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INTRODUCTION

Let K be an infinite field finitely generated over its prime field. Denote by
G(K) =7 (K/K) the absolute Galois group of K. The set G(K)*, for e a
positive integer, is equipped with the normalized Haar measure, y=yu,,
induced from the measure of G(K) that assigns to G(L) the value 1/[L: K], if
L/K is a finite separable extension. If ¢ = (¢,,..., 0,) € G(K)*, then we denote
by K(o) the fixed field of 0,,..,0, in K (=the algebraic closure of K).
Denote also by 27(K) the first-order language of fields enriched with
constant symbols for the elements of K. For every sentence # of 2(K) we
define 4,(6) = {0 € G(K)*|K(0) = 6}. Further we denote by T,(K) the theory
of all sentences # of “’(K) with u(4,0))= 1. In |13, Theorem 7.3| the
following is shown.

A. A field F that contains K is a model of 7,(K) if and only if it satisfies
the following conditions:
(a) F is PAC, ie., every non-empty absolutely irreducible variety V'
defined over F has an F-rational point;
(b) F is perfect (a perfect PAC field is also called an Ax-field); and
(c) F is efree, ie., G(F)=F,=the free profinite group on e
generators.
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In [11] the theory

T,K)=U () T.K)

ep= 1 e=ey

is considered and in [11, Theorem 7.1] the following result appears:

B. A field F that contains K is a model of 7 (K) if and only if:
(a) Fis an Ax-field;

(b) Fis w-free, ie., every embedding problem of finite groups over F
is solvable.

In addition the following theorem is proved in f13] and [11].

C. (a) If @ is a sentence of «”(K), then u(4,(0)) is a rational number;
(b) there exists an e,=ey(f) such that € T (K) if and only if
0 T,(K) for every e >e,; and
(c) the theories 7,(K) and T, (K) are decidable, and the functions
u(4,(0)) and e,(6) are computable.

The method of proof of Theorems A, B and C is model-theoretic and
extensive use is made of ultra-products. The process of proof of Theorem
C(c) associates to a given sentence 6 of Z(K) a boolean combination @, of
sentences of the form (3x)[/(x) = 0|, with /'€ K|x]. Then, 6, is equivalent to
# modulo T,(K), and one can check directly whether or not §, € T,(K). The
transition from & to 6, occurs, however, by virtue of Gédel’s completeness
theorem and its production therefore compels one to search for a proof of
0 — 6, among the sequence of sentences of ¥”(K). In the context of actually
deciding the truth of a sentence of #(K) the sequence of formal proofs,
formed from a system of axioms of T,K), is an abstract concept. In
technical terms, this format suffices to show that T,(K)is a recursive theory:
some process terminates with a yes or no answer to the truth of the original
sentence. In practical terms, however, no sentence could be said to yield to
the process, since, in particular, a priori there is no bound, even for the
simplest sentences, on the number of steps of computation before the process
terminates.

The above Theorems and their proofs are modelled after 4x’ treatment |2}
of the theory of finite fields. As for T,(K) and T (K), Ax proves that the
theory 7" of sentences of &(Z) true in I, for all primes p is recursive. Fried
and Sacerclote [5] improve this result and prove that 7 is even primitive
recursive. Lndeed, Fried and Sacerdote use explicit-geometric constructions in
order to eliminate quantifiers from a given sentence given in a prenex
normal form. This procedure does not take place within the language ¢ (K).
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It is necessary to consider more general sentences than those belonging to
<(K). These generalized sentences are called Galois sentences, and the
whole procedure is called elimination of quantifiers through Galois
stratification.

In the present work we use the idea of Galois stratification in order to
obtain a primitive recursive decision procedure for the theories T,(K) and
T, (K). Moreover, the method itself has been considerably simplified and the
results apply to a more general situation.

We consider therefore a perfect field M that contains the given field K.
Denote by # = % (M) the family of all finite groups that can be realized over
M as Galois groups and assume that % is primitive recursive. By a ring-
cover, S/R, over K we mean an integrally closed integral domain R which is
finitely generated over K and an integral extension S = R[z] of R such that
the discriminant of z over R is a unit of R. If the quotient field F of .S is
Galois over the quotient field E of R, then we say that S/R is a Galois-ring-
cover. In this case we denote Z(S/R)=Z(F/E). The field M is now
assumed to be a Frobenius field, i.e., M is assumed to satisfy the following
condition:

If S/R is a Galois-ring-cover over M such that E is regular over M and
Z(S/R) belongs to #, then there exists an M-homomorphism ¢ of S onto an
extension N of M such that o(R)=M and [F: E|=[N:M|.

A basic set over K is a set of the form A =V — V(g), where V is a K-
irreducible algebraic set in an affine space A" and g€ K[X,,..,X,] is a
polynomial that does not vanish on V. If x = (x,,..., x,) is a generic point of
V over K, then K[4]= K[x, g(x)~'] is said to be the coordinate ring of A4.
The set 4 is said to be K-normal if K|A] is integrally closed. If this is the
case and C is an additional K-normal basic set such that K|C|/K[4] is a
ring-cover, then C/4 is called a set-cover. Let A(M) be the M-rational points
of A. Suppose that C/4 is a Galois set-cover and let a € A(M). Then the
specialization x — a can be extended to a K-homomorphism ¢ of K[C] into
M. The field N=M - ¢K[C] is a Galois extension of M and there is an
isomorphism ¢* of % (N/M) onto a subgroup D,,(¢) of Z(C/A4), called the
decomposition group of ¢ with respect to M. The conjugacy class of
subgroups Ar, ,(a)={D,(p)*|T€ Z(C/A)} is called the Artin symbol of a
with respect to M.

A Galois stratification of A" (with respect to K and ) is a system

o = (A", C;— A;, Con(d)) e,

where A" =(J,., 4, is a disjoint union of K-normal basic sets 4;, and for
each i € I, C;— A, are Galois set-covers equipped with a family of subgroups
Con(d,) of ¥(C,/4;) belonging to # and closed under conjugation. We very
much allow the possibility that Con(4;) might be empty for one or more
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values of i. If a € A"(M), then we write Ar,, y(a) < Con(s?) if for the
unique { € 7 with a € 4, we have Ar,, ala) € Con(4,). The main result of
this work is the following

THEOREM D. Let n>0 be an integer and denote by m: AT AT the
projection map on the first n coordinates. Suppose that <7 is a given Galois
Stratification of A" with respect to K and #. Then we can explicitly find a
Galois stratification % of A" (that does not depend on M) such that for each
be A" (M) we have: Ar ,,/(b) < Con(.2) if and only if there exists an
a € A" (M) such that n(a) = b and Ar . (@) < Con(w).

Once we have this Theorem we may consider a Galois stratification .« of
A" and n quantifiers Oy, @, and define the expression 0,,

(QIXI) I(QIIXII)[Ar(X] e Xn) = COH(OX/)I

as a Galois sentence. We write M = 0,if Qa, €M, Q,a,€ M....,Q,a, € M,
we have Ar, . (a,,.., a,) < Con(+/). It is not difficult to show that every
sentence @ of ¥’(K) written in a prenex normal form with n quantifiers is
equivalent (over M) to a Galois sentence f,. The Main Theorem enables us
to explicitly construct a Galois sentence , without quantifiers which is
equivalent to 8,. Thus we have the following

CoROLLARY E. Given a sentence ¢ of ¥(K) we can explicitly find a
Jinite Galois extension L of K and a Jamily Con of subgroups of % (L/K)
belonging to % which is closed under conjugation such that M= ¢ if and
only if ¥(L/L M M) € Con.

We deduce a decision procedure from Corollary E.

THEOREM F.  If the Jamily % is primitive recursive, then the theory of
sentences af (K) that are true in every Frobenius field N that contains K
and satisfies % (N) =% is primitive recursive.

In Section 1 of this work it is proved that if N is a PAC field and G(N) is
a free profinite group or a free pro-p-group, for a prime p, then N is a
Frobenius field. As a result of Corollary E we obtain ultra-product-free proof
of Theorems A, B and C, where now the terms “decidable” and
“computable” are to be understood in the sense of primitive recursive.

In addition, if we denote by T(K,p) (resp., T, (K,p)) the theory of
sentences in &(K) that are true in all Ax-fields N containing K such that
G(N) is the free pro-p-group with e (resp. N,) generators we have:

CorOLLARY G. The theories T(K,p) and T, (K,p) are primitive
recursive.
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1. FrROBENIUS FIELDS

Let K be a field, let R< S be integral domains which are finitely
generated over K, and let E'C F be their respective quotient fields. Assume
that F/E is finite and separable.

In this setup we define S/R to be a ring-cover over K, and we define FIE
to be the corresponding field-cover, if R is integrally closed and if § = R|z],
where z is integral over R and the discriminant ¢ of z over E is a unit of R.

In this case d - x € R|z] for every element x of F which is integral over R
(cf. Zariski~Samuel [29, p. 264]). Hence S is the integral closure of R in F.
We say that z is a primitive element for the cover S/R.

If in addition F/E is a Galois extension, then S/R and F/E are said to be
a Galois-ring-cover and a Galois-field-cover, respectively, over K. If E is a
regular extension of K, then these covers are said to be regular. ’

Let ¢ be a K-homomorphism of § into K and let M be an algebraic
extension of gR. (We do not assume here that S/R is regular.) Then
N = M(pS) = M(pz) is a finite Galois extension of M (cf. Lang [17, p. 246 D.
The decomposition group of ¢ (with respect to M) is

DM(q)):{6655"’(F/E)](\/x€S)[wxEM:>g96x2¢x]}. (1)

For every ¢ €& Dy(p) we can define an automorphism g € Z(N/M) by
£'px = gex, where x € S. Then the map ¢+— ¢’ is an isomorphism of D,,(p)
onto 7' (N/M) (as follows, e.g., from Proposition 15 of [17, p. 248]). We
denote its inverse by ¢*.

In this section we are interested only in the case where K =M. We
therefore write D(p) for D,,(p) and note that

D(p) = {e € Z(F/E)|(Vx € S)|px =0 = gpex = 0] }.

A finite group G is said to be realizable over M if M has a Galois
extension N with a Galois group isomorphic to G. We denote the family of
all finite groups which are realizable over M by #(M). Note that the decom-
position groups D, (¢) above belong to # (M). Note also that # (M) is closed
under the operation of taking quotient groups. :

DeriNiTION. A field M is said to be a Frobenius field if it satisfies one
(and hence all) of the following equivalent conditions:

(A) Suppose that S/R is a regular Galois-ring-cover over M with F/E
the corresponding field-cover; N is the algebraic closure of M in F; and H is
a subgroup of Z(F/E) that belongs to #(M) and satisfies the condition
Resy H = % (N/M). Then there exists an M-homomorphism ¢: S — M such
that R = M and D(p) = H.

(B) Suppose that S/R is a regular Galois-ring-cover of M with F/E
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the corresponding field-cover and Z(F/E)& Z(M). Then there exists an M-
homomorphism ¢: S — M such that ¢R =M and D(p) = F(F/E).

(C) Suppose that F/E is a regular Galois field-cover over M such that
Z(F/E) € #(M), and u,,..., u,, are elements of F. Then there exists an M-
valued M-place ¢ of F which is finite at u,,..., u,, such that ¢E =M and

Here @F is the residue field of £ under ¢ and
D(p) = {¢ € Z(F/E)| (¥x € F)|px = 0 = gex = 0]}
is the decomposition group of ¢.

We have to prove the equivalence of the conditions.

(A)= (B): This follows from the fact that, in the situation of (B), the
algebraic closure N of M in F is a finite Galois extension of M which is
linearly disjoint from E over M. In particular the restriction map
Res: ¥ (F/E)—~ & (N/M) is surjective.

(B) = (C): By considering the irreducible potynomials of u,,..., u,, over E
we can find a ring R = M[x,,..., x,] with E as its quotient field such that
each of the u; is integral over R. By Lemma 2.15 we may assume that R is
integrally closed and that if S is the integral closure of R in F, then S/R is a
regular Galois-ring-cover. In particular we have that x=(x,,.,x,) is a
generic point of an absolutely irreducible variety V' defined over M.
Replacing R by R[;j™!|, where j € R[x] is the Jacobian of V, if necessary,
we can assume that V is non-singular.

By (B) there exists now an M-homomorphism ¢,:S - M such that
p,R=M and D(p,)= % (F/E). By a well-known theorem in algebraic
geometry, Resp @, can be extended to an M-place ¢, of £ with M as the
residue field (cf. Jarden—Roquette [14, p. 45]).

Let z be a primitive element for the ring-cover S/R and let b = ¢ z. Then
F=E|z]=E®,S. Hence there exists an M-valued M-place ¢ of F that
extends both ¢, and ¢, such that pF = ¢S = M(b). We have only to prove
that D(p)= 2 (F/E). Indeed, denote by R’ the valuation ring of ¢ in £ and
let S’ = R’|z]. Then S’ is the integral closure of R’ in F and therefore the
valuation ring of ¢ in F is the localization of S’ with respect to the center of
¢ in S’ (cf. Lang [16, p. 18]). It follows that

D(p) = D(Resg p) =7 (M(b)/M) = D(9,).
The equality D(p)= D(p,) follows now from the obvious inclusion
D(p) < D(9y)-
(C)= (A): In the situation of (A) denote by £’ the fixed field of # in F.
Then the condition ResyH = ¥ (N/M) implies that N and E' are linearly

disjoint over M and hence that E’ is a regular extension of M. The ring S is
finitely generated over M. Hence, by (C), there exists an M-valued
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M —place ¢ of F which is finite on S and satisfying @E’ =M and
D(p)= % (F/E") = H. The restriction of ¢ to S is the desired homomorphism
of Condition (A).

Remark. 1t follows from the arguments in the proof (B) = (C) that in the
situation of (C) the place ¢ can be chosen in such a way that P =F is a
Galois  extension of M and that ¢ induces an isomorphism
p*: Z(P/M)— Z(F/E), exactly as above, satisfying o(px) = ¢((¢p*0) x) for
every 0 € £ (P/M) and x € F with px # 0.

We recall that a field M is said to be PAC if every absolutely irreducible
non-empty variety V' defined over M has an M-rational point. This is
equivalent to saying that if R is a finitely generated integral domain. over M
with a quotient field regular over M, then there exists an M-homomorphism
@: R — M. Using the same argument as in the proof of (B) = (C) one sees
that if M is a PAC field, F is a finitely generated regular field extension of M
and u,,...,u, € E, then E has an M-place ¢ which is finite at u,,..., u,, and
has M as a residue field. Conversely, if M has this last property, then it is
also PAC. It is clear that if M is a Frobenius field, then it is PAC. Indeed,
take F = F and apply C.

If G is a profinite group, then we denote by #(G) the family of all
quotient groups of G by normal open subgroups. We say that G has the
embedding property if for every normal open subgroup N and every
epimorphism f: B— G/N, with B &€ #(G), there exists a continuous
epimorphism ¢: G — B such that § o § is the canonical restriction map.

The absolute Galois group of a field M is the Galois group of the maximal
separable extension Mg of M over M. It is denoted by G(M). Clearly
#(G(M)) = #(M). Thus, we say that M has the embedding property if G(M)
has it.

We now show that the Frobenius property of a field, which is a mixture of
field properties and Galois-group properties, is equivalent to the conjunction
of a pure field theoretic property, namely PAC, and a pure Galois group
theoretic property, namely the embedding property. To do this we need the
following:

LEMMA 1.1. Let N be a finite Galois extension of a field M and let G be
a finite group with an epimorphism n: G — Z(N/M). Then there exists a
regular Galois field-cover F/E over M such that N is the algebraic closure of
M in F and an isomorphism t: G ~ ¥ (F/E) such that the following diagram
is commutative.
G—— Z(F/E)

P

Z(N/M)
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Progf. Let X = {x*|g€ G} be a set of |G| algebraically independent
clements over M. The group G acts on X from the right in the obvious
manner. It also acts on N through 7 by the formula a® = ¢™®. It follows that
G acts on the field F=N(X). Let E be the fixed field of G in F. Then
NN E =M. Also NE, as a subfield of a rational function field over N, is a
regular extension of N. It follows that £ is a regular extension of M. Iden-
tifying G with Z(F/E) in the obvious way we obtain the desired
commutative diagram. §

THEOREM 1.2. A field M is a Frobenius field if and only ifit is PAC and
has the embedding property.

Progf.  Suppose first that M is a Frobenius field. We have to show that
M has the embedding property. Indeed, let N be a finite Galois extension of
M and let 7: G - ¥ (N/M) be an isomorphism, with G € @(M). Let E, F,
and 7 be as in Lemma 1.1. From property C, there exists an M-valued M-
place ¢ of F such that pE = M and the isomorphism ¢*: & (P/M) - Z(F/E)
is defined, where P = ¢F. The restriction of ¢ to N is an M-automorphism.
Without loss of generality we may assume that Res, ¢ is the identity. Then
t7lop*: E(P/M)— G is an isomorphism and 7ot 'og*: Z(PIM) —
Y (N/M) is the restriction map.

Conversely,' suppose that M is a PAC field which has the embedding
property. Let F/E be a regular Galois cover of fields over M such that
GWF/E)E #(M) and let u,,...,u, € F. Denote by N the maximal algebraic
extension of M contained in F. By the embedding property of M, there exists
a Galois extension P of M that contains N and there exists an isomorphism
J: & (P/M) - Z(F/E) such that Resyj(c) = Resyo for every o& 2 (P/M).
Let N' = NE, P’ = PE, and Q = PF. The fields P and E are linearly disjoint
over M, hence the isomorphism Res: Z'(P'/E)— % (P/M) composed with j
gives an isomorphism h: %' (P'/E) — % (F/E) such that the following diagram
is commutative:

G(P'JE) s 5 (F/E)

RR AS

Z(N'/E)
We use £ to define a subgroup
4= {6 € Z(Q/E)|h(Res,.8) = Res,. 5 }

'The idea of the following argument is taken from the notes [23] of Peter Roquette on
Hilbert’s Irreducibility Theorem. The authors thank Roquette for his kind permission to use
this material.
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of ¥(Q/E). The definition immediately implies that
ANZ(Q/PY=ANF(Q/F) = 1.
Further, it is also true that
4-F(Q/P')=4-F(Q/F) = % (Q/E).

Indeed, Q=P ®, F. Hence, given an ¢€ Z(Q/E) there exists a
0 € Z(Q/E) such that Res, d = Res,.& and Res,.é = i(Res,.€). Then € 4
and d'e € Z(Q/P").

The fixed field D of 4 in Q therefore satisfies the following relations:

PD=FD=Q and POAD=FND=E,

In particular it follows that D is a regular extension of M, since Q=PFisa
regular extension of P.

P
l

N—" | D
B
M

Let z be a primitive element for the extension P/M. It can be written in the
form z=3"_,d;x;, where d,€D and x,EF for i=1,.,n Since M is
PAC, there exists an M — place y, such that w,D = M and such that all the
x;»d;, u; are integral over the valuation ring of w,. The place ¥, can be
extended to a P-place y of Q such that wQ = P. Then ¢ = Res,y is an M-
place of F such that @E=M and ¢@F=P, since z= yz =
2im wldy) o(x;) € gF. Also [P:M] = [F:E], hence D(p) = ZF/E). 1N

Remark. Observe that the M-place ¢ constructed above has the property
that p* =, i.e., if 1 € £ (F/E), then

(x) = (j~'1)(px) (2)

for every x € F such that ¢x# . Indeed, extend 7 to an element § of
4 =5(Q/D). Then the relation

w(0x) = 6(wx) (3)

holds for every x € P and every x € D, as follows immediately from the
definitions. Hence (3) holds for every x € Q with yx 0. In particular (3)
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holds for every x € F. Relation (2) follows from (3), since as § € 4 we have
j't=j""Res.0 =Res,. 5. |

Let F be a profinite group generated by a set S converging to 1. We say
that S is a set of free generators (with respect to the family #(F)) if every
continuous map f: S — G, with G € Z(F) such that /(S) generates G, can be
extended to an epimorphism f: F— G.

LemMmA 1.3. If F admits a set of free generators, then F has the
embedding property.

Proof. 1f S is a finite set, then the Lemma follows from a Lemma of
Gaschiitz (see Jarden—Kiehne [13, Lemma4.1]). If S is infinite, one can
imitate an argument of Iwasawa in [22, p. 84] to derive the desired proof. H

CoroLLARY 1.4. If M is PAC field and G(M) admits a set of free
generators then M is a Frobenius field.

Remark. Actually, if M is as in the Corollary, it satisfies a stronger
property, called the Cebotarev property. We explain this:

Let F/E be a regular Galois cover over M with N as the algebraic closure
of M in F. Suppose that & (F/E) € #(M) and that we are given a continuous
map f of a set S of free generators of G(M) into ¥(F/E) such that
Resyo = Resy f(0) for every o € S. Then there exists an M-place ¢ of F with
9E =M, oF = P for which ¢* is defined and satisfies ¢ *(Res, o) = f(o) for
every g € S.

Indeed, replacing E, if necessary, by the fixed field in F of f(S), we can
assume that f(S) generates ¥ (F/E). Extend f to an epimorphism, also called
f, from G(M) onto G(F/E) and let P be the fixed field of the kernel of /.
Denote by j the isomorphism of % (P/M) onto %'(F/E) induced by f. Our
assertion follows now from Theorem 1.2 and the Remark following that
Theorem.

Two special cases of profinite groups with a set of free generators are
known in the literature: let % be a family of finite groups of one of the two
following types:

I. The family # is closed under the operations of taking subgroups,
quotient groups and direct products;

1I. The decomposition factors of every G € # belong to a fixed set 4 of
simple groups.

Then for every set S there exists a unique free pro-#-group Fy(%) on the set
S with S a set of free generators (see Ribes [22, p.61] for type I and
Mel’nikov [20, Section 2] for type II).

A field M is said to be &, S-free, if G(M)= Fy(%). If % is the family of
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all finite groups (resp. finite p-groups) we shorten this to the phrase S-free
(resp. p, S-free) field. In particular, if S is a set of e clements or S is coun-
table, we use the expressions e-free and w-free (resp. p, e-free and p, w-free).

We recall that a perfect PAC field is called an Ax-field. The following
special case of Corollary 1.4 is important for the applications.

COROLLARY 1.5. An Ax S-free field is a Frobenius field. Moreover,
every set S of free generators of G(M) has the Cebotarev property.

If K is a countable Hilbertian field and e is a positive integer, then for
almost all o€ G(K)’, the field K(s) is an Ax efree field (see
[13, Lemma 7.2]). Corollary 1.5 therefore implies:

COROLLARY 1.6. Let K be a countable Hilbertian Sleld. Then almost all
e-tuples 0 € & (K)¢ have the Cebotarev property.

Remark. Corollary 1.6 is proved directly in [12, Theorem 2.2|. The
superior proof given here solves the problem, left open in that paper, of
whether the e-free and PAC properties together imply the Cebotarev
property.

The above results give rise to some questions concerning the absolute
Galois group of a Frobenius field. First, we note that the converse of Lemma
1.3. is not true. Indeed, the group G:F2(2)><F3(3) has the embedding
property (since every homomorphic image of G is a product of images of
F,(2) and F(3)), while no set S=1{(9y;, 53)},c; S G is a set of free
generators (since then {g4,,},., would -be a set of free generators for Fp(p),
p=2,3; however, as is easily verified, any set of free generators for F.(p)
has precisely e elements). However, open subgroups of free pro-C-groups of
type II are again free pro-groups (see Mel’nikov [20, Proposition 2.1 |) and
hence have the embedding property. We therefore ask:

Problem 1.7. Do open subgroups of torsion-free profinite groups with
embedding property also have this property?

The condition of being torsion free is essential, as there are subgroups of
finite simple groups that do not have the embedding property.

It is known that an algebraic extension of a PAC field is again PAC (see
Ax [2,p. 268 for the separable extension case and Roquette [23] for the
purely inseparable extension case). A positive solution to Problem 1.7 will
therefore also imply, by Theorem 1.2, a positive solution to the following
problem:

Problem 1.8. Is a finite algebraic extension of a Frobenius field also a
Frobenius field?
The connection between Frobenius fields and Hilbertian fields goes
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beyond Corollary 1.6. Indeed, it follows immediately from the definitions,
that every Frobenius field M with G(M) = F  is Hilbertian. Having Theorem
1.2 in mind we ask:

Problem 1.9. s every PAC Hilbertian field also a Frobenius field?

2. Expricit COMPUTATIONS

In this section we give meaning to the phrase “presented field.” In
particular we show how fields finitely generated over their prime fields (i.e.,
finitely generated fields) can be presented and how the usual algebraic and
algebro-geometric operations may be performed “explicitly.” We rely on
well-known material accumulated by Van der Waerden in |26-28] and show
how to link it with the theory of primitive recursive functions.

Consider the family .# of all functions from N" to IN, where N is the sct of
positive integers and n varies on IN. The set of primitive recursive functions
(abbreviated PR-functions) is the smallest subfamily of .# that contains the
constant functions, the projection functions, and the successor function and
is closed under composition and induction. Being closed under induction
means that if f; and g are PR-functions, then the function / defined induc-
tively by f(x,nx,, D)=/ 1(x.,x;) and f(x,y+ D) =g, »f(x, ) is
also PR. A subset of N” is said to be PR if its characteristic function is PR.
If A< N"is a PR-set, then a function /: 4 — N is said to be PR-computable
if the extended function f:N”" - N defined by f(x)=/(x) if x€ A and
S(x)=1if x& 4 is PR. The addition and multiplication are simple examples
of PR-functions. The inequality relation is PR. Establishing the PR-property
for other functions is aided by using the bounded u-operator, which is
described as follows. Suppose that R is a PR-subset of N"*" and g: N" — N
is a PR-function such that for every x € N" there exists y < g (x) such that
(x,y) & R. Then the function f(x) = the smallest y such that (x,y)& R is
PR.

1t is clear from the definition that any given PR-function can be computed,
for given values of the argument, in finitely many steps. For example, in
order to compute f(x) defined above by the bounded y-operator, one first
computes g (x) and then checks the validity of (x, y) € R for y starting from
1 to g (x). Thus, one can even bound the number of steps necessary in order
to compute f(x) before actually computing f(x).

This property of PR-functions makes them more attractive to algebraists
and may be also more practical for computer scientists than the recursive
functions. Indeed, for recursive functions one allows, in addition to the above
operations, use of the (unbounded) u-operator: For a recursive subset R of
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N"*! for which, corresponding to each x € N” there exists y € N with
(x,y) € R, the function

J(x) = the smallest y such that (x,y) € R

is a recursive function.

Thus, recursive functions can also be computed in finitely many steps.
But, in order to compute f(x) in this case one has to check R{x,p)fory=1,
y=2,., with no limiting bound in order to find the first y for which
(x,y)ER.

In this paper all of our algorithms and decision procedures are primitive
recursive, not merely recursive: an important distinction since, as
Ackermann proved, the family of recursive functions is strictly larger than
the family of primitive recursive functions (cf. Hermes |9, p. 82)).

Next we consider rings and fields whose elements can be “recognized” and
in which we can compute “effectively.” In order to make these concepts
precise we consider a sequence ¢,,4,¢,,...) of symbols and construct the
set A of all formal quotients of polynomial words with coefficients in 7 in
these symbols. The definition of polynomial word is inductive: every element
of Z and each of the & is considered as a polynomial word; and if t, and ¢,
are two polynomial words, then (¢, +¢,) and (¢,1,) are polynomial words.
For example, (¢, + &,) + &) and (&, + (&, + &)) are two distinct polynomial
words and ((5¢,) + (£,¢,))/(&, + (—1 - &,)) is an element of A.

A may be viewed as a subset of A, the set of all finite words in a finite

alphabet
(al seeey (X'.) - (07 1,-“’ 99 éa /s +a Ty Ty (7)5 [s ‘a)

A Gobdel numbering—or a PR-indexing (cf. Rabin [21])}—on Ay (resp. A)
may then be defined as the injective map 7,: A, > N (resp. its restriction i to
A) given by

iO(aj,’ j,rees aj,,) =pi'py o
where 2= p, <p,; <p, <---is the prime numbers sequence. Clearly, i(1) is
a PR-subset of V.

Using i we define PR-functions and sets for A. It can be shown that the
following sets and functions are PR: (a) The set N = {1,2,3,..} as well as
all its PR-functions and sets; (b) the set Z = {0, £1, £2,...}; (c) the sequence
(&1, ¢,, &) as well as all the sets {¢;17 € S}, where S is a PR-subset of N
(d) the set I7 of all polynomial words; (e) for each n € N, the set 11, of all
polynomil words in ¢&,,..., &,; (f) the function from IT to N that assigns to
each w € 11 the smallest n such that w € IT,; (g) the subset 11} of 11, of all
words 37 a, ' &57 -+ &3 having a canonical form, where a, € 7, k, Kyyuor k,,
are non-negative integers, and the monomials are ordered, say, by
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lexicographical order; (h) the function from I7, to I7, that assigns to each
w € I, its canonical form in I7); (i) the degree function on I7/; (j) the coef-
ficient functions on II}; (k) the addition and multiplication functions on

wo1I;,. In short, all the “usual” information on polynomials should be
“available” by means of PR-functions. All the above-mentioned functions
and sets as well as the constant functions and the projections from A" into A
should be considered as basic functions and sets.

Of course, A together with its basic functions and sets is the minimal
framework in which field-theoretical operations can be carried out. We thus

make the following

DEFINITION. A ring R is said to be presented if there exists an injection
Jj: R — A such that j(R) is a PR-subset of A4 and addition and multiplication
are PR-functions over R (viaj). In addition the PR-construction of this PR-
data from the basic functions should be “given.”

A field F is said to be presented if, in addition to the presentation of F as
a ring, the inverse function of F* is a “given” PR-function, and the charac-
teristic of F'is also “given.”

The use of the word “given™ in this definition is done in the naive sense.
Note that a presented ring must be countable.

It is clear that the ring Z is presented with j being the identity embedding.
Likewise Q. and [, can be presented for every prime p.

In order to be able to work with polynomials over a presented ring we
introduce the set > of all polynomial-words in X, X,, X,,... with coef-
ficients in A and define PR-functions as above. In particular 4 should be a
PR-subset of 3. If R is a presented ring and j: R — A is its presentation we
extend j to an embedding of S =R[X,, X,, X;,...| into > by mapping every
polynomial in § to its canonical form in ). We may therefore speak about
PR-functions over S.

An effective algorithm over a presented ring R is a presented PR-
computable map 1: 4 — B, where 4 and B are presented PR-subsets of S"
and S™, respectively.

We list some examples of effective algorithms:

(a) Division with a remainder in N.

(b) The prime-decomposition in N.

(¢) Euclid’s algorithm of polynomials over a given field.

(d) The prime-decomposition in Z[|X] (c¢f. Van der Waerden
[26,p. 77)).

(e) The prime-decomposition in Q[X| (follows from (d)).

(f) Decomposition of polynomials in several variables over a
presented field X, if an effective algorithm for prime-decomposition in K[X|
is given (cf. [26, p. 135]).
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In this case we say that K has the PR-splitting algorithm. We now wish to
show that certain fields can be presented.

DeFINITION.  Let (2 be a field extension of a presented field K. An
element o of £ is said to be presented over K if either a is algebraic over K
and its monic irreducible polynomial, irr(a, K), over K is presented or it is
known that a is transcendental over K (and then we write irr(a, K) = 0).

By the Euclidean algorithm it is easy to show that if « is presented over K,
then K(a) is also presented. Indeed, by changing the presentation j: K — A,
we may assume that there exists £ = ¢;, which does not appear in j(K). For «
of degree n over K, we assign to each element of K(a) the corresponding
polynomial in £ of degree <n with coefficients in j(K). If « is transcendental
over K, then we assign to each element in K(a) the corresponding rational
function p (&)/q(&), where ged(p, g) = 1 and g is monic.

In both cases the presentation of K{a) extends that of K and K is a PR-
subset of K(a). We then say that K(«) is presented over K.

If « is a presented algebraic element over K and f is a presented element
of K(a), then we can effectively find the norm Ny, S by computing the
determinant of the matrix of the linear operator given by multiplication by f,
relative to the basis 1, a,..., ¢" ', From this computation we easily see that
the norm function Ny, is PR,

An n-tuple (a,, a,,.., a,) is said to be presented over K if a; is presented
over K(a,,..,a; ), for i=1,2,.,n A sequence (a,,a,, @,,..) of elements
of £ is said to be presented over K if the function
ni—irr(a,, K(a,...,a,_,)) is PR. It is clear that in both cases K(«,, a,....)
is presented over K(a,,..., a,,) for m =0, 1, 2,.... For the case of an infinite
tuple one may have to change the presentation j of K in 4 in such a way that
there exists a PR-subsequence (¢, , €y Cnyor) Of (&, &,,¢,...) whose
elements do not appear in j(K).

Lemma 2.1, Let K be a field with a PR-splitting algorithm and let « be a
presented separable (i.e., algebraic separable or transcendental) element over
K. Then K(a) also has a PR-splitting algorithm.

Proof.  See Van der Waerden [26,p. 135]. 1

LemMmA 2.2. Let a be a presented separable element over a field K with
a PR-splitting algorithm. Let [§ be a presented separable element over
L = K(a). Then one may effectively present i over K and a over K(f).

Proof. 1If irr(a, K) =0, then irr(f, K) = irr(f, L) when irr(8, L) € K| X|,
and irr(ff, K) =0 otherwise. If irr(e,K)#0, then irr(,K) divides
N, (irr(f, L)) and hence may be found. To present a over K(f) apply
Lemma2.1. B
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Lemmas 2.1 and 2.2 release us from the dependence on a presented n-tuple
a={a,,..,qa,) in presenting K(a) over K, by induction.

The condition that K(a,,..., ¢,) also possesses a PR-splitting algorithm is
satisfied, by Lemma 2.1, in the case where for each 1 <7< n, the element a;
is separable over K(«,,..., a;_,). However, even if K(a,,..., @,) is separable
over K, it may still happen that some «; is not separable over K{a,...,a;_,).
Then we may use the PR-procedure suggested in the proof of “(2) implies
(3)” of Theorem 1 of Lang [16,p. 53], and reorder «,,..., a, such that a; is
separable over K(a,,..,a;_,) for i=1,.,n Thus, in discussing a field
separably generated over K, we need not distinguish between the case where
the n-tuple (o,...., a,) is presented over K and the case where each q; is
presented over K(a,,..., ¢;_,). Hence we may effectively composite presented
separable field extensions. In particular we obtain:

THEOREM 2.3. Let K be a perfect field with a PR-splitting algorithm. Let
a={(da,..,a,) be an n-tuple of elements presented over K. Then L = K(a)
has a PR-splitting algorithm.

Note. If K is a perfect field with a PR-splitting algorithm then every
finitely generated extension L of K has a PR-splitting algorithm. We thus say
that K is a field with elimination theory if every finitely generated extension
of K has a PR-splitting algorithm. This name is justified by the observation
that the classical elimination theory procedures of algebraic geometry may
be effectively performed over a field K if and only if K satisfies this
condition. By Theorem 2.3, every presented finitely generated field extension
of a prime field or, more gencrally, of a perfect field with elimination theory
is a fileld with elimination theory. There are, however, fields with a PR-
splitting algorithm which are not fields with elimination theory. These fields
have finite purely inseparable extensions that do not have a PR-splitting
algorithm (see Frohlich and Shepherdson |6, Theorem 7.27]). In addition a
presented infinite algebraic extension of €} need not have a PR-splitting
algorithm (see |6, Theorem 7.12]).

For ring presentation we have the following result: Let R = K[|, where
a=(a,,.,a,) is presented over a presented field K. With no loss assume
that for r<n, a,,.., a, is a transcendence basis for K(a)/K. For each i > r
we can write irr(e;, K(ay,..,a;_)) in the form fi(a,,.... a;_)/h(a ., @,),
with f; € K[X,,....X;], "€ K|X|,..,X,]. Then the ring R'=K|a,,..,a,,
h(a, ., @,)" '] is clearly a presented ring: every element of R’ has a unique
representation as

drjg—1 dy—1
rg" {‘ gm(al""’ ar) ¢ My am,,
- e L T Nk Ykl T By
nypy =0 My =0 h(al""9 ar) "

where g,/h*" is a reduced quotient of polynomials in Kl|a,,..,«a,l,
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d;=degirr{e;, K(at;,na;_)) for i=r+1,.,n and m= My fyeees M,
Further we may effectively decide whether or not a given element of K(a)
belongs to R'.

Thus we may present a suitable localization of a ring whose generators are
presented. Using the machinery of Hermann (see {8, p. 753]) we could also
present the ring R itself. But the above simple procedure suffices for our

purposes.

Lemma 2.4 (THE PRIMITIVE ELEMENT THEOREM). Let L =K(a,,..., a,)
be a presented separable algebraic extension of a field K with a PR-splitting
algorithm. Then one can effectively find § € L such that K() = L.

Proof.  Use, for example, the proof on page 84 of Zariski-Samuel [29].
Note that in the case where K is infinite one must find, for a given non-zero
polynomial g € K[X,,.., X, |, elements b,,..., b, € K such that g(h) # 0. This
is easily effected by induction. §

LemMma 2.5. Let a be a presented algebraic separable element over a
Jield K with a PR-splitting algorithm. Then one can effectively present the n-
tuple (a,, ay,..., @) of conjugates of a and one can effectively compute the
Galois group G of irr(a, K) as a permutation group of (a,,ay,..,,) and
hence also its action on L =K(a,,...,a,). Moreover, if H is a presented
subgroup of G, then one can present its fixed field in L over K.

By an effective computation of the Galois group we mean that the
corresponding algorithm from the set of all polynomials of degree n over K
into the symmetric group S, is PR. Obviously every subset of S, is defined
to be PR.

Proof. See Van der Waerden |26, p. 189] and Lang |17, p. 186].

THeOREM 2.6. If K is a field with a PR-splitting algorithm, then its
separable closure, K, can be given over K by a sequence (a,,,, a;,...) and
has a PR-splitting algorithm. If K is a field with elimination theory, then, in
addition, its algebraic closure, K, is a field with elimination theory.

Progf.  Order the set of all non-constant separable polynomials of K[X]
in a PR-sequence (p,,p,,p;...). We construct, by induction, a sequence
(a;, @y, ay,...) of separable algebraic elements over K and an ascending
sequence K< K, € K, < -+ of field extensions such that K, = K(a,,..., a,)
is the splitting field of p, p,... p,. Clearly K(a,, a,, a;,...) is the separable
closure of K and it is presented by the sequence (a,,a,, a;,..). We must
show how to decompose polynomials over K. Let /€ K [X] be a non-
constant polynomial. Then f has coefficients in L = K(a,,..., ¢;) for some J.
Compute g(X) = N, fIX). Without loss we may assume that g is separable
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over K. Then we find k >/ such that g € {p,,..., p,}. The decomposition of
S(X) over K, is the desired decomposition of f over K.

If K is a field with elimination theory, an analogous construction proves
that K has a splitting algorithm. Hence K is a field with elimination theory,
since K is perfect. M

Rabin proved the same result for recursively presented fields by presenting
K as a quotient of K[X,,X,, X,,..] by a certain, explicitly constructed,
maximal ideal (see [21, Theorem 7}).

The following lemma is of use when dealing with Frobenius fields.

LemMa 2.7. Let K be a field with a splitting algorithm and let
F=K(a,,.,a,) be a presented separable extension of K. Then one can effec-
tively find the separable algebraic closure L of K in F.

Proof. We may rearrange «,,..,a, such that a,,..,a, is a separating
transcendence base for the extension F/K. By the primitive element theorem
we may assume that r=n—1. Then we observe that [(X)=irr(a,,
Loty 0, 1)) =lirr(a,, K{a .., a,_;)). By Theorem 2.6, f(X) can be
computed effectively. Its coefficients are rational functions in a,..., Ay
over L. Let f8,,..., B, be all their coefficients. Then L = K(f,,..., 5,,). 1§

Let R be a presented integral domain with a quotient field K. Let ¥(R) be
the first-order predicate calculus language for the theory of rings enriched
with constants for the elements of R. Using the given presentation of R we
can equip Z(R) with a Gd&del numbering such that R is a PR-subset of
% (R). Fields that contain a homomorphic image of R are models of #/(R).
The elements of R are interpreted in them as their corresponding images.

THEOREM 2.8. Let R be a presented integral domain with a quotient
Jield K. Then there is an effective algorithm that assigns to each formula
o(X ..., X,) a quantifier-free formula w(X,,.,X,) such that for every
algebraically closed model F of /(R) and for every x,,..,x, € F we have:
O(Xy yeees X,p) I8 true in F if and only if w(x,, .., x,) is true in F.

Proor. The elimination of quantifiers algorithm we have in mind uses
essentially only the division of polynomials with a remainder algorithm and
is well known. Unfortunately the only reference known to us is [18].

This result is considerably generalized in Theorem 3.7.
In particular, when n=0, i.e.,, when ¢ is a sentence, we can deduce the

following

COROLLARY 2.9. There is an effective algorithm that assigns to each
sentence ¢ of (R) a non-zero element ¢ € R such that if F is an
algebraically closed field containing a homomorphic image R of R and if ¢ is
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mapped onto a non-zero element ¢ of R, then ¢ is true in K if and only if ¢ is
true in F.

We give two algebro-geometric applications of the last two results. Let X
be a presented field and consider the affine n-dimensional space A" over K.
In particular A° consists of one point, the origin. A constructible set A in A"
is a set of the form 4 = P(V(h,),..., V(h,)), where h,..., h, € K|X, . o
and P is a boolean polynomial in the symbols (J, () and ’ (= taking the
complement). Here V(h,) denotes the set of zeros of 4, in some universal
extension of K (cf. Lang [16, p. 21]). If L is a field containing X, then we
denote by A(L) the set of points of 4 with coordinates in L. If K is a
presented field, then 4 is said to be presented if h,,..., h, and P are given.
Note that 4 can be presented in many ways. In particular, if K is the
quotient field of a presented integral domain R, then the h; may be assumed
to have coefficients in R.

Lemma 2.10.  Let f,,...f,, € K|X,,..,X,|. Define a morphism @ A"
AT by @(x) = (f1(X)ss S/ u(X)). Let A S A" be a presented constructible set.
Then B = p(A4) is a constructible set which can be effectively presented.

Proof. Let £ be a universal domain containing K and let
B={(yis ) €Q"|0(p s v,) is true in 2}, where O(Y,,..., Y,) is the
formula

(EIXI) (BXn)[fl(X): Yl AREE /\./;n(X): Ym]'

By Theorem 2.8 we can effectively find a quantifier-free formula
0'(Y,..... Y,,) equivalent to (Y,,.., ¥,) over 2. This formula gives B as a
constructible subset of A™. |

G. Stolzenberg gives, in [25], a direct proof of Lemma 2.10 by using the
results of G. Hermann in [8].

LEmmA 2.11. Let f€ R|X,,.., X, | be a presented absolutely irreducible
polynomial. Then one can effectively compute a non-zero element ¢ € R such
that if'p is a prime ideal of R and ¢ & p then [ remains absolutely irreducible
over R/p.

Progf.  One can effectively write down a sentence in %’(R) which is
equivalent, modulo the theory of algebraically closed models of #”(R), to the
statement “f is absolutely irreducible”, (cf. [13,p. 278]). U

A generic point of an irreducible algebraic set V = V(k, ..., h,) < A" over
K is a point (x,,..,x,) &€V for which K(xy,..., x,) is isomorphic to the
quotient field of the ring K[X ..., X,,|/\/ (A, s B,,).
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LEMMA 2.12. Let K be a field with elimination theory.

(a) Let hy,..,h, be presented polynomials in K|[X,,..,X,| and let
V= V(h, s h,) be the algebraic set defined by them. Then one can effec-
tively compute generic points (X ..., x;,) over K of the K-components V; of
V.

(b) Let x=(xy,.,x,) be a presented point over K. Then one can
effectively compute polynomials g, ..., g, € K|X| such that x is a generic
point of the K-irreducible set V(g,,..., &)

(c) IfV=V(h..,h,) is a presented algebraic set, then one can effec-
tively compute the K-components V;= V(g .., &u,) of V.

(d) One can effectively compute the dimension of every given
irreducible set.

Proof. See Van der Waerden (28, Section 31]. i

A constructible set 4 over a field K is said to be a basic set if it is of the
form A =V — V(g), where V =V(f\ .. fp), and fi,.., [, §E€ K| X 5., X,
and where V is a K-irreducible set on which g does not vanish. If x is a
generic point of V, then K[A4]=K|x, g(x)"'] is said to be the coordinate
ring of A and K(A4)= K(x) is said to be the function field of A. We also
define dim 4 as the transcendence degree of K(4) over K. The basic set 4 is
said to be normal if K|A] is an integrally closed domain. The basic set 4 is
presented if the polynomials f),..., f,, and the ring K[4] are presented.

Let .2 be a property of constructible sets (e.g., normal, basic, non-
singular, etc.). A Z-stratification of a constructible set 4 is a finite family
{A,]i € I} of disjoint constructible sets having the property . and for which
A=Ue 4

Let A be a basic set with K[4]= K|x, g(x)™'] and let B be a basic subset
of A with K[B|=K]|x',h(x')""]. Then g(x')#0 and K|x',g(x")"'|<
K|x’, h(x')™"] (cf. Lang [16,p. 31]). The subset B is a Zariski-open subset
of 4 if and only if K[4] < K|[B].

LEMMA 2.13 (THE STRATIFICATION LEMMA). Let K be a field with
elimination theory and let .7 be a property of constructible sets. Suppose that
to every presented basic set A we can effectively compute a basic 7-set B
with B open in A. Then we can effectively produce a .7-stratification of every
presented constructible set.

Proof. Let A be a presented constructible set. Applying several boolean-
algebra operations to the algebraic sets that define 4 and using an induction
hypothesis on the dimension we can assume that 4 is a basic set. The effec-
tiveness of these operations follows from Lemma 2.12. We have also to use
the dimension theorem (cf. [16,p.36]):1f V¥, and V, are irreducible
algebraic sets and V¥, & V,, then dim V', NV, <dim V.
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For a basic set 4 we can, by hypothesis, effectively find a basic .%°-set B,
open in 4, Then dim 4 — B < dim 4 and we can again apply the induction
hypothesis to produce a .7 -stratification of 4 — B.

In particular we have:

LEMMA 2.14.  There is an effective procedure Jor producing a basic and
normal stratification of a presented constructible set.

Proof.  This Lemma follows from the stratification Lemma and from the
following :

LEMMA 2.15. Let K be a field with elimination theory. Let (x,,..., x,, z)
be a presented (n+ 1)-tuple over K for which z is q separable algebraic
element over K(x). Then we can elfectively find a polynomial g € K[X]| such

that:

(a) gx)#0,

(b) the ring K|x, g(x)~"] is integrally closed.

(c) the ring K|x, g(x)~', z| is a cover of the ring K[x, g(x)""| (in the
sense of Section 1), and

(d) the rings K|x, g(x)""] and K|x, g(x) ', z| are presented.

Proof. It suffices to find a g € K|.X| that satisfies conditions (a) and (b).
Indeed, if we multiply ¢ by a product of the denominator and the
discriminant of irr(z, K(x)) and another suitable polynomial according to the
remark preceding Lemma 2.4, we can change g to also satisfy (c) and (d).

In order to find a g € K[X| that satisfies (a) and (b) we consider first the
case where K(x) is a separable extension of K. After reordering x, ..., x, we
may assume that x, is separable over K(x,.... X)) for i=1,..n We
proceed by induction on #.

By the induction hypothesis we can effectively find a polynomial
g €KX ... X, || such that g/(x)#0 and K|x,..., Xpps &(x)7] s
integrally closed. If x, is transcendental over K(x|ynx,_ ), then
Klxys X, g,(x)""] is also integrally closed (cf. Zariski-Samuel |30,
p. 126]). If x, is separable algebraic over K(xy,..;x,_,), then, by the first
part of the proof, we can effectively find g€ K[JX, s X, 1] such that
Klx,g(x)7"] is a ring cover of K|x,,.., X, »&x)""]. In particular
K|x,g(x)™"] is integrally closed.

In the general general case we can again follow the proof *(2) implies (3)”
of Theorem | of Lang [16,p.53], and find a finite purely inseparable
extension K’ of K such that K'(x)/K’ is separable. We can also find a basis
Ay &y for K'/K, a basis a,..., a, for K'(x)/K(x) out of it, and a power q
of the characteristic such that a? € K for every a € K'. We then find, by the



22 FRIED, HARAN, AND JARDEN

procedure for the separable case, a polynomial 2 € K'[X] such that A(x) 0
and K'[x,h(x)"'] is integrally closed. For every 1<i<m we find
g, hy; € K[X] such that g,(x) # 0 and

a; = (hy(x) ay + -+ Ry () a) g,(x) "

Then we define g(X) = g,(X) -+ g(X) h(X)?. 1t follows that
K(x)NK'[x, g(x)"']=K][x, g(x)""], which is therefore integrally
closed. W

3. THE GALOIS STRATIFICATION

In this section we consider a presented field K and a perfect Frobenius
field M that contains K. Let @ =% (M) be the family of finite groups that
can be realized over M. The case where K is a field with elimination theory
and & is a PR-family of finite groups is referred to as the explicit case. The
results achieved in this section hold for the general case. In the explicit case,
however, they become effective in the sense of Section 2. Thus instead of
only proving the existence of a set 4 with explicit properties as in the general
case, in the explicit case we effectively find 4.

A (Galois) set-cover, C - A, over K is a pair (4, C) of K-normal basic sets
such that K|C|/K[A4] is a (Galois) ring-cover (see Section 1). In the explicit
case, if A is a presented K-normal basic set and if F is a presented finite
Galois extension of K(d4), then, by Lemma 2.15, we can effectively find a K-
normal basic set C’ that covers a presented K-basic set A’, which is open in
A, such that K(C')=F.

Let C — A4 be a Galois set-cover over K with K[4]|= K[x,,..., x,,g(x)""]
and let z be a primitive element for the ring-cover K[C|/K|4]. Put also
Z(CJA) = F(K(C)/K(A)). Suppose that (a,,..., a,) is a point of 4(M). Then
the map x;,+—aq;, for i=1,.,n, can be uniquely extended to a
homomorphism ¢, of K[4] into M. The homomorphism ¢, can be further
extended to a homomorphism ¢ of K[C] into a Galois extension N = M(¢z)
of M. As in Section 1, ¢ gives rise to an isomorphism ¢* of ¥ (N/M) onto
the decomposition group D, (¢). As ¢ ranges over all possible extensions of
@, to K[C], the group D, (p) ranges over a conjugacy class of subgroups of
%(C/A). We call this class the Artin symbol of a and denote it by Ar._,(a).

If D—>A is another Galois set-cover such that K[C|< K[D] and
a€A(M), then Arq,, y(a)=Resg Ar,,(a). Thus, whenever no
confusion arises, we omit the reference to the cover from the Artin symbol
and write it as Ar,,(a). If HEAr, ,(a), then Ar, ,(a)=
[H? |0 € Z(C/A)).

If n=0, then K(d)=K,K(C)=L and Ar, y(a)={9(L/LNM)’|oc€E
Z(LIK)).
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Replacing 4 by an open subset does not affect the Artin symbol. Indeed, if
h€K[X,,...X,] is a polynomial that does not vanish on 4 and if we let
A"=A4—V(h) and C'=C— V(h), then C’' > A4’ is also a Galois set-cover.
If a€A4'(M), then Ar,. ,(a)= Ar, y(a).

More generally, if 4" is a K-normal basic set contained in A with a generic
point x’, then the specialization x - x’ uniquely extends to a K-
homomorphism 7, of K[4] into K[A4']. Let z be a primitive element for
K[C]/K[4], let p(X) be the image by , in K[A"][X] of irr(z, K(4)), and let
z' be a root of p(X). Then z' is a primitive element for a cover C' > 4’ and
7, can be extended to a homomorphism r: K[C] - K[C'] such that (z) = 7',
The cover C' > A’ is said to be induced by C—4. If a€A'(M), then
T*Ar,. (@) € Ar, . (a). Indeed, if ¢ is a homomorphism of K[C’] into A7
that extends the specialization x’- g, then ™Dy (p) € D,,(97), hence
t*D,(p) = D,, (), since both groups are isomorphic.

We introduce the notation Con(4) to denote a conjugacy domain (ie., a
union of conjugacy classes) of subgroups of Z(C/A) that belong to Z. Note
that if Ar, ,,(a) M Con(4) +# @, then Ary (@) <€ Con(4).

Having the cover C' - 4’ in mind we define

Con(d")={H Z(C'/JA)|HE Z and t*H € Con(A4)}.

Here we are using the notation “H<G” to mean “H is a subgroup of the
group G.” The conjugacy domain Con(4’) of £(C'/A’) thus defined is said
to be induced by Con(4). If a€A'(M), then Ary. (@) = Con(4’) if and
only if Ar, ,(a) < Con(4).

Let n >0 and let m: A" -5 A" be the projection on the first # coordinates.
If n=0, then = maps every point of A! onto the only point, the origin, of
AL,

If 4 < A"™ " and B < A" are two basic sets such that n(4) = B, then either
dim4 =dim B + 1 or dim 4 = dim B. The first case is treated in Lemma 3.1,
the second in Lemma 3.2.

Lemma 3.1. Let C»A4 and D— B be Galois set-covers over K, the
Jormer equipped with a conjugacy domain Con(A4) of subgroups of Z(C/A)
belonging to . Suppose that A < A" B =n(4), dim 4 = dim B + 1 and
K (D) contains the algebraic closure L of K(B) in K(C). Define

Con(B)={GLKZ(D/B)|Ge# & Res, G € Res; Con(4)}.

Then there exists an h=h, ey EK[X,,..X,], not vanishing on B such
that for B'=B — V(h), A" = A4 — V(h), C'=C~V(h), D' =D — V(h) and
Jor every b € B'(M) we have:

(1) Ary. ,(b) < Con(B) if and only if there exists an a € A'(M) such
that m(a) = b and Ar, ,(a) = Con(A).
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Moreover, h does not depend on M and € and can be effectively found in
the explicit case, if A, B, C and D are presented.

Proof. Suppose that K{B|=K][x, g,(x)""] and K|A|=
K|x,p,8,(x,)" '], where x=(x,.,x,). Then K[B|<K[4] and y is
transcendental over K(B). Let z be a primitive element for the cover C — 4
and let S=K|D]NL. Find a polynomial /€ S|Y, Z] irreducible over L
such that f(y, z) = 0. Then f(Y, Z) is absolutely irreducible. By Lemma 2.11
we can compute a non-zero element u € S such that if ¢ is a homomorphism
of S into a field and ¢(u)+ 0, then with /' = ¢f, the polynomial f/(Y, Z) is
absolutely irreducible and its degree in Z is equal to that of (Y, Z). Let
heK|X,,.,X,] be a polynomial such that A(x)=g,(x)* - N, k) for
some k> 0. Then statement (1) is true. Indeed, by multiplying 4 by an
appropriate polynomial we may assume that XK[D'|ML/K|[B'] is a ring
cover. Thus with no loss we may assume that K(D)=L. Let b€ B'(M) be
such that Ary. ,(b) < Con(B). Extend the K-specialization x—b to a
homomorphism ¢ of K[C'] into M/G7) such that ¢(y)=yp’ and y’' is a
transcendental element over M. Then g,(b,y')% 0, since n(4) =B. Let
z'=¢(z) and denote N=M 9K[D']), R=M|y, g,(by) ']=
Mlp(K[A'])], E=M(y') and F=E(z'). Then R|z’|/R is a ring cover over
M with F/E the corresponding field cover. Also, [F: NE|=deg, /' (y', Z) =
deg, f(y, Z)=[K(C): P], where P=K(4)K(D), since h(b)+# 0, hence
o(u)+ 0, hence f'(y’, Z) is irreducible over NE. This implies that in the
following commutative diagram the left vertical arrow is an isomorphism:

1 - Z(K(C)/P)- Z(C/A)— Z(D/B) - 1

e

1- Z(F/NE) — $(F/E)— % (N/M)- 1.

The conjugacy class Ary, ,(b) is generated by ¢*<(N/M). Hence, by the
definition of Con(B), there exists a group H € Con(4) (hence H € %) such
that Resg,, H = @*(N/M). A diagram-chasing shows that there is a
subgroup H' of Z(F/E) such that ¢*H'=H. Hence H'€ % and
Resy H' =% (N/M). Also N is the algebraic closure of M in F, since f'(Y, Z)
is absolutely irreducible. We have assumed that M is a Frobenius field,
hence there exists an M-epimorphism w: R[z'] > F’ such that w(y' ) =cE M
and w*Z(F'/M)=H'. 1t follows from the definitions that
0*D,(w) € Dy (wp). Thus H=¢*D,(v)=D,(ye), since both sides are
isomorphic to £ (F'/M). Thus, the point a= (b, ¢) = we(x, y) belongs to
A’ (M) and it satisfies n(a) = b and Ar, ,(a)< Con(d4) since H € Con(4).

The converse implication in (1) follows from

Resgpy Aryap(@) = Arg. p(0). 1
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LemMMA 3.2, Let C— A4 and D — B be Galois set-covers over K such that
B=n(d) and K[A] is integral over K(B|. Let E and F be the maximal
separable extensions of K(B) in K(4) and K (C), respectively. Then F J/E is a
Galois extension and Res: ¥(C/A)— F(F/E) is an isomorphism. Assume
also that F < K(D).

Let Con(4) be a conjugacy domain of subgroups of Z(C/4) belonging to
%. Define Con(B) as the set of all H®, where H is a subgroup of ¥ (K(D)/E)
which belongs to % such that Res, H € Res.Con(4) and 0 € Z(D/B).

Let b€ B(M). Then Ar,, (b)< Con(B) if and only if there exists an
a € A(M) such that n(a)=b and Ar, ,(a) < Con(A4).

Progf.  Both extensions K(4)/E and K(C)/F are purely inseparable.
Hence K(4) and F are linearly disjoint over £ and K(4) - F=K(C). If
char(K) =p # 0, let g be a power of p such that K(A)' < E and K(C)* < F.
Then K(C)?/K(4)? is a Galois extension and £ - K(C)*=F. Hence F/E is
also a Galois extension.

Denote by R and S the integral closures of K[B] in E and F, respectively.
Then R < K[4] and S < K[C|NK|D]. Let x and y be generic points of A4
and B such that z(x) = y.

Suppose now that Ar, ,(b)< Con(B). Then there exists an
HL Y (K(D)/E) that belongs to Arg (b)) and there exists a group
G € Con(4) such that Res, H = Res, G. The condition 4 € Ary (b) means
that there exists a K-homomorphism ¢ of K|D] into a Galois extension N of
M such that ¢(y)=0b and p*Z(N/M)= H. We have assumed that M is a
perfect field. Hence there exists a unique K-homomorphism w of K|C|into N
such that Resgy = Rescp. In particular a=y(x) belongs to A(M) and
n(a)=b. Also, if we denote M - w(K|C|) by N,, then Res, w* o' (N, /M) =
Res, H. Thus w*¥(N,/M)=G. It follows that Ge& Ar, ,,(a) and
Ar, la)< Con(A).

The converse follows similarly from the definitions by reversing the
arguments. [

Let n2> 0 and let 4 be a constructible set in A”. A Galois stratification
o = (A4, C;— A, Con(4,));c,

of 4 with respect to K and % is a decomposition 4 = Jie;A; of 4 as a finite
union of disjoint basic sets 4,, each one equipped with a Galois cover
C;—> A, of basic sets and a conjugacy domain Con(4,) of subgroups of
Z(C,/A4)) that belong to #Z.

If a € A(M), then we write Ar, (a) < Con(), if Ar,, y(a)< Con(4)),
for the unique /i € I such that a € 4,.

Suppose that »7' = (4, Ci—4j, Con(4)));,., is an additional Galois
stratification of 4. Then .« is said to be a refinement of .+ if for eachjeJ
there exists a unique /€7 such that A;j < A; and the domain Con(4)) is
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induced by the domain Con(4,). It is then clear that if a € A(M), then
Ar,, y(a) € Con(+) if and only if Ar,. ,,(a) = Con(s/")

The following Lemma will be needed in the refinement and stratification
procedure of Lemma 3.4.

LEmMMA 3.3. Let n >0 and let {C,— A,|t & T} be a finite collection of
Galois set-covers over K, where each A, = A"*'. Let B < A" be a K-normal
basic set such that B < n(A,) for every t € T. Then there exist Galois set-
covers D— B’ and C};— A};, for i € I(t), over K such that:

(a) B’ is a K-open subset of B.

(b) The sets A]; are contained in A, and they are mutually disjoint.

(¢) The covers C;,— A,; are induced by the cover C,— A,.

(d)y We have n="(B'YNA,=U;c i A); and n(d};) =B'.

(e) If dim A}, =dim B’, then K|A};] is integral over K|B'| and K(D)
contains the maximal separable extension of K(B') in K(C},).

() If dim A}, =dim B’ + 1, then K(D) contains the algebraic closure
of K(B') in K(C[;) and the polynomial hy,c, » , defined as in Lemma 3.1
does not vanish at any point of B'.

Moreover, if in the explicit case C,»A, and B are presented, then
C);— A, and D — B' can be effectively computed.

Proof. By the stratification Lemma we can stratify 4,Nzn '(B)=
(J,esy 4y into K-normal basic sets. Let I(£) = {j € J(¢)|dim 7(4 ;) = dim B}
and let I'(¢t) = J(¢) — I(t). Then By = ;e (B —n(A,)) I Ujes m(4,;) has
a smaller dimension than that of B. Hence there exists a polynomial
f€ K[X,,.., X,] that vanishes on B, but not on B.

For i € I(t) we denote by F,, the separable closure (resp. the algebraic
closure) of K(B) in K(C,,) if dim A, =dim B (resp., if dim 4, =dim B + 1).
Let P be a finite Galois extension of K(B) that contains all the F,’s. Then we
can find a multiple g € K[X ..., X, ] of f'that does not vanish on B such that

(i) B'=B-— V(g) has a Galois cover D with K(D)=P,
(ii) if dim4, =dim B + 1, then the appropriate polynomial h, . , ,
defined in Lemma 3.1 divides g,
(iii) if dim A4,;=dim B, then K[A4/;] is an integral extension of K|B'],
where A, =A,,—V(g).

The sets B’ and A, for t € T and i &€ I(t), have the desired properties. 1}

LEmMMA 3.4 (THE ELIMINATION LEMMA). Let n >0 and let o/ = (A",
C,—A;, Con(4,));e; be a Galois stratification of A"*' over K. Then there
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exists a Galois stratification % = (A", D;— B;, Con(B,)),., such that JSor
every b € A"(M) we have: Ar 5,,(b) < Con() if and only if there exists an
a € A" (M) that satisfies n(a) = b and Ar , y(a) < Con(s).

In the explicit case, if .+ is presented, then .% can be effectively computed.

Proof. By considering the intersections of the sets m(A;) and using the
stratification Lemma we can stratify A" into a union of disjoint K-normal
basic sets U, for s € S, such that for every i€/ and s € S either U, < n(4,;)
or U/MNn(d;)=¢. By the Lemma 3.3 and by the stratification Lemma we
can stratify each of the U, separately and then combine the separate
stratifications into basic normal stratifications A" =, B, and A"t =
Ujes Ukerqy 4,4 with the following properties:

(a) Every 4, is contained in a unique 4; and has a Galois cover Cy
which is induced by C;— 4,. We denote by Con(4,,) the conjugacy domain
of subgroups of ff’(Cjk/Ajk) which is induced by Con(4,).

(b} We have n(4,,) = B, for every j€J and every k€ K(j) and we
have 77(B)) = (Jyexy Ay

(¢c) Every B, is equipped with a Galois cover D,.

(d) Ifdim A4}, =dim B,, then K|A,] is an integral extension of K[B))
and K(D;) contains the maximal separable extension of K(B;) in K(Cy). We
define a conjugacy domain Con,(B,) of Z(D,/B,) by Con(4,,) as in
Lemma 3.2

(¢) If dim A4, =dim B;+1, then K(D,) contains the maximal
algebraic extension of K(B;) in K(C,). Also, the polynomial h/’/ki?fk»lf_hl%
defined as in Lemma 3.1 does not vanish at any point of B;.

We define a conjugacy domain Con,(B)) of Z(D,/B)) by Con(4;,) as in
Lemma 3.1.

The stratification w7/ = (A"+1, Ci = A, Con(dy))jesuexyy is a
refinement of .«. For each j € J we define Con(B)) = Urexisy Con, B;. Then
& =(A",D;~ B,, Con(B,))),c, is a Galois stratification of A" and if
be A"(M), then Arg, (b)c Con(#) if and only if there exists an
a€ A" (M) such that n(a)=b and Ar . y(@) < Con(sr'), e,
A1, (a) € Con(s). R

Lemma 3.4 is used to “eliminate” an existential quantifier. Analogously,
Lemma 3.5 is used to “eliminate” a universal quantifier.

LEMMA 3.5, Let o = (A"+1 Ci=4;,, Con(d))., be a Galois
stratification of A"*' over K. Then there exists a Galois stratification
B = (A", D;» B, Con(B,)))e, such that for every be A" (M) we have:
Ar g 44(0) € Con(Z) if and only if every a € A" (M) with n(a) = b satisfies
Ar,, (@) < Con(w).



28 FRIED, HARAN, AND JARDEN

In the explicit case .# can be effectively computed if .+ is presented.

Proof. Let &/¢=(A""', C;>A4,, Con°d,),., be the complementary
Galois stratification to .« of A""', where

Con‘d, = {H < % (CJ4)|HE# and H & Con(4,)}.

By Lemma 3.4, we can find a Galois stratification B = (A", D,~ B,,
Con®B,);., of A" over K such that for every be A"(M) we have:
AT 4 (b)) < Con(#°) if and only there exists an a€ A" (M) such that
n(a)y=">b and ArM‘M(a)C_iCon((&x/“). The complementary  Galois
stratification to .#¢ of A" is the Galois stratification we are looking for.

Let m, n =0 be integers, let Q,,..., 0, be quantifiers and let
o = (A", Cy Ay Con(A )

be a Galois stratification of A”™*" over K. The expression
QX)) - (@ X,)[Ar(X, Y) < Con(s) ], (1)

with X = (X, ..., X,,) and Y = (Y¥,..., Y,) is said to be a Galois formula (with
respect to K and C) in the free variables Y,,.,Y,. We denote it by
B=0(Y, ., Y,) For  b,,...b,EM we write MF=0O(b) if
0,a, € M...., Q,,a,, € M we have Ar, ,(a,b) < Con(+"). Here “Q;a, € M”
is to be read as “there exists an @, in M” if O, is 4, and as “for every g, in
M if Q,is V. If n=0, then @ is said to be a Galois sentence.

Remark 3.6. Denote by <(K) the language of fields enriched with
constant symbols for the elements of K. Every formula ¢(Y,..., ¥,)) of ¥(K)
can be written (effectively, in the explicit case) in a prenex normal form:

-k i
@)+ @) [V A St 1) =0 g 1) #0).
= J=

where f};, ;€ K|X,Y]. The formula in the brackets defines a K-
constructible set A4 < A™*™" We can construct a K-normal basic
stratification A™*" ={),.;4; such that for every i€/ either 4,£4 or
A, A" — 4. In the first case define C; =4, and Con(d,) = {¢id)}, in the
second case define C, =4, and Con(4,) = the empty family. Let % be the
corresponding Galois stratification and define ¢ as in (1). Obviously, if
by, b, € M, then M &= 6(b) if and only if M= o(b).

Applying Lemmas 3.4 and 3.5 on 6(Y,,.., Y,) m times we eliminate its
quantifiers one by one. Thus:

THEOREM 3.7. Every Galois formula 0(Y|,.,Y,) is equivalent to a
Galois formula t©(Y,,.., Y,) without quantifiers, i.e., for by,...b, €M we
have M= 0(b) if and only if M &= t(b).
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Moreover, t depends only on 6, K and % but not on M and, in the explicit
case, it can be effectively computed if 0 is presented.

In particular, if =0, then 6 is a Galois sentence and t has the form
Ar 0< Con, where Con is a conjugacy domain of subgroups of Z(L/K)
belonging to #, and L is a finite Galois extension of K. We therefore have
the following

THEOREM 3.8. Let 0 be a Galois sentence. Then we can find (effectively,
in the explicit case) a finite Galois extension [, of K (that depends only on 8
but not on %) and a conjugacy domain Con of subgroups of Z(L/K)
belonging 1o % such that if M' is q Frobenius field containing K and
CM") =%, then M' =0 if and only if 7 (L/L M) € Con,

Interestingly enough we now find the converse to Remark 3.6 to be also
true:

COROLLARY 3.9. Let 6 be a Galois sentence. Then one can find q
sentence ¢ in % (K) such that

MEIsM =y
Jor any Frobenius field M’ extending K with ¢ (M') = #.

Progf. Let L and Con be as in Theorem 3.8. With no loss we may
assume that Con is a conjugacy class, generated by some H € %. Find
Qg Aypeny &y € L, such that K(a,) = L(H), K(a)),...K(a,)=L are all the
distinct intermediate fields in L/L(H), and find their respective irreducible
polynomials f;.,..., /., over K. The sentence

n

O =0 A N\ (v1)]/(¥) # 0]

is obviously the desired sentence 0.

4. MODEL-THEORETIC APPLICATIONS

As in Section 3 we consider a fixed basic field K. We start with
applications to general Frobenius fields containing K and the specialize to
the case where the absolute Galois groups are free.

THEOREM 4.1. Let M, and M, be two perfect Frobenius fields containing
K. Then M, is elementarily equivalent to M, with respect to the language
LK) if and only if EF(M,)=%(M,) and KiNM, = K.NM,. In
particular, if M, is algebraically closed in M, and #(M,) = % (M,), then M,
is an elementary subfield of M,.
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Progf. The “if” part is an immediate corollary of Theorem 3.8 and
Remark 3.6. the “only if” part is a special case of Lemma 5 of Ax [1]. H

Let % be a family of finite groups and denote by T(K, %) the theory of all
sentences 8 in &(K) that are true in every perfect Frobenius field M’ that
contains K and satisfies #(M') =%

The following Lemma is needed to establish a decision procedure for
T(K, 7).

LEmMMA 4.2. Let G be a countably generated profinite group that has the
embedding property and such that cd(G)< 1. Let L be a finite Galois
extension of a countable Hilbertian field K and let H be a subgroup of
C(LJK). If HEF(G), then there exists a perfect Frobenius Sield M,
algebraic over K, with G(M) = G such that L M is the fixed field of H in
L.

Proof. Denote by K, the fixed field of H in L. We first show that there
exists a PAC algebraic extension E of K, and a Galois extension F of E with
G as the Galois group such that L S/ and the map Res,:
Z(F/E)— % (L/K,) is surjective. To do this we consider a sequence
(ST ysees Ty X)y 81T 5eees T,i))}:?‘;1 of all pairs of polynomials with coef-
ficients in KOV such that f; is absolutely irreducible and g; % 0. We may view
G as a projective limit of a sequence

nH n T
H:Goﬁ——-——Gl(_L—Gz(_i‘..

of finite groups G, with epimorphisms ;. Then we construct, by induction,
increasing sequences K, &K, €K, <.+ and L=L,cL, &L, of
finite separable extensions of X, such that for every i > O:

(a) there exist @y,..., a,, b in K, such that fi(a, b) = 0 and gla)++0 (if
i>1);

(b) the field L, is a Galois extension of K; and there is an
isomorphism w;: Z(L/K;)x G

(c) the following diagram is commutative:

(L., VKip 1) e Z(L/K;)

L Lo

Gy — G;
Indeed, the transition from K, to K;,, can be done by first adjoining a root
(a, b) of f;,, such that K(a,b) is linearly disjoint from L, over K; and
g:.,(a)# 0. Then one applies Theorem 3 of Kuyk [15] to construct K,
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and L, ,. The desired fields £ and F can now be taken as
E=UZ, K, F=U{,L,. That E is PAC follows by Weil’s “descent”
theory (see also the proof of Lemma 4.1 of [4]),

Thus we obtain an exact sequence

- GF)- GE)-»G-'1

that splits, since cd(G) < 1 (see Gruenberg |7, p. 164]). Hence there exists a
perfect algebraic extension M of E with G(M)= G such that FAM=E,
which implies L "M = K. Again, M is an Ax-field, since £ is an Ax-field.
By assumption G(M) has the embedding property, hence M is a Frobenius
field by Theorem 1.2. §

COROLLARY 4.3. Let G be a countably generated profinite group. Then
there exists a countable Frobenius field M with GM)=G if and only if G
has the embedding property and cd(G)< L.

Proof. By virtue of Lemma 4.2 it suffices to remind that if M is an Ax-
field, then cd(G(M)) <1 (see [2,p.269]).

Remarks. (a) Using Lemmas 6.1, 6.3 and 2.3 of [11], one can prove
Lemma 4.2 and hence its corollary for the case in which the restriction on G
to be countably generated is omitted. However, the field M obtained in this
case is no longer algebraic over K nor is it countable. This method is used
by Lubotzky and van den Dries in [19] to prove that for every profinite
group G with cd(G) < 1 there exists a PAC field M such that GM)=G.

(b) There exist profinite groups G that have the embedding property
and for which ¢d(G) > 2. For example, if G = L,X Z,, then cd(G) =2, by
Proposition 4.4 [22, p. 221], while it has a pair of free generators and hence
it has the embedding property.

Problem 4.4.  Does there exist a profinite group G with cd(G) < | that
does not have the embedding property?
The existence of such a group would provide an example of a PAC field

which is not a Frobenius field.

THEOREM 4.5. Let K be a Hilbertian Jield with elimination theory. If M
is a Frobenius field containing K, and & =% (M) is a primitive recursive
Jamily of finite groups, then the theory T(K, %) is primitive recursive.

Proof.  Using the Skolem-Léwenheim theorem one can assume, without
loss of generality, that M is countable. Hence G(M) is countably generated
and it has the embedding property.

Starting now with a given sentence 6 of Z(K) we find a finite Galois
extension L of K and a conjugacy class Con as in Theorem 3.8. Applying
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Lemma 4.2 for G=GM) we find that € T(K,%) if and only if
Con= {H < Z(L/K)|H € #}. The validity of the last equality can be effec-
tively checked, since we are in the explicit case. |

Let now & be a family of finite groups closed under the operation of
taking subgroups, homomorphic images and extensions (we then say that &
is a full family), and let e>0 be an integer. Consider the subfamily
D, = {G € Z |rank(G) < e}. If M is a field, then #(M) = &, if and only if
GM)=F,(2)=the free pro-Z-group on e generators (cf. [10,
Theorem 2.4} and Schuppar [24, Satz 2.1]). If M is a Frobenius countable
field, then (M) =2 if and only if G(M) = F, (%) = the free pro-Z-group
on N, generators. We also recall that a &-free PAC field M is a Frobenius
field.

LEMMA 4.6. Under the above assumptions cd(F(2))< 1 for every
0Legw.

Proof. Consider the (non-proper) embedding problem

F(2)

|-

|~ C— B d—1

where the short sequence of finite groups is exact, n if surjective and C is an
elementary abelian p-group. We have to show that there exists a
homomorphism y: F,(Z) - B such that fo y = (cf. Ribes [22, p. 211]). We
consider the case where e < w. The case e =w may be treated similarly.
Observe that A € Y. If Z/pZ € &, then B € & and hence y can be defined
by considering generators x,,..., X, for F (), taking elements b,,..., b, such
that Bb,=mnx; for i=1l,.,e, and defining yx;=b, for i=1l,.,e If
Z/pZ & &, then the order of 4 is relatively prime to p. In this case the short
sequence splits, by Schur~Zassenhaus’ Theorem and the existence of y is
obvious. 1

It follows from Lemmas 4.2 and 4.6 that for every 0 < e € w there exists a
Frobenius field with F,(2) as its absolute Galois group. The following
Theorem uses this fact and shows that, in a certain sense, the theory 7(K, &)
is a limit of the theories T(K, &,) as e approaches w.

THEOREM 4.7. Let & be a full family of finite groups, suppose that K is
a countable Hilbertian field and let 0 be a sentence of ¥ (K). Then
€ T(K,2) if and only if there exists an e, such that 6 € T(K, Z,) for every
g, Le<w.
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In the explicit case the theories 7K, 2,) and T(K,%) are primitive
recursive. Moreover, the function “eo(0) = the smallest e, which
g€ T(K,Z,) for every e >e,” is primitive recursive. Hence the intersection
(2 T(K, Z,) is also a primitive recursive theory.

Proof. Only the existence of e, has to be proved. The rest is a special
case of Theorem 4.5. Indeed, let § be a sentence of Y(K) and consider the
elimination of quantifiers procedure via Galois stratification of 8, as
described in Section 3. Denote by e, the maximal rank of the (finitely many)
subgroups of the Galois groups of the Galois covers that occur in the
procedure. If e>e,, then the conjugacy domain Con of subgroups of
% (L/K) (we are using the notation of Theorem 4.6) obtained with respect to
the family is equal to the corresponding domain Con, obtained with respect
to &,. Hence 0€T(K,2,) for every w> eze, if and only if
feTK,2) §

Consider now the special case where & is the family of all finite groups.
Write  T,(K) and T,(K) for T{(K, “,) and T(K,%). For every
Oyss 0, € G(K) we denote by K(c) the fixed field of Oyvy 0, in K. Then
K(0) is an e-free Ax-field for almost all ¢ € G(K)* (cf. Lemma 7.2 of [13]).
Here “almost all” is used in the sense of the normalized Haar measure u of
the compact group G(K). For every sentence 6 of Y(K) we denote
A4,(0)={o € G(K)|K(o) = 0}. Then Theorems 3.8 and 4.7 yield the
following strengthening of the results of [13] and [11].

THEOREM 4.8. Let K be a countable Hilbertian Jield and let 0 be ¢
sentence of ¥ (K). Then:

(a) The set A,(0) is measurable and WA A8)) is a rational number.

(b) We have u(A4,(9)) =1 if and only if 0 € T (K)., ie., 0 is true in
every e-free Ax-field that contains K.

(c) We have 0€ T (K) if and only if there exists an e, such that
0 € T(K) for every e, < e < w.

(d) If K has elimination theory, then the theories T(K), T (K) and
(Vi TAK) as well as the functions u(A,(0) and ey(B) are primitive
recursive.

Progf.  (a) Let L and Con be as in Theorem 3.8. Then u(A4,(6)) is equal
to the number of e-tuples (G,,..,4,) in 2 (L/K)° that generate groups
belonging to Con, divided by [L: K¢,

(b) If u(4,(0))=1 and if F is an e-free Ax-field, then there exists a
0 € A4,(0) such that L N K(0) =L N F. Tt follows by Theorem 3.8 that 6 is

true in F.
The rest of the Theorem is a special case of Theorem 4.7. |
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Another case of interest is where & is the family of all finite p-groups. In
this case & is primitive recursive and Theorem 4.7 applies.

More generally, let S' be a non-empty set of prime numbers and consider
the family of all finite nilpotent groups whose orders are divisible only by
primes belonging to S. This is a primitive recursive family but it is not
closed under extensions. However, the free pro-&-group on e generators is
F(2)= HPGSF (p), for every 0<e<w. It has a system of e free
generators and has therefore the embedding property. Moreover cd(F (@) =
max, . cdp(Fe(p)) = 1. Thus, the proof of Theorem 4.7 remains valid in this
case and therefore the same applies for its consequences.

We end up this work by asking:

Problem 4.9. Is the theory of all perfect Frobenius fields decidable?

Note added in proof. Most of the problems raised in this work have been resolved since
this paper was submitted for publication. Problems 1.7, 1.8, and 4.5 got negative answers by
Haran and Lubotzky’s Proposition 3.3 [Embedding covers and the theory of Frobenius fields,
Israel J. Math. 41 (1982), 181-201}. Ershov and Fried [Frattini covers and projective groups
without the extension property, Math. Anal. 253 (1980), 233-239| were the first to give a
negative answer to Problem 4.5. Finally, Haran and Lubotzky [ibid., Theorem 4.4] proved
that the theory of perfect Frobenius fields is primitive recursive. This is a positive solution to
Problem 4.10. The recursiveness of the theory of Frobenius fields is also proved by Cherlin,
van den Dries, and Macintyre |The elementary theory of regularly closed fields, Crelle J., in
press|.
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