
Real Hilbertianity and the �eld of totally real numbersMichael D. Fried�y, Dan Haran�z and Helmut V�olklein��Abstract: We use moduli spaces for covers of the Riemann sphere to solveregular embedding problems, with prescribed extendability of orderings, overPRC �elds. As a corollary we show that the elementary theory of Qtr isdecidable.IntroductionThe theory and use in [F] of moduli spaces of covers of the Riemann sphere with pre-scribed rami�cation data has been further developed in [FV1]. There the main themeis that K-rational points of the moduli spaces correspond to covers de�ned over K.Furthermore, [FV2] notes a correspondence between existence of K-rational points oncertain related spaces and the solvability of regular embedding problems over K. Thus,using moduli spaces allows us to prove solvability of regular embedding problems over�elds K suitably large for such varieties to have the requisite K-rational points.This principle appears in [FV2] to show that the absolute Galois group of a count-able Hilbertian PAC �eld of characteristic 0 is free. The natural extension of this to the(larger) class of Hilbertian PRC �elds appears in [FV3].Recall [FJ, p. 129] that K is PAC (pseudo algebraically closed) if everyabsolutely irreducible variety V de�ned over K has a K-rational point. Furthermore[P2], K is PRC (pseudo real closed) if every absolutely irreducible variety V de�nedover K has a K-rational point, provided that V has a non-singular point over each realclosure of K. The latter condition on V is equivalent to the following one: the function�eld K(V ) of V is a totally real extension of K, that is, every ordering on K extendsto K(V ).Consider the �eldQtr of all totally real algebraic numbers. It is the �xed �eld of allinvolutions in the absolute Galois group G(Q) of Q. By a recent result of Pop [P], Qtr is� Support from the Institute for Advanced Study at Hebrew University, 1991{92.y Supported by NSA grant MDA 14776 and BSF grant 87-00038.z Supported by Max-Planck-Institut f�ur Mathematik, Bonn, 1992{93.� Supported by NSA grant MDA 904-89-H-2028.1



PRC. By Weissauer's theorem [FJ, Proposition 12.4] every proper �nite extension of Qtris Hilbertian. Also, by Prestel's extension theorem [P2, Theorem 3.1] every algebraicextension of Qtr is PRC. Hence, the absolute Galois group of a proper �nite extension ofQtr is known [FV3]. The �eld Qtr is not Hilbertian, however. For example, Z2�(a2+1)is reducible over Qtr for every a 2 Qtr.In [FHV] we cover also the case of Qtr. The key observation is that Qtr satis�es acertain weakening of the Hilbertian property. This allows specializing Galois extensionsof K(x) whose Galois group is generated by real involutions to obtain Galois extensionsof K with the same Galois group. As a result we determine the absolute Galois groupof Qtr.In the present paper we accomplish several tasks. We extend the methods andresults of [FV3] to solve regular embedding problems over a PRC �eld K in such a waythat the orderings of K extend to prescribed sub�elds (Theorem 5.2). This gives newinformation about the absolute Galois group of the �eld K(x) of rational functions overK (Theorem 5.3).The �rst 5 sections provide the prerequisites for the proof of Theorem 5.2. Weneed an approximation theorem for varieties over PRC �elds (section 1), supplementsabout the moduli spaces (section 2), some group-theoretic lemmas (section 3), and thedetermination of the real involutions in Galois groups over R(x) (section 4).In section 6 we de�ne the concept of real Hilbertian, and show that Qtr has thisproperty. In section 7 we combine all the previous results to determine the absoluteGalois group of a countable real Hilbertian PRC �eld with no proper totally real al-gebraic extensions, whose space of orderings has no isolated points. This group is thefree product of groups of order 2, indexed by the Cantor set X! (Theorem 7.6). Inparticular, G(Qtr) = Aut(~Q=Qtr) is isomorphic to this group.As a corollary we introduce the notion of real Frobenius �elds: Qtr is an example(Corollary 8.3). Following the Galois strati�cation procedure of [FJ, Chap. 25] and[HL] we show that the elementary theory of real Frobenius �elds allows eliminationof quanti�ers in the appropriate language. In particular, Qtr is primitive recursivelydecidable (Theorem 10.1). On the other hand (we thank A. Prestel for pointing this2



out to us) the ring of integers of Qtr is undecidable (Julia Robinson [R2]). Thus weobtain a natural example of an undecidable ring with a decidable quotient �eld (cf.Robinson [R1, p. 951]). Furthermore, we give (Corollary 10.5) a system of axioms forthe theory of Qtr.F. Pop has told us that the characterization of G(Qtr) also follows from his results,in particular his \ 12 Riemann existence theorem." His method is based on rigid analyticgeometry, versus our use of the classical Riemann existence theorem. We look forwardto seeing a written account of these results.1. Ordered �elds and an approximation theorem for PRC �eldsLet K be a �eld of characteristic 0, and let G(K) be its absolute Galois group. Recall[P1, x6] that the set of orderingsX(K) of K is a boolean topological space in its naturalHarrison topology. This topology is given by a subbase consisting of sets of the formH(c) = fP 2 X(K)j c 2 Pg, for c 2 K�. Here P denotes the positive elements in anordering.By Artin-Schreier theory [L, XI,x2], the real closures of K (inside a �xed algebraicclosure eK of K) are the �xed �elds of the involutions in G(K). This identi�es the set X̂of real closures of K with a topological subspace of G(K). It is a boolean space, sincethe set of involutions is closed in G(K). Observe that H(z) = fR 2 X̂ j z 2 Rg is openin X̂ , for each z 2 eK�.For each R 2 X̂ let �(R) be the restriction of the unique ordering of R to K.Then �(R1) = �(R2) if and only if R1 and R2 are conjugate by an automorphism ofeK over K. The map �: X̂ ! X(K) is continuous: ��1(H(c)) = H(pc). Moreover,there exists a closed subset X of X̂ such that �: X ! X(K) is a homeomorphism[HJ1, Corollary 9.2]. The corresponding closed subset of involutions in G(K) containsexactly one representative from each conjugacy class of involutions. Having �xed suchX , identify X(K) with it.Remark 1.1: (a) If K is PRC, then every clopen subset of X(K) is of the form H(c)for a suitable c 2 K� [P2, Proposition 1.3].(b) Let R be a real closed �eld, and let a 2 R, c 2 R�. If either c < 0 or a > 0, then3



the system Y 2 + cZ2 = a; Y 6= 0 has a solution in R.(c) For X = (X1; : : : ;Xn) put kXk2 = Pni=1X2i : Let K be an ordered �eld, and leta;b; c 2 Kn and � 2 K�. From the triangle inequality (over the real closure of K), ifka� bk2; kb� ck2 < (�2 )2 then ka� ck2 < �2.Proposition 1.2: Let K be a PRC �eld, and let V � A n be an absolutely irreduciblea�ne variety de�ned over K. Let X be a closed set of real closures of K, one foreach ordering of K. Let X1; : : : ;Xm be disjoint clopen subsets of X that cover X .Let x1; : : : ;xm be nonsingular points on V such that xj 2 V (R) for every R 2 Xj ,for j = 1; : : : ;m. Let �1; : : : ; �m 2 K�. Then there is x 2 V (K) such that for each1 � j �m(1) kx � xjk2 < �2j in R; for every R 2 Xj :Proof: Fix j and put L = K(xj). Let R 2 Xj. Then L � R. As K is dense in R [P2,Proposition 1.4], there is aj 2 Kn such that(2) kxj � ajk2 < ��j2 �2 in R:This aj depends on R, but if R0 2 Xj is su�ciently close to R, then (2) holds also withR0 instead of R. Indeed, the restriction Xj ! X(L) is continuous, and (2) describesa basic open set in X(L). Use compactness of Xj to partition Xj into smaller clopensubsets (and thereby increase m). Associate with each of them the original point xjsuch that (2) holds with suitable aj for all R 2 Xj .By Remark 1.1(a), for each j there is cj 2 K� such that Xj = H(cj). Suppose thatV is de�ned by f1(X); : : : ; fr(X) 2 K[X1; : : : ;Xn]. These together with the additionalpolynomialsfr+j (X;Y;Z) = ��j2 �2 � kX� ajk2 � Y 2j � cjZ2j ; j = 1; : : : ;mde�ne an absolutely irreducible variety W � A n+2m of dimension dimV +m.Indeed, by induction on m we may assume that m = 1. Let x be the generic pointof V over eK, that is, the image ofX in in the integral domain eK[V ] = eK[X]=(f1; : : : ; fr).4



Let u = ��12 �2�kx�a1k2, and let y1 be transcendental over eK(V ). Observe that u 6= 0,since, by (2), � �12 �2 � kx1 � a1k2 6= 0. Therefore fr+1(x; y1; Z1) = u � y21 � c1Z21 isirreducible over eK(V )(y1). Let z1 be its root in the algebraic closure M of eK(V )(y1).Clearly eK[W ] = eK[X; Y1; Z1]=(f1; : : : ; fr; fr+1) �= eK[V ][y1; z1] �M:It follows that eK[W ] is an integral domain, and tr.deg.(W ) = tr.deg.(V ) + 1. Thus Wis absolutely irreducible and dimW = dimV + 1.Let R 2 X . Without loss of generality R 2 X1, and hence R =2 X2; : : : ;Xm.Thus c1 is positive, and c2; : : : ; cm are negative in R. Apply (2) and Remark 1.1(b)to complete the x1 to a point (x1;y; z) 2 W (R) with yj 6= 0 for each 1 � j � m. Inparticular, @fr+j@Yj (x1;y; z) 6= 0. Therefore (x1;y; z) is a nonsingular point on W .By the PRC property of K there exists a point (x;y; z) 2 W (K). Clearly x 2V (K), and for each j we have kx � ajk2 � (�j2 )2 in R, for each R 2 Xj . This and (2)imply (1), by Remark 1.1(c).Applying Proposition 1.2 to V = A 1 yields the Block Approximation Lemma of[P3, p. 354]:Corollary 1.3: Let K be a PRC �eld. Let H1; : : : ;Hm be disjoint clopen subsets ofX(K), and let x1; : : : ; xm 2 K, and �1; : : : ; �m 2 K�. Then there is x 2 K such thatfor every j (x � xj)2 �P �2j for every P 2 Hj :Definition 1.4: Let eK be an algebraically closed �eld with � 2 Aut( eK) of order 2.(a) For c 2 eK let jcj2� = c � �(c).(b) For z 2 eKn let kzk2� =Pni=1 jzij2� .(c) For a eK-linear morphism f : A n ! A m given by a matrix A = (aij ) 2 Mm�n( eK)let kfk2� =Pi;j jaij j2� .In the above de�nition, the �xed �eld R of � is real closed, and jjcj2� ; kzk2� ; kfk2� arenonnegative elements of R. If z 2 Rn then kzk2� = kzk2. Furthermore, in the uniqueordering of R, the Schwartz inequality gives(3) kf(z)k2� � kfk2� � kzk2� ;5



for all z 2 eKn.Remark 1.5: The space X(Qtr) is homeomorphic to X! = f0; 1g@0, the universalBoolean space of weight @0 (cf. the concluding Remark of [FV3]). In particular it hasno isolated points.Lemma 1.6: If K is a �nitely generated �eld, then the set Xa(K) of archimedianorderings on K is dense in X(K).Proof: By induction on the number of generators of K=Q it su�ces to show the fol-lowing. Let K=K0 be a simple extension of countable �elds, let P 2 X(K), and letP0 = resK0P 2 X(K0). If P0 is in the closure of Xa(K0), then P is in the closure ofXa(K).The restriction X(K)! X(K0) is open [ELW, 4.bis], hence we may assume thatP0 is archimedian. If K=K0 is algebraic, then P is also archimedian. Otherwise K isthe �eld of rational functions in one variable t over K0. Replace (K0; P0) by its realclosure (cf. [C, Lemma 8]) to assume that K0 is real closed.By [C, Corollary 9(c)], every neighborhood U of P in X(K) contains a set ofthe form fQ 2 X(K)j a < t < b in Qg, where a; b 2 K0 and a < b in P0. As P0 isarchimedian, we can embed K0 into R. Since K0 is countable, there is c 2 RrK0 in theinterval (a; b) in R. This c is then transcendental over K0. The K0-embedding K ! Rgiven by t 7! c induces an archimedian ordering Q on K, and a < t < b in Q. ThusQ 2 U .For a subset I of a groupG let ConG(I) = S�2G I�. We say that I is a conjugacydomain, if I is closed under the conjugation, that is, I = ConG(I).Definition 1.7: Let F=E be a Galois extension of �elds with F not formally real, andlet � 2 G(F=E) be an involution. We say that � is real if its �xed �eld F (�) in F isformally real. Equivalently, � is the restriction of an involution in the absolute Galoisgroup G(E) of E. Denote the set of real involutions of G(F=E) by I(F=E).Furthermore, assume that E is a totally real extension of a �eld K, and let P 2X(K). Denote the involutions � 2 G(F=E) for which P extends to an ordering of F (�)6



by IP (F=E). For X � X(K), let IX(F=E) = SP2X IP (F=E). If F is the algebraicclosure of E, write IP (E) for IP (F=E), etc.Remark 1.8: (a) If E = K, then IP (F=E) is a conjugacy class in G(F=E). Inthe general case IP (F=E) is a conjugacy domain in G(F=E); in fact, IP (F=E) =SQ2X(E)Q�P IQ(F=E).(b) If M=N is a �nitely generated extension of �elds, then the restriction mapof orderings X(M) ! X(N) is closed and open [ELW, Theorem 4.1 and 4.bis]. Inparticular, let I be a set of involutions in G(F=E), and assume that F=K is �nitelygenerated. Then so is F (�)=K, for every involution � 2 G(F=E). Hence the set fP 0 2X(K)j IP (F=E) = Ig is closed and open in X(K).Lemma 1.9: Let (K;P ) � (K 0; P 0) be an extension of ordered �elds. Let x be tran-scendental over K 0, and put E = K(x) and E0 = K 0(x). Furthermore, let F=E andF 0=E0 be Galois extensions with F 0 = F �E. Assume that F , and hence also F 0, is notformally real. Then IP (F=E) = ConG(F=E)resF IP 0(F 0=E0)Proof: We have IP (F=E) = SQ2X(E)Q�P IQ(F=E) and IP 0(F 0=E0) = SQ02X(E0)Q0�P 0 IQ0 (F 0=E0).As E and K 0 are linearly disjoint over K, each extension Q of P to E extends to anordering Q0 of E0 that extends P 0. Thus it su�ces to showIQ(F=E) = ConG(F=E)resF IQ0(F 0=E0)for each ordering Q of E and for each extension Q0 of Q to E0.Let �0 2 IQ0(F 0=E0) and � = resF �0. There is an ordering R0 of F 0(�0) that extendsQ0. Its restriction to F (�) is an extension of Q, and hence � 2 IQ(F=E). Since IQ(F=E)is a conjugacy class in G(F=E), the assertion follows.
7



2. Moduli spaces for covers of the Riemann sphereIn this section we recall notation and results from [FV1] in the form to be used later.We also add some remarks. Let G be a �nite group, and r � 3 an integer.(2.1) Let P11 = C [f1g denote the Riemann sphere. We consider covers �: X ! P11of compact (connected) Riemann surfaces. Call two such covers �: X ! P11 and�0: X 0 ! P11 equivalent if there exists an isomorphism �: X ! X 0 with �0 � � = �.Let Aut(X=P11) denote the group of automorphisms� of X with ��� = �. We say that� is Galois if Aut(X=P11) is transitive on the �bers of �. From now on � will alwaysdenote a Galois cover. All but �nitely many points of P11 have the same number ofinverse images under �. These �nitely many exceptional points are called the branchpoints of �.(2.2) Let a1; : : : ; ar 2 P11 be the branch points of (the Galois cover) �: X ! P11,and set a = fa1; : : : ; arg. Then � restricts to an (unrami�ed) topological covering ofthe punctured sphere P11ra. Choose a base point a0 on this punctured sphere, andconsider the (topological) fundamental group � = �1(P11ra; a0), based at a0 (withthe composition law: 12 is the path 1 followed by 2).Depending on the choice of a base point p0 2 ��1(a0), we get an epimorphism�: �! Aut(X=P11) as follows. For each path  representing an element [] of �, let p1be the endpoint of the unique lift of  to Xr��1(a) with initial point p0. Then, � sends[] to the unique element � of Aut(X=P11) with �(p0) = p1.(2.3) Let Hab = Hr(G)ab be the set of equivalence classes [�] of all Galois covers�: X ! P11 with r branch points and with Aut(X=P11) �= G. Let Hinn = Hr(G)innbe the set of equivalence classes [�; h] of pairs (�; h) where �: X ! P11 is a Galoiscover with r branch points, and h: Aut(X=P11) ! G is an isomorphism. Here (�; h)and (�0: X 0 ! P11; h0) are equivalent if there is an isomorphism �: X ! X 0 with�0 � � = � and h0 � �� = h, where ��: Aut(X=P11) ! Aut(X 0=P11) is the isomorphism� 7! � � � � ��1. Let �: Hinn ! Hab be the map sending [�; h] to [�].(2.4) Think of points of Hinn as equivalence classes [a; a0; f ] of triples (a; a0; f).Here a = fa1; : : : ; arg is a set of r points of P11, and a0 2 P11ra, and f : � =8



�1(P11ra; a0) ! G is an epimorphism that does not factor through the canonicalmap �! �1((P11ra) [ faig; a0), for any i. (The latter condition means that the cor-responding cover � has exactly r branch points). Call two such triples (a; a0; f) and(~a; ~a0; ~f ) equivalent if a = ~a and there is a path ! from a0 to ~a0 in P11ra such that~f � !� = f . Here !�: �1(P11ra; a0)! �1(P11ra; ~a0) is the isomorphism  7! !�1!.(2.5) Here is the correspondence between the above pairs and triples [FV1, x1.2].Given [�; h] 2 Hinn, with �: X ! P11 as above, let a be the set of branch points of �,and choose a0 2 P11ra and p0 2 ��1(a0). Set � = �1(P11ra; a0) as above, and de�nef : �! G as f = h � �, where �: �! Aut(X=P11) is the map from (2.2). Recall that �is canonical up to composition with inner automorphisms of Aut(X=P11). Thus h andf determine each other up to inner automorphisms of G. This is compatible with theequivalence of pairs (resp., triples).(2.6) Now de�ne a topology on Hinn as follows. To specify a neighborhood N of thepoint [a; a0; f ] of Hinn, where a = fa1; : : : ; arg, choose pairwise disjoint open discsD1; : : : ;Dr around a1; : : : ; ar , with a0 62 D1 [ � � � [Dr. Then N consists of all points[~a; a0; ~f ] such that ~a has exactly one point in each Di, and ~f is the composition of thecanonical isomorphisms�1(P11r~a; a0) �= �1(P11r(D1 [ � � � [Dr); a0) �= �1(P11ra; a0)with f . These N form a basis for the topology. They are connected. The sets �(N )form a basis for a topology on Hab, such that �: Hinn ! Hab becomes an (unrami�ed)covering.(2.7) Let Ur denote the space of all subsets of cardinality r of the Riemann sphereP11.It has a natural structure of algebraic variety de�ned overQ [FV1, x1.1]; it is isomorphicto PrrD, where D, the discriminant locus, is a hypersurface in Pr. In particular, Ur isan a�ne variety. Furthermore, if K is a sub�eld of C and a = fa1; : : : ; arg 2 Ur witha1; : : : ; ar 6=1, then a is K-rational if and only if Qri=1(X �ai) 2 K[X]. As a complexmanifold, the topology of Ur has a basis consisting of sets D of the following form:Given pairwise disjoint open discs D1; : : : ;Dr on P11, let D be the set of all a 2 Ur withja \Dij = 1 for i = 1; : : : ; r. 9



(2.8) De�ne 	: Hinn ! Ur and �	: Hab ! Ur by sending [�; h] and [�], respectively,to the set of branch points of �. These maps are (unrami�ed) coverings and �	�� = 	.Through these coverings the spacesHab andHinn inherit a structure of complex manifoldfrom Ur.(2.9) Each cover �: X ! P11 as above is an algebraic morphism of algebraic varietiesover C , compatible with its analytic structure (Riemann's existence theorem). An auto-morphism � of C de�nes an automorphism �� of P11 by (x0 : x1) 7! (��1(x0) : ��1(x1)).Consider the cover �(�): �(X)! P11 obtained from �: X ! P11 through base changewith ��. Furthermore, for each � 2 Aut(X=P11) let ��(�) = �(�) 2 Aut(�(X)=P11) bethe morphism obtained by the same base change.(2.10) The spaces Hab and Hinn have a unique structure of (the set of complex pointsof) a (reducible) algebraic variety de�ned over Q [FV1, Theorem 1]. This variety struc-ture is compatible with the analytic structure of Hab and Hinn, and it makes the maps	, �	 and � into algebraic morphisms de�ned over Q. Also, each automorphism � ofC|in its natural action (x1; : : : ; xn) 7! (�(x1); : : : ; �(xn)) on the complex points of(the a�ne pieces of) a variety de�ned over Q|sends the point [�] 2 Hab to [�(�)] andthe point [�; h] 2 Hinn to [�(�); h � ��1� ].(2.11) We can describe the action of complex conjugation c on the triples of (2.4)that compose Hinn. Namely, c naturally acts on paths in P11. Thus, it induces a map�1(P11ra; a0)! �1(P11rc(a); c(a0)). Denote this map by  7! c.Lemma: If p = [a; a0; f ] 2 Hinn, then c(p) = [c(a); c(a0); cf ], where (cf)(c) = f()for each  2 �1(P11ra; a0).Proof: Write p as p = [�; h]. Then c(p) = [c(�); h � c�1� ]. It remains to show that thispoint is represented by the triple (c(a); c(a0); cf). This is a straightforward consequenceof the de�nitions (cf. [DF1, Lemma 2.1]).(2.12) Let b = fb1; : : : ; brg 2 Ur such that 0 =2 b. We can choose generators 1; : : : ; rfor the fundamental group �1(P11rb; 0) so that 1 � � � r = 1 is the only relation amongthem. 10



Indeed, we may assume that bj = �j, for j = 1; : : : ; r, where � = e 2�ir . Otherwiseapply a homeomorphism P11 ! P11 that maps 0 onto itself and bj onto �j . Let ~j bea path starting at 0, going up on a straight line to a neighborhood of bj , traversing asmall disk around bj in the counterclockwise direction, and following the same straightline back to 0. Then ~1; : : : ; ~r do not intersect except at 0. Let j be the homotopyclass of ~j. Then 1; : : : ; r generate �1(P11rb; 0) and 1 � � � r = 1.Represent a point p 2 	�1(b) by a triple (b; 0; f). The r-tuple (�1; : : : ; �r) =(f(1); : : : ; f(r)) determines the epimorphism f : �1(P11rb; 0) ! G. It has the fol-lowing properties: �1 � � � �r = 1, �1; : : : ; �r generate G, and �j 6= 1 for all j [FV1, x1.3].Let Er denote the set of such r-tuples (�1; : : : ; �r). Clearly, each (�1; : : : ; �r) 2 Er arisesin the above way from some p 2 	�1(b). Let L(G) be the collection of conjugacyclasses 6= f1g of G, and let E(r) be all r-tuples (�1; : : : ; �r) 2 Er where each C 2 L(G) isrepresented exactly r=jL(G)j times among �1; : : : ; �r.(2.13) For the rest of section 2 assume that r is a multiple of jL(G)j and suitablylarge [FV1, Appendix], and the Schur multiplier of G is generated by commutators. Weexplain the latter condition. Let R be a group of maximal order with the property thatR has a subgroupM � R0\Z(R) satisfying R=M �= G. ThenM\fg�1h�1ghj g; h 2 Rggenerates M , the Schur multiplier of G.Fix b 2 Ur and 1; : : : ; r as above. By [FV1, x1.3] there is a (unique) connectedcomponent H of Hinn containing f[b; 0; f ]j (f(1); : : : ; f(r)) 2 E(r)g. Let �H = �(H)be its image in Hab. We call H and �H Hurwitz spaces. By [FV1, Thm. 1] they areabsolutely irreducible algebraic varieties de�ned over Q. Moreover, since 	: H ! Urand �	: �H ! Ur are �nite normal covers of an a�ne variety, H and �H are a�ne [H,Exc. III.4.1].(2.14) ForA 2 Aut(G) (acting from the left onG), let �A: H ! H be the map sendingthe point [�; h] to [�;A �h]. Then �A is an automorphism of the covering �: H ! �H. Itdepends only on the class of A modulo Inn(G). In fact, � is a Galois covering, and themap A 7! �A induces an isomorphism �: Out(G) = Aut(G)=Inn(G)! Aut(H= �H) [FV1,x6.1]. Furthermore, �A is a morphism de�ned over Q [FV1, x6.2]. In the description11



of Hinn in (2.4), �A sends the point [a; a0; f ] to [a; a0; A � f ]. As �: Hinn ! Hab is anunrami�ed covering (2.8), �A has no �xed points.For the rest of this section we further assume that G has trivial center. Accord-ingly, identify G with the subgroup Inn(G) of Aut(G) (acting from the left on G).Let p 2 H and let K � L be sub�elds of C such that �(p) 2 �H(K) and L = K(p).(2.15) Write p as p = [�; h]. Then, the cover �: X ! P11 can be de�ned over L (in aunique way) such that all automorphisms of � are de�ned over L [FV1, Cor. 1]. Thus,there is a unique cover �L: XL ! P1L such that base change with the embedding L! Cgives � from �L and the automorphisms of � from the automorphisms of �L.(2.16) We recall some facts from [FV1, x6.3]. The function �eld F = L(XL) is regularover L, and the extension F=L(x) induced by � is Galois. Here, x is the identity functionon P11. The group G(F=L(x)) (acting from the left on F ) is canonically isomorphicto Aut(X=P11), via the map that sends � 2 Aut(X=P11) to the element g 7! g � ��1of G(F=L(x)). Let h0: G(F=L(x)) ! G be the composition of this isomorphism withh: Aut(X=P11)! G.(2.17) Furthermore, both L=K and F=K(x) are Galois extensions, and the central-izer of G(F=L(x)) in G(F=K(x)) is trivial. This implies that h0 extends to a uniqueembedding h1: G(F=K(x))! Aut(G). [FV1, Proposition 3] says:H := h1(G(F=K(x))) = fA 2 Aut(G)j �A(p) is conjugate to p under G(L=K)g:(2.18) Let � be an automorphism of C , and let K and K 0 be two sub�elds of C suchthat �(K) � K 0. Put p0 = �(p) and L0 = K 0(p0). Then �(L) � L0, and �(p0) 2 �H(K 0).Let F 0=L0(x) be the Galois extension associated to K 0 and the point p0 of H, and leth01: G(F 0=K 0(x))! Aut(G) be the associated embedding. Then the following holds:Let �: L(x) ! L0(x) be the extension of � (�xing x). This map extends further to�: F ! F 0 such that canonically(1) F 0 �= �(F ) 
�(L) L0 �= F 
L L0:12



The `restriction' map ��: G(F 0=K 0(x)) ! G(F=K(x)) that sends � 2 G(F 0=K 0(x))to ��1�j�(F )� is injective, and yields an isomorphism G(F 0=L0(x)) ! G(F=L(x)).Further, it makes the following diagram commutative:(2) G(F 0=K 0(x)) -�� G(F=K(x))@@@Rh01 ���	 h1Aut(G)Proof: We have p0 = [�(�); h � ��1� ] by (2.10). The natural action of � 2 Aut(C ) onfunctions de�ned over L extends � to a map from F = L(X) to F 0 = L(�(X)). Then (1)follows from the fact that F is regular over L, and [F 0: L0(x)] = [F : L(x)] (= deg(�)).The proof of (2) is straightforward from the de�nitions.(2.19) In the situation of (2.18) and Lemma 1.9 we haveh01(IP 0 (F 0=E0)) � h1(IP (F=E)) and ConHh01(IP 0 (F 0=E0)) = h1(IP (F=E));where H is the image of h1 in Aut(G). If the `restriction' map ��: G(F 0=K 0(x)) !G(F=K(x)) is an isomorphism, then h01(IP 0 (F 0=E0)) = h1(IP (F=E)).Proof: Without loss of generality assume that the map �: K ! K 0 is an inclusion of�elds. Hence �� = resF . In the commutative diagram (2) we may replace Aut(G) byH, so that h1 is an isomorphism. The assertions follow from the commutativity of thatdiagram.
13



3. Group-theoretic lemmasFix the following notation. For a group G and an integer r � 0 put _G = Grf1g. LetL(G) be the collection of nontrivial conjugacy classes of G, and put l = jL(G)j. Foran r-tuple ��� = (�1; : : : ; �r) 2 _Gr and C 2 L(G), let nC(���) be the number of indices,1 � i � r, with �i 2 C. Then PC2L(G) nC(���) = r.Lemma 3.1: Let G be a �nite group. Every su�ciently large multiple r of 4l satis�esthe following conditions. Let � 2 Aut(G) be of order 2, and let I be a set of involutionsin (G�jh�i)rG such that � 2 I. Let e = 8 � jGj! if jIj � 2, and e = 0 if jIj = 1. Putm = r � e. Then there are sequences ��� 2 _Ge, ��� 2 _Gm with the following properties:(a1) ��i = �1 � � � �i�1��1i ��1i�1 � � ���11 , for each 1 � i � e;(a2) � �j = ��1m+1�j for each 1 � j �m;(b) I = f�; ��1; ��1�2; : : : ; ��1�2 � � ��eg;(c) (���; ��� ) 2 E(r)(G), that is, h�1; : : : ; �e; �1; : : : ; �mi = G, �1 � � � �e�1 � � � �m = 1, andnC(���; ���) = r=l for each C 2 L(G).Proof: It su�ces to consider only one � 2 Aut(G) of order 2, and only one set I ofinvolutions.Part A: Separation of ��� from ��� . De�ne an equivalence relation on L(G) where theclass [C] of C is fC; C�1; C�; C��g. Part B constructs ��� 2 _Ge satisfying (a1), (b), and twofurther conditions(c1) �1 � � ��e = 1; and(d1) for each [C] there is �[C] � 0 such that nC(���) = 4�[C].Observe that e =PC2L(G) nC(���) = 4PC2L(G) �[C].Furthermore, for each [C] let �[C] be a positive integer, and putm = 4PC2L(G) �[C].Part C shows that there is an m-tuple ��� 2 _Gm satisfying (a2), and the following twoconditions:(c2) h�1; : : : ; �mi = G and �1 � � � �m = 1;and(d2) nC(��� ) = 4�[C], for each C. 14



Now, let n = r4l , and assume that n > �[C] for each [C]. Do the last step with�[C] = n� �[C]. Thene+m = 4 XC2L(G)�[C] + 4 XC2L(G)�[C] = 4 XC2L(G)n = 4ln = r:Clearly, (c1), (c2), (d1), and (d2) imply (c). In fact, nC(���; ��� ) = 4n = rl for eachC 2 L(G).Part B: Construction of ���. If I = f�g, let e = 0 and ��� = (). Otherwise put��� = (�1�2; �2�3; : : : ; �e�1);where �1 = �; �2; : : : ; �e 2 I, not necessarily distinct, but �1 6= �2 6= � � � 6= �e 6= �1. Then��� satis�es (a1) and (c1). Furthermore, if I = f�1; : : : ; �eg, then ��� also satis�es (b). Toconstruct such �1; : : : ; �e, let n0 = e2jIrf�gj . Observe that n0 is an integer divisible by4, because jIrf�gj < jGj. Let �i = � for odd i, and choose �2; �4; : : : ; �e so that eachelement of Irf�g occurs in this sequence exactly n0 times.Let g 2 G, and let ng(���) be the number of indices 1 � i � e for which �i = g. Fromthe above, 4jng(���). Moreover, ��2i�1 = �(��2i)� = ��12i�1 = �2i, for each 1 � i � e=2.Hence, ng(���) = ng�1 (���) = ng� (���) = ng��(���). This yields (d1).Part C: Construction of ��� . For each [C] let �[C] be a positive integer. Choose k andg = (g1; : : : ; gk) 2 _Gk such that nC(g) = �[C], for each C. In particular, g contains anentry from each C 2 L(G). A proper subgroup of G misses some conjugacy classes of G[FJ, Lemma 12.4]. Therefore, G = hg1; : : : ; gki. Furthermore, k = PC2L(G) �[C] = m4 .Put ��� = (g1; g�11 ; : : : ; gk; g�1k ; g�k; g��k ; : : : ; g�1; g��1 ):This choice satis�es (a2) and (c2), and, for each C,nC(��� ) = nC(g) + nC�1(g) + nC�(g) + nC��(g) = 4�[C]:Lemma 3.2: Let 1! G! H ��!C ! 1 be an exact sequence of �nite groups, and let15



I be a set of involutions in HrG. There exists a commutative diagram of �nite groups(1) 1 - ? - ? -~� C - 1? ? wwwwww1 - G - H -� C - 1with exact rows and surjective vertical maps such that the Schur multiplier of ? isgenerated by commutators and C?(?) = 1. Finally, every involution in I lifts to at leasttwo involutions in ?.Proof: Choose a presentation 1 ! R ! F ! H ! 1, where F is the free productof a free group of �nite rank with �nitely many groups of order 2, say h�1i; : : : ; h�ei,such that f�1; : : : ; �eg maps onto I. The inverse image F1 of G in F contains noconjugates of �1; : : : ; �e, hence by the Kurosh Subgroup Theorem [M, Theorem VII.5.1and Proposition VII.5.3] it is a free group of �nite rank. Let N = [F1;R] be the groupgenerated by commutators [f; r] with f 2 F1; r 2 R. Set F = F=N , F1 = F1=N , andR = R=N . Then 1! R! F1 ! G! 1 is a central extension.By the general theory of the Schur multiplier [Hu, Kap.5, x23], R is the directproduct of the Schur multiplierM(G) = R\(F1)0 and a free abelian group A. Let A0 bethe intersection of all the F -conjugates of A. Then A0/F . Since (R : A) = jM(G)j <1,also (F : A0) < 1. Set ? = F=A0, ? = F1=A0, and S = R=A0, to get diagram (1).The image eI of f�1; : : : ; �eg in ? maps onto I. Notice that S is the direct product ofS \ (?)0 �=M(G) and A=A0. As in the proof of [FV3, Lemma 2] the Schur multiplier of? is generated by commutators.Replace G, H, and I by ?, ?, and eI, to assume that the Schur multiplier of G isgenerated by commutators.Let T be a non-abelian �nite simple group with trivial Schur multiplier. Forexample, take T = SL2(8) [Hu, Satz 25.7]. Form the regular wreath product ? of Hwith T (e.g., [Hu, Def. 15.6]). Thus ? = T j�jH, with j = jHj, and H acts on T jby permuting the factors in its regular representation. Let ? be T j�jG � ?. Clearly,C?(T j) = 1, and hence C?(?) = 1. If � 2 I and � 2 T j , then ��1�� is an involution in ?that maps to �. This proves the last assertion of the lemma.16



Since M(T ) = 1, every central extension of T splits. This implies that everyrepresentation group of ? has a normal subgroup isomorphic to T j such that the quotientby this subgroup is a representation group of G. Therefore, M(?) �=M(G) is generatedby commutators.Lemma 3.3: Let �: H ! H be an epimorphism of �nite groups, and let I1; : : : ; Im � Hand I1; : : : ; Im � H be sets of involutions such that �(Ij ) = Ij . Then there exists a�nite group eH, a surjection �: eH ! H, and sets of involutions eI1; : : : ; eIm � eH such that�(eIj) = Ij for every j, and every automorphism �� of H that satis�es ��(Ij) = Ij for allj, lifts to an automorphism ~� of eH (that is, (� � �) � ~� = �� � (� � �) ) that satis�es~�(eIj) = eIj for all j. Moreover, if the Ij are conjugacy domains in H, then the eIj canbe taken conjugacy domains in eH.Proof: Let K be a set of cardinality Ker(�). Let eH be the free product of cyclic groupseH = (Y��h2Hk2K hx�h;ki) � (Y���2Ik2K h~���;k;1i) � (Y���2Ik2K h~���;k;2i) � � � � � (Y���2Ik2K h~���;k;mi);where hx�h;ki �= Zand h~���;k;ji �= Z=2Z, and let eIj = f~���;k;j j �� 2 Ij ; k 2 Kg. (Of course,eH is not yet �nite.) De�ne a surjection �: eH ! H by mapping fx�h;kj k 2 Kg ontofh 2 Hj �(h) = �hg and f~���;k;jj �� 2 Ijg onto f� 2 Ij j �(�) = ��g. Then �(eIj) = Ij . Everyautomorphism �� of H that satis�es ��(Ij) = Ij for all j, lifts to an automorphism ~� ofeH de�ned by x�h;k 7! x��(�h);k and ~���;k;j 7! ~���(��);k;j. Clearly ~�(eIj) = eIj . If Ij and Ij areconjugacy domains, we can replace eIj by the conjugacy domain that it generates in eH .Thus eH satis�es the requirements of the lemma, except that it is not �nite. Tomake eH �nite, replace it by its quotient eH=N , and � by the induced quotient map, whereN is a characteristic subgroup of �nite index in eH, contained in Ker(�). For example,take N to be the intersection of all normal subgroupsM of eH with eH=M �= H.They are connected. 17



4. Points over ordered �eldsLet G be a �nite group with a trivial center such that the Schur multiplier of G isgenerated by commutators. Identify G with the subgroup Inn(G) of Aut(G). Fix a suf-�ciently large integer r that satis�es (2.13) and the assertions of Lemma 3.1. Associatewith G and r the moduli spaces Hinn and Hab (2.3).Our aim is to choose Hurwitz spaces H and �H and some points q = [b; 0; f0] onH (2.4). First, let e = 8 � jGj! and m = r � e2 ;so that r = e + 2m, and de�ne the base point b = fb1; : : : ; brg in Ur byb1 = 1; : : : ; be = e; and be+j = �3 + (2m+ 1� 2j)p�1; for j = e; : : : ; 2m:Next, �x generators of �1(P1rb; 0). For each 1 � j � r let Dj be the disc ofdiameter 12 around bj (so that D1; : : : ;Dr are disjoint). De�ne loops 1; : : : ; r in thecomplex plane with the initial and �nal point 0 in the following way:(1) 1 = �1; 2 = ��11 �2; : : : ; e = ��1e�1�e, where �j is the circle in the counter-clockwise direction with diameter [0; bj + 12 ] on the real axis;(2) for e < j � r the path j goes on a straight line from 0 towards bj , then travelson a circle of diameter 12 < � < 1 in the counterclockwise direction around bj , andreturns on a straight line to 0. 18
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e+1e+m�1e+me+m+1e+m+2r
b1 b2 b3 b4 be

be+1be+m�1be+mbe+m+1be+m+2brThese loops are homotopic to the loops constructed in (2.12). Therefore theyrepresent generators of the fundamental group �1(P1rSDj ; 0), subject only to therelation 1 � � � r = 1. If a is an r-tuple with ja \ Dj j = 1 for j = 1; : : : ; r, then1; : : : ; r also represent generators of � = �1(P1ra; 0). Indeed, �1(P1rSDj ; 0) �= �via the inclusionP1rSDj ! P1ra. Furthermore, for such a, we may use 1; : : : ; r alsoto represent free generators of ~� = �1(P1r(a [ f1g); 0). The canonical epimorphism��: ~� ! � induced by the inclusion �: P1r(a [ f1g) ! P1ra maps the class of j in~� onto the class of j in �.Using b and 1; : : : ; r, de�ne the Hurwitz spaces H and �H and the maps �, 	,and �	 as in (2.13).Finally, assume that G has non-inner automorphisms of order 2, and let � besuch an automorphism. Let G�jh�i be the subgroup of Aut(G) generated by G and �.In particular, the centralizer of G in G�jh�i is trivial. Let I � G�jh�irG be a set of19



involutions, with � 2 I and jIj � 2. Lemma 3.1 (with m replaced by 2m) produces anr-tuple (�1; : : : ; �r) 2 E(r)(G) (see (2.12)) with the following properties:(3) ��j = �1 � � ��j�1��1j ��1j�1 � � ���11 , for each 1 � j � e;(4) ��e+j = ��1e+(2m+1�j) for j = 1; : : : ; 2m;(5) I = f�; ��1; ��1�2; : : : ; ��1�2 � � ��eg.Fix (for each � and each I) such an r-tuple (�1; : : : ; �r). As �1 � � ��r = 1, there is aunique epimorphism f0: �1(P1rb; 0)! G with f0(j) = �j , for j = 1; : : : ; r.Definition 4.1: The point q = [b; 0; f0] 2 H is called the basic point associatedwith G, �, and I. The neighborhoodN = fp = [a; 0; f ] 2 Hinj a \Dj = 1; f(j ) = f0(j) = �j ; for j = 1; : : : ; rgof q in H is called the basic neighborhood of q.Remark 4.2: (a) A priori, N is a neighborhood of q in Hinn (see (2.6)). Yet, N isconnected. Hence, N � H.(b) The point b is Q-rational (2.7). Hence q is algebraic over Q.(c) Let p 2 N , and let a = fa1; : : : ; arg = 	(p). Then without loss of generalityaj 2 Dj , for j = 1; : : : ; r. If a is R-rational (i.e., (X � a1) � � � (X � ar) 2 R[X]),then a1 < � � � < ae are real, and ae+(2m+1�j) is the complex conjugate of ae+j ,for j = 1; : : : ;m.(d) Let c be the complex conjugation. As H is an a�ne variety, we may embed it ina �xed a�ne space A n . Then the complex topology on it is given by the normjj � jjc de�ned in De�nition 1.4. There are only �nitely many choices of � and I.Hence there are only �nitely many basic points associated with G. Thus there isa positive rational number � (that depends only on G) such that if q is a basicpoint, p 2 H, and jjp� qjjc2 < �2, then p is in the basic neighborhood N of q.Lemma 4.3: Let p 2 N such that 	(p) is R-rational. Then ��(p) = c(p), where c iscomplex conjugation.Proof: Write p as [a; 0; f ]. Then a = 	(p). We have ��(p) = [a; 0; � � f ] by (2.14) andc(p) = [c(a); 0; cf ] = [a; 0; cf ] by (2.11). It remains to show that cf = � � f .20



Observe that c�j = ��1j , for j = 1; : : : ; e. Recursively:(6) c1 = �11 ; c2 = 1�12 �11 ; : : : ; ce = 1 � � � e�1�1e �1e�1 � � � �11 :Furthermore,(7) ce+j = �1e+(2m+1�j); for j = 1; : : : ; 2m:Recall that (cf)(c) = f(). Combine (6) and (7) with (3) and (4) to get cf(j ) =f(cj) = ��j = (� � f)(j ), for each 1 � j � r.Proposition 4.4: Let (K;P ) be an ordered �eld, and let � be an involution in G(K)inducing P on K. Assume that eK � C . Let � 2 G(Q), and let p 2 H( eK) such that(8) jjp� �(q)jj�2 < �2 in eK(�);and �p = �(p) isK-rational. Let F=K(x) be the Galois extension and h1: G(F=K(x)) !Aut(G) the embedding corresponding to p over K (2.17). Put L = K(p) and let H bethe image of h1. The following hold:(a) ��(p) = �(p);(b) P does not extend to L; in particular, P does not extend to F ;(c) G�jh�i � H, and therefore I � H;(d) h1(IP (F=K(x))) = ConH(I).Proof: By (2.14), ��(p) 6= p. Therefore (a) implies �(p) 6= p. Hence L 6� eK(�), andthis implies (b). Furthermore, the criterion of (2.17) implies that � 2 H. Since G � H,G�jh�i � H. So it su�ces to prove (a) and (d).Part I: Reduction to K with archimedian orderings dense in X(K). Let K0 be a�nitely generated sub�eld ofK, containing the �nitely generated sub�eldQ(�p) ofK. LetP0 be the restriction of P toK0. This ordering is induced from the restriction �0 2 G(K0)of �. Let F0=K0(x) be the Galois extension and (h1)0: G(F0=K0(x)) ! Aut(G) theembedding corresponding to p over K0. We may assume that F = F0 �K (2.18). IfK0 is su�ciently large, then the restriction map resF0 : G(F=K(x)) ! G(F0=K0(x)) is21



an isomorphism. If we can show that the assertions hold for K0, P0, �0, (h1)0, then, by(2.19) and since �0(p) = �(p), they also hold for K, P , �, h1. By Lemma 1.6(a), the setof archimedian orderings on K0 is dense in X(K0). So we may assume that K enjoysthis property.Part II: Reduction to P archimedian. By Remark 1.8, if P 0 is an (archimedian)ordering of K su�ciently near to P , then IP (F=K(x)) = IP 0 (F=K(x)). We may assumethat P 0 is induced by an involution �0 in G(K), which is so near to � thatjjp� �(q)jj�2 = jjp� �(q)jj�02 and �(p) = �0(p):Thus we may replace P by P 0 and � by �0.Part III: Reduction to K = R and � = 1. Assume that P is archimedian. Extend��1 to an automorphism � of C , and let �0 = ����1. Then �( eK(�)) = (�( eK))(�0) is areal closure of (�(K); �(P )). Hence it is also archimedian. Thus we may assume that(�( eK))(�0) � R. Hence ����1 = �0 = res�(eK)c, where c is complex conjugation on C .Since q is algebraic over Q, we have ��(q) = q. Therefore an application of � to(8) yields(80) jj�(p)� qjjc2 < �2 in R:As �p is K-rational, �(�p) = �p. Thus c(�(�p)) = �(�p), and hence �(�p) is R-rational. Also,since �� is de�ned over Q, it commutes with �. Therefore (a) is equivalent to(a0) ��(�(p)) = c(�(p)).Finally, let F 0=R(x) be the Galois extension and h01: G(F 0=R(x)) ! Aut(G) the em-bedding corresponding to �(p) over R, and let H 0 be the image of h01. Then by (2.19),condition (d) follows from(d0) h01(IP 0 (F 0=R(x))) = ConH0(I),where P 0 is the unique ordering of R.Thus, replacing K by R and p by �(p), we may assume that K = R and � = 1.Part IV: K = R and � = 1. By Remark 4.2(d) we have p 2 N . Write p as [a; 0; f ].Then a = 	(p) = �	(�p) is R-rational. So Lemma 4.3 gives assertion (a).22



Proof of (d): By (c) { that follows from (a) { we have G�jh�i � H. Check:jG�jh�ij = 2 � jGj = 2 � [F : C (x)] = [F : R(x)] = jHj;so H = G�jh�i.Write p in the form p = [�; h], with �: X ! P1 (2.1). Fix a point y 2 ��1(0).Let Y0 = P1r(a[ f1g), and let  : bY0 ! Y0 be the universal unrami�ed covering of Y0.Fix a point ŷ 2  �1(0). Put Y = ��1(Y0) � X. As �: Y ! Y0 is unrami�ed, thereexists a unique covering ': bY0 ! Y such that � � ' =  and '(ŷ) = y. Let bF be the�eld of algebraic meromorphic functions on bY0 (in the sense of [KN, p. 199]). Then the�eld extension bF=C (x) induced by  is the maximal extension of C (x) unrami�ed inY0. Let F = C (X) = C (Y ). We shall identify G(F=C (x)) with G via h0, andG(F=R(x)) with H via h1 (see (2.16) and (2.17)), so that h: Aut(X=P1) ! G isthe canonical isomorphism Aut(X=P1) ! G(F=C (x)) that sends � 2 Aut(X=P1) tothe element f 7! f � ��1 of G(F=C (x)). Similarly, let bG = G( bF=C (x)), and letĥ: Aut(bY0=Y0)! bG be the canonical map that sends �̂ to the element f̂ 7! f̂ � �̂�1.Let �: �1(P1ra; 0) ! Aut(X=P1) be the epimorphism associated to the pointy 2 ��1(0) (see (2.2)). Similarly de�ne �̂: �1(Y0; 0) ! Aut(bY0=Y0), associated to thepoint ŷ 2  �1(0). Then there is a commutative diagram�1(Y0; 0) -�̂ Aut(bY0=Y0) -ĥ bG?�� ?'� ?resF�1(P1ra; 0) -� Aut(X=P1) -h Gwhere �� is induced from the inclusion �: Y0 ! P1ra.Put �̂j = ĥ � �̂(j), for j = 1; : : : ; r. Then(9) resF �̂j = h � � � ��(j) = f(j ) = �j ; for j = 1; : : : ; r:Let n = (r + e)=2 = e +m. By Remark 4.2(c) we may assume a1 < � � � < ae arereal, and ae+(2m+1�j) is the complex conjugate of ae+j, for j = 1; : : : ;m. Observe that23



bF is the maximal extension of R(x) unrami�ed outside the primes of R(x) induced bya1; : : : ; ar ;1. In this situation the proof of [KN, Satz 2] shows that there is �̂ 2 bH =G( bF=R(x)) such that �̂; �̂1; : : : ; �̂n form a system of generators for bH with the de�ningrelations(10) �̂2 = 1 and �̂�̂j = �̂�11 � � � �̂�1j�1�̂�1j �̂j�1 � � � �̂1; for 1 � j � e:Further, �̂�̂e+j = �̂�1e+(2m+1�j) for j = 1; : : : ; 2m. By (3) and (4) this implies that resF �̂and � act on G in the same way. Since H is a subgroup of Aut(G), this implies thatresF �̂ = �.Further, each involution of bH is conjugate to one of �̂; �̂1�̂; �̂2�̂1�̂; : : : ; �̂e � � � �̂2�̂1�̂.Indeed, by [HJ2, Lemma 4.2 (Part E)] it follows that bH is the free pro�nite product ofthe free pro�nite group h�̂e+1; : : : ; �̂ni of rank n� e =m with e+ 1 groupsh�̂i; h�̂1�̂i; h�̂2�̂1�̂i; : : : ; h�̂e � � � �̂2�̂1�̂ithat are of order two. Thus by [HR, Theorem A0] the elements of �nite order in bH arethe conjugates of the elements of these e + 1 subgroups.By Lemma 4.5 below, all involutions of bH are real. Using (9) and (5) we �nallyget I(F=R(x)) = resF I( bF=R(x)) = resFConbH(f�̂; �̂1�̂; : : : ; �̂e � � � �̂1�̂g) == ConH(f�; �1�; : : : ; �e � � ��1�g) = ConH(I):Lemma 4.5: Let S be a �nite set of �nite prime divisors of the �eld R(x). LetR(x)S be the maximal extension of R(x) unrami�ed outside S [ f1g, and set GS =G(R(x)S=R(x)). Then all involutions of GS are real.Proof: By [KN, Satz 3] the absolute Galois group G of R(x) possesses a system ofgeneratorsf�; �p j p a �nite prime of R(x)=Rg with the de�ning pro�nite relations�2 = 1 and � �p = � Yp 0<p ��1p 0 � ��1p � Yp 0<p ��1p 0 ��1 for all real p:24



HereQp 0<p ��1p 0 is the unique accumulation point of the set of products ��1p 1 � � � ��1p r 2 Gfor real primes p1; : : : ;pr with p1 < � � � < pr < p. Furthermore, [KN] constructs thissystem of generators in such a way that for every �nite set S of �nite primes and every�nite prime p =2 S the natural restriction map G ! GS maps �p onto 1 [KN, p. 207].Let p1 < � � � < pe be the real, and pe+1; : : : ;pn the complex primes of S. Let �̂j bethe image of �p j , for j = 1; : : : ; n, and let �̂ be the image of � in GS . Then �̂; �̂1; : : : ; �̂ngenerate GS and satisfy (10). These are in fact de�ning relations for GS by [KN, Satz2]. As in the last part of the proof of Proposition 4.4, each involution of GS is conjugateto some �̂j � � � �̂1�̂, where 0 � j � e. Thus it su�ces to show that each �̂j � � � �̂1�̂ lifts toan involution of G. To this end put�0 = � and �j = � Yp 0�p j ��1p 0 ��1� = �p j� Yp 0<p j ��1p 0 ��1�for 1 � j � e. Then �j maps onto the involution �̂j � � � �̂1�̂ in GS . In fact, given another�nite set S0 of �nite primes of R(x) that contains S, the same argument shows that �jrestricts to an involution in GS0 . As G = lim S0 GS0 , we get that �j is an involution in G.
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5. The regular real embedding problem over a PRC �eldLet K be a PRC �eld of characteristic 0, and let � > 0 be a rational number. Weproceed similarly as in the case of PAC �elds [FV2, Section 1]. We take some extra careat places.Let X1; : : : ;Xm be a partition of X(K) into disjoint clopen subsets. Fix a closedsystem X of representatives of the conjugacy classes of involutions in G(K); thenf eK(�)j � 2 Xg is a closed subset of real closures of K, one for each ordering of K(see Section 1). Put Xj = X \ IXj( eK=K). Then X1; : : : ;Xm is a partition of X intodisjoint clopen subsets.Lemma 5.1: Let �: H ! �H be an unrami�ed Galois cover of absolutely irreducible,non-singular varieties de�ned over K. Assume that all the automorphisms of H= �H arede�ned over K. Let �: G(K)! Aut(H= �H) be a homomorphism, and let L be the �xed�eld of ker(�). Assume that L is not formally real. Let q1; : : : ;qm 2 H( eK) satisfy(1) �qj = �(�)(qj ), for each � 2 Xj , for j = 1; : : : ;m.Then there exists p 2 H( eK) such that(2) �p = �(�)(p) for each � 2 G(K);(3) jjp� qj jj2� � �2 in eK(�), for each � 2 Xj, for j = 1; : : : ;m;(4) the point �(p) of �H is K-rational and K(p) = L.Proof: First notice that (4) follows from (2). Indeed, an automorphism of the unrami�edcover H ! �H has no �xed points. If (2) holds, then for each � 2 G(K) we have�(�(p)) = �(�(p)) = �(�(�)(p)) = �(p) and�(p) = p () �(�)(p) = p () �(�) = 1 () � 2 G(L):The rest is a straightforward modi�cation of the proof of [FV2, Lemma 1]. Apply Weil'sdescent [W, Theorem 3] to the maps f�;� = �(� ) � �(�)�1 to get a variety H0 de�nedover K, and a linear isomorphism f : H0 ! H de�ned over L with these properties.The map � � f : H0 ! �H is de�ned over K and �f = �(�) � f , for each � 2 G(K). Inparticular, suppose that q0 2 H0( eK) and q = f(q0) 2 H( eK). Then, for every � 2 G(K)�(�)(q) = (�(�) � f)(q0) = (�f)(q0) = �(f(��1q0)):26



Conclude that(5) �q = �(�)(q) () q0 = �q0 () q0 2 H0( eK(�)):Use (5) and equation (3) of Section 1 to translate (1){(3) via f from H to H0. Letq0j = f�1(qj) 2 H0( eK), for j = 1; : : : ;m. Then(10) q0j 2 H0( eK(�)), for each � 2 Xj , for j = 1; : : : ;m.We must �nd p0 2 H0( eK) such that(20) p0 2 H0( eK(�)) for each � 2 G(K), that is, p0 2 H0(K);(30) jjp0 � q0j jj2� � �2=jjf jj2� in eK(�), for each � 2 Xj , for j = 1; : : : ;mSuppose that � 2 Xj for some 1 � j � m. As jjf jj2� is algebraic over K, there isaj 2 K such that a2j > jjf jj2� in eK(�). Replace X1; : : : ;Xm by a �ner partition to assumethat this is true for each � 2 Xj . Thus (30) will follow from a stronger statement:(300) jjp0 � q0j jj2� � �2=a2j in eK(�), for each � 2 Xj , for j = 1; : : : ;m.By Proposition 1.2 there is p0 2 H0(K) such that (300) holds.THE VALUE OF THEOREM 5.2: Let K be a PRC �eld with just two orderings,and L = K(p�1). Let H be a direct product of groups of order 2, with an epimorphism�: H ! G(L=K). Then we can realize H over K(x) such that � coincides with therestriction to L(x), and: all involutions in H n ker(�) are real. Previously you wouldonly get that at least one involution in H n ker(�) is real. Using tricks (replace L by alarger �eld, replaceH by a cover of it), you could achieve that at least two involutions inH nker(�) are real. This is the improvement, and this is all the improvement. However,suppose you want to use it to say something about G(K), where K has some kind of(real) hilbertian property. Thus you want to specialize the above realization of H overK(x) to a realization of H over K. Presumably you want to keep the real involutionsstill real (otherwise why bother to make them real in the �rst place?). But G(K) hasonly two conjugacy classes of real involutions, so you can do it only if there are onlytwo involutions in H n ker(�). So the improvement is not used.Theorem 5.2: Let L=K be a �nite Galois extension with L not formally real and let�: H ! G(L=K) be an epimorphism of �nite groups. For each 1 � j � m let Ij � H27



be a conjugacy domain of involutions such that �(Ij ) = IXj(L=K). Then there exists aregular extension F of L, Galois over K(x), and an isomorphism h1: G(F=K(x)) ! Hthat maps IXj (F=K(x)) onto Ij. In addition, the following diagram commutes.G(F=K(x)) -h1 H@@@RresL ���	 �G(L=K)In particular, h1 maps I(F=K(x)) onto Sj Ij .Proof: By Skolem-L�owenheim Principle [FJ, Proposition 6.4] we may assume that K �C . We divide the proof into �ve parts.Part 1: Weakening of the commutativity. Let G = Ker(�). Instead of the com-mutativity of the diagram it su�ces to show that h1 maps G(F=L(x)) onto G. Indeed,apply Lemma 3.3. This gives an epimorphism of �nite groups �: eH ! H and conju-gacy domains of involutions eI1; : : : ; eIm � eH such that �(eIj) = Ij . In addition, everyautomorphism of G(L=K) that preserves the IXj (L=K) lifts (under the map � � �) toan automorphism of eH that preserves the eIj . Let eG = Ker(� � �).Assume that we can �nd a regular extension bF of L, Galois over K(x), and anisomorphism ĥ1: G( bF=K(x))! bH that maps G( bF=L(x)) onto bG and the IXj ( bF=K(x))onto the bIj . In particular, Ker(� ��� ĥ1) = G( bF=L(x)) = Ker(resL). Hence there existsan automorphism � of G(L=K) such that � � � � � � ĥ1 = resL and � preserves theIXj (L=K). We can lift � to an automorphism �̂ of bH that preserves the bIj . Thus, bycomposing h1 with �̂ we may assume that (� � �) � ĥ1 = resL.Now let F be the �xed �eld of Ker(�) in bF . Then h1 induces an isomorphismh1: G(F=K(x)) ! H with the required properties.Part 2: Reduction to commutators generate M(G), H � Aut(G), and jIj j � 2. AsL is not formally real, 1 =2 IXj (L=K) = �(Ij), for each 1 � j � m. Thus Ij � HrG.Let eH and eG be as in Lemma 3.2, and let eIj be the inverse image of Ij in the setof involutions of eH . Suppose that there is bF regular over L, such that bF=K(x) isGalois, and an isomorphism ~h: G( bF=K(x)) ! eH that maps G( bF=L(x)) onto eG and28



IXj ( bF=K(x)) onto eIj . As in part 1, the sub�eld of bF corresponding to the kernel of themap eH ! H (sending eG to G) is the desired F .Thus, assume that commutators generate M(G), CH(G) = 1, and jIjj � 2 foreach j. In particular, the conjugation action of H on G induces a monomorphismH ! Aut(G). IdentifyH with its image in Aut(G) (and G with Inn(G)). Then G(L=K)is a subgroup of Out(G) = Aut(G)=Inn(G), and �: H ! G(L=K) is the restriction ofthe quotient map �: Aut(G)! Out(G) to H.Part 3: Construction. Let � : H ! �H be the cover of Hurwitz spaces, associatedwith G, de�ned in Section 4. Let �: G(K) ! Aut(H= �H) be the composition of therestriction G(K)! G(L=K) � Out(G) with the isomorphism �: Out(G) ! Aut(H= �H)(2.14). Furthermore, let � be as in Remark 4.2(d).Let M be the �eld generated over Q by p�1 and the conjugates of basic pointsassociated with G, �, and I as in De�nition 4.1, for all possible � and I. This is a �niteextension of Q (Remark 4.2(b)). Re�ne the partition X1; : : : ;Xm of X(K), and hencealso the corresponding partition X1; : : : ;Xm of X , so that for each 1 � j �m there areunique ��j 2 G(L=K) and ��j 2 G(M=Q) such that resLXj = f��jg and resMXj = f��jg.Fix 1 � j � m. Put I 0j = f� 2 Ij j �(�) = ��jg and choose �j 2 I 0j . ThenI 0j � G�jh�ji. Let q be the basic point associated with G, �j , and I 0j . Then Q(q) �M .As the real involutions in G(M=Q) are conjugate, there is �j 2 G(M=Q) such that��1j ��j�j = resMc, where c is complex conjugation. Set qj = �j(q). By Lemma 4.3,��(q) = c(q). Therefore, ��(qj ) = ���j(q)�j��(q) = (�jc��1j )(qj ) = ��j(qj ).Let � 2 Xj . Then ��j = �(�(�j )) = �(��j) = (��resL)(�) = �(�). So �(qj) = ��j(qj ) =��j (qj) = �(�)(qj ). Thus q1; : : : ;qm satisfy (1). Therefore there exists p 2 H( eK) thatsatis�es (2)-(4). Let F=K(x) be the Galois extension and h1: G(F=K(x)) ! Aut(G)the embedding associated with p over K (2.17).Part 4: The image of h1. Let � 2 H. There is � 2 G(K) such that resL� = �(� ).By (2), �(p) = �(resL�)(p) = �� (p). Hence by the criterion of (2.17), � is in the imageof h1. Thus H � im(h1). ButjHj = jGj � jG(L=K)j = [F : L(x)] � [L : K] = [F : K(x)] = jim(h1)j;29



and hence H = im(h1).Part 5: h1(IXj (F=K(x))) = Ij . Let 1 � j � m and let P 2 Xj . By Proposition4.4(d), h1(IP (F=K(x))) = ConH(I 0j). As ConG(K)(Xj) = IXj( eK=K), ConG(L=K)(��j) =IXj (L=K). Conclude that ConH(I 0j) = Ij . Thus h1(IP (F=K(x))) = Ij .Theorem 5.2 says more about the structure of the absolute Galois group of K(x).For instance, every �nite group is realizable over K(x). This is not new [DF2, Theorem5.7]. Still, the precise information about real involutions gives more.Theorem 5.3: Let K be a formally real PRC �eld. Let G be a �nite group, and letG0 be a normal subgroup of G generated by involutions. There is a Galois extensionN=K(x) with Galois group G such that the �xed �eld of G0 in N is the maximal totallyreal extension of K(x) in N .Proof: Let h�i be a group of order 2. Put H = G � h�i and H0 = G0 � h�i, and let�: H ! G(K(p�1)=K) be the epimorphism with kernel G. The set I0 of involutionsin G0 generates G0. Therefore I1 = (I0 [ f1g) � f�g generates H0. It is a conjugacydomain in H. Theorem 5.2 (with m = 1) gives a Galois extension F of E = K(x) thatcontains p�1 such that G(F=E) = H, G(F=E(p�1)) = G, and I1 is the set of realinvolutions in G(F=E). Let N be the �xed �eld of � and N 0 the �xed �eld of H0 = hI1i.The last condition means that N 0 is the maximal totally real extension of E in F , and,thererefore, also in N . Clearly G(N=E) �= G and N 0 is the �xed �eld of G0 in N .
30



6. Real Hilbertian �eldsAs in the preceding sections, all �elds are of characteristic 0.Let S=R be a Galois cover of rings [FJ, De�nition 5.4], and let F=E be the corre-sponding Galois extension of the quotient �elds. Thus R is an integrally closed domainand there is z 2 S integral over R such that S = R[z] and the discriminant dE(z) of zover E is a unit of R. We call such z a primitive element for S=R. Assume that S=Ris real [HL, De�nition 4.2], that is, R is a regular ring and F is not formally real.Lemma 6.1: The integral closure S0 of R in each intermediate extension F 0 of F=E isalso a regular ring.Proof: Observe that S=S0 is also a Galois cover. By [R, p. 75] it su�ces to show thatS0=R is �etale. i.e., at and unrami�ed. We have S = �d�1i=0Rzi, where d = [F : E], andso S=R is faithfully at. Similarly S=S0 is faithfully at. By the descent property [Ma,(4.B)], S0=R is (faithfully) at.To show that S0=R is unrami�ed, let q be a prime of S, and let p = q\ S0 andm = q \ R. Replace R, S0, and S by their localizations at these primes to assumethat they are local rings. Then S=S0 and S0=R are still faithfully at. As S=S0 isunrami�ed, the �eld extension (S=q)=(R=m) is separable and �nite. Hence so is itssubextension (S0=p)=(R=m). As S=R and S=S0 are unrami�ed, mS = q and pS = q.Thus (mS0)S \ S0 = pS \ S0. But S=S0 is faithfully at, hence [Ma, (4.C)], mS0 = p.Let M be a �eld. Every homomorphism ': R!M extends to a homomorphism : S ! fM , and  induces a group homomorphism  �: G(M)! G(F=E), given by(1)  � �(�)(x)� = �(x) for x 2 S:[FJ, Lemma 5.5]. If  0 is another extension of ', then  0� and  � di�er by an innerautomorphism of G(F=E) [L, Corollary 1 on p. 247]. In particular, for � 2 G(M) anda conjugacy domain I � G(F=E) we have  0�(�) 2 I if and only if  �(�) 2 I. Thisallows us to abuse the notation and write '�(�) 2 I instead of  �(�) 2 I. (Cf. also[HL, Remark 4.1].) 31



Remark 6.2: (a) Let S0=R0 be another real Galois cover of rings, with L=K thecorresponding extension of the quotient �elds. Assume that R is �nitely generated overR0, the �eld K is algebraically closed in E, and L is the algebraic closure of K in F .Furthermore, R0 �M and ': R!M is an R0-homomorphism.We may choose the extension  of ' to be an S0-homomorphism. It then followsfrom (1) that the composition of  � with resL: G(F=E) ! G(L=K) is the restrictionmap resL: G(M) ! G(L=K).(b) For each P 2 X(K) we have '�(IP (M)) � IP (F=E). In particular, '�(I(M)) �I(F=E).Indeed, let � 2 IP (M), and let  : S ! fM be an extension of '. It follows from (1)that  maps the integral closure S0 of R in F ( �(�)) into fM (�). The latter �eld is realclosed. Thus, by Knebusch' Theorem [HL, Proposition 1.2], P extends to an orderingon F ( �(�)).For the rest of this section and for an ambient �eldK consider the following setup:(2) Let x be transcendental over K, let E = K(x) and R = K[x; h(x)�1]. Let S be areal Galois cover of R and let F=E be the corresponding extension of the quotient�elds. Let X1; : : : ;Xm be a partition of X(K) into disjoint clopen subsets, andfor each 1 � j � m let Qj 2 X(E) such that resKQj 2 Xj .In this setup, each a 2 K with h(a) 6= 0 de�nes the homomorphism 'a: R ! K byx 7! a.Lemma 6.3: In (2) let Q be an ordering on E and P its restriction to K. Let K be thereal closure of (K;P ). There exist branch points x1 < x2 in K of the extension F=Ewith no other K branch points between them, having the following property. For eacha 2 K in the interval (x1; x2), '�a(IP (K)) � IQ(F=E)Proof: Let � 2 IQ(F=E). Choose a primitive element y for F (�)=E, integral over K[x],and let f� = irr(y;E) 2 K[x; Y ]. Let S0 be the integral closure of R in F (�).The sentence (9X;Y )[f�(X;Y ) = 0 ^ @f@Y (X;Y ) 6= 0] holds in F (�), and thereforealso in the real closure of (E;Q). By Tarski's principle it is valid in K. Thus there is�a 2 K such that f�(�a; Y ) has a simple root in K. This certainly remains true if �a is32



replaced by a in the neighborhood U of �a in K determined by nearest branch points ofF=E in K.Let � be the generator of G(K), and let S0 be the integral closure of R in F (�).Let a 2 U \ K. Then 'a: R ! K � K extends to a homomorphism  : S0 ! K. Itfollows that its extension  : S ! eK satis�es  �(�) = �. As IP (K) and IQ(F=E) are theconjugacy classes of � and � in the respective groups, we have '�a(IP (K)) � IQ(F=E).Definition 6.4: A formally real �eld K is real Hilbertian, if in each setup (2)the following holds. Assume that G(F=E) = hSmj=1 IQj (F=E)i. Then there existsa K-homomorphism ': R ! K such that '�(G(K)) = G(F=E) and '�(IXj (K)) =IQj (F=E), for each 1 � j � m. In particular, '�(I(K)) = I(F=E).Corollary 6.5: If K is a number �eld, then K is real Hilbertian.Proof: Consider (2). For each j put Pj = resKQj . Since jX(K)j < 1, by re�ningX1; : : : ;Xm we may assume that Xj = fPjg. As K is dense in each of its real closures,Lemma 6.3 gives a nonempty open subset Uj of K (with respect to Pj) such that'�a(IPj (K)) � IQj (F=E) for each a 2 Uj . Consider the Hilbert setHK = fa 2 Kj h(a) 6= 0 and '�a(G(K)) = G(F=E)g[FJ, Lemma 12.12]. By [G, Lemma 3.4], HK is dense in K in the product topologyinduced by P1; : : : ; Pn, that is, there is a 2 HK \U1 \ � � �\Um. Observe that IQj (F=E)is a conjugacy class in G(F=E). The surjectivity of '�a implies that '�a(IPj (K)) =IQj (F=E).Proposition 6.6: Let K = Qtr. Then K is real Hilbertian.Proof: Assume (2). Let z be a primitive element for the cover S=R. Let K 0 � K be anumber �eld such that h(x) 2 K 0[x]. Put R0 = K 0[x; h(x)�1] and S0 = R0[z], and letE0 and F 0 be their quotient �elds. For each j let Q0j be the restriction of Qj to E0, andlet X 0j be the restriction of Xj to K 0. Take K 0 su�ciently large to assume that(i) S0=R0 is a real Galois cover; 33



(ii) [F 0 : E0] = [F : E], and therefore K and F 0 are linearly disjoint over K 0; and(iii) the sets X 01; : : : ;X 0m are distinct.Then X 01; : : : ;X 0m is a partition of X(K 0) and G(F 0=E0) �= G(F=E).By Corollary 6.4 there exists a 2 K 0 such that an extension  0: S0 ! eK of'a: R0 ! K 0 satis�es  0�(IX0j (K)) = IQ0j (F 0=E0). Extend 'a to the K-homomorphism'a: R ! K. As K and S0 are linearly disjoint over K 0, it is possible to extend this'a and  0 to the same K-homomorphism  : S ! eK. By (1), the following diagramcommutes. G(F=E) � � G(K) � I(K)?resF 0 ? ?G(F 0=E0) � 0� G(K 0) � I(K 0)From (ii), the left vertical map is an isomorphism. As K = Qtr, I(K) = I(Q) = I(K 0).Thus, the right vertical inclusion is surjective and maps IXj (K) onto IX0j(K 0). Diagramchasing yields  �(IXj (K)) = IQj (F=E). But G(F=E) = hSmj=1 IQj (F=E)i, and hence �(G(K)) = G(F=E).
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7. The absolute Galois group of the �eld of totally real algebraic numbersIn this section we consider the following category. An involutory structure is a pair(G; IG) = G for short, where G is a pro�nite group and IG is a closed set of involutionsin G. A morphism of involutory structures ':G! H is a continuous homomorphismof groups ': G! H such that '(IG) � IH . We say that ':G! H is an epimorphismif '(G) = H and '(IG) = IH.Example 7.1: (a) Let L=K be a Galois extension with L not formally real. ThenG(L=K) = (G(L=K); I(L=K)) is an involutory structure. Let E be an extensionof K, and let F=E be a Galois extension such that L � F . Then the restrictionresL: G(F=E)! G(L=K) is a morphism. Moreover, suppose that E=K is regular andtotally real: every ordering on K extends to E. Then resL is an epimorphism (cf. [HJ1,Lemma 3.5]).(b) Let S=R be a real Galois cover with F=E the corresponding Galois extensionof �elds. Let M be a �eld and let ': R ! M be a homomorphism. Extend ' to ahomomorphism  : S ! fM . Then the group homomorphism  �: G(M)! G(F=E) is amorphism of involutory structures  �: G(M)! G(F=E) (Remark 6.2(b)).A �nite image of G is a �nite involutory structure H for which there ex-ists an epimorphism ': G ! H. Clearly, up to an isomorphism, it is of the form(G=N; f�N=N j � 2 IGg), where N is an open normal subgroup of G not meeting IG.Let ImG be the class of all �nite images of G.A �nite embedding problem for G consists of an epimorphism �: H ! A of�nite involutory structures, together with an epimorphism ': G ! A. A solution isan epimorphism  : G ! H such that � �  = '. We say that G has the embeddingproperty if every �nite embedding problem (�: H ! A; ': G ! A) for G, in whichH is a �nite image of G, has a solution.Example 7.2: Let D be the free pro�nite productQ� x2X!h�xi of groups of order 2 overX! (Remark 1.5), and let I0D = f�xj x 2 X!g. A �nite involutory structure (A; IA) isa �nite image of (D; I0D) if and only if A is generated by IA. Furthermore, (D; I0D) hasthe embedding property. 35



With D and I0D as above, put D = (D; ID), where ID is the conjugacy domainConD(I0D) of D generated by I0D.Lemma 7.3: (a) ID is the set of all involutions in D, and D is of rank @0.(b) A �nite involutory structure A is in ImD if and only if IA 6= ; is a conjugacydomain in A and A = hIAi.(c) D has the embedding property.Proof of (a): See [HJ2, Corollary 3.2 and Lemma 2.2]Proof of (b): Immediate from Example 7.2.Proof of (c): Let �: H! A, ':D! A be a �nite embedding problem forD. Then IA �A and IH � H are conjugacy domains. Let I0A = '(I0D) and let I0H = f� 2 IHj �(�) 2I0Ag. As ConD(I0D) = ID, we have ConA(I0A) = IA; it follows that ConH(I0H) = IH .By Example 7.2, I0A generates A. But H 2 ImD implies that IH generates H.We have �(I0H) = I0A and ConH(I0H) = IH . By an analogue of Gasch�utz' lemma [HL,Lemma 3.3 with n = 0], I0H generates H.By Example 7.2 there is an epimorphism  : D ! H such that � �  = ' and (I0D) = I0H . Clearly  (ID) = IH.Theorem 7.4: Let K be a real Hilbertian PRC �eld. Assume that K has no propertotally real algebraic extensions and X(K) has no isolated points. Put G = (G; IG),where G is the absolute Galois group of K and IG is the conjugacy domain of allinvolutions in G. Then(a) A �nite embedding problem (�: H! A; ':G! A) for G has a solution, if(*) IH 6= ; is a conjugacy domain in H and H = hIHi.(b) A �nite involutory structure H is in ImG if and only if (*) holds.(c) G has the embedding property.Proof: The �xed �eld of IG in G is totally real over K. Thus G = hIGi.Proof of (a): As 1 62 IA = '(IG), Ker(')\ IG = ;. Therefore the �xed �eld L of Ker(')is not formally real. Without loss of generality A = G(L=K) and ' is the restrictionmap. 36



Theorem 5.2 (with m = 1, X1 = X(K), and I1 = IH) identi�es �: H ! A withthe restriction map resL: G(F=E) ! G(L=K), where E is a simple transcendentalextension of K, and F is a Galois extension of E that contains L and is regular over L.In particular, G(F=E) = hI(F=E)i. Choose Q1; : : : ; Qm 2 X(E) with I(F=E) =Smj=1 IQj (F=E). We may assume that their restrictions P1; : : : ; Pm 2 X(K) to K aredistinct. Indeed, each Pj is not isolated in X(K), and hence there is P 2 X(K) distinctfrom P1; : : : ; Pm and arbitrarily close to Pj . By Remark 1.8(b) we may assume thatIP (F=E) = IPj (F=E). As IP (F=E) = SQ2X(E)Q�P IQ(F=E), there is Q 2 X(E) above Psuch that IQ(F=E) = IQj (F=E). We replace Qj by Q.LetX1; : : : ;Xm be a partition ofX(K) into disjoint clopen sets such that Pj 2 Xj .This gives the setup (2) of Section 6. As K is real Hilbertian, there is a 2 K andan epimorphism '�a: G(K) ! G(F=E). By Remark 6.2(a), '�a is a solution to ourembedding problem.Proof of (b): Condition (*) is necessary, since IG 6= ; is a conjugacy domain in G andG = hIGi. Conversely, assume (*). Let A = hai = G(K(p�1)=K) and A = (A; fag),where a is the generator of A, and let ':G! A be the restriction map. We constructbelow a �nite involutory structure Ĥ that satis�es (*), with epimorphisms Ĥ! H and�: Ĥ! A. By (a) there is an epimorphism  : G! Ĥ, and hence H 2 ImG.If there is an epimorphism�: H! A, let Ĥ =H. If not, let Ĥ = (H�A; IH�fag).Both A and H are quotients of Ĥ. Observe that (*) holds for Ĥ. Otherwise IH � faggenerates a proper subgroup � of H � A such that the projection H � A ! H maps� onto H = hIHi. Thus � = f(h; �(h))j h 2 Hg, where �: H ! A is an epimorphism.As IH � fag � �, we have �(IH) = a. Thus � induces an epimorphism H ! A, acontradiction.Proof of (c): Clear from (a) and (b).If, in addition to the assumptions of the theorem, K is countable, then G is ofrank at most @0. Thus the involutory structures G and D are very similar, by Lemma7.3 and Theorem 7.4.In fact, we have the following straightforward modi�cation of [FJ, Lemma 24.1]:37



Lemma 7.5: Let G andH be involutory structures with embedding property, such thatG and H are of rank at most @0. If ImG = ImH, then G �=H.Theorem 7.6: Let K be a countable real Hilbertian PRC �eld. Assume that K hasno proper totally real algebraic extensions and X(K) has no isolated points. ThenG(K) �= D, and hence G(K) �= D.The �eld Qtr of totally real algebraic numbers is PRC by [P]. (We remark thatalthough Pop [P] states this result, he only gives the proof for an analog. Therefore inall our results about Qtr the reference [P] should be replaced by a subsequent version,where this omission will be remedied.) It is clearly countable. By Proposition 6.6 it isreal Hilbertian, and by Remark 1.5, X(Qtr) has no isolated points. Therefore:Corollary 7.7: The absolute Galois group of the �eld Qtr of totally real algebraicnumbers is the free pro�nite product D of groups of order 2 over the universal Booleanspace X! = f0; 1g@0 of weight @0.8. Real Frobenius �eldsLet S=R be a real Galois ring cover, and let F=E be the corresponding �eld extension.Let K be a sub�eld of R and L the algebraic closure of K in F .We say [HL, De�nition 4.2] that(a) S=R is regular over K, if the extension E=K is regular. In that case L=K is a�nite Galois extension.(b) S=R is �nitely generated over K, if R and S are �nitely generated rings overK.(c) F=E is amply real over K if E=K is a regular extension, the algebraic closureL of K in F is not formally real, and the extension F (�)=L(�) is totally real forevery real involution � 2 G(F=E).Definition 8.1: A �eld M is said to be real Frobenius if it satis�es the followingcondition: Let S=R be a real Galois ring cover, �nitely generated and regular overM , with F=E the corresponding �eld extension amply real over M . Let N be thealgebraic closure of M in F . Let H � G(F=E) such that H 2 ImG(M) and resNH =38



G(N=M). Then there exists an M-homomorphism  : S ! fM such that  (R) = Mand  �(G(M)) = H.Proposition 8.2: Let M be a PRC �eld. If G(M) has the embedding property, thenM is real Frobenius.Proof: (Cf. [HL, Proposition 5.6].) Let S=R, F=E, N , and H be as in De�nition 8.1.The embedding property gives an epimorphism of involutory structures h:G(M)! Hwith resN � h = resN . Put L = fMF . ThenG(L=E) = G(fME=E)�G(NE=E) G(F=E) = G(M) �G(N=M) G(F=E):Let D be the �xed �eld of � = f(�; h(�))j � 2 G(M)g in L. Then D=M is regular,DF = DfM = L, and D\F = E [FJ, p. 354]. We show that D=M is totally real. Let Pbe an ordering onM . There is � 2 I(M) such that P is the restriction of P� from fM (�).Then h(�) 2 IH � I(F=E). Observe that fM (�) and F (h(�)) are linearly disjoint overN(�) and L(�; h(�)) = D(�)F (h(�)) contains D. By assumption there is an ordering Qof F (h(�)) such that resN(�)Q = resN(�)P�. Therefore P� and Q extend to an orderingof L(�; h(�)) [J, p. 241]. The restriction of this ordering to D extends P .The integral closure U of R in D is �nitely generated over M [FJ, p. 354] andhence U is the coordinate ring of an absolutely irreducible variety V de�ned over M .Since M is PRC, there exists an M-homomorphism  0: U ! M . Extend  0 to anfM -epimorphism fMU ! fM , and let  : S ! fM be its restriction to S. Then  (R) =M ,and, by [FHJ, Remark on p. 9], we may arrange it so that  �: G(M) ! G(F=E)coincides with h. Therefore  �(G(M)) =H.By Corollary 7.7 and Lemma 7.3(c), G(Qtr) has the embedding property. By [P],Qtr is PRC. Therefore:Corollary 8.3: Qtr is real Frobenius. 39



9. Real Galois Strati�cationThis section gives a quanti�er elimination procedure for the theory of real Frobenius�elds in the language below. The procedure is similar to that in [FJ, Chapter 25] andalmost the same as in [HL]. Therefore we only comment on the di�erences.A Galois ring/set cover C=A over a �eld K [FJ, p. 403] is real if A is nonsin-gular, char(K) = 0, and K(C) is not formally real. Put G(C=A) = G(K(C)=K(A))(Example 7.1(a)) and let Sub[C=A] be the set of involutory substructures of G(C=A).LetK �M be a �eld. Each a 2 A(M) determines aK-homomorphism': K[A]!M , and therefore (see Section 6) a homomorphism '�: G(M) ! G(C=A) (unique up toan inner automorphism of G(C=A)). Example 7.1(b) says that '�(G(M) � G(C=A).Omitting the reference to C and M , de�ne the Artin symbol Ar(A;a) as the setf'�(G(M)� j � 2 G(C=A)g. This is a conjugacy class in Sub[C=A]. For properties ofthe Artin symbol see [HL, Section 6].For n � 0 let �: A n+1 ! A n be the projection on the �rst n coordinates. LetA � A n+1 and B � A n be two non-singular basic sets [FJ, p. 244] such that �(A) = B.Then K[B] � K[A]. Let x and (x; y) be generic points of B and A, respectively. ThenK(A) = K(B)(y). Furthermore, let C=A and D=B be real Galois covers such thatK(D) contains the algebraic closure of K(B) in K(C).Definition 9.1 ([HL, De�nition 7.1]): Let M be a �eld extension of K. An M-specialization of the pair (C=A;D=B) is aK-homomorphism' from C into an over�eldof M with these properties: '(K[B]) �M ; and if y is transcendental over K(B), then'(y) is transcendental over M .For such a specialization put y0 = '(y), N = M ['(D)], R = M ['(K[A])], E =M(y0) (the quotient �eld of R), S = M ['(C)], and F = E['(C)] (the quotient �eld ofS). Then ' induces an embedding '�: G(F=E)! G(C=A).Assume that dimA = dimB + 1. The pair (C=A;D=B) is specialization com-patible if the following properties hold for every M and each M-specialization ' asabove.(i) K(D) is the algebraic closure of K(B) in K(C).40



and for every M and each M-specialization ' as above(ii) [K(C) : K(D)(y)] = [F : N(y0)].(iii) The cover K(C)=K(A) is amply real over K(B).(iv) For each involution � 2 G(F=E) with '�(�) real the extension F (�)=N(�) is totallyreal.Assume that dimA = dimB. The pair (C=A;D=B) is said to be specializationcompatible if K[A] is integral over K[B] and C = D.Lemma 9.2: Assume that dimA = dimB + 1 and that (C=A;D=B) is specializationcompatible. Let Con(A) be a conjugacy domain in Sub[C=A], and let S be a a set of(isomorphism types of) involutory structures. De�neCon(B) = � resK(D)(S \ Con(A)) if dimA = dimB + 1;fG�j G 2 Con(A); � 2 G(C=B)g if dimA = dimB.LetM be a real Frobenius �eld that containsK, and let b 2 B(M). Assume ImG(M)\Sub[C=A] = S. Then Ar(B;b) � Con(B) if and only if there is a 2 A(M) such that�(a) = b and Ar(A;a) � Con(A).Proof: See [HL, Lemma 7.2] in case dimA = dimB + 1 and [HL, Lemma 7.3] in casedimA = dimB. (Replace everywhere the e-structures of [HL] by our involutory struc-tures.)Lemma 9.3 (= [HL, Lemma 7.5]): Let K1 be a �nite extension of K(D). There areZariski open subsets A0 � A, B0 � B and a specialization compatible pair of real Galoiscovers (C 0=A0 ;D0=B0) such that K(C) � K(C 0) and K1 � K(D0).From now on we can proceed exactly as in [FJ, Chapter 25]. Replace Galois coverswith real Galois covers, and conjugacy classes of subgroups of G(Ci=Ai) with conjugacyclasses of involutory substructures of G(Ci=Ai) (cf. [HL, Sections 8 and 9]).This includes the de�nition of Galois strati�cation [FJ, p. 410], and Galois formulas[FJ, p. 410]. Thus, a real Galois strati�cationA = hA n ; Ci=Ai;Con(Ai)j i 2 Ii;41



is a partition of the a�ne space A n over K as a �nite disjoint union A n = Si2I Ai ofnonsingular K-basic sets, each of them equipped with a real Galois cover Ci=Ai and aconjugacy domain Con(Ai) in Sub[Ci=Ai;P0]. The corresponding real Galois formulais a formal expression Ar(A;X) � Con(A) with the following interpretation. For be anextension M of K and a 2Mn write M j= Ar(A;a) � Con(A) if Ar(Ai;a) � Con(Ai)for the unique i such that a 2 Ai(M).If K is a presented �eld with elimination theory [FJ, De�nition 17.9], we get ane�ective elimination of quanti�ers for the theory of real Frobenius �elds in this language.Moreover, every formula in the language L(K) of rings with parameters from Kis equivalent to a real Galois formula (cf. [FJ, Remark 25.8]): The corresponding realGalois strati�cation may satisfy Ci = K[Ai][p�1], for each i 2 I. Thus we get:Proposition 9.4 (cf. [HL, Theorem 9.2(a)): Let K be a presented �eld with elimi-nation theory, and let # be a sentence in L(K). We can e�ectively �nd a �nite Galoisextension L of K with p�1 2 L, a �nite family H � Sub[L=K] of (isomorphism typesof) �nite involutory structures, and for each S � H a conjugacy domain Con(S) inSub[L=K] contained in S with the following property. For every real Frobenius �eldM that contains K and satis�es ImG(M) \ H = S we have M j= # if and only ifresLG(M) 2 Con(S).In particular, Proposition 9.4 holds for K = Q.
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10. Model theoretic results.Let K 0 be a given �nite extension of Q, say as K 0 = Q[X]=(f), where f 2 Z[X] is agiven monic irreducible polynomial. Then K 0 is formally real (resp. K 0 � Qtr) if andonly if f has a root in R (resp. f splits over R). We can e�ectively decide whether thiscondition holds [L, p. 276].In particular, given a �nite Galois extension L of Q, we can e�ectively �nd the�eld L \Qtr and the involutory structure G(L=L \Qtr).Let L(K) denote the elementary language of �elds with parameters from K.Theorem 10.1: The elementary theory of Qtr is e�ectively decidable.Proof: Apply Proposition 9.4. The �eld Qtr is real Frobenius (Corollary 8.3) andImG(Qtr) = ImD (Corollary 7.7) is the family of �nite involutory structuresH in whichIH 6= ; is a conjugacy domain in H and H = hIHi (Lemma 7.3(b)). Furthermore, ifL=Q is a �nite Galois extension andK 0 = L\Qtr, then Qtr=K 0 is totally real, and henceresK0X(Qtr) = X(K 0). Therefore resLG(Qtr) = (G(L=K 0); I(L=K 0)) =G(L=K 0).Let # be a sentence in L(Q). Proposition 9.4 e�ectively gives a �nite Galoisextension L of Q with p�1 2 L, a �nite family H of (isomorphism types of) �niteinvolutory structures, and, forS = fH 2 Hj IH 6= ; is a conjugacy domain in H and H = hIHig;a conjugacy domain Con = Con(S) in Sub[L=Q] contained in S. For these, Qtr j= # ifand only if G(L=L\Qtr) 2 Con. This condition is checkable, by the remarks precedingthis corollary.Lemma 10.2: There is a formula �(X1; : : : ;Xn) 2 L(Q) with the following property.LetM be a PRC �eld, let a = (a1; : : : ; an) 2Mn, and put f = Zn+a1Zn�1+ � � �+an 2M [Z]. Then M j= �(a) if and only if(�) f has a root � in fM such that M(�) is formally real.Proof: Condition (�) is equivalent to this: There is an ordering P on M such thatf has a root in the real closure of (M;P ). By Tarski's principle [HL, Proposition43



1.4] this statement is equivalent to a �nite disjunction of statements of the form:There is an ordering P on M such that Vri=1 fi(a) = 0 ^ Vmj=1 gj(a) 2 P , wheref1; : : : ; fr ; g1; : : : ; gm 2Z[X1; : : : ;Xn] do not depend on M and a.Put g0 = 1, and let � be the set of �nite sums of squares in M . By [P1, Corol-lary 1.6], Pmi;j=0 gi(a)gj(a)� is the intersection of all orderings on M that containg1(a); : : : ; gm(a). Therefore the last statement is equivalent to: Vri=1 fi(a) = 0 ^ �1 =2Pmi;j=0 gi(a)gj(a)�. As � is the set of sums of two squares in the PRC �eld M [P2,Proposition 1.5], a formula in L(Q) expresses this statement.Proposition 10.3: Every real Galois formula � over a �eldK is equivalent to a formulain L(K), modulo the theory of PRC �elds M containing K.Proof: It su�ces to express in L(K) the statement Ar(A;X) 2 Con, with C=A a realGalois ring/set cover over K and Con = fH�j � 2 G(C=A)g, where H = (H; IH ) isa involutory substructure of G(C=A). Let E = K(A) and F = K(C) be the quotient�elds. For each G � G(C=A) = G(F=E) let F (G) be the �xed �eld of G in F , and let zGbe a primitive element for F (G)=E. ReplacingA by an open subsetA0 (that is, replacingthe given Galois strati�cation by its re�nement) we may assume that K[A][zG]=K[A] isa ring cover [FJ, De�nition 5.4] and zG is a primitive element for it.Write K[A] as K[x; g(x)�1], where x is a generic point of A over K. Let fG bea polynomial over K such that fG(x; g(x)�1; Z) = irr(zG; E). Furthermore, for every� 2 H let h� be a polynomial over K such that h�(x; g(x)�1; zH ; Z 0) = irr(zh�i; F (H)).Then M j= Ar(A;a) 2 Con means:(a) a 2 A, that is, there is a specialization x! a such that g(a) 6= 0; and(b) x! a extends to a homomorphism  : C ! fM such that  �(G(M)) = H and(c)  �(I(M)) = IH , that is, for every involution � 2 H we have � 2 IH if and only if(c�) � 2  �(I(M)).Assume (a). Then (b) means the conjunction of the following two statements:(b1) fH(a; g(a)�1; Z) has a root c 2M ;(b2) if G < H, then fG(a; g(a)�1; Z) has no root in M .(Cf. [FJ, Remark 25.14].) Furthermore, assume (a) and (b), and let � 2 H be an44



involution. Condition (c�) says(c0�) h�(a; g(a)�1; c; Z 0) has a root � 2 fM such that M(�) is formally real. Thereforethe assertion follows by Lemma 10.2.Remark 10.4: The following collection of conditions on a �eld M is equivalent to aprimitive recursive set of elementary sentences in L(Q):(1) M is PRC.(2) M \ ~Q = Qtr.(3) ImG(M) = fHj H = hIHig.(4) G(M) has the embedding property.(5) M=Qtr is totally real.Proof: For (1) see [P2, Theorem 4.1].Condition (2) says, for each irreducible polynomial f 2 Q[X], that f has a rootin M if an only if f has a root in Qtr, that is, f splits over the real closure of Q. Thelatter clause is expressible in L(Q) either by Tarski's principle [HL, Proposition 1.4] orby Sturm's Theorem [L, Chapter XI, x2].Conditions (3) and (4) easily follow from Lemma 10.2.Assume (1) and (2). By Remark 1.8(b), the image X of the restriction mapX(M) ! X(Qtr) is closed in X(Qtr). Thus (5) is equivalent to `X is dense in X(Qtr)'.Now, X(Qtr) has a basis consisting of sets fP 2 X(Qtr)j P extends to Qtr(�)g, where� runs through the elements of ~Q. (Indeed, by Remark 1.8(b) these sets are clopen. By[P1, Corollary 9.2], Qtr is SAP, that is, the setsH(c) = fP 2 X(Qtr)j c 2 Pg = fP 2 X(Qtr)j P extends to Qtr(pc)gform a basis for the Harrison topology on X(Qtr), as c varies on Qtr.) It su�ces toconsider only those � 2 ~Q with Q(�) formally real, otherwise the corresponding set oforderings is empty. Thus (5) is equivalent to `for every �nite formally real extensionQ(�) of Q the �eld M(�) is formally real'. Now use Lemma 10.2.Corollary 10.5: A �eld M is a model of Th(Qtr) if and only if it satis�es conditions(1){(5). 45



Proof: The conditions hold forM = Qtr. Hence by Remark 10.4 they also hold for eachmodel M of Th(Qtr). Conversely, assume (1){(5). Then M is a real Frobenius �eld(Proposition 8.3), and ImG(M) = ImG(Qtr), by (3). Furthermore, (2) and (5) implythat res~QG(M) = G(Qtr). Therefore by Proposition 9.4 (with K = Q) the �elds Mand Qtr satisfy the same sentences in L(Q).
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