 we may replace the Galois extension F/K(t) by an arbitrary Galois
extension that contains it:

Lemma 2.2. Let F and F ′ be two finite Galois extensions of K(t) with F ⊆ F ′. Then
there exists a finite set A such that HK,Θ(F ′) rA ⊆ HK,Θ(F ).

Proof. Let E′ ∈ Θ(F ′/K(t)). Then E = E′ ∩ F ∈ Θ(F/K(t)) and [F : E] = [FE′ : E′].
Let z be a primitive element of F ′/K(t), integral over K[t] and let f = irr(z,K(t)).

Let A be the set of all roots of disc(f) in K. By [FJ, Lemma 2.3.4], every K-place ϕ of F ′

with ϕ(t) = a, where a ∈ K r A, is unramified over K(t). Let a ∈ HK,Θ(F ′) r A. Then
there exists a K-place ϕ′ : F ′ → F ′ ∪ {∞} such that ϕ′(t) = a and [F ′ : E′] = [F ′ : E′].
As FE′ is an intermediate field of F ′/E′, we have [FE′ : E′] = [FE′ : E′]. It follows that

[F E′ : E′] = [F : F ∩ E′] ≤ [F : E] ≤ [F : E] = [FE′ : E′] = [FE′ : E′].

Since ϕ′ is unramified over K(t), by [FJ, Lemma 2.4.8], FE′ = F E′. Conclude that
[F : E] = [F : E]. Let ϕ = ϕ′|F . Then ϕ is a K-place with ϕ(t) = a and [F : E] = [F : E].
Hence, a ∈ HK,Θ(F ).

The previous lemma implies that Θ-Hilbertianity is preserved under finite Galois ex-
tensions:
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Proposition 2.3. Let Θ be a Sylowian map and let L/K be a finite Galois extension.

(a) Assume that Θ is consistent. If K is strongly Θ-Hilbertian, then so is L.

(b) Assume that C(Θ) is an extension-closed formation

and Gal(L/K) ∈ C(Θ). If K is Θ-Hilbertian, then so is L.

Proof. (a) Let F/L(t) be a finite Galois extension. We have to show that HL,Θ(F ) is
infinite. By Lemma 2.2, we may assume that F/K(t) is Galois. It follows from Definition
1.9(c) that there are FΘ ∈ Θ(F/K(t)) and F ′Θ ∈ Θ(F/L(t)) such that FΘ ⊆ F ′Θ. By
assumption, HK,Θ(F ) is infinite. For every a ∈ HK,Θ(F ) there exists a K-place ϕ : F →
F ∪ {∞} such that ϕ(t) = a and [F : FΘ] = [F : FΘ]. Replacing ϕ by a conjugate we
may assume that ϕ is an L-place. As FΘ ⊆ F ′Θ ⊆ F , we have [F : F ′Θ] = [F : F ′Θ]. Hence,
a ∈ HL,Θ(F ).

(b) Suppose now that Gal(F/L(t)) ∈ C(Θ). Again, we may assume that F/K(t)
is Galois. Since C(Θ) is a formation, the Galois closure F ′ of F/K(t) still satisfies
Gal(F ′/L(t)) ∈ C(Θ). As C(Θ) is extension-closed, also Gal(F/K(t)) ∈ C(Θ). We may
proceed as in (a), with FΘ = K(t) and F ′Θ = L(t).

The following two technical lemmas will be used in the proof of the main result of this
section (Theorem 2.6):

Lemma 2.4. Let L/K,E/K and F/K be extensions of fields. Suppose L ⊆ E and F/K
is a Galois extension. Assume E and F are contained in a common separable closure of
K. Then (F ∩ E)L = FL ∩ E.

Proof. Denote G = Gal(K), H = Gal(L), N = Gal(F ) and A = Gal(E). By Galois
theory, Gal((F ∩E)L) = NA∩H and Gal(FL∩E) = (N ∩H)A. As NA∩H = (N ∩H)A,
the assertion follows.

Lemma 2.5. Let F/K(t) be a Galois extension and let K ′ be an algebraic extension of
K such that F ∩K ′ = K. Then F and K ′ are linearly disjoint over K.

Proof. Let L be the algebraic closure of K in F . Then L/K is Galois and L∩K ′ = K, since
K ⊆ L ∩K ′ ⊆ F ∩K ′ = K. Hence, L and K ′ are linearly disjoint over K. Furthermore,
F is regular over L. Thus, F and K ′L are linearly disjoint over L. By the tower property
of linear disjointness ([FJ, Lemma 2.5.3]), F and K ′ are linearly disjoint over K.

Theorem 2.6. Let K be a Hilbertian field and Θ a consistent Sylowian map. Let E ∈
Θ(K(t)) and let K ⊆ K ′ ⊆ Ks ∩ E be an intermediate field. Then K ′ is strongly Θ-
Hilbertian.

Proof. Let F ′/K ′(t) be a finite Galois extension. We have to show that HK′,Θ(F ′) is
infinite. There exists a finite Galois extension F/K(t) such that F ′ ⊆ FK ′. By Lemma 2.2,
we may assume that F ′ = FK ′. By Lemma 2.4 (with L = K ′(t)),

F ′ = FK ′ and (F ∩ E)K ′ = FK ′ ∩ E = F ′ ∩ E. (1)

Put L = F ∩ K ′. As F/K(t) is separable and finite, so is L/K. By ([FJ, Corollary
12.2.3]), L is Hilbertian. Moreover, since K(t) ⊆ L(t) ⊆ E, by Lemma 1.12, we have
E ∈ Θ(L(t)). We may therefore replace K by L to assume that F ∩ K ′ = K. By
Lemma 2.5, F and K ′ are linearly disjoint over K.

The last statement gives [F : F ∩ E] = [FK ′ : (F ∩ E)K ′]. Thus, by (1),

[F : F ∩ E] = [F ′ : F ′ ∩ E]. (2)
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As K is Hilbertian, there are infinitely many a ∈ K such that the map t 7→ a extends
to a K-place ϕ : F → F ∪ {∞} with F/K Galois and [F : K(t)] = [F : K]. Thus,

[F : F ∩ E] = [F : F ∩ E]. (3)

By [FJ, Lemma 2.5.5], ϕ extends to a K ′-place ϕ : F ′ → F ′ ∪ {∞}. Excluding finitely
many a ∈ K, if necessary, we may assume that ϕ is unramified over K ′(t) ([FJ, Lemma
2.3.4]). By [FJ, Lemma 6.1.1], F ′/K ′ is a Galois extension. We have K ′(t) = K ′. By [FJ,
Lemma 2.4.8] applied to (1) we get

F ′ = FK ′ and (F ∩ E)K ′ = F ′ ∩ E. (4)

By Definition 1.9(1), F ∩ E ∈ Θ(F/K(t)) and F ∩ E ∈ Θ(F/K). As ϕ induces an
isomorphism Gal(F/K(t)) → Gal(F/K) that maps Gal(F/F ∩ E) onto Gal(F/F ∩ E),
we have F ∩ E ∈ Θ(F/K). Thus, there exists σ ∈ Gal(K) such that F ∩ E = σ(F ∩ E).
The residue field of F ∩ E under σ ◦ ϕ is σ(F ∩ E) = F ∩ E ⊇ F ∩K ′, so, replacing ϕ
with σ ◦ ϕ, we may assume that F ∩ E ⊇ F ∩ K ′. Thus F and K ′ are linearly disjoint
over F ∩K ′. This gives [F : F ∩ E] = [FK ′ : (F ∩ E)K ′]. By (4),

[F : F ∩ E] = [F ′ : F ′ ∩ E]. (5)

It follows from equations (2), (3), and (5) that [F ′ : F ′ ∩ E] = [F ′ : F ′ ∩ E]. But
F ′ ∩ E ∈ Θ(F ′/K ′(t)). Hence, a ∈ HK′,Θ(F ′).

3 The absolute Galois group of a Θ-Hilbertian

field

The notion of Θ-Hilbertianity which was defined in the previous section makes it possible
to generalize the results of Fried-Völklein and Pop mentioned in the introduction. The
generalization is then demonstrated on Qsolv. First, we recall the necessary definitions
and facts:

Definition 3.1. A field K is called

(a) pseudo algebraically closed (PAC) if every absolutely irreducible variety defined
over K has a K-rational point. (This notion first appears in [Ax], without an explicit
name.)

(b) ample if every smooth curve over K has infinitely many K-rational points, provided
it has at least one rational point. (This definition is due to Pop [P1, p. 2], under the
name large.)

Theorem 3.2. (Ax [Ax, Lemma 2]) PAC fields have projective absolute Galois groups.

Example 3.3. (a) Algebraically closed, separably closed and PAC fields are ample.

(b) Fields with pro-p absolute Galois groups for some prime p are ample ([CT, p. 360]
and [Jar6, Theorem 5.8.3]).

Definition 3.4. Let L/K be a finite Galois extension of fields. We identify Gal(L(t)/K(t))
with A = Gal(L/K) via restriction. Let α : B → A be an epimorphism of finite groups.
Following [Jar6, Section 4.4] we refer to

Gal(K(t))

resK(t)s/L

��
B α

// A

(1)
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as a constant embedding problem over K(t). The problem splits if there exists a
homomorphism α′ : A→ B such that α ◦ α′ = idA. A solution of (1) is an epimorphism
γ : Gal(K(t)) → B that makes (1) commutative. We call the fixed field F of ker(γ) in
K(t)s a solution field of (1). The solution is regular if F/L is a regular field extension.

For ample fields the Dèbes-Deschamps conjecture holds:

Theorem 3.5. (Pop [P1, Main Theorem A]) Let K be an ample field. Then every constant
finite split embedding problem over K(t) has a regular solution.

In essence, Hilbertianity serves as a bridge between solvability of certain embedding
problems over K(t) and the corresponding embedding problems over K ([FJ, Lemma
16.4.2]). This remains true for Θ-Hilbertianity:

Theorem 3.6. Let Θ be a Sylowian map and let K be a Θ-Hilbertian field. Denote
G = Gal(K) and C = C(Θ). Suppose that the Dèbes-Deschamps conjecture holds for K
(e.g. if K is ample). Then:

(a) Every finite split C-embedding problem for G has a solution.

(b) If G is C-projective of rank 2 ≤ d ≤ ℵ0 then G ∼= Êd(C).

Proof. (a) Consider a finite split C-embedding problem

(ϕ : G→ A,α : B → A) (2)

and let L be the fixed field of ker(ϕ) in Ks. We may assume that A = Gal(L/K)
and ϕ = resKs/L. By assumption, there exists a Galois extension F of K(t) containing L,
regular over L, and there is an isomorphism ρ : Gal(F/K(t))→ B such that α◦ρ = resF/L.
Thus, we may assume that B = Gal(F/K(t)) and α = resF/L.

As K is Θ-Hilbertian, there exist infinitely many K-places ψ : F → F ∪{∞}, mapping
K(t) into K ∪ {∞}, such that [F : K] = [F : K(t)]. Choose ψ that is unramified over
K(t). Then ψ induces an isomorphism σ 7→ σ̄ from Gal(F/K(t)) onto Gal(F/K) such
that ψ (σ(x)) = σ̄ (ψ(x)) for all x in the valuation ring of ψ. The composition of the
inverse of this isomorphism with the restriction map G = Gal(K)→ Gal(F/K) is a group
epimorphism ψ∗ : G → Gal(F/K(t)). Replace ψ by τ ◦ ψ for a suitable τ ∈ Gal(K) to
assume that ψ|L = idL, then resF/L ◦ ψ∗ = resKs/L. Conclude that ψ∗ solves (2).

(b) By assumption, the split embedding problem (G → 1, B → 1) has a solution for
every B ∈ C. Hence, C ⊆ Im(G). As G is pro-C, we have Im(G) ⊆ C. Thus, C = Im(G).
As G is C-projective, by Lemma 1.8, every finite C(Θ)-embedding problem for G has a
solution. It follows that G has the embedding property. By Theorem 1.5, G ∼= Êd(C).

Here is an analogue of Fried-Völklein Theorem [FV, Theorem A] generalized to an
arbitrary characteristic by Pop [P1, Theorem 1]:

Corollary 3.7. Let Θ be a Sylowian map and let K be a countable PAC Θ-Hilbertian
field. Then Gal(K) ∼= Êd(C(Θ)), where d = rank(Gal(K)).

Proof. Every PAC field is ample (Example 3.3(a)) and has a projective absolute Galois
group (Theorem 3.2). By Theorem 3.6, Gal(K) ∼= Êd(C(Θ)).

Of particular interest ([Jar6, Example 5.10.6]) is the field Qsolv and we wish to apply
Theorem 3.6 to its absolute Galois group. First, let us establish its rank:

Lemma 3.8. The absolute Galois group Gal(Qsolv) has rank ℵ0.
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Proof. By [FJ, Example 17.1.7(b)], Gal(Qsolv) is of at most countable rank. We show
that Qsolv has Galois extensions with unbounded rank. By [FJ, Corollary 16.2.7], Q has
a linearly disjoint sequence (Ln)n∈N of Galois extensions with the symmetric group S5 as
Galois group. Let n ∈ N and let Fn = L1 · · ·Ln. By [FJ, Lemma 2.5.6], Gal(Fn/Q) = Sn5 .
Let Kn = Qsolv∩Fn. Then Gal(Kn/Q) is the maximal solvable quotient of Gal(Fn/Q), and
hence, as A5 is simple and not solvable, Gal(Fn/Kn) ∼= An5 . Hence Gal(FnQsolv/Qsolv) ∼=
An5 . By [Wie, Theorem 2.1], rank(An5 ) > log60 n, so limn→∞ rank(An5 ) =∞.

In the rest of this section Θ is the Sylowian map from Example 1.10(c) associated
with the Melnikov formation C of all finite solvable groups. Thus, Θ(G) = {GC} for every
profinite group G and G/GC is the maximal pro-solvable quotient of G.

Theorem 3.9. Suppose the Dèbes-Deschamps conjecture holds for Qsolv (e.g. Qsolv is
ample). Then Gal(Qsolv) ∼= Êω(C(Θ)).

Proof. By Definition 1.9(a), the restriction map Gal(Q(t)) → Gal(Q) maps Gal(Q(t))C

onto Gal(Q)C . Furthermore, Qsolv (resp. Q(t)solv) is the fixed field of Gal(Q)C (resp.
Gal(Q(t))C) in Qs (resp. in Q(t)s). By [Hil, Satz IV], Q is Hilbertian. We apply Theorem
2.6 on K = Q, E = Q(t)solv and K ′ = Qsolv and conclude that Qsolv is strongly C(Θ)-
Hilbertian. By [Jar6, Example 5.10.5], Qab - the maximal abelian extension of Q - has
a projective absolute Galois group. Since Qab ⊆ Qsolv, Gal(Qsolv) is projective ([FJ,
Proposition 22.4.7]) and by Lemma 3.8, it has rank ℵ0. By Theorem 3.6, Gal(Qsolv) ∼=
Êω(C(Θ)).

Remark 3.10. The result in the previous theorem can be deduced from a weaker conjec-
ture than the Dèbes-Deschamps conjecture, namely, the Shafarevich conjecture that as-
serts that Gal(Qab) ∼= F̂ω. Indeed, Gal(Qsolv) = Gal(Q)C . Now, Gal(Qsolv) ≤ Gal(Qab) /
Gal(Q). Thus, by [RiZ, Lemma 3.4.1(d)], Gal(Q)C = Gal(Qab)C . Assuming the Shafare-
vich conjecture holds, we have Gal(Qab) ∼= F̂ω. By Corollary 1.17, (F̂ω)C = Êω(C(Θ)).
Conclude that Gal(Qsolv) ∼= Êω(C(Θ)).

An important evidence for Shafarevich conjecture is due to Iwasawa ([I]):

Gal(Qsolv/Qab) ∼= F̂ω(C).

We refer the reader to Section 6 of [FH] for more information on the subject.

Remark 3.11. It follows from Fried-Völklein conjecture that every non-trivial proper
open subgroup of Gal(Qsolv) is isomorphic to F̂ω. Indeed, let L be a finite extension of
Qsolv. Since L contains Qab, it has a projective absolute Galois group. By a result of
Kuyk ([FJ, Theorem 11.6.3]), Qab is Hilbertian. By Weissauer’s Theorem ([FJ, Theorem
13.9.1(b)], L is Hilbertian. By Fried-Völklein conjecture, Gal(L) ∼= F̂ω.

On the other hand, every non-trivial proper open subgroup of Êω(C(Θ)) is isomorphic
to F̂ω. Indeed, it follows from Theorem 1.16 (and its proof) that Êω(C(Θ)) ∼= F̂ Cω and
[F̂ω : F̂ Cω ] =∞. The assertion now follows from [FJ, Proposition 25.8.4].

In light of Theorem 3.9 and the two preceding remarks, it seems safe to state:

Conjecture 3.12. The absolute Galois group of Qsolv is isomorphic to Êω(C(Θ)).

4 Θ-Hilbertianity and Henselianity

Recall that a valued field (K, v) with valuation ring O and maximal ideal M is called
Henselian (with respect to v) if one of the following equivalent conditions is satisfied
([Jar2, Proposition-Definition 11.1(a), (b) and (e)]):

(a) v uniquely extends to every algebraic extension of K.
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(b) For every polynomial f ∈ O[X] and every a ∈ O such that f(a) ∈M and f ′(a) /∈M
there exists x ∈ O such that f(x) = 0 and x− a ∈M .

(c) For every monic polynomial f ∈ O[X] and every a ∈ O such that f ′(a) 6= 0 and
f(a) ∈ (f ′(a))2M there exists x ∈ O such that f(x) = 0 and x− a ∈ f ′(a)M .

It immediately follows from (a) that every algebraic extension of a Henselian field is
Henselian ([FJ, p. 203]).

In [FJ, Lemma 15.5.4] it is proved that Hilbertian fields cannot be Henselian with
respect to a nontrivial valuation. The following corollary is an immediate consequence.

Corollary 4.1. Let C be a formation and let K be a Hilbertian field. Let E be the
fixed field in Ks of Gal(K)C . Suppose E is not separably closed (this is guaranteed if,
for example, a finite nontrivial group H that has no nontrivial quotients in C is realizable
over K). Then E is not Henselian with respect to a nontrivial valuation.

Proof. To see that if such H is realizable over K then E 6= Es let L/K be a proper Galois
extension with Gal(L/K) ∼= H. As H has no nontrivial quotients in C and as Gal(E/K)
is pro-C, L ∩ E = K. Thus, Gal(EL/E) ∼= Gal(L/K) and L′ = EL is a proper finite
Galois (and in particular, separable) extension of E.

Suppose E is Henselian and let L′/E be a proper finite separable extension. Then L′

is Henselian. By Weissauer’s Theorem ([Wei, Satz 9.7]), L′ is Hilbertian, contradicting
[FJ, Lemma 15.5.4].

Example 4.2. Let C be the class of all finite solvable groups. It follows from the previous
corollary that Qsolv is not Henselian with respect to a nontrivial valuation. Actually, in
this case, even more is known, namely that the Henselian closure of every valuation of
Qsolv is Qs (see [FJ, p. 203] for the definition of a Henselian closure and [FJ, Proposition
11.5.8] for the result).

The following lemma is a modification of [FJ, Lemma 15.5.4]. It uses Definition 1.13.

Lemma 4.3. Let Θ be a Sylowian map such that Z/pZ, (Z/pZ)2 ∈ C(Θ) and let K be a
Θ-Hilbertian field. Then K is not Henselian with respect to a nontrivial valuation.

Proof. Assume K is Henselian with valuation ring O and maximal ideal M .
First suppose p 6= char(K). Let L be the extension of K obtained by adjoining the

p-th roots of unity and let G = Gal(L/K). Then L is Henselian. Let OL be the unique
valuation ring of L over O and let ML be its maximal ideal. Let c be a primitive element
for L/K. Without loss, c ∈ p2ML (otherwise multiply c by a suitable element of M).

By [FJ, Lemma 16.3.1], K(t) has a cyclic extension F1 of degree p. In fact, the
construction of F1 there is such that LF1 = L(t)(y1), where yp1 = h(t) :=

∏
σ∈G

(
1 +

σ(c)t
)n(σ)

for some n(σ) ∈ {1, . . . , p− 1}.
Similarly, replacing t by t−1 we obtain a cyclic extension F2/K(t) of degree p such

that LF2 = L(t)(y2), where yp2 = h(t−1).
Let F = F1F2. Then F/K(t) is a Galois extension and either Gal(F/K(t)) = Z/pZ (if

F1 = F2) or Gal(F/K(t)) = (Z/pZ)2 (if F1 6= F2 and then F1 and F2 are linearly disjoint
over K(t)). In either case, by assumption, Gal(F/K(t)) ∈ C(Θ). Denote [F : K(t)] = d.
Since K is Θ-Hilbertian, there exists a ∈ K× such that t 7→ a extends to a K-place
ϕ : F → F ∪ {∞} with [F : K] = d.

As [L(t) : K(t)] = [L : K] is prime to p, the extensions F and L(t) are linearly
disjoint over K(t) and therefore [FL : L(t)] = d. Thus, ϕ extends to an L-place ϕ : FL→
FL∪ {∞} such that [FL : L] = d. It follows from [FJ, Lemma 13.1.1] that both f1(X) =
Xp − h(a) and f2(X) = Xp − h(a−1) are irreducible in L[X]. Indeed, up to finitely many
a ∈ K, for i = 1, 2: ϕ(LFi) = L(ϕ(yi)). Now [FiL : L] = p. Thus, fi is the irreducible
polynomial of ϕ(yi) over L. In particular, neither f1 nor f2 has a zero in L.
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But either a ∈ O or a−1 ∈ O. Suppose first that a ∈ O. Then f1(X) ∈ O[X],
f ′1(1) = p, and

f1(1) = 1− h(a) ∈ cO ⊆ p2ML = f ′(1)2ML.

Since L is Henselian, f1(X) has a zero in L. Similarly, if a−1 ∈ O, then f2(X) has a zero
in L. This contradiction to the preceding paragraph proves that K is not Henselian.

Suppose now that p = char(K). Choose 0 6= m ∈ M . Let f1(t,X) = Xp − X −mt
and f2(t,X) = Xp−X − t−1. It follows from [Lang, Chapter IV, Theorem 6.4(b)] that fi
is irreducible in K(t)[X] and has Z/pZ as Galois group over K(t), i = 1, 2. Let Fi be the
splitting field of fi over K(t), i = 1, 2 and let F = F1F2. As in the first case, there exists
a ∈ K× such that t 7→ a extends to a K-place ϕ : F → F ∪{∞} with [F : K] = [F : K(t)].
It follows that neither f1 nor f2 has a zero in L.

But either a ∈ O or a−1 ∈ O. Suppose first that a ∈ O. Then f1(a, 1) ≡ 0 mod M
and ∂f1

∂X (a, 1) = −1 6≡ 0 mod M . Since K is Henselian, f1(X) has a zero in K. Similarly,
if a−1 ∈ O, then f2(X) has a zero in K. This contradiction to the preceding paragraph
proves that K is not Henselian.

Example 4.4. Let p be a prime number and let Θ be as in Example 1.10(b). By the
previous lemma, every Θ-Hilbertian field is not Henselian with respect to a nontrivial
valuation.

In Lemma 4.6 below we show that the method of proof of Lemma 4.3 can be extended
to other families of polynomials. We shall need the following lemma:

Lemma 4.5. Let K be a subfield of Qs and let F be a finite Galois extension of K(t),
regular over K, such that Gal(F/K(t)) is not cyclic. Then there exists a finite subset S of
K such that for every m ∈ K r S the K-automorphism of K(t) given by t 7→ mt extends
to a homomorphism θm : F → K(t)s with θm(F ) 6= F .

Proof. As F/K is regular, we may replace K by its algebraic closure Qs in C (and F
by FQs) to assume that K is algebraically closed. Let A(F ) be the set of branch points
of F/K(t) (cf. [Jar6, p. 44]). By [FJ, p. 59], A(F ) is finite. As Gal(F/K(t)) is
not cyclic, by Riemann’s Existence Theorem ([V, Theorem 2.13]), |A(F )| ≥ 3. Thus,
there exists a ∈ A(F ) distinct from 0,∞. Let m ∈ K× such that 1

ma /∈ A(F ) and
extend the K-automorphism t 7→ mt of K(t) to a homomorphism θm : F → K(t)s. Then
A(θm(F )) = 1

mA. Hence, 1
ma ∈ A(θm(F )). Thus, A(θm(F )) 6= A(F ) and therefore

θm(F ) 6= F .

Lemma 4.6. Let Θ be a Sylowian map and let (K, v) be a valued Θ-Hilbertian field with
char(K) = 0. Let p be a prime number such that v|Q is the p-adic valuation of Q. Suppose
there exists n ≥ 5 with n ≡ 1 mod p such that A2

n ∈ C(Θ). Then (K, v) is not Henselian.

Proof. Assume (K, v) is Henselian with valuation ring O and maximal ideal M . Choose
m ∈M ∩Q,m 6= 0.

First assume that n is even. Consider the polynomials

f1(t,X) = Xn + nXn−1 + (−1)
n
2 (mt)2 + (n− 1)n−1,

f2(t,X) = Xn + nXn−1 + (−1)
n
2

1

t2
+ (n− 1)n−1 ∈ Q(t)[X].

By [JLY, Exercise 3.8], the splitting field Fi of fi(t,X) over Q(t) is regular over Q and
satisfies Gal(Fi/Q(t)) = An, i = 1, 2. As An is transitive, f1 and f2 are irreducible. By
Lemma 4.5, we may assume that F1 6= F2. Since An is simple, F1 and F2 are linearly
disjoint over Q(t). Hence, Gal(F1F2/Q(t)) ∼= A2

n.
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We claim that F1F2/Q is regular. Indeed, let L be the algebraic closure of Q in F1F2.
Then L(t) is a Galois extension of Q(t), linearly disjoint from F1 and F2, for they are
regular over Q. As An is a nonabelian simple group, the only nontrivial normal subgroups
of Gal(F1F2/Q(t)) ∼= A2

n are Gal(F1F2/Fi)), i = 1, 2. Hence, L(t) = Q(t). Thus, F1F2/Q
is regular. By [FJ, Lemma 16.2.1], Gal(F1F2K/K(t)) ∼= A2

n.
As in the proof of Lemma 4.3, there exists a ∈ K× with both f1(a,X) and f2(a,X)

irreducible in K[X]. In particular, none of them has a zero in K.
But either a ∈ O or a−1 ∈M . Suppose first a ∈ O. Then f1(a,−1) ≡ 0 mod M and

∂f1
∂X (a,−1) 6≡ 0 mod M . Since K is Henselian, f1(a,X) has a zero in K. Similarly, if
a−1 ∈ M , then f2(a,X) has a zero in K. This contradiction to the preceding paragraph
proves that (K, v) is not Henselian.

Now assume that n is odd. Consider the polynomials

f1(t,X) = Xn + ((−1)
n−1
2 n(mt)2 − 1)(nX + n− 1),

f2(t,X) = Xn + ((−1)
n−1
2 n

1

t2
− 1)(nX + n− 1) ∈ Q(t)[X].

By [JLY, Exercise 3.7], the splitting field Fi of fi(t,X) over Q(t), is regular over Q and
satisfies Gal(Fi/Q(t)) = An, i = 1, 2. However, if a ∈ O then f1(a, 0) ≡ 0 mod M and
∂f1
∂X (a, 0) 6≡ 0 mod M ; if a−1 ∈M , then f2(a, 0) ≡ 0 mod M and ∂f2

∂X (a, 0) 6≡ 0 mod M .
The contradiction follows as in the preceding case.
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