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Abstract

We give an elementary self-contained proof of the following result, which Pop proved

with methods of rigid geometry.

Theorem: Let L0/K0 be a finite Galois extension of complete discrete valued fields.

Let t be a transcendental element over K0, let K = K0(t) and L = L0(t). Then each

finite split embedding problem G → G(L/K) over K has a solution field F which is

regular over L0.

This gives a new proof of the theorem of Fried-Pop-Völklein:

Theorem: The absolute Galois group of a countable separably Hilbertian PAC field

K is the free profinite group on countably many generators.
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Introduction

The main goal of this work is to give a new proof to the following result:

Theorem A: Every separably Hilbertian PAC field K is ω-free.

Recall that K is separably Hilbertian if it satisfies the Hilbert irreducibility

theorem with respect to irreducible polynomials f(T,X) which are separable in X [FrJ,

p. 147]. It is PAC if every nonvoid absolutely irreducible variety defined overK has aK-

rational point. Finally, K is ω-free if each finite embedding problem over K is solvable.

That is, given a finite Galois extension L/K and an epimorphism π: G→ G(L/K) from

a finite group G, there exists a Galois extension N of K which contains L and there

exists an isomorphism ψ: G(N/K) → G such that π ◦ ψ = resL.

Theorem A was stated as Open Problem 24.41 in [FrJ]. The problem was first

solved for char(K) = 0 by Fried and Völklein [FrV, p. 474], and then by Pop [Po1,

Thm. 1] in the general case. Both Fried-Völklein and Pop use heavy analytical machin-

ery in their proofs. Fried-Völklein use complex analytical methods, while Pop uses rigid

analytical geometry.

Following [HaV], we propose here an elementary algebraic proof, which, together

with [HaV], is self-contained and easy to access. The only rudiments from analysis

we use are simple properties of fields of convergent power series over complete discrete

valued fields, which we develop ad hoc.

To prove Theorem A, one first observes that K, as a PAC field, is existentially

closed in the field K((t)) of formal power series in the variable t. The latter is complete

with respect to a nontrivial ultrametric absolute value | | having t as a prime element

and K as a residue field. This reduces Theorem A to the following result (see also

Lemma 6.2):

Proposition B: Let K0 be a field complete with respect to a nontrivial ultrametric

absolute value. Let x be transcendental over K0. Then each finite constant split

embedding problem over K0(x) has a rational solution.

That is, letK be a finite Galois extension ofK0, with Galois group Γ. Suppose that

Γ acts on a finite group G, and let pr: GoΓ → Γ be the projection on Γ. Then K0(x) has
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a Galois extension F which containsK, there is an isomorphism ψ: G(F/K0(x)) → GoΓ

such that pr ◦ ψ = resK , and F has a K-rational place.

For technical reasons the proof of Proposition B requires that the residue field of

K0 is infinite and K/K0 is an unramified extension. However, the same reduction step

from Proposition B to Theorem A removes these conditions and even leads to a quite

general result:

Theorem C: Let K0 be an ample field. Then each finite constant split embedding

problem over K0(x) has a rational solution.

We refer to §6 for a definition of ‘ample field’ and note here only that PAC fields,

PRC fields, PpC fields, and Henselian fields are all ample.

Finally we note that Pop proves more than Proposition B: Let E be a function

field of one variable over K0. Then every finite split embedding problem over E has a

regular solution [Po2, Thm. 2.7]∗. That is, if F/E is a finite Galois extension, K is the

algebraic closure of K0 in F , and Γ = G(F/E) acts on a finite group G, then E has a

Galois extension F̂ which contains F , is regular over K, and there is an isomorphism

θ: G(F̂ /E) → Go Γ such that pr ◦ θ = resF . This stronger result is however not needed

for the proof of Theorems A and C.

Theorem C and Pop’s result are affirmative instances of the following general

conjecture:

Conjecture D (Dèbes - Deschamps [DeD]): Let E be a function field of one variable

over an arbitrary field K0. Then every finite split embedding problem over E has a

regular solution.

Note that Conjecture D gives a positive answer to the Inverse Galois Problem: Is

every finite group realizable over Q?

* This result does not appear in the later version [Po3].
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1. Split embedding problems

A finite split embedding problem over a field E0 is an epimorphism

(1) π: Go Γ → Γ

of finite groups, where Γ = G(E/E0) is the Galois group of a Galois extension E/E0, G

is a finite group on which Γ acts, Go Γ is the corresponding semidirect product, and π

is the projection on Γ. A solution of (1) is a Galois extension F of E0 which contains

E and an isomorphism γ: G(F/E0) → G such that π ◦ γ = resE . We propose a general

setting in which the embedding problem is solvable.

The first step is to realize G over E. That is, to construct a Galois extension F

of E with G(F/E) = G. Assuming that we have already realized a set of subgroups of G

(usually cyclic groups) which generate G, we ‘patch’ the realizations of these subgroups

into a realization of G, as in [HaV].

Definition 1.1: Patching data. Let I be a finite set with |I| ≥ 2. A patching data

E = (E,Fi, Qi, Q;Gi, G)i∈I

consists of fields E ⊆ Fi, Qi ⊆ Q and finite groups Gi ≤ G, i ∈ I, such that

(2a) Fi/E is a Galois extension with group Gi, i ∈ I;

(2b) Fi ⊆ Q′
i, where Q′

i =
⋂

j 6=iQj , i ∈ I;

(2c)
⋂

i∈I Qi = E; and

(2d) G = 〈Gi | i ∈ I〉.

(2e) (Decomposition) Let n = |G|. For all B ∈ GLn(Q) and i ∈ I there exist B1 ∈

GLn(Qi) and B2 ∈ GLn(Q′
i) such that B = B1B2.

We extend E by more fields and algebras. For each i ∈ I let Pi = FiQi be the

compositum of Fi and Qi in Q. Conditions (2b) and (2c) imply that Fi ∩ Qi = E.

Hence Pi/Qi is a Galois extension with Galois group isomorphic (via the restriction of

automorphisms) to Gi = G(Fi/E). Identify G(Pi/Qi) with Gi via this isomorphism.

Consider the algebra

N = IndG
1 Q =

{ ∑
θ∈G

aθθ | aθ ∈ Q
}
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of dimension |G| over Q. Addition and multiplication are defined in N component-wise,

Q is embedded diagonally in N , and G acts on N from the right:

(3)
( ∑

θ∈G

aθθ
)σ

=
∑
θ∈G

aθσ
−1θ =

∑
θ∈G

aσθθ, σ ∈ G.

The action of G commutes with the addition and the multiplication in N .

For each i ∈ I consider the following Qi-subalgebra of N :

(4) Ni = IndG
Gi
Pi =

{ ∑
θ∈G

aθθ ∈ N | aθ ∈ Pi, a
τ
θ = aθτ for all θ ∈ G, τ ∈ Gi

}
.

Then Ni is G-invariant, NG
i = Qi, and dimQi

Ni = dimQN [HaV, Lemma 3.1]. It

follows that F =
⋂

i∈I Ni is an E-algebra which is G-invariant. We call F the co-

compound of the patching data E , and consider the patching diagram associated

with E :

(5)

Ni N

�
�
�

�
�
�

Qi Pi Q

F

�
�
�

E Fi Q′
i

Lemma 1.2: There exists a basis of N over Q which is also a basis for Ni over Qi, for

each i ∈ I.

Proof: For each subset J of I we find, by induction on |J |, a basis VJ of N over Q that

is also a basis of Ni over Qi, for each i ∈ J . For J = I this will prove our assertion.

For J = ∅ there is nothing to be proved. Suppose that |J | ≥ 1, choose k ∈ J , and

let J ′ = J r{k}. By assumption there is a basis VJ′ of N over Q that is also a basis of

Ni over Qi, for each i ∈ J ′.
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Remark 3.2 of [HaV] constructs a basis Vk of N over Q that is also a basis of Nk

over Qk. Hence there is a matrix B ∈ GLn(Q) such that VkB = VJ′ . Condition (2e)

gives A ∈ GLn(Qk) and M ∈ GLn(Q′
k) ⊆ GLn(Qi), for i ∈ J ′, such that B = AM . Let

VJ = VJ′M
−1. Then VJ is a basis of N over Q which is also a basis of Ni over Qi, for

each i ∈ J ′. Moreover, VJ is also a basis of Nk over Qk, because VJ = VkBM
−1 = VkA.

So, the induction is complete.

Lemma 1.2 asserts condition (COM) of [HaV]. Hence, the following consequence

of [HaV, Prop. 3.4] is true:

Lemma 1.3:

(a) F is a Galois field extension of E with Galois group G (via restriction from N);

(b) there is an E-embedding of F into Q.

To solve the finite split embedding problem (1) we need a ‘proper’ action of Γ on

the patching data.

Definition 1.4: Let E/E0 be a finite Galois extension with Galois group Γ. Let E be a

patching data (Definition 1.1). A proper action of Γ on E is a triple that consists of

an action of Γ on the group G, an action of Γ on the field Q, and an action of Γ on the

set I such that the following conditions hold:

(6a) The action of Γ on Q extends the action of Γ on E;

(6b) F γ
i = Fiγ , Qγ

i = Qiγ , and Gγ
i = Giγ , for all i ∈ I and γ ∈ Γ;

(6c) (aτ )γ = (aγ)τγ

for all a ∈ Fi, τ ∈ Gi, i ∈ I, and γ ∈ Γ.

The action of Γ on G defines a semidirect product Go Γ such that τγ = γ−1τγ for all

τ ∈ G and γ ∈ Γ. Let π: Go Γ → Γ be the canonical projection.

Proposition 1.5: Suppose that Γ = G(E/E0) properly acts on the patching data E .

Then F/E0 is Galois and there is an isomorphism ψ: G o Γ → G(F/E0) such that

resE ◦ ψ = π.

Proof: We break the proof of the proposition into three parts.

5



Part A: The action of Γ on F . The actions of Γ on Q and on G combine to an action

of Γ on the Q-algebra N :

(7)
( ∑

θ∈G

aθθ
)γ

=
∑
θ∈G

aγ
θθ

γ aθ ∈ Q, γ ∈ Γ.

Let i ∈ I and γ ∈ Γ. Then Pi = QiFi, and hence, by (6b), P γ
i = Piγ . Moreover, we

have identified G(Pi/Qi) with Gi = G(Fi/E) via restriction. Hence, by (6b), for all

a ∈ Qi and τ ∈ Gi, we have (aτ )γ = aγ = (aγ)τγ

. This, together with (6c), gives

(8) (aτ )γ = (aγ)τγ

for all a ∈ Pi and τ ∈ Gi.

Next, we claim that Nγ
i = Niγ . Indeed, if a =

∑
θ∈G aθθ ∈ Ni, then aθ ∈ Pi and

aτ
θ = aθτ for all θ ∈ G and τ ∈ Gi. By (7), aγ =

∑
θ∈G bθθ where bθ = aγ

θγ−1 ∈ Piγ . For

each σ ∈ Giγ there exists τ ∈ Gi such that σ = τγ . Hence, by (8),

bσθ =
(
aγ

θγ−1

)τγ

=
(
aτ

θγ−1

)γ = aγ

θγ−1τ
= aγ

(θτγ)γ−1 = bθσ,

and therefore aγ ∈ Niγ . This proves that Nγ
i ⊆ Niγ . Applying this rule to iγ and γ−1

instead of to i and γ, we get Nγ−1

iγ ⊆ Ni. Hence Niγ ⊆ Nγ
i . So, Nγ

i = Niγ , as asserted.

Thus, γ permutes the Ni’s and therefore F γ = F . It follows that (7) gives an

action of Γ on F .

Part B: The action of GoΓ on F . Let a =
∑

θ∈G aθθ ∈ N , let γ ∈ Γ, and let σ ∈ G.

Then, by (7) and (3),((
aγ−1)σ

)γ

=
(( ∑

θ∈G

aγ−1

θ θγ−1)σ
)γ

=
( ∑

θ∈G

aγ−1

θ σ−1θγ−1
)γ

=
∑
θ∈G

aθ(σγ)−1θ = aσγ

.

It follows that the actions of Γ and G on N combine to an action of G o Γ on N . As

both Γ and G leave F invariant, Go Γ acts on F .

Part C: Conclusion of the proof. As FG = E and EΓ = E0, we have FGoΓ = E0.

Furthermore [F : E0] = [F : E] · [E : E0] = |G| · |Γ| = |G o Γ|. By Galois theory,

G(F/E0) = G o Γ and the restriction res: G(F/E0) → G(E/E0) coincides with the

canonical map π: Go Γ → Γ.
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2. Ultrametric valued rings

We will construct patching data over fields K(x), where K is a complete ultrametric

valued field. The ‘analytic’ fields Qi will be the quotient fields of certain rings of

convergent power series in several variables over K. At a certain point in a proof

by induction we will consider a ring of convergent power series in one variable over a

complete ultrametric valued ring. So, we start by recalling the definition and properties

of the latter rings.

Let A be a commutative ring with unity equipped with a nontrivial ultrametric

absolute value | |. That is, a 7→ |a| is a map A→ R satisfying:

(1a) |a| ≥ 0, and |a| = 0 if and only if a = 0;

(1b) there is a ∈ A with 0 < |a| < 1;

(1c) |ab| = |a| · |b|; and

(1d) |a+ b| ≤ max(|a|, |b|).

By (1a) and (1c), A is an integral domain. By (1c), the absolute value of A

extends to an absolute value on the quotient field of A (by |ab | = |a|
|b| ). It also follows

that | − a| = |a|, and

(1d′) if |a| < |b|, then |a+ b| = |b|.

Assume, furthermore, that

(1e) A is complete with respect to | |, i.e., every Cauchy sequence in A converges.

It then follows from (1d) that a series
∑∞

n=0 an of elements of A converges if and only

if an → 0. Also, if an → a and a 6= 0, then |an| = |a| for large n.

Let A[[x]] the ring of formal power series in the variable x over A. Consider the

following subring of A[[x]]:

(2) A{x} =
{ ∞∑

n=0

anx
n‖an ∈ A, lim

n→∞
an = 0

}
.

Definition 2.1: For f =
∑∞

n=0 anx
n ∈ A{x} let |f | = max |an|. If f 6= 0, we define the

pseudodegree of f to be the integer d = max{n ≥ 0 | |an| = |f |}. If ad is invertible in

A, we call f regular. In particular, if A is a field, then each 0 6= f ∈ A{x} is regular.

7



By [HaV, Lemma 1.3], (A{x}, | |) is a complete ultrametric valued ring. Using an

analog of Weierstraß’ division theorem, [HaV] proves the following result, which, among

others, implies that if A is a field, then A{x} is a principal ideal domain.

Lemma 2.2 ([HaV, Cor. 1.7]): Let f ∈ A{x} be regular of pseudodegree d. Then

f = qg, where q is a unit of A{x} and g ∈ A[x] is a monic polynomial of degree d with

|g| = 1.
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3. Rings of convergent power series of several variables

Let E = K(x) be the field of rational functions in the variable x over a field K. Let I

be a nonempty finite set. For each i ∈ I let ci be an element of K. Assume that ci 6= cj

if i 6= j. For each i ∈ I let wi = 1
x−ci

∈ K(x).

Lemma 3.1:

(a) For all i 6= j in I and for each nonnegative integer m

(1) wiw
m
j =

wi

(ci − cj)m
−

m∑
k=1

wk
j

(ci − cj)m+1−k
.

(b) Given nonnegative integers mi, i ∈ I, not all zero, there exist aik ∈ K such that

(2)
∏
i∈I

wmi
i =

∑
i∈I

mi∑
k=1

aikw
k
i .

(c) Every f ∈ K[wi | i ∈ I] can be uniquely written as

(3) f = a0 +
∑
i∈I

∞∑
n=1

ainw
n
i

where a0, ain ∈ K and almost all of them are zero.

Proof of (a) and (b): Starting with the identity

(4) wiwj =
wi

ci − cj
+

wj

cj − ci

one proves (1) by induction on m. Then one proceeds by induction on |I| and maxi∈I mi

to prove (2).

Proof of (c): The existence of the presentation (3) follows from (b). To prove the

uniqueness we assume that f = 0 in (3) but ajk 6= 0 for some j ∈ I and k ∈ N. Then,∑∞
n=1 ajnw

n
j = −a0 −

∑
i 6=j

∑∞
n=1 ainw

n
i . The left hand side has a pole at cj while the

right hand side has not. This is a contradiction.

From now on we assume thatK is complete with respect to a nontrivial ultrametric

absolute value | |, as in §2. Furthermore assume that

(5) |ci| ≤ |ci − cj | = 1 for all i, j ∈ I, i 6= j.
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Let E = K(x) be the field of rational functions over K in the variable x. Then

|
∑
anx

n| = maxn |an|, an ∈ K, extends | | to an ultrametric absolute value of K[x],

which further extends to E. Let Ê be the completion of E with respect to | | [CaF,

p. 47].

We proceed to define rings of convergent power series of several variables over E.

In the language of rigid geometry, these are the rings of holomorphic functions on the

complements in the projective line P1(K) of finitely many open discs. Quotient fields

of these rings will be our ‘analytic’ fields Qi in a patching data over E that we start to

assemble.

Remark 3.2: (a) |x| = |wi| = 1 for each i ∈ I.

(b) Let K̄ ⊆ Ē be the residue fields of K ⊆ E with respect to | |. Denote the

image in Ē of an element g ∈ K(x) with |g| ≤ 1 by ḡ. Then x̄ is transcendental over

K̄. Indeed, let h be a monic polynomial over K̄. Lift it to a monic polynomial p with

coefficients in the valuation ring of K such that p̄ = h. As |p(x)| = 1, we have p̄(x̄) 6= 0.

It follows that Ē = K̄(x̄) is the field of rational functions over K̄ in the variable x̄.

(c) If | |′ is an extension of the absolute value | | of K to E such that the residue

x′ of x with respect to | |′ is transcendental over K̄, then | |′ coincides with | |.

Indeed, let p(x) =
∑
anx

n be a nonzero polynomial in K[x]. Let |ad| = max |an|.

Then (a−1
d p(x))′ =

∑
(a−1

d an)′(x′)n 6= 0 (the prime indicates the residue with respect

to | |′) and therefore |a−1
d p(x)|′ = 1. So, |p(x)|′ = |ad| = |p(x)|.

(d) It follows from (c) that if γ is an automorphism of E that leaves K invariant,

preserves the absolute value of K, and xγ is transcendental over K̄, then γ preserves

the absolute value of E.

(e) In particular, suppose that K is a finite Galois extension of a complete field

K0 with respect to | |. Let γ ∈ G(K/K0) and extend γ in the unique possible way to

an element γ ∈ G(E/K0(x)). Then γ preserves | | on K [CaF, p. 56] and xγ = x. By

(d), γ preserves | | also on E.

(f) Now suppose that y = ax+b
cx+d with a, b, c, d ∈ K such that |a|, |b|, |c|, |d| ≤ 1

and ād̄ − b̄c̄ 6= 0. Then āx̄ + b̄ and c̄x̄ + d̄ are nonzero elements of K̄(x̄) and therefore
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ȳ = āx̄+b̄
c̄x̄+d̄

∈ K̄(x̄). Moreover, K̄(x̄) = K̄(ȳ) and therefore ȳ is transcendental over K̄.

Conclude from (c) that the unique K-automorphism of K(x) given by x 7→ y preserves

the absolute value.

(g) For f as in (3) we have |f | = maxi,n{|a0|, |ain|}. Indeed, we may assume that

f 6= 0. Divide f by the coefficient with the maximal absolute value, if necessary, to

assume that maxi,n{|a0|, |ain|} = 1. By (a), |f | ≤ 1. Thus

f̄ = ā0 +
∑
i∈I

∞∑
n=1

āinw̄
n
i .

with ā0, āin ∈ K̄ almost all, but not all, zero. Note that w̄i = 1
x̄−c̄i

for i ∈ I, and c̄i 6= c̄j

(by (5)), if i 6= j. By (b), x̄ is transcendental over K̄. By Lemma 3.1, applied to K̄ and

x̄ instead of to K and x, we have f̄ 6= 0. Therefore |f | = 1.

(h) Multiply w−1
j − w−1

i = ci − cj by wi to get that

wi

wj
= 1 + (ci − cj)wi

is in K[wi]. Similarly, wj

wi
∈ K[wj ]. Hence wi

wj
is invertible in K[wi, wj ].

Let R = K{wi | i ∈ I} be the closure of K[wi | i ∈ I] in Ê. Our first result gives

a Mittag-Leffler decomposition of each f ∈ R (cf. [FrP, p. 7] for K algebraically closed).

Lemma 3.3: The ring R is the completion of K[wi | i ∈ I] with respect to the absolute

value. In particular, | | is a nontrivial complete ultrametric absolute value on R. Each

element f of R has a unique presentation as a multiple power series:

(6) f = a0 +
∑
i∈I

∞∑
n=1

ainw
n
i ,

where a0, ain ∈ K, and |ain| → 0 as n→∞. Moreover, |f | = maxi,n{|a0|, |ain|}.

Proof: Each f as in (6) is a well defined element of Ê. The partial sums fd =

a0 +
∑

i∈I

∑d
n=1 ainw

n
i belong to K[wi | i ∈ I] and converge to f . Hence f ∈ R. By

Remark 3.2(g), |fd| = maxi,n{|a0|, |ain|} for each sufficiently large d. Hence, |f | =

maxi,n{|a0|, |ain|}.
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Therefore, if gk = ak,0 +
∑

i∈I

∑∞
n=1 ak,inw

n
i , k = 1, 2, 3, . . ., form a Cauchy

sequence in R, then, each of the sequences {ak,0 | k = 1, 2, 3, . . .} and {ak,in | k =

1, 2, 3, . . .} is Cauchy. Since K is complete, ak,0 → a0 and ak,in → ain for some a0, ain ∈

K. Let f be as in (6). Then, |ain| → 0 and gk → f .

The uniqueness of the presentation (6) is a consequence of Remark 3.2(g).

Remark 3.4: Let K{x} be the closure of K[x] in the completion Ê of E. By [HaV,

§1], K{x} consists of all convergent power series f =
∑∞

n=0 anx
n, with an ∈ K, an → 0

as n→∞, and |f | = max{|an|}n≥0.

Let i ∈ I. By Remark 3.2(f), the map x 7→ wi extends to a K-automorphism α of

K(x) which preserves | |. As α maps K[x] onto K[wi], its restriction to K[x] extends

to an isomorphism of the completions K{x} → K{wi}. Extend this isomorphism to an

isomorphism of the quotient fields. The latter isomorphism extends α.

Call the partial sum in (6),
∑∞

n=1 ainw
n
i , the i-component of f .

Remark 3.5: Each c ∈ K with |c| > 1 defines an evaluation homomorphism R→ K

given by

f = a0 +
∑
i∈I

∞∑
n=1

ainw
n
i 7→ f(c) = a0 +

∑
i∈I

∞∑
n=1

ain(
1

c− ci
)n.

Indeed, | 1
c−ci

| = 1
|c| < 1.

Lemma 3.6 (Degree shifting): Let f ∈ R be given by (6). Fix i 6= j in I. Let∑∞
n=1 a

′
inw

n
i be the i-component of

wj

wi
f ∈ R. Then

(7) a′in = −
∞∑

r=n+1

air

(cj − ci)r−n
n = 1, 2, 3, . . .

Furthermore, let m ≥ 1 be an integer, and let
∑∞

n=1 binw
n
i be the i-component of

(wj

wi
)mf . Let ε ≥ 0 be a real number and let d be a positive integer.

(a) If |ain| ≤ ε for each n ≥ d+ 1, then |bin| ≤ ε for each n ≥ d+ 1−m.

(b) Let d > m. If |ain| < ε for each n ≥ d + 1 and |aid| = ε, then |bin| < ε for each

n ≥ d+ 1−m and |bi,d−m| = ε.
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(c)
∑∞

n=1 ainw
n
i is a polynomial in wi if and only if

∑∞
n=1 binw

n
i is.

Proof: By Remark 3.2(h), wj

wi
f ∈ R. So, the above statements make sense.

Proof of (7): We may assume that a0 = ai1 = 0 and akr = 0 for each k 6= i and

each r. Indeed, wj

wi
= 1 + (cj − ci)wj ∈ K{wj}. Hence, by (1), wj

wi
· wr

k ∈ K{wl | l 6= i}.

Furthermore, wj

wi
·wi = wj ∈ K{wl | l 6= i}. Hence a0, ai1 and the akr do not contribute

to the i-component of wj

wi
f .

Thus f =
∑∞

r=2 airw
r
i . Hence, by (1),

wj

wi
f =

∞∑
r=2

airwjw
r−1
i =

∞∑
r=2

air

[ wj

(cj − ci)r−1
−

r−1∑
n=1

wn
i

(cj − ci)r−n

]
=

∞∑
r=2

air

(cj − ci)r−1
wj −

∞∑
n=1

∞∑
r=n+1

air

(cj − ci)r−n
wn

i

,

from which (7) follows.

Proof of (a) and (b): By induction on m it suffices to assume that m = 1. In this

case we have to prove: (a) If |ain| ≤ ε for each n ≥ d+ 1, then |a′in| ≤ ε for each n ≥ d;

(b) assuming d ≥ 2, if |ain| < ε for each n ≥ d + 1 and |aid| = ε, then |a′in| < ε for

each n ≥ d and |a′i,d−1| = ε. By (5), |ci − cj | = 1. Hence, (a) follows from (7) with

n = d, d+ 1, d+ 2, . . . and (b) follows from (7) with n = d− 1, d, d+ 1, . . . .

Proof of (c): Again, it suffices to prove that
∑∞

n=1 ainw
n
i is a polynomial if and

only if
∑∞

n=1 a
′
inw

n
i is a polynomial.

If
∑∞

n=1 ainw
n
i is a polynomial, then |ain| = 0 for all large n. It follows from (a),

with ε = 0, that |a′i,n−1| = 0 for all large n. Hence,
∑∞

n=1 a
′
inw

n
i is a polynomial.

If
∑∞

n=1 ainw
n
i is not a polynomial, then for each d0 there exists d > d0 such that

aid 6= 0. Increasing d, if necessary, we may assume that |ain| < |aid| for each n ≥ d+ 1.

By (b), |a′i,d−1| = |aid| and therefore a′i,d−1 6= 0. Conclude that
∑∞

n=1 a
′
inw

n
i is not a

polynomial.

Lemma 3.7 (cf. [FrP, Thm. I.2.2]): Let j ∈ I. Then each f ∈ R can be written as

f = pu with p ∈ K[wj ] and u ∈ R×.
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Proof: Assume that f 6= 0. If |I| = 1, then f is regular (Definition 2.1) and the claim

follows from Lemma 2.2. Suppose therefore that |I| ≥ 2 and continue by induction.

Write f in the form (6). Take d′ ≥ 1 such that |ajn| ≤ |f |/2 for all n ≥ d′ + 1.

By Lemma 3.6(a) we may assume that |ajn| < |f | for all n ≥ 1, otherwise choose i ∈ I,

i 6= j, and multiply f by ( wi

wj
)d′ . (As |wi

wj
| = 1, this does not change |f |.) Thus we are

either in Case I or Case II below:

Case I: |a0| = |f | > |ain| for all i and n. Multiply f by a−1
0 to assume that a0 = 1.

Hence |1− f | < 1. By [HaV, Remark 1.1], f ∈ R×, and we are done.

Case II: There exist i ∈ I r{j} and d ≥ 1 such that |aid| = |f |. Increase d, if

necessary, to assume that |ain| < |aid| = |f | for all n ≥ d+1. By Lemma 3.6(b) we may

assume that d = 1, otherwise multiply f by (wj

wi
)d−1.

Introduce a new variable w, and consider the ring A{w} of convergent power series

in w over the subring A = K{wk | k 6= i} of R. Since ai1 ∈ K×, the element

f̂ = (a0 +
∑
k 6=i

∞∑
n=1

aknw
n
k ) +

∞∑
n=1

ainw
n

of A{w} is regular of pseudodegree 1. By Lemma 2.2 (with w instead of x) we have

f̂ = p̂û, where û is a unit of A{w} and p̂ = h+ w for some h ∈ A.

We have |wi| = 1. The homomorphism θ: A{w} → R defined by
∑
cnw

n 7→∑
cnw

n
i , with cn ∈ A, maps û onto a unit u′ of R. Thus f = θ(f̂) = θ(p̂)θ(û) =

(h+ wi)u′ = g · wi

wj
u′, where

g = (h+ wi)
wj

wi
= h(1 + (cj − ci)wj) + wj ∈ A

and wi

wj
u′ ∈ R× (Remark 3.2(h)). Apply the induction hypothesis on g to conclude the

proof.

Corollary 3.8: Let 0 6= g ∈ R. Then K[wi | i ∈ I] + gR = R.

Proof: As R =
∑

i∈I K{wi} and K[wi | i ∈ I] =
∑

i∈I K[wi], it suffices to show for

each i ∈ I and for every f ∈ K{wi} that there is r ∈ K[wi] such that f − r ∈ gR. By

Lemma 3.7 we may assume that g ∈ K[wi]. By Remark 3.4 there is a K-isomorphism

14



K{x} → K{wi} that maps K[x] onto K[wi]. Therefore the assertion follows from

Weierstraß’ division theorem [HaV, Theorem 1.6] for the ring K{x}.

The next result appears in [FrP, p. 67] for K algebraically closed.

Proposition 3.9: The ring R = K{wi | i ∈ I} is a principal ideal domain. For each

i ∈ I, each ideal of R is generated by an element of K[wi].

Proof: By Lemma 3.7, each ideal a of R is generated by the ideal a ∩K[wi] of K[wi].

Since K[wi] is a principal ideal domain, a ∩ K[wi] = pK[wi] for some p ∈ K[wi].

Conclude that a = pR is a principal ideal.

Denote the quotient field of R by Q. For a nonempty subset J of I consider

RJ = K{wi‖i ∈ J} as an absolute valued subring of R = RI . Let QJ = Quot(RJ) ⊆ Q

be the quotient field of RJ .

Proposition 3.10: If J ∩ J ′ 6= ∅, then QJ ∩ QJ′ = QJ∩J′ . If J ∩ J ′ = ∅, then

QJ ∩QJ′ = K(x).

Proof: Let j ∈ J . Then K[wj ] ⊆ RJ , and hence K(x) = K(wj) ⊆ QJ . Similarly

K(x) ⊆ QJ′ . Hence K(x) ⊆ QJ ∩QJ′ . If J ∩J ′ 6= ∅, then, by the unique representation

(6) for the elements of R, we have RJ∩J′ = RJ ∩RJ′ , and therefore QJ∩J′ ⊆ QJ ∩QJ′ .

For the converse inclusion, let 0 6= f ∈ QJ ∩ QJ′ . Fix j ∈ J and j′ ∈ J ′; if

J ∩ J ′ 6= ∅, take j, j′ ∈ J ∩ J ′. Write f as f1/g1 with f1, g1 ∈ RJ . By Lemma 3.7,

g1 = p1u1, where 0 6= p1 ∈ K[wj ] and u1 ∈ R×J . Replace f1 by f1u
−1
1 to assume that

g1 ∈ K[wj ]. Similarly f = f2/g2 with f2 ∈ RJ′ and g2 ∈ K[wj′ ].

If J ∩ J ′ 6= ∅, then g1, g2 ∈ RJ ∩ RJ′ . Thus g2f1 = g1f2 ∈ RJ ∩ RJ′ = RJ∩J′ ⊆

QJ∩J′ , and hence f = f1g2
g1g2

∈ QJ∩J′ .

Assume that J∩J ′ = ∅. Write g1 as
∑d1

n=0 bnw
n
j , with bn ∈ K. Put h1 = (wj′

wj
)d1g1.

As wj′

wj
∈ K[wj′ ], we have h1 =

∑d1
n=0 bn(wj′

wj
)d1−nwn

j′ ∈ K[wj′ ]. Similarly there is d2 ≥ 0

such that h2 = ( wj

wj′
)d2g2 ∈ K[wj ]. Let d = d1 + d2. Then, for each k ∈ J

(8) f1h2 ·
(
wj′

wk

)d

= f2h1 ·
(
wj

wk

)d

.
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Note that f1h2 ∈ RJ while f2h1 ∈ RJ′ . In particular, the kth component of f2h1 is zero.

By Lemma 3.6(c), the kth component of f2h1 ·
(wj

wk

)d is a polynomial in wk. By (8), the

kth component of f1h2 ·
(wj′

wk

)d
is a polynomial in wk. Hence, again by Lemma 3.6(c),

the kth component of f1h2 is a polynomial in wk.

Conclude that f1h2 ∈ K[wk | k ∈ J ] and therefore that f = f1h2
g1h2

∈ K(x).

Proposition 3.10 essentially says that the pre-sheaf of meromorphic functions on

an affinoid in P1(K) is a sheaf (cf. [FrP, Thm. III.7.4]).
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4. Factorization of matrices over complete rings

We show in this section how to decompose a matrix over a complete ring into a product

of matrices over certain complete subrings. This will establish condition (2e) of §1 in

our setup. of §1 in our setup.

Lemma 4.2 below appears as Lemma 11.14 in [Voe]. Its proof is almost identical

with that of [HaV, Lemma 2.2] and with that of [FrP, III.6.3].

Definition 4.1: Normed ring. Let M be an associative ring with 1. A norm on M is

a function || · ||: M → R that satisfies the following conditions for all a, b ∈M :

(a) ||a|| ≥ 0, and ||a|| = 0 if and only if a = 0; further ||1|| = || − 1|| = 1;

(b) ||a+ b|| ≤ max(||a||, ||b||);

(c) ||ab|| ≤ ||a|| · ||b||.

We say that M is complete if every Cauchy sequence in M converges. Note that in

this case, if ||1− a|| < 1, then a ∈M×. Indeed, a−1 =
∑∞

n=0(1− a)n.

Lemma 4.2 (Cartan’s Lemma): Let M be a complete normed ring. Let M1 and M2

be complete subrings of M . Suppose that

(d) for each a ∈M there are a+ ∈M1 and a− ∈M2 with ||a+||, ||a−|| ≤ ||a|| such that

a = a+ + a−.

Then for each b ∈ M with ||b − 1|| < 1 there exist b1 ∈ M×
1 and b2 ∈ M×

2 such that

b = b1b2.

For the rest of this section let A be a commutative ring with a nontrivial ultra-

metric absolute value | |.

Example 4.3: Let n be a positive integer and let M be the ring Mn(A) of n×n matrices

over A. We define the norm of a matrix a = (aij) ∈M by ||a|| = maxij |aij |. It satisfies

conditions (a), (b), and (c). If A is complete, then so is M . In this case suppose that

A1 and A2 are complete subrings of A. Then M1 = Mn(A1) and M2 = Mn(A2) are

complete subrings of M . If A satisfies conditions (d′) below, then M satisfies condition

(d) above.

(d′) For each a ∈ A there are a+ ∈ A1 and a− ∈ A2 with |a+|, |a−| ≤ |a| such that

a = a+ + a−.
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Corollary 4.4: In the notation of Example 4.3, suppose that A, A1, and A2 are

complete and satisfy Condition (d′). Let A0 be a dense subring of A that satisfies

(e′) A = A0 + gA for each nonzero g ∈ A0; and

(f′) for every f ∈ A there are p ∈ A0 and u ∈ A× such that f = pu.

Let Ei = Quot(Ai), for i = 0, 1, 2, and let E = Quot(A). Assume that E0 ⊆ E2. Then,

for each b ∈ GLn(E) there are b1 ∈ GLn(E1) and b2 ∈ GLn(E2) such that b = b1b2.

Proof: By Condition (f′) each element of E is of the form 1
hf , where f ∈ A and

h ∈ A0. So there is h ∈ A0 such that hb ∈ Mn(A). If hb = b1b
′
2, where b1 ∈ GLn(E1)

and b′2 ∈ GLn(E2), then b = b1b2 with b2 = 1
hb

′
2 ∈ GLn(E2). So we may assume that

b ∈ Mn(A).

Let d ∈ A be the determinant of b. By Condition (f′) there are g ∈ A0 and u ∈ A×

such that d = gu. Let b′′ ∈ Mn(A) be the adjoint matrix of b, so that bb′′ = d1. Let

b′ = u−1b′′. Then b′ ∈ Mn(A) and bb′ = g1.

Put

V = {a′ ∈ Mn(A) | ba′ ∈ gMn(A)} and V0 = V ∩Mn(A0).

Then V is an additive subgroup of Mn(A) and gMn(A) ≤ V . By (e′), Mn(A) =

Mn(A0) + gMn(A). Hence V = V0 + gMn(A). Since Mn(A0) is dense in Mn(A), and

therefore gMn(A0) is dense in gMn(A), it follows that V0 = V0 + gMn(A0) is dense in

V = V0 + gMn(A). As b′ ∈ V , there is a0 ∈ V0 such that ||b′− a0|| < |g|
||b|| . In particular,

a0 ∈ Mn(A0) and ba0 ∈ gMn(A).

Put a = 1
ga0 ∈ Mn(E0). Then ba ∈ Mn(A) and ||1 − ba|| = || 1g b(b

′ − a0)|| ≤
1
|g| ||b||·||b

′−a0|| < 1. It follows that ba ∈ GLn(A). In particular det(a) 6= 0 and therefore

a ∈ GLn(E0). By Lemma 4.2 there are b1 ∈ GLn(A1) and b′2 ∈ GLn(A2) such that

ba = b1b
′
2. Thus b = b1b2, where b1 ∈ GLn(A1) ⊆ GLn(E1) and b2 = b′2a

−1 ∈ GLn(E2).

We apply Corollary 4.4 to the rings and fields of §3.

Corollary 4.5: Suppose that I = J ·∪ J ′ is a partition of I into nonempty sets J and

J ′. Let n be a positive integer. Then, for each b ∈ GLn(Q) there are b1 ∈ GLn(QJ)
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and b2 ∈ GLn(QJ′) such that b = b1b2. The special case J = {i} and J ′ = I r{i}

establishes condition (2e) of §1.

Proof: By Lemma 3.3, R, RJ , and RJ′ are complete rings. Given f ∈ R, say, f =

a0+
∑

i∈I

∑∞
k=1 aikw

k
i , we let f1 = a0+

∑
i∈J

∑∞
k=1 aikw

k
i and f2 =

∑
i∈J′

∑∞
k=1 aikw

k
i .

Then |fi| ≤ |f |, i = 1, 2 and f = f1 + f2. This proves condition (d′). Next note that

R0 = K[wi | i ∈ I] is dense in R and its quotient field K(x) is contained in both

QJ and QJ′ . Conditions (e′) and (f′) are Corollary 3.8 and Lemma 3.7, respectively.

Corollary 4.5 is therefore a special case of Corollary 4.4.
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5. Solution of embedding problems

We solve here finite constant split embedding problems over complete fields with a

couple of extra conditions. The first step of our solution is the construction of cyclic

extensions with some extra conditions as required by Condition (2b) of §1.

Proposition 5.1: In the notation of §3, let i ∈ I, and let A be a finite abelian group.

Then there exists a finite Galois extension F/E with G(F/E) ∼= A such that F ⊆ Q{i}.

Moreover, F/K has a prime divisor of degree 1 which is unramified over E.

Proof: By [FrJ, Lemma 24.46], E has a Galois extension F with Galois group A such

that F is regular over K. By [HaV, Lemma 4.5], we may assume that F/K has a

prime divisor of degree 1 which is unramified over E. By [HaV, Lemma 4.2(a)], we may

assume that F ⊆ K((x)). Let z be a primitive element for F/E. By [HaV, Lemma

4.2(b)], we may assume that z ∈ Quot(K{x}). By Remark 3.4 there is an isomorphism

Quot(K{x}) → Q{i} = Quot(K{wi}) that maps E onto itself. Hence we may assume

that z ∈ Q{i}.

Proposition 5.2: Let K0 be a field complete with respect to a non-trivial discrete

ultrametric absolute value, with infinite residue field. Let K/K0 be a finite unramified

Galois extension with Galois group Γ. Let x be a transcendental element overK, and put

E0 = K0(x) and E = K(x). Suppose that Γ acts (from the right) on a finite group G.

Let Go Γ be the corresponding semidirect product. Let π: Go Γ → Γ be the canonical

projection. Then the constant split embedding problem π: Go Γ → Γ = G(E/E0)

has a rational (and hence regular) solution: That is, there exists an extension F of

E such that

(1a) F/E0 is Galois;

(1b) there is an isomorphism ψ: G(F/E0) → Go Γ such that π ◦ ψ = resE ; and

(1c) F has a K-rational place p (and hence F/K is regular).

Proof: Our strategy is to attach a patching data E to the embedding problem and to

define a proper action of Γ on E . Then we apply Proposition 1.5 to conclude that the

co-compound F of E gives a solution to the embedding problem.
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Fix a finite set I on which Γ acts from the right and a system of generators

T = {τi | i ∈ I} of G such that for each i ∈ I

(2a) {γ ∈ Γ | iγ = i} = {1};

(2b) τγ
i = τiγ , for every γ ∈ Γ; and

(2c) |I| ≥ 2.

(E.g., assuming G 6= 1, let I = G × Γ, let Γ act on I by (σ, γ)δ = (σ, γδ), and let

τ(σ,γ) = σγ .)

Let Gi be the cyclic subgroup generated by τi. Then Gγ
i = Giγ for each γ ∈ Γ

and G = 〈Gi | i ∈ I〉. Choose a system of representatives J for the Γ-orbits of I. Then

every i ∈ I can be uniquely written as i = jγ with j ∈ J and γ ∈ Γ.

Claim A: There exists a subset {ci | i ∈ I} ⊆ K such that cγi = ciγ and |ci| = |ci−cj | =

1 for all distinct i, j ∈ I and all γ ∈ Γ.

Indeed, let U = {a ∈ K | |a| = 1}. It suffices to find {cj‖j ∈ J} ⊆ U (and then

define ci, for i = jγ ∈ I, as cγj ) such that cδj − cεj ∈ U for all (j, δ), (k, ε) ∈ J × Γ with

(j, δ) 6= (k, ε).

Let K̄/K̄0 be the residue fields extension of K/K0. The residue map a 7→ ā

maps U onto K̄×. As K/K0 is unramified, K̄/K̄0 is a Galois extension and there is an

isomorphism γ 7→ γ̄ from G(K/K0) onto G(K̄/K̄0) such that aγ = āγ̄ for each a ∈ U .

Thus it suffices to find {c̄j | j ∈ J} ⊆ K̄× such that c̄δ̄j 6= c̄ε̄j for all j ∈ J and all distinct

δ̄, ε̄ ∈ G(K̄/K̄0), and c̄δ̄j 6= c̄ε̄k for all distinct j, k ∈ J and all δ̄, ε̄ ∈ G(K̄/K̄0).

The first condition says that c̄j is a primitive element for K̄/K̄0; the second

condition says that c̄j , c̄k are not conjugate over K̄0. Thus it suffices to show that there

are infinitely many primitive elements for K̄/K̄0. But if c̄ ∈ K̄× is primitive, then so is

c̄+ ā, for each ā ∈ K̄0. As K̄0 is infinite, our Claim follows.

Construction B: A patching data.

For each i ∈ I put wi = 1
x−ci

∈ K(x). As in §3, consider the ring R = K{wi‖i ∈ I}

and let Q be its quotient field. For each i ∈ I let

Qi = QI r{i} = Quot(K{wj | j 6= i}) and Q′
i = Q{i} = Quot(K{wi})

(we use the notation of §3). By Proposition 3.10, Q′
i =

⋂
j 6=iQj and E = K(x) =

⋂
iQi.
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The group Γ = G(K/K0) lifts isomorphically to G(E/E0). By Remark 3.2(e), each

γ ∈ Γ preserves the absolute value on E. Moreover, wγ
i = wiγ , i ∈ I. Hence, γ leaves

K[wi | i ∈ I] invariant. It follows that Γ lifts to a group of continuous automorphisms

of R and therefore also of Q = Quot(R). Clearly Qγ
i = Qiγ and (Q′

i)
γ = Q′

iγ .

For each j ∈ J , Proposition 5.1 gives a cyclic extension Fj/E with group Gj = 〈τj〉

such that Fj ⊆ Q′
j .

For an arbitrary i ∈ I there exist unique j ∈ J and γ ∈ Γ such that i = jγ (by

(2a)). Let Fi = F γ
j . As γ acts on Q and leaves E invariant, Fi is a Galois extension of

E and Fi ⊆ Q′
i.

The isomorphism γ: Fj → Fi gives an isomorphism G(Fj/E) ∼= G(Fi/E) which

maps each τ ∈ G(Fj/E) onto γ−1 ◦ τ ◦ γ ∈ G(Fi/E) (notice that the elements of the

Galois groups act from the right). In particular, it maps τj onto γ−1 ◦ τj ◦ γ. We can

therefore identify Gi with G(Fi/E) such that τi coincides with γ−1 ◦ τj ◦ γ. This means

that (aτ )γ = (aγ)τγ

for all a ∈ Fj and τ ∈ Gj .

It follows that for all i ∈ I and γ ∈ Γ we have F γ
i = Fiγ . Moreover, (aτ )γ = (aγ)τγ

for all a ∈ Fi and τ ∈ Gi.

By Corollary 4.5, GLn(Q) = GLn(Qi)GLn(Q′
i) for each i ∈ I. Thus E =

(E,Fi, Qi, Q;Gi, G)i∈I is a patching data (Definition 1.1) and Γ acts properly on E

(Definition 1.4).

Let Pi, Ni, N , and F be as in Diagram (5) of §1. By Proposition 1.5, the co-

compound F of E satisfies (1a) and (1b). We now verify (1c).

Claim C: F/K has a set of prime divisors of degree 1 with cardinality Card(K).

Lemma 1.3(b) gives an E-embedding λ: F → Q. Each b ∈ K with |b| > 1

induces the evaluation homomorphism x 7→ b from R to K which maps wi onto 1
b−ci

(Remark 3.5). As R is a principal ideal domain (Proposition 3.9), this homomorphism

extends to a K-rational place ϕb: Q → K ∪ {∞}. Thus ϕb ◦ λ is a K-rational place

of F , and so it corresponds to a prime divisor of F/K of degree 1. The cardinality of

{b ∈ K | |b| > 1} is equal to the cardinality of K. Since ϕb ◦ λ(wi) = 1
b−ci

, distinct

b give distinct ϕb ◦ λ. This establishes Condition (1c) and concludes the proof of the

Proposition.
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6. Ample fields

In this section K/K0 is an arbitrary finite Galois extension with Galois group Γ, x is

transcendental over K, E0 = K0(x), E = K(x), and we identify G(E/E0) with Γ via

restriction. Suppose that Γ acts on a finite group G. We look for a rational solution of

the constant split embedding problem over E0:

(1) π: Go Γ - G(E/E0),

where π is the projection on Γ. Under quite general conditions this problem reduces to

the special case we have just solved in §5.

Let K̂0 be a field extension of K0 and let K̂ = KK̂0. Recall that K0 is exis-

tentially closed in K̂0 if each algebraic subset A of An which has a K̂0-rational point

also has a K0-rational point. This implies that K̂0/K0 is regular. Assume that K0 is

existentially closed in K̂0 and, in addition, that x is transcendental over K̂0. Then K̂(x)

is a regular extension of E and res: G(K̂(x)/K̂0(x)) → G(E/E0) is an isomorphism. We

identify the two groups and obtain a constant split embedding problem over K̂0(x):

(2) π: Go Γ - G(K̂(x)/K̂0(x)),

Let F/K be a finitely generated regular extension of transcendence degree 1. A

model of F/K is an absolutely irreducible algebraic curve C which is defined over K

and whose function field over K is F . Choose a generic point x = (x1, . . . , xn) of an

affine part of C over K such that F = K(x). If ϕ: F → K̃ ∪ {∞} is a K-place of F

(in particular ϕ(a) = a for each a ∈ K) and ϕ(x1), . . . , ϕ(xn) 6= ∞, then p = ϕ(x) is a

point of C(K̃) which is called the center of ϕ at C.

Lemma 6.1: Let F/K be a finitely generated separable extension of transcendence

degree 1.

(a) Let ϕ: F → K ∪ {∞} be a K-rational place. Denote the valuation ring of ϕ by

O. Then F/K has an affine model C such that the center of ϕ at C is a simple

K-rational point a of C whose local ring coincides with O.

(b) Conversely, suppose that C is a model for F/K. Then, for each point p ∈ Csimp(K)

there exists a unique K-rational place ϕ: F → K ∪ {∞} whose center at C is p.
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(c) Let C be an absolutely irreducible curve over an infinite field K which has a K-

rational simple point p. Then there is a birational correspondence θ between C and

an affine plane curve given by an absolutely irreducible equation f(X,Y ) = 0 over

K such that θ(p) = (a, b), f(a, b) = 0, and ∂f
∂Y (a, b) 6= 0.

Proof of (a): Let t be a separating transcendence element for F/K. Replace t by t−1,

if necessary, to assume that ϕ(t) ∈ K. Let R = K[t] and let S be the integral closure

of R in F . Then S is a finitely generated K-algebra, say S = K[x1, . . . , xn], and ϕ is

finite at x1, . . . , xn. The existence of a K-rational place for F/K implies that F/K is

regular. Hence, the curve C = Spec(S) generated by x over K is absolutely irreducible

and a = ϕ(x) ∈ C(K).

Let M be the maximal ideal of O and put p = R ∩ M and q = S ∩ M. Let Rp

and Sp be the localizations of R and S, respectively, with respect to Rr p. Then Rp is

a discrete valuation ring and Sp is the integral closure of Rp in F . As R ⊆ O, we have

S ⊆ Sp ⊆ O. By [Lan, p. 18, Thm. 4], OC,a = Sq = (Sp)qSp = O. Finally, as a discrete

valuation ring, O is a regular ring. Conclude that a is a simple point of C [Lan, p. 204].

Proof of (b): The local ring O = OC,p is, by assumption, regular and therefore inte-

grally closed [Mts, p. 157]. Hence, it is a valuation ring [Lan, p. 151]. The corresponding

place is the desired one.

Proof of (c): Assume without loss that C is a projective curve in Pn and that n ≥ 2.

If n = 2, apply a linear automorphism of P2 over K to assume that p = (a, b) is a

finite point of C. Then take f as the polynomial that defines the affine part of C which

contains p. Exchange the coordinates X and Y , if necessary, to obtain the condition
∂f
∂Y (a, b) 6= 0.

Assume therefore that n ≥ 3. Then, there is a nonempty Zariski open subset U

of Pn such that for each point o ∈ U(K̃), the projection π: Pn → Pn−1 from o maps C

onto an absolutely irreducible curve C ′ such that π|C is a birational map and π(p) is

simple on C ′ [GJ1, Lemma 9.4]. Since K is infinite, we may choose o ∈ U(K). Then π

and C ′ are defined over K and π(p) ∈ C ′(K). Now apply induction on n.
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Lemma 6.2: Let K̂0/K0 be a field extension such that K0 is existentially closed in

K̂0. Suppose that embedding problem (2) has a rational (resp., regular) solution. Then

embedding problem (1) also has a rational (resp., regular) solution.

Proof: We prove only that a rational solution of (2) gives a rational solution of (1).

The ‘regular’ case is analogous [Po1, Lemma 1.4].

So, K̂0(x) has a Galois extension F̂ which contains K̂(x), there exists an isomor-

phism θ: G(F̂ /K̂0(x)) → GoΓ such that π ◦ θ = resK̂(x), and F̂ has a K̂-rational place.

In particular, F̂ /K̂ is regular.

By Lemma 6.1(c), there exist polynomials f ∈ K̂0[X,Z], g ∈ K̂[X,Z], and h ∈

K̂[T, Y ], elements z, t, y ∈ F̂ , and elements a, b ∈ K̂ such that the following conditions

hold:

(3a) F̂ = K̂0(x, z), f(x,Z) = irr(z, K̂0(x)); we may therefore identify G(f(x,Z), K̂0(x))

with G(F̂ /K̂0(x));

(3b) g(x, Z) = irr(z, K̂(x)); therefore g(X,Z) is absolutely irreducible;

(3c) K̂(t, y) = F̂ , h(t, y) = 0, h(T, Y ) is absolutely irreducible, h(a, b) = 0, and
∂h
∂Y (a, b) 6= 0.

All of these objects depend on only finitely many parameters from K̂0. So, let

u1, . . . , un be elements of K̂0 such that the following conditions hold:

(4a) F = K0(u, x, z) is a Galois extension of K0(u, x), the coefficients of f(X,Z) lie in

K0[u], f(x, Z) = irr(z,K0(u, x)), and G(f(x,Z),K0(u, x)) = G(f(x, Z), K̂0(x));

(4b) the coefficients of g lie in K[u]; hence g(x,Z) = irr(z,K(u, x));

(4c) K(u, t, y) = F , and the coefficients of h and a, b belong to K[u].

Since K0 is existentially closed in K̂0, the field K̂0 and therefore also K0(u) are

regular extensions of K0. Thus, u generates an absolutely irreducible variety U =

Spec(K0[u]) over K0. The variety U has a nonempty Zariski open subset U ′ such

that for each u′ ∈ U ′ the K0-specialization u → u′ extends to a K-homomorphism
′: K[u, x, z, t, y] → K[u′, x, z′, t′, y′] such that the following conditions hold:

(5a) f ′(x, z′) = 0, the discriminant of f ′(x,Z) is not zero, and F ′ = K0(u′, x, z′) is the

splitting field of f ′(x, Z) over K0(u′, x); in particular F ′/K0(u′, x) is Galois;

(5b) g′(X,Z) is absolutely irreducible and g′(x, z′) = 0; so g′(x,Z) = irr(z,K(u′, x));
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(5c) h′(T, Y ) is absolutely irreducible, K(u′, t′, y′) = F ′, a′, b′ ∈ K[u′], h′(a′, b′) = 0,

and ∂h′

∂Y (a′, b′) 6= 0.

To achieve the absolute irreducibility of g′ and h′ we have used the Bertini-Noether

theorem [FrJ, Prop. 8.8]. Since K0 is existentially closed in K̂0 and since u ∈ U ′(K̂0),

we can choose u′ ∈ U ′(K0). By (5a), the homomorphism ′ induces an embedding

ϕ∗: G(f ′(x, Z),K0(x)) → G(f(x,Z),K0(u, x))

which commutes with the restriction to G(K(x)/K0(x)) [Lan, p. 248]. Observe that

K(x) is linearly disjoint from K0(u) over K0. Hence, by (5b),

|G(f ′(x, Z),K0(x))| = [F ′ : K0(x)] = deg(g′(x,Z))[K(x) : K0(x)]

= deg(g(x,Z))[K(u, x) : K0(u, x)]

= [F : K0(u, x)] = |G(f(x,Z),K0(u, x))|.

It follows that ϕ∗ is an isomorphism. Hence θ ◦ ϕ∗ solves embedding problem (1). By

(5c) and Lemma 6.1(b), F ′ has a K-rational place.

Definition 6.3: Let K be a field. We say that K is ample∗ if every absolutely irre-

ducible variety V over K with a simple K-rational point has infinitely many K-rational

points. Equivalently [Po1, Prop. 1.1], K is existentially closed in K((t)).

For example, Henselian fields, PAC fields and more generally, PSC fields [JaR,

Remark 8.3] are ample. Fields which are finitely generated over their prime fields are

not ample (use the general Mordell Conjecture [Ja1, Prop. 5.2]). It is unknown whether

Qab or Qsol are ample fields.

Theorem 6.4: Let K0 be an ample field. Then each finite constant split embedding

problem over K0(x) has a rational solution.

Proof: Consider a finite constant split embedding problem (1) over K0(x). Let K̂0 =

K0((t)). Then K̂0 has a complete non-trivial discrete ultrametric absolute value with

* Pop [Po1] uses ‘large’ instead of ‘ample’. Unfortunately, the adjective ‘large’ in the naive
sense has been attached to algebraic extensions of Hilbertian fields in several papers (e.g.,
[Ja1], [Ja2], [FyJ], [GJ2], [Ja3], [Ja4], [Ja5]). Thus, in order not to confuse the readers,
we replace ‘large’ by ‘ample’.
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t as a prime element and with the infinite residue field K0. Also, K̂ = KK̂0 is an

unramified extension of K̂0. Hence, by Proposition 5.2, (2) has a rational solution. By

Definition 6.3, K0 is existentially closed in K̂0. Hence, by Lemma 6.2, (1) also has a

rational solution.

Theorem 6.5: Let K be an ample field.

(a) If K is separably Hilbertian, then each finite split embedding problem over K is

solvable.

(b) If, in addition, G(K) is projective, then each finite embedding problem is solvable.

(c) If, in addition, G(K) has countably many generators, and, in particular, if K is

countable, then G(K) is isomorphic to the free profinite group F̂ω or rank ℵ0.

Proof of (a): Every finite split embedding problem over K defines a finite constant

split embedding problem over K(x). The latter is solvable by Theorem 6.4. Now use

the Hilbertianity and specialize to get a solution of the original embedding problem over

K.

Proof of (b): Every finite embedding problem for a projective group can be reduced to

a finite split embedding problem [Mat, p. 231]. By (a), the latter is solvable for G(K).

Hence, each finite embedding problem over K is solvable.

Proof of (c): Use (b) and Iwasawa’s criterion [FrJ, Cor. 24.2].

The following special case of Theorem 6.5 is a solution to [FrJ, Prob. 24.41]. Here

we say that a field K is ω-free if each finite embedding problem over K is solvable.

Theorem 6.6: Let K be a PAC field. Then K is ω-free if and only if K is separably

Hilbertian.

Proof: That ‘K is ω-free’ implies ‘K is separably Hilbertian’ is a result of Roquette

[FrJ, Cor. 24.38]. Conversely, if K is PAC, then G(K) is projective [FrJ, Thm. 10.17].

Hence, if K is separably Hilbertian, then by Theorem 6.5(b), K is ω-free.
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