RELATIVELY PROJECTIVE GROUPS AS ABSOLUTE GALOIS GROUPS*

by
Dan Haran
School of Mathematics, Tel Aviv University
Ramat Aviv, Tel Aviv 69978, Israel
e-mail: haran@post.tau.ac.il
and
Moshe Jarden
School of Mathematics, Tel Aviv University
Ramat Aviv, Tel Aviv 69978, Israel
e-mail: jarden@post.tau.ac.il

Abstract

A group structure $\mathbf{G}=\left(G, G_{1}, \ldots, G_{n}\right)$ is projective if and only if \mathbf{G} is isomorphic to a Galois group structure $$
\operatorname{Gal}(\mathbf{K})=\left(\operatorname{Gal}(K), \operatorname{Gal}\left(K_{1}\right), \ldots, \operatorname{Gal}\left(K_{n}\right)\right)
$$ of a field-valuation structure $\mathbf{K}=\left(K, K_{1}, v_{1}, \ldots, K_{n}, v_{n}\right)$ where $\left(K_{i}, v_{i}\right)$ is the Henselian closure of $\left(K,\left.v_{i}\right|_{K}\right)$ and K is pseudo closed with respect to K_{1}, \ldots, K_{n}.

MR Classification: 12E30
Directory: \backslash Jarden \backslash Diary \backslash Project
14 February, 2004

[^0]
Introduction

A central problem in Galois theory and Field Arithmetic is the characterization of the absolute Galois groups among all profinite groups. To fix notation, let K be a field. Denote its separable closure by K_{s} and its absolute Galois group by $\operatorname{Gal}(K)=$ $\operatorname{Gal}\left(K_{s} / K\right)$. Then $\operatorname{Gal}(K)$ is a profinite group. An arbitrary profinite group G is said to be an absolute Galois group if $G \cong \operatorname{Gal}(K)$ for some field K.

A sufficient condition for a profinite group G to be an absolute Galois group is that G is projective. This means that each epimorphism $G^{\prime} \rightarrow G$ of profinite groups has a section. Indeed, there is a Galois extension L / K with $\operatorname{Gal}(L / K) \cong G$ [Lep]. Each section of res: $\operatorname{Gal}(K) \rightarrow \operatorname{Gal}(L / K)$ gives a separable algebraic extension F with $\operatorname{Gal}(F) \cong G$. Lubotzky and v. d. Dries [FrJ, Cor. 20.16] improve on that by constructing F with the PAC property. Conversely, the absolute Galois group of each PAC field is projective [FrJ, Thm. 10.17].

The goal of this work is to generalize this characterization of projective groups by proving Theorem A and Theorem B below:

Theorem A: Let K be a field, v_{i} a valuation of K, and K_{i} a Henselian closure of $\left(K, v_{i}\right), i=1, \ldots, n$. Suppose v_{1}, \ldots, v_{n} are independent and K is pseudo closed with respect to K_{1}, \ldots, K_{n}. Then $\operatorname{Gal}(K)$ is projective with respect to $\operatorname{Gal}\left(K_{1}\right), \ldots, \operatorname{Gal}\left(K_{n}\right)$.

Here K is pseudo closed with respect to K_{1}, \ldots, K_{n} if the following holds: Every absolutely irreducible variety V over K with a simple K_{i}-rational point, $i=1, \ldots, n$, has a K-rational point.

A profinite group G is projective with respect to n closed subgroups G_{1}, \ldots, G_{n} if the following holds: Suppose G^{\prime} is a profinite group, $G_{1}^{\prime}, \ldots, G_{n}^{\prime}$ are closed subgroups and $\alpha: G^{\prime} \rightarrow G$ is an epimorphism which maps G_{i}^{\prime} isomorphically onto $G_{i}, i=1, \ldots, n$. Then there are an embedding $\alpha^{\prime}: G \rightarrow G^{\prime}$ with $\alpha \circ \alpha^{\prime}=\operatorname{id}_{G}$ and elements $a_{1}, \ldots, a_{n} \in G^{\prime}$ with $\alpha^{\prime}\left(G_{i}\right)=\left(G_{i}^{\prime}\right)^{a_{i}}, i=1, \ldots, n$.

Theorem B: Let G be a profinite group and G_{1}, \ldots, G_{n} closed subgroups. Suppose each G_{i} is an absolute Galois group and G is projective with respect to G_{1}, \ldots, G_{n}. Then there are a field K, independent valuations v_{1}, \ldots, v_{n} of K, and a Henselian
closure K_{i} of $\left(K, v_{i}\right), i=1, \ldots, n$, with these properties: K is pseudo closed with respect to K_{1}, \ldots, K_{n} and has the approximation property with respect to v_{1}, \ldots, v_{n}, and there is an isomorphism $\operatorname{Gal}(K) \rightarrow G$ that maps $\operatorname{Gal}\left(K_{i}\right)$ onto $G_{i}, i=1, \ldots, n$.

The approximation property is defined as follows: Let V be an absolutely irreducible variety over K. Given a simple K_{i}-rational point \mathbf{a}_{i} of V and $c_{i} \in K^{\times}$, $i=1, \ldots, n$, there is an $\mathbf{a} \in V(K)$ with $v_{i}\left(\mathbf{a}-\mathbf{a}_{i}\right)>v_{i}\left(c_{i}\right), i=1, \ldots, n$.

Special cases of Theorems A and B are consequences of the main result of [HaJ]. That paper characterizes a p-adically projective group as the absolute Galois group of a $\mathrm{P} p \mathrm{C}$ field. In particular, that result implies Theorems A and B when G_{1}, \ldots, G_{n} are isomorphic to $\operatorname{Gal}\left(\mathbb{Q}_{p}\right)$ for a fixed prime number p.

There is an overlapping between our results and those of [Pop]. An application of [Pop, Thm. 3.3] to the situation of Theorem A gives a weaker result than the projectivity in our sense: Let $\varphi: G \rightarrow A$ and $\psi: B \rightarrow A$ be epimorphisms with B finite. Suppose B_{1}, \ldots, B_{n} are subgroups of B and ψ maps B_{i} isomorphically onto $\varphi\left(G_{i}\right), i=1, \ldots, n$. Then there is a homomorphism $\gamma: G \rightarrow B$ with $\psi \circ \gamma=\varphi$. However, no extra condition like ' $\gamma\left(G_{i}\right)$ is conjugate to B_{i} ' is proved. In other words, [Pop, Thm. 3.3] does not prove G is, in his terminology, 'strongly projective'.

Likewise, a somewhat weaker version of Theorem B can be derived from [Pop] and [HeP]. In the situation of Theorem B we may first use [HJK, Prop. 2.5] to construct fields $E, E_{0}, E_{1} \ldots, E_{n}$ such that $\operatorname{Gal}\left(E_{0}\right)$ is the free profinite group \hat{F} of rank equal to $\operatorname{rank}(G), \operatorname{Gal}\left(E_{i}\right) \cong G_{i}, i=1, \ldots, n, E_{i}$ is a separable algebraic extension of E, and $\bigcap_{i=0}^{n} E_{i}=E$. Then there is an epimorphism $\psi: G^{*}=\hat{F} * ~_{i=1}^{n} G_{i} \rightarrow \operatorname{Gal}(E)$ which maps G_{i} isomorphically onto $\operatorname{Gal}\left(E_{i}\right), i=1, \ldots, n$. This gives a 'Galois approximation' in the sense of [Pop, §2]. Using [Pop, Thm. 3.4], we can find a perfect field K, algebraic extensions K_{1}, \ldots, K_{n}, and an isomorphism $\lambda: G \rightarrow \operatorname{Gal}(K)$ such that $\lambda\left(G_{i}\right)=\operatorname{Gal}\left(K_{i}\right)$, $i=1, \ldots, n$, and K is pseudo closed with respect to K_{1}, \ldots, K_{n}. However, unlike Theorem B, [Pop, Thm. 3.4] does not equip the K_{i} 's with valuations. Furthermore, the approximation property of Theorem B allows K_{i} to be algebraically closed, so it does not follow from [HeP, Thm. 1.9]. Thus, Theorem B is an improvement of what can be derived from [Pop] and $[\mathrm{HeP}]$.

The present work is a follow up of an earlier work [HJK] of the authors with Jochen Koenigsmann. Theorems A and B (except for the approximation property) appear also in [Koe]. While [Koe] uses model theoretic methods to prove Theorem A, our proof restricts to methods of algebraic geometry (Propositions 2.1 and 3.2) and is much shorter.

Finally, [HJP] gives a far reaching generalization of Theorems A and B. Instead of finitely many local objects (i.e. subgroups, algebraic extensions, and valuations), [HJP] deals with families of local objects subject to certain finiteness conditions. Unfortunately, [HJP] is a very long and complicated paper whose technical arguments may disguise the basic ideas lying underneath the proof. Some of these ideas, like "unirationally closed n-fold field structure" can be accessed much faster in this short note.

1. Relatively projective profinite groups

Consider a profinite group G and closed subgroups G_{1}, \ldots, G_{n} (with $n \geq 0$). Refer to $\mathbf{G}=\left(G, G_{1}, \ldots, G_{n}\right)$ as a group structure (or as an n-fold group structure if n is not clear from the context). An embedding problem for \mathbf{G} is a tuple

$$
\begin{equation*}
\mathcal{E}=\left(\varphi: G \rightarrow A, \psi: B \rightarrow A, B_{1}, \ldots, B_{n}\right) \tag{1}
\end{equation*}
$$

where φ is a homomorphism and ψ an epimorphism of profinite groups, B_{1}, \ldots, B_{n} are subgroups of B, and ψ maps B_{i} isomorphically onto $\varphi\left(G_{i}\right), i=1, \ldots, n$. When B is finite, we say \mathcal{E} is finite. A weak solution of (1) is a homomorphism $\gamma: G \rightarrow B$ with $\psi \circ \gamma=\varphi$ and $\gamma\left(G_{i}\right) \leq B_{i}^{b_{i}}$ for some $b_{i} \in B, i=1, \ldots, n$. Note that ψ maps $B_{i}^{b_{i}}$ isomorphically onto $\varphi\left(G_{i}\right)^{\psi\left(b_{i}\right)}$. So, $\gamma\left(G_{i}\right)=B_{i}^{b_{i}}$.

We say \mathbf{G} is projective if each finite embedding problem \mathcal{E} for \mathbf{G} where φ is an epimorphism has a weak solution (cf. [Har, Def. 4.2]). Then every finite embedding problem \mathcal{E} has a weak solution. Indeed, replace A by $\varphi(G)$ and B by $\psi^{-1}(\varphi(G))$ to obtain an embedding problem \mathcal{E}^{\prime} for \mathbf{G} with epimorphisms. By assumption, \mathcal{E}^{\prime} has a solution γ. This γ is also a solution of \mathcal{E}.

Example 1.1: Let $G_{0}, G_{1}, \ldots, G_{n}$ be profinite groups with G_{0} being free. Put $G=$ $\mathcal{F}_{k=0}^{n} G_{k}$. Then $\left(G, G_{1}, \ldots, G_{n}\right)$ is projective.

Lemma 1.2: Suppose $\mathbf{G}=\left(G, G_{1}, \ldots, G_{n}\right)$ is a projective group structure. Then every embedding problem (1) for \mathbf{G} in which A is finite and $\operatorname{rank}(B) \leq \aleph_{0}$ is weakly solvable.

Proof: Assume without loss that φ is an epimorphism. Then there is an inverse system of epimorphisms

$$
B \xrightarrow{\pi_{j}} B^{(j)} \xrightarrow{\psi_{j}} A, \quad B^{(j+1)} \xrightarrow{\psi_{j+1, j}} B^{(j)}, \quad j=0,1,2,3, \ldots
$$

such that $B^{(0)}=A, \pi_{0}=\psi$, the $B^{(j)}$ are finite groups, $\psi_{j+1}=\psi_{j} \circ \psi_{j+1, j}, \pi_{j}=$ $\psi_{j+1, j} \circ \pi_{j+1}$, and $\psi: B \rightarrow A$ is the inverse limit of $\psi_{j}: B^{(j)} \rightarrow A$. For all i and j let $B_{i}^{(j)}=\pi_{j}\left(B_{i}\right)$.

Suppose by induction that $\gamma_{j}: G \rightarrow B^{(j)}$ is a homomorphism such that $\psi_{j} \circ \gamma_{j}=\varphi$ and $\gamma_{j}\left(G_{i}\right)=\left(B_{i}^{(j)}\right)^{b_{i j}}$ with $b_{i j} \in B^{(j)}, i=1, \ldots, n$. Choose $b_{i, j+1}^{\prime} \in B^{(j+1)}$ with
$\psi_{j+1, j}\left(b_{i, j+1}^{\prime}\right)=b_{i j}$. Then $\psi_{j+1, j}$ maps $\left(B_{i}^{(j+1)}\right)^{b_{i, j+1}^{\prime}}$ isomorphically onto $\left(B_{i}^{(j)}\right)^{b_{i j}}$. So,

$$
\left(\gamma_{j}: G \rightarrow B^{(j)}, \psi_{j+1, j}: B^{(j+1)} \rightarrow B^{(j)},\left(B_{1}^{(j+1)}\right)^{b_{1, j+1}^{\prime}}, \ldots,\left(B_{n}^{(j+1)}\right)^{b_{n, j+1}^{\prime}}\right)
$$

is a finite embedding problem for \mathbf{G}.
Since \mathbf{G} is projective, there is a homomorphism $\gamma_{j+1}: G \rightarrow B^{(j+1)}$ with $\psi_{j+1, j} \circ$ $\gamma_{j+1}=\gamma_{j}$ and $\gamma_{j+1}\left(G_{i}\right)=\left(B_{i}^{(j+1)}\right)^{b_{i, j+1}}$, for some $b_{i, j+1} \in B^{(j+1)}, i=1, \ldots, n$. By assumption on γ_{j}, we have $\psi_{j+1} \circ \gamma_{j+1}=\varphi$.

The homomorphisms γ_{j} define a homomorphism $\gamma: G \rightarrow B$ with $\pi_{j} \circ \gamma=\gamma_{j}$, $j=0,1,2, \ldots$ So, $\psi \circ \gamma=\varphi$.

Fix i between 1 and n. Let $C_{j}=\left\{b \in B^{(j)} \mid \gamma_{j}\left(G_{i}\right)=\left(B_{i}^{(j)}\right)^{b}\right\}$. By construction, C_{j} is a nonempty finite subset of $B^{(j)}$. Moreover, $\psi_{j+1, j}\left(C_{j+1}\right) \subseteq C_{j}$. Hence, there is $b_{i} \in B$ with $\pi_{j}\left(b_{i}\right) \in C_{j}$ for $j=0,1,2, \ldots$ For each j we have $\pi_{j}\left(\gamma\left(G_{i}\right)\right)=\pi_{j}\left(B_{i}^{b_{i}}\right)$. Hence, $\gamma\left(G_{i}\right)=B_{i}^{b_{i}}$. Therefore, γ is a weak solution of (1).

Lemma 1.3: Let $\mathbf{G}=\left(G, G_{1}, \ldots, G_{n}\right)$ be a projective group structure. Suppose $g \in G$ and $G_{i} \cap G_{j}^{g} \neq 1$. Then $i=j$ and $g \in G_{i}$.

Proof: There is an epimorphism $\varphi_{0}: G \rightarrow A_{0}$ with A_{0} finite and $\varphi_{0}\left(G_{i} \cap G_{j}^{g}\right) \neq 1$. Consider an arbitrary epimorphism $\varphi: G \rightarrow A$ with A finite and $\operatorname{Ker}(\varphi) \leq \operatorname{Ker}\left(\varphi_{0}\right)$. Then $\varphi\left(G_{i} \cap G_{j}^{g}\right) \neq 1$. Thus, there are $g_{i} \in G_{i}$ and $g_{j} \in G_{j}$ with $g_{i}=g_{j}^{g}$ and $\varphi\left(g_{i}\right) \neq 1$.

Let $A_{k}=\varphi\left(G_{k}\right), k=1, \ldots, n$. Put $A_{0}=A$. Consider the free profinite product $A^{*}=\mathcal{F}_{k=0}^{n} A_{k}$ together with the epimorphism $\psi: A^{*} \rightarrow A$ whose restriction to A_{k} is the identity map, $k=0,1, \ldots, n$.

The group A^{*} is infinite, but its rank is finite. Since \mathbf{G} is projective, Lemma 1.2 gives a homomorphism $\gamma: G \rightarrow A^{*}$ with $\psi \circ \gamma=\varphi$ and $\gamma\left(G_{k}\right)=A_{k}^{a_{k}^{*}}$ for some $a_{k}^{*} \in A^{*}$; in particular, $\psi\left(A_{k}^{a_{k}^{*}}\right)=\varphi\left(G_{k}\right)=A_{k}, k=1, \ldots, n$.

By the first paragraph, $\gamma\left(g_{i}\right)=\gamma\left(g_{j}\right)^{\gamma(g)}$ and $\psi\left(\gamma\left(g_{i}\right)\right)=\varphi\left(g_{i}\right) \neq 1$, which implies $\gamma\left(g_{i}\right) \neq 1$. Hence, $A_{i}^{a_{i}^{*}} \cap A_{j}^{a_{j}^{*} \gamma(g)} \neq 1$ in A^{*}. Using the epimorphism $A^{*} \rightarrow \prod_{k=0}^{n} A_{k}$ which is the identity map on each A_{i}, we find that $i=j$. By [HeR, Thm. B'], $\gamma(g) \in A_{i}^{a_{i}^{*}}$. So, $\varphi(g) \in \psi\left(A_{i}^{a_{i}^{*}}\right)=\varphi\left(G_{i}\right)$. Since this holds for all φ as above, $g \in G_{i}$.

Lemma 1.4: Suppose \mathbf{G} is a projective group structure. Then every finite embedding problem (1) has a solution γ with $\gamma\left(G_{i}\right)=B_{i}^{b_{i}}$ and $\psi\left(b_{i}\right)=1, i=1, \ldots, n$.

Proof: Without loss φ is an epimorphism and $G_{i} \neq 1, i=1, \ldots, n$. Let i be between 1 and n. Consider $g \in G \backslash G_{i} \operatorname{Ker}(\varphi)$. In particular, $g \notin G_{i}$. By Lemma $1.3, G_{i}^{g} \neq G_{i}$. Hence, there is an open normal subgroup $N_{i, g} \leq \operatorname{Ker}(\varphi)$ with $G_{i}^{g} N_{i, g} \neq G_{i} N_{i, g}$. The collection of all open sets $g N_{i, g}$ covers the compact set $G \backslash G_{i} \operatorname{Ker}(\varphi)$. Hence, there are g_{1}, \ldots, g_{m}, depending on i, with

$$
\begin{equation*}
G \backslash G_{i} \operatorname{Ker}(\varphi)=\bigcup_{j=1}^{m} g_{j} N_{i, g_{j}} \tag{2}
\end{equation*}
$$

Let $N=\bigcap_{i, j} N_{i, g_{j}}$. This is an open normal subgroup of G. Put $\hat{A}=G / N$ and let $\hat{\varphi}: G \rightarrow \hat{A}$ be the canonical homomorphism. Then there is an epimorphism $\alpha: \hat{A} \rightarrow A$ with $\alpha \circ \hat{\varphi}=\varphi$. Let $A_{i}=\varphi\left(G_{i}\right)$ and $\hat{A}_{i}=\hat{\varphi}\left(G_{i}\right)$.

Consider $a \in A \backslash A_{i}$. Choose $g \in G$ with $\varphi(g)=a$. Then $g \in G \backslash G_{i} \operatorname{Ker}(\varphi)$. So, in the notation of (2), $g \in g_{j} N_{i, g_{j}}$ for some j. By definition, $G_{i}^{g_{j}} N_{i, g_{j}} \neq G_{i} N_{i, g_{j}}$. So, $G_{i}^{g} N_{i, g_{j}} \neq G_{i} N_{i, g_{j}}$. Hence, $G_{i}^{g} N \neq G_{i} N$ and therefore $\hat{A}_{i}^{\hat{\varphi}(g)} \neq \hat{A}_{i}$. Consequently, (3) if $\hat{a} \in \hat{A}$ and $\hat{A}_{i}^{\hat{a}}=\hat{A}_{i}$, then $\alpha(\hat{a}) \in A_{i}$.

Consider now the fiber product $\hat{B}=B \times{ }_{A} \hat{A}$. Let $\beta: \hat{B} \rightarrow B$ and $\hat{\psi}: \hat{B} \rightarrow \hat{A}$ be the corresponding projections. For each i let $\hat{B}_{i}=\left\{\hat{b} \in \hat{B} \mid \hat{\psi}(\hat{b}) \in \hat{A}_{i}\right.$ and $\left.\beta(\hat{b}) \in B_{i}\right\}$. Then \hat{B}_{i} is a subgroup of \hat{B} which $\hat{\psi}$ maps isomorphically onto \hat{A}_{i}. Also, $\beta\left(\hat{B}_{i}\right)=B_{i}$, $i=1, \ldots, n$. So ,

$$
\left(\hat{\varphi}: G \rightarrow \hat{A}, \hat{\psi}: \hat{B} \rightarrow \hat{A}, \hat{B}_{1}, \ldots, \hat{B}_{n}\right)
$$

is a finite embedding problem for \mathbf{G}.
By assumption, there is a homomorphism $\hat{\gamma}: G \rightarrow \hat{B}$ such that $\hat{\psi} \circ \hat{\gamma}=\hat{\varphi}$ and $\hat{\gamma}\left(G_{i}\right)=\hat{B}^{\hat{b}_{i}^{\prime}}$ with $\hat{b}_{i}^{\prime} \in \hat{B}, i=1, \ldots, n$. Let $\gamma=\beta \circ \hat{\gamma}, b_{i}^{\prime}=\beta\left(\hat{b}_{i}^{\prime}\right), \hat{a}_{i}^{\prime}=\hat{\psi}\left(\hat{b}_{i}^{\prime}\right)$, and $a_{i}^{\prime}=\alpha\left(\hat{a}_{i}^{\prime}\right), i=1, \ldots, n$. Then $\psi \circ \gamma=\varphi$ and $\hat{A}_{i}^{\hat{a}_{i}^{\prime}}=\hat{\psi}\left(\hat{B}_{i}^{\hat{b}_{i}^{\prime}}\right)=\hat{\varphi}\left(G_{i}\right)=\hat{A}_{i}$. By (3),
$a_{i}^{\prime} \in A_{i}$.

There is (a unique) $c_{i} \in B_{i}$ with $\psi\left(c_{i}\right)=a_{i}^{\prime}$. Let $b_{i}=c_{i}^{-1} b_{i}^{\prime}$. Then $\psi\left(b_{i}\right)=1$ and $B_{i}^{b_{i}}=B_{i}^{b_{i}^{\prime}}=\gamma\left(G_{i}\right), i=1, \ldots, n$, as desired.

Proposition 1.5: Let G be a projective group structure. Then every embedding problem for \mathbf{G} is solvable.

Proof: Let (1) be an embedding problem for G. Assume without loss that φ and ψ are epimorphisms. Denote $\operatorname{Ker}(\psi)$ by K.

Part A: Suppose K is finite. Then $\dot{K}=K \backslash\{1\}$ is closed in B. By assumption, $B_{i} \cap \dot{K}=\emptyset, i=1, \ldots, n$. Hence, B has an open normal subgroup N with $N \cap \dot{K}=\emptyset$ and $B_{i} N \cap \dot{K} N=\emptyset, i=1, \ldots, n$. It follows that $N \cap K=1$ and $B_{i} N \cap K N=N$, $i=1, \ldots, n$. Let $\bar{B}=B / N, \bar{A}=A / \psi(N), \alpha: A \rightarrow \bar{A}$ and $\beta: B \rightarrow \bar{B}$ be the quotient maps, and $\bar{\psi}: \bar{B} \rightarrow \bar{A}$ the map induced by ψ. Then $\beta(K)=\operatorname{Ker}(\bar{\psi})$ and $B=\bar{B} \times{ }_{\bar{A}} A$.

Let $\bar{\varphi}=\alpha \circ \varphi$. For each i let $A_{i}=\varphi\left(G_{i}\right), \bar{A}_{i}=\alpha\left(A_{i}\right)$, and $\bar{B}_{i}=\beta\left(B_{i}\right)$. From $B_{i} N \cap K N=N$ it follows that $\bar{B}_{i} \cap \operatorname{Ker}(\bar{\psi})=1$. So, $\bar{\psi}$ maps \bar{B}_{i} isomorphically onto $\bar{A}_{i}, i=1, \ldots, n$. This gives a finite embedding problem $\overline{\mathcal{E}}=(\bar{\varphi}: G \rightarrow \bar{A}, \bar{\psi}: \bar{B} \rightarrow$ $\left.\bar{A}, \bar{B}_{1}, \ldots, \bar{B}_{n}\right)$ for \mathbf{G}.

Lemma 1.4 gives a homomorphism $\bar{\gamma}: G \rightarrow \bar{B}$ such that $\bar{\psi} \circ \bar{\gamma}=\bar{\varphi}$ and $\bar{\gamma}\left(G_{i}\right)=\bar{B}_{i}^{\bar{b}_{i}}$ with $\bar{b}_{i} \in \bar{B}$ and $\bar{\psi}\left(\bar{b}_{i}\right)=1$. By the properties of fiber products, there is a homomorphism $\gamma: G \rightarrow B$ with $\psi \circ \gamma=\varphi$ and $\beta \circ \gamma=\bar{\gamma}$.

Also, for each i there is a $b_{i} \in B$ with $\beta\left(b_{i}\right)=\bar{b}_{i}$ and $\psi\left(b_{i}\right)=1$. Let $g \in G_{i}$. Then $\varphi(g) \in A_{i}=\psi\left(B_{i}^{b_{i}}\right)$. Hence, there is $b \in B_{i}^{b_{i}}$ with $\psi(b)=\varphi(g)$. It satisfies $\beta(b) \in \bar{B}_{i}^{\bar{b}_{i}}$ and $\bar{\psi}(\beta(b))=\alpha(\psi(b))=\alpha(\varphi(g))=\bar{\psi}(\bar{\gamma}(g))$. Since $\bar{\psi}: \bar{B}_{i}^{\bar{b}_{i}} \rightarrow \bar{A}_{i}$ is injective, $\beta(b)=$ $\bar{\gamma}(g)$. In addition, $\beta(\gamma(g))=\bar{\gamma}(g)$ and $\psi(\gamma(g))=\varphi(g)$. It follows that $\gamma(g)=b \in B_{i}^{b_{i}}$. So, $\gamma\left(G_{i}\right) \leq B_{i}^{b_{i}}$. Consequently, γ is a solution to the embedding problem (1).

Part B: Application of Zorn's lemma. Suppose (1) is an arbitrary embedding problem for \mathbf{G}. For each normal subgroup L of B which is contained in K let $\psi_{L}: B / L \rightarrow A$ be the epimorphism $\psi_{L}(b L)=\psi(b), b \in B$. It maps $B_{i} L / L$ isomorphically onto $A_{i}=\varphi\left(G_{i}\right)$. This gives an embedding problem

$$
\begin{equation*}
\left(\varphi: G \rightarrow A, \psi_{L}: B / L \rightarrow A, B_{1} L / L, \ldots, B_{n} L / L\right) \tag{5}
\end{equation*}
$$

Let Λ be the set of pairs (L, λ), where L is a closed normal subgroup of B contained in K and λ is a solution of (5). The pair $\left(K, \psi_{K}^{-1} \circ \varphi\right)$ belongs to Λ. Partially order Λ by $\left(L^{\prime}, \lambda^{\prime}\right) \leq(L, \Lambda)$ if $L^{\prime} \leq L$ and $\psi_{L^{\prime}, L} \circ \lambda^{\prime}=\lambda$. Here $\psi_{L^{\prime}, L}: B / L^{\prime} \rightarrow B / L$ is the epimorphism $\psi_{L^{\prime}, L}\left(b L^{\prime}\right)=b L, b \in B$.

Suppose $\Lambda_{0}=\left\{\left(L_{j}, \lambda_{j}\right) \mid j \in J\right\}$ is a descending chain in Λ. Then $\lim _{\longleftarrow} B / L_{j}=$ B / L with $L=\bigcap_{j \in J} L_{J}$. The λ_{j} 's define a homomorphism $\lambda: G \rightarrow B / L$ with $\psi_{L, L_{j}} \circ \lambda=$ λ_{j} for each j. For each i a compactness argument gives $b_{i} \in B$ with $\lambda\left(G_{i}\right)=B_{i}^{b_{i}} L / L$. Thus, (L, λ) is a lower bound to Λ_{0}.

Zorn's lemma gives a minimal element (L, λ) for Λ. It suffices to prove that $L=1$.
Assume $L \neq 1$. Then B has an open normal subgroup N with $L \not \leq N$. So, $L^{\prime}=$ $N \cap L$ is a proper open subgroup of L which is normal in B. For each i choose $b_{i} \in B$ with $\lambda\left(G_{i}\right)=B_{i}^{b_{i}} L / L$. Then $\left(\lambda: G \rightarrow B / L, \psi_{L^{\prime}, L}: B / L^{\prime} \rightarrow B / L, B_{1}^{b_{1}} L^{\prime} / L, \ldots, B_{n}^{b_{n}} L^{\prime} / L\right)$ is an embedding problem for \mathbf{G}. Its kernel $\operatorname{Ker}\left(\psi_{L^{\prime}, L}\right)=L / L^{\prime}$ is a finite group. By Part A, it has a solution λ^{\prime}. The pair $\left(L^{\prime}, \lambda^{\prime}\right)$ is an element of Λ which is strictly smaller than (L, λ). This contradiction to the minimality of (L, λ) proves that $L=1$, as desired.

Corollary 1.6: Let $\mathbf{G}=\left(G, G_{1}, \ldots, G_{n}\right)$ and $\mathbf{G}^{\prime}=\left(G^{\prime}, G_{1}^{\prime}, \ldots, G_{n}^{\prime}\right)$ be n-fold group structures with G projective. Let $\psi: G^{\prime} \rightarrow G$ be an epimorphism which maps G_{i}^{\prime}
isomorphically onto $G_{i}, i=1, \ldots, n$. Then there are a monomorphism $\psi^{\prime}: G \rightarrow G^{\prime}$ with $\psi \circ \psi^{\prime}=\operatorname{id}_{G}$ and elements $a_{1}, \ldots, a_{n} \in G^{\prime}$ with $\psi^{\prime}\left(G_{i}\right)=\left(G_{i}^{\prime}\right)^{a_{i}}$ and $\psi\left(a_{i}\right)=1$, $i=1, \ldots, n$.

Proof: An application of Proposition 1.5 to the embedding problem

$$
\left(\mathrm{id}_{G}: G \rightarrow G, \psi: G^{\prime} \rightarrow G, G_{1}^{\prime}, \ldots, G_{n}^{\prime}\right)
$$

gives a section $\psi^{\prime}: G \rightarrow G^{\prime}$ of ψ and elements $a_{1}^{\prime}, \ldots, a_{n}^{\prime} \in G^{\prime}$ with $\psi^{\prime}\left(G_{i}\right)=\left(G_{i}^{\prime}\right)^{a_{i}^{\prime}}$. Thus, $G_{i}=G_{i}^{\psi\left(a_{i}^{\prime}\right)}$. By Lemma 1.3, $\psi\left(a_{i}^{\prime}\right) \in G_{i}$.

Choose $b_{i} \in G_{i}^{\prime}$ with $\psi\left(b_{i}\right)=\psi\left(a_{i}^{\prime}\right)$. Let $a_{i}=b_{i}^{-1} a_{i}^{\prime}$. Then $\left(G_{i}^{\prime}\right)^{a_{i}}=\left(G_{i}^{\prime}\right)^{a_{i}^{\prime}}=$ $\psi^{\prime}\left(G_{i}\right)$ and $\psi\left(a_{i}\right)=1, i=1, \ldots, n$.

2. Unirationally closed n-fold field structures

Consider a field K and separable algebraic extensions K_{1}, \ldots, K_{n} (with $n \geq 0$). Refer to $\mathbf{K}=\left(K, K_{1}, \ldots, K_{n}\right)$ as a field structure (or as an n-fold field structure if n is not clear from the context). By an absolutely irreducible variety over K we mean a geometrically integral scheme of finite type over K. (In the language of Weil's Foundation, this is a variety defined over K.) Let r be a positive integer and V an absolutely irreducible variety over K. For each i let U_{i} be an absolutely irreducible variety over K_{i} birationally equivalent to $\mathbb{A}_{K_{i}}^{r}$ and $\varphi_{i}: U_{i} \rightarrow V \times_{K} K_{i}$ be a dominant separable morphism (of varieties over K_{i}). Refer to

$$
\begin{equation*}
\Phi=\left(V, \varphi_{1}: U_{1} \rightarrow V \times_{K} K_{1}, \ldots, \varphi_{n}: U_{n} \rightarrow V \times_{K} K_{n}\right) \tag{1}
\end{equation*}
$$

as a unirational arithmetical problem for \mathbf{K}. A solution to Φ is a tuple $\left(\mathbf{a}, \mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right)$ with $\mathbf{a} \in V(K), \mathbf{b}_{i} \in U_{i}\left(K_{i}\right)$, and $\varphi_{i}\left(\mathbf{b}_{i}\right)=\mathbf{a}$ for $i=1, \ldots, n$. Call K unirationally closed if each unirational arithmetical problem has a solution.

Associate to \mathbf{K} its absolute Galois group structure

$$
\operatorname{Gal}(\mathbf{K})=\left(\operatorname{Gal}(K), \operatorname{Gal}\left(K_{1}\right), \ldots, \operatorname{Gal}\left(K_{n}\right)\right)
$$

Proposition 2.1: Let $\mathbf{K}=\left(K, K_{1}, \ldots, K_{n}\right)$ be a unirationally closed field structure. Then $\mathrm{Gal}(\mathbf{K})$ is a projective group structure.

Proof: By [HJK, Lemma 3.1] it suffices to weakly solve each embedding problem

$$
\left(\text { res: } \operatorname{Gal}(K) \rightarrow \operatorname{Gal}(L / K), \text { res: } \operatorname{Gal}(F / E) \rightarrow \operatorname{Gal}(L / K), \operatorname{Gal}\left(F / F_{1}\right), \ldots, \operatorname{Gal}\left(F / F_{n}\right)\right)
$$

satisfying the following conditions: L / K is a finite Galois extension, E is a finitely generated regular extension of K, F is a finite Galois extension of E which contains $L, \quad F_{i}$ is a finite subextension of F / E that contains $L_{i}=K_{i} \cap L, \quad F_{i} / L_{i}$ is a purely transcendental extension of transcendence degree $r=[F: E]$, and res: $\operatorname{Gal}\left(F / F_{i}\right) \rightarrow$ $\operatorname{Gal}\left(L / L_{i}\right)$ is an isomorphism, $i=1, \ldots, n$.

It is possible to choose $x_{1}, \ldots, x_{k} \in E, y_{i} \in F_{i}, i=1, \ldots, n$, and $z \in F$ with this:
(2a) $E=K(\mathbf{x})$ and $V=\operatorname{Spec}(K[\mathbf{x}])$ is a smooth subvariety of \mathbb{A}_{K}^{k} with generic point x .
(2b) For each $i, F_{i}=L_{i}\left(\mathbf{x}, y_{i}\right)$ and $U_{i}=\operatorname{Spec}\left(L_{i}\left[\mathbf{x}, y_{i}\right]\right)$ is a smooth subvariety of $\mathbb{A}_{L_{i}}^{k+1}$ with generic point $\left(\mathbf{x}, y_{i}\right)$.
(2c) y_{i} is integral over $L_{i}[\mathbf{x}]$ and the discriminant of $\operatorname{irr}\left(y_{i}, L_{i}(\mathbf{x})\right)$ is a unit of $L_{i}[\mathbf{x}]$. Thus, $L_{i}\left[\mathbf{x}, y_{i}\right] / L_{i}[\mathbf{x}]$ is, in the terminology of [FrJ, Definition 5.4], a ring cover. So, the projection on the first k coordinates is an étale morphism $\pi_{i}: U_{i} \rightarrow V \times{ }_{K} L_{i}$.
(2d) $F=K(\mathbf{x}, z)$ and $L[\mathbf{x}, z] / L[\mathbf{x}]$ is a ring cover.
By assumption, there are points $\mathbf{a} \in V(K)$ and $\left(\mathbf{a}, b_{i}\right) \in U_{i}\left(K_{i}\right), i=1, \ldots, n$. Since \mathbf{a} is simple on V, there is a K-place $\rho_{0}: E \rightarrow K \cup\{\infty\}$ with $\rho_{0}(\mathbf{x})=\mathbf{a}[\mathrm{JaR}$, Cor. A2]. Extend ρ_{0} to an L-place $\rho: F \rightarrow \tilde{K} \cup\{\infty\}$. Let $\bar{F} \cup\{\infty\}$ be the residue field of ρ. By (2d) and [FrJ, Lemma 5.5], \bar{F} is a finite Galois extension of K which contains L. Moreover, there is an embedding $\rho^{*}: \operatorname{Gal}(\bar{F} / K) \rightarrow \operatorname{Gal}(F / E)$ with $\rho\left(\rho^{*}(\sigma) u\right)=\sigma(\rho(u))$ for each $\sigma \in \operatorname{Gal}(\bar{F} / K)$ and $u \in F$ with $\rho(u) \neq \infty$. Let $\gamma=\rho^{*} \circ \operatorname{res}_{K_{s} / \bar{F}}$. This is a homomorphism from $\operatorname{Gal}(K)$ to $\operatorname{Gal}(F / E)$ with $\operatorname{res}_{F / L} \circ \gamma=\operatorname{res}_{K_{s} / L}$.

For each $i,(2 \mathrm{c})$ gives an L_{i}-place $\rho_{i}: F_{i} \rightarrow K_{i} \cup\{\infty\}$ which extends ρ_{0} such that $\rho_{i}\left(\mathbf{x}, y_{i}\right)=\left(\mathbf{a}, b_{i}\right)$. Extend ρ_{i} to an L-place $\rho_{i}: F \rightarrow \tilde{K} \cup\{\infty\}$. Since $\left.\rho_{i}\right|_{E L}=\left.\rho\right|_{E L}$, there is $\sigma_{i} \in \operatorname{Gal}(F / E L)$ with $\rho_{i}=\rho \circ \sigma_{i}^{-1}$. Thus, $\rho\left(F_{i}^{\sigma}\right)=\rho \circ \sigma_{i}^{-1}\left(F_{i}\right)=\rho_{i}\left(F_{i}\right) \subseteq L_{i}\left(b_{i}\right) \cup\{\infty\}$. This implies $\gamma\left(\operatorname{Gal}\left(K_{i}\right)\right) \leq \gamma\left(\operatorname{Gal}\left(L_{i}\left(b_{i}\right)\right)=\rho^{*}\left(\bar{F} / L_{i}\left(b_{i}\right)\right) \leq \operatorname{Gal}\left(F / F_{i}\right)^{\sigma_{i}}\right.$. Consequently, γ is a solution of the embedding problem.

3. Pseudo closed fields

Let $n \geq 0$. A field structure $\mathbf{K}=\left(K, K_{1}, \ldots, K_{n}\right)$ is pseudo closed if every absolutely irreducible variety V over K with K_{i}-rational simple points has a K-rational point. In this case we also say K is pseudo closed with respect to K_{1}, \ldots, K_{n}.

Lemma 3.1: Suppose $0 \leq m \leq n$.
(a) Let $\left(G, G_{1}, \ldots, G_{m}\right)$ be a projective group structure. Then $(G, G_{1}, \ldots, G_{m}, \overbrace{1, \ldots, 1}^{(n-m) \times})$ is projective.
(b) Let $\left(K, K_{1}, \ldots, K_{n}\right)$ be a pseudo closed field structure. Suppose for each $m<i \leq n$ either $K_{i}=K_{s}$ or there is $1 \leq j \leq m$ with $K_{j} \subseteq K_{i}$. Then $\left(K, K_{1}, \ldots, K_{m}\right)$ is pseudo closed.

Proof of (a): Standard checking.
Proof of (b) : Use that $V_{\text {simp }}\left(K_{s}\right) \neq \emptyset$ for every absolutely irreducible variety V over K_{s}.

A field-valuation structure is a tuple $\mathbf{K}=\left(K, K_{1}, v_{1}, \ldots, K_{n}, v_{n}\right)$ such that $\left(K, K_{1}, \ldots, K_{n}\right)$ is a field structure and v_{i} is a valuation of $K_{i}, i=1, \ldots, n$. If $\left(K_{i}, v_{i}\right)$ is Henselian, then v_{i} has a unique extension to K_{s} which we also denote by v_{i}. We say v_{1}, \ldots, v_{n} are independent if for all $1 \leq i \neq j \leq n$ the ring generated by the valuation rings of the restrictions of v_{i} and v_{j} to K is K. This is equivalent to the weak approximation theorem [Jar, Prop. 4.2 and 4.4]. The absolute Galois structure of \mathbf{K} is the one associated with $\left(K, K_{1}, \ldots, K_{n}\right)$, namely, $\operatorname{Gal}(\mathbf{K})=\left(\operatorname{Gal}(K), \operatorname{Gal}\left(K_{1}\right), \ldots, \operatorname{Gal}\left(K_{n}\right)\right)$.

Proposition 3.2: Let $\mathbf{K}=\left(K, K_{1}, v_{1}, \ldots, K_{n}, v_{n}\right)$ be a field-valuation structure. Suppose $\left(K_{i}, v_{i}\right)$ is a Henselian closure of K at $v_{i}, i=1, \ldots, n$, the valuations v_{1}, \ldots, v_{n} are independent, and K is pseudo closed with respect to K_{1}, \ldots, K_{n}. Then $\operatorname{Gal}(\mathbf{K})$ is projective.

Proof: By Lemma 3.1 we may assume $K_{i} \neq K_{s}, i=1, \ldots, n$. By [Jar, Lemma 13.2], $K_{i} \nsubseteq K_{j}$ for $i \neq j$. By Proposition 2.1 it suffices to show that $\left(K, K_{1}, \ldots, K_{n}\right)$ is unirationally closed.

Consider a unirational arithmetical problem Φ for \mathbf{K} as in (1) of Section 2. Let $V_{i}=V \times_{K} K_{i}, i=1, \ldots, n$. Since U_{i} is a rational variety, it is smooth and there is a point $\mathbf{b}_{i}^{\prime} \in U_{i}\left(K_{i}\right)$. Let $\mathbf{a}_{i}=\varphi_{i}\left(\mathbf{b}_{i}^{\prime}\right)$. By [GPR, Cor. 9.5], \mathbf{b}_{i}^{\prime} has a v_{i}-open neighborhood \mathcal{U}_{i} in $U\left(K_{i}\right)$ which φ_{i} maps v_{i}-homeomorphically onto a v_{i}-open neighborhood \mathcal{V}_{i} of \mathbf{a}_{i} in $V_{i}\left(K_{i}\right)$.

Since \mathbf{K} is pseudo closed and $K_{i} \nsubseteq K_{j}$ for $i \neq j$, [HeP, Thm. 1.9] gives a point $\mathbf{a} \in V(K)$ which belongs to $\mathcal{V}_{i}, i=1, \ldots, n$. Hence, there is a $\mathbf{b}_{i} \in U_{i}\left(K_{i}\right)$ with $\varphi_{i}\left(\mathbf{b}_{i}\right)=\mathbf{a}, i=1, \ldots, n$. Note that $[H e P, ~ p .298]$ makes the assumption $\operatorname{char}(K)=0$. Nevertheless, the proof of [HeP, Thm. 1.9] is also valid in positive characteristic. See also [Sch, Thm. 4.9] which generalizes [HeP, Thm. 1.9]. Therefore, \mathbf{K} is unirationally closed.

An isomorphism $\alpha:\left(G, G_{1}, \ldots, G_{n}\right) \rightarrow\left(G^{\prime}, G_{1}^{\prime}, \ldots, G_{n}^{\prime}\right)$ of group structures is an isomorphism $\alpha: G \rightarrow G^{\prime}$ of groups with $\alpha\left(G_{i}\right)=G_{i}^{\prime}, i=1, \ldots, n$.

Lemma 3.3: Let $\mathbf{G}=\left(G, G_{1}, \ldots, G_{n}\right)$ be a projective group structure. Suppose each G_{i} is an absolute Galois group. Then there is a field structure \mathbf{K} of characteristic 0 with $\operatorname{Gal}(\mathbf{K}) \cong \mathbf{G}$. If each G_{i} is an absolute Galois group of a field of characteristic p independent of i, then \mathbf{K} may be chosen to be of characteristic p.

Proof: Let \hat{F}_{m} be the free profinite group of rank $m \geq \operatorname{rank}(G)$. Since \hat{F}_{m} is projective [FrJ, Example 20.13], it is an absolute Galois group in each characteristic [FrJ, Cor. 20.16]. Put $G^{*}=\hat{F}_{m} * 円_{i=1}^{n} G_{i}$. By [HJK, Thm. 3.4], $G^{*} \cong \operatorname{Gal}(F)$ for a field F of characteristic 0 . If there is p such that each G_{i} with $i \geq 1$ is a Galois group in characteristic p, then we may choose F to be of characteristic p.

By [FrJ, Cor. 15.20] there is an epimorphism $\psi_{0}: \hat{F}_{m} \rightarrow G$. Let $\psi: G^{*} \rightarrow G$ be the unique epimorphism that extends ψ_{0} and the identity maps of G_{1}, \ldots, G_{n}. Corollary 1.6 gives an embedding of G into G^{*}. Let K be the fixed field of G in F_{s}. For each $i \geq 1$ let K_{i} be the fixed field of G_{i} in F_{s}. Then $\operatorname{Gal}\left(K, K_{1}, \ldots, K_{n}\right) \cong \mathbf{G}$.

Let $\mathbf{K}=\left(K, K_{1}, v_{1}, \ldots, K_{n}, v_{n}\right)$ and $\mathbf{K}^{\prime}=\left(K^{\prime}, K_{1}^{\prime}, v_{1}^{\prime}, \ldots, K_{n}^{\prime}, v_{n}^{\prime}\right)$ be field-valuation structures. We say \mathbf{K}^{\prime} is an extension of \mathbf{K} if $K \subseteq K^{\prime}, K_{i}=K_{i}^{\prime} \cap K_{s}$, and v_{i} is the restriction of v_{i}^{\prime} to $K_{i}, i=1, \ldots, n$. In this case \mathbf{K} is a substructure of \mathbf{K}^{\prime}.

Let (K, v) be a valued field. For $\mathbf{a}=\left(a_{1}, \ldots, a_{r}\right), \mathbf{b}=\left(b_{1}, \ldots, b_{r}\right) \in K^{r}$ we write $v(\mathbf{a}-\mathbf{b})=\min _{j} v\left(a_{j}-b_{j}\right)$.

Lemma 3.4: Let $\mathbf{K}=\left(K, K_{1}, v_{1}, \ldots, K_{n}, v_{n}\right)$ be a field-valuation structure and let $\overline{\mathbf{K}}=\left(\bar{K}, \bar{K}_{1}, \bar{v}_{1}, \ldots, \bar{K}_{n}, \bar{v}_{n}\right)$ be a substructure of \mathbf{K}. Assume:
(1a) \bar{K}_{i} is perfect and \bar{v}_{i} is trivial, $i=1, \ldots, n$.
(1b) $\operatorname{Gal}(\overline{\mathbf{K}})$ is projective.
(1c) $\left(K_{i}, v_{i}\right)$ is a Henselian field with residue field $\bar{K}_{i}, i=1, \ldots, n$.
(1d) res: $\operatorname{Gal}(\mathbf{K}) \rightarrow \operatorname{Gal}(\overline{\mathbf{K}})$ is an isomorphism.
Suppose $V \subseteq \mathbb{A}^{r}$ is an affine variety over K and $\mathbf{b}_{i} \in V_{\text {simp }}\left(K_{i}\right), i=1, \ldots, n$.
Then \mathbf{K} has an extension $\mathbf{K}^{\prime}=\left(K^{\prime}, K_{1}^{\prime}, v_{1}^{\prime}, \ldots, K_{n}^{\prime}, v_{n}^{\prime}\right)$ with these properties:
(2a) $\left(K_{i}^{\prime}, v_{i}^{\prime}\right)$ is a Henselian field with residue field $\bar{K}_{i}, i=1, \ldots, n$.
(2b) res: $\operatorname{Gal}\left(\mathbf{K}^{\prime}\right) \rightarrow \operatorname{Gal}(\mathbf{K})$ is an isomorphism.
(2c) There is $\mathbf{x} \in V\left(K^{\prime}\right)$ with $v_{i}^{\prime}\left(\mathbf{x}-\mathbf{b}_{i}\right)>\gamma$ for each $\gamma \in v_{i}\left(K_{i}^{\times}\right), i=1, \ldots, n$.
Proof: Let \mathbf{x} be a generic point of V over K and let $F=K(\mathbf{x})$. For each i put $M_{i}=K_{i}(\mathbf{x})$. Then [JaR, p. 456, Cor. 2] gives a K_{i}-place $\varphi_{i}: M_{i} \rightarrow K_{i} \cup\{\infty\}$ with $\varphi_{i}(\mathbf{x})=\mathbf{b}_{i}$. Now let $\rho_{i}: K_{i} \rightarrow \bar{K}_{i} \cup\{\infty\}$ be the \bar{K}_{i}-place associated with v_{i}. The compositum $\varphi_{i}^{\prime}=\rho_{i} \circ \varphi_{i}: M_{i} \rightarrow \bar{K}_{i} \cup\{\infty\}$ is a \bar{K}_{i}-place of M_{i} that extends ρ_{i}. Denote the corresponding valuation of M_{i} by w_{i}. Then w_{i} extends v_{i}, \bar{K}_{i} is the residue field of w_{i}, and for every $c \in K_{i}^{\times}$and every coordinate $1 \leq j \leq r, \varphi_{i}^{\prime}\left(\frac{x_{j}-b_{i j}}{c}\right)=\rho_{i}\left(\frac{0}{c}\right)=0$. Thus, $w_{i}\left(\mathbf{x}-\mathbf{b}_{i}\right)>w(c), i=1, \ldots, n$.

Extend w_{i} to a Henselization M_{i}^{\prime} of $\left(M_{i}, w_{i}\right)$. By [HJK, Prop. 2.4], $\left(M_{i}^{\prime}, w_{i}\right)$ has a separable algebraic extension $\left(N_{i}, w_{i}\right)$ such that the map res: $\operatorname{Gal}\left(N_{i}\right) \rightarrow \operatorname{Gal}\left(K_{i}\right)$ is an isomorphism and \bar{K}_{i} is the residue field of N_{i}. In particular, N_{i} is Henselian.

By (1b) and (1d), $\operatorname{Gal}(\mathbf{K})$ is projective. So, we may apply Corollary 1.6 to the map res: $\operatorname{Gal}(F) \rightarrow \operatorname{Gal}(K)$ with the isomorphisms res: $\operatorname{Gal}\left(N_{i}\right) \rightarrow \operatorname{Gal}\left(K_{i}\right), i=1, \ldots, n$. This gives elements $\sigma_{1}, \ldots, \sigma_{n} \in \operatorname{Gal}(F)$ such that $\left.\sigma_{i}\right|_{K_{s}}=\mathrm{id}, i=1, \ldots, n$, and an n-fold field structure $\left(K^{\prime},\left(N_{1}\right)^{\sigma_{1}}, \ldots,\left(N_{n}\right)^{\sigma_{n}}\right)$ such that

$$
\text { res: } \operatorname{Gal}\left(K^{\prime},\left(N_{1}\right)^{\sigma_{1}}, \ldots,\left(N_{n}\right)^{\sigma_{n}}\right) \rightarrow \operatorname{Gal}\left(K, K_{1}, \ldots, K_{n}\right)
$$

is an isomorphism.
Finally let $K_{i}^{\prime}=N_{i}^{\sigma_{i}}$ and $v_{i}^{\prime}=w_{i} \circ \sigma_{i}^{-1}, i=1, \ldots, n$. Note that σ_{i} fixes \mathbf{x} as well as each element of K_{s}. So, (2) holds.

Let $\mathbf{K}=\left(K, K_{1}, v_{1}, \ldots, K_{n}, v_{n}\right)$ be a field-valuation structure. We say \mathbf{K} is pseudo-closed with the approximation property if it has this property:
(3) Suppose $V \subseteq \mathbb{A}^{r}$ is an affine absolutely irreducible variety over K, $\mathbf{a}_{i} \in V_{\text {simp }}\left(K_{i}\right)$, and $\gamma_{i} \in v_{i}\left(K_{i}^{\times}\right), i=1, \ldots, n$. Then there is $\mathbf{a} \in V(K)$ with $v_{i}\left(\mathbf{a}-\mathbf{a}_{i}\right)>\gamma_{i}$, $i=1, \ldots, n$.

Proposition 3.5: Let $\mathbf{K}=\left(K, K_{1}, v_{1}, \ldots, K_{n}, v_{n}\right)$ be a field-valuation structure and $\overline{\mathbf{K}}=\left(\bar{K}, \bar{K}_{1}, \bar{v}_{1}, \ldots, \bar{K}_{n}, \bar{v}_{n}\right)$ a substructure of \mathbf{K} satisfying conditions (1).

Then \mathbf{K} has an extension $\mathbf{K}^{\prime}=\left(K^{\prime}, K_{1}^{\prime}, v_{1}^{\prime}, \ldots, K_{n}^{\prime}, v_{n}^{\prime}\right)$ with these properties:
(4a) $\left(K_{i}^{\prime}, v_{i}^{\prime}\right)$ is a Henselian field with residue field $\bar{K}_{i}, i=1, \ldots, n$.
(4b) The map res: $\operatorname{Gal}\left(\mathbf{K}^{\prime}\right) \rightarrow \operatorname{Gal}(\mathbf{K})$ is an isomorphism.
(4c) \mathbf{K}^{\prime} is pseudo closed with the approximation property.

Proof: Well-order all tuples $\left(V, \mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right)$ where V is an affine absolutely irreducible variety over K and $\mathbf{b}_{i} \in V_{\text {simp }}\left(K_{i}\right), i=1, \ldots, n$. Use transfinite induction and Lemma 3.4 to construct a transfinite tower of field-valuation structures whose union is a field-valuation structure $\mathbf{L}_{1}=\left(L_{1}, L_{1,1}, v_{1,1}, \ldots, L_{1, n}, v_{1, n}\right)$ with these properties:
(5a) $\left(L_{1, i}, v_{1, i}\right)$ is a Henselian field with residue field $\bar{K}_{i}, i=1, \ldots, n$.
(5b) The map res: $\operatorname{Gal}\left(\mathbf{L}_{1}\right) \rightarrow \operatorname{Gal}(\mathbf{K})$ is an isomorphism.
(5c) Suppose V is an absolutely irreducible affine variety over K and $\mathbf{b}_{i} \in V_{\text {simp }}\left(K_{i}\right)$, $i=1, \ldots, n$. Then there is $\mathbf{x} \in V\left(L_{1}\right)$ with $v_{1, i}\left(\mathbf{x}-\mathbf{b}_{i}\right)>\gamma_{i}$ for all $\gamma_{i} \in v_{i}\left(K_{i}^{\times}\right)$, $i=1, \ldots, n$.

Use ordinary induction to construct an ascending sequence of n-fold field-valuation structures $\mathbf{L}_{j}, j=1,2,3, \ldots$ with \mathbf{L}_{j+1} relating to \mathbf{L}_{j} as \mathbf{L}_{1} relates to $\mathbf{K}, j=1,2,3, \ldots$ Then $\mathbf{K}^{\prime}=\bigcup_{j=1}^{\infty} \mathbf{L}_{j}$ satisfies (4).

Lemma 3.6: Let (K, v) be a Henselian field and L a separable algebraic extension of K. Suppose K is v-dense in L. Then $K=L$.

Proof: Consider $x \in L$ and let x_{1}, \ldots, x_{n} be the conjugates of x over K. By assumption, there is $y \in K$ with $v(y-x)>\max _{i \neq j} v\left(x_{i}-x_{j}\right)$. By Krasner's Lemma [Jar, Lemma 12.1], $K(x) \subseteq K(y)=K$. Therefore, $x \in K$.

Theorem 3.7: Let $\mathbf{G}=\left(G, G_{1}, \ldots, G_{n}\right)$ be a projective group structure. Suppose each G_{i} is an absolute Galois group. Then \mathbf{G} is the group structure of a field structure $\mathbf{K}=\left(K, K_{1}, \ldots, K_{n}\right)$ with these properties: $\operatorname{char}(K)=0, K_{i}$ is the Henselian closure of K at a valuation $v_{i}, i=1, \ldots, n$, and $\left(K, K_{1}, v_{1}, \ldots, K_{n}, v_{n}\right)$ is pseudo closed with the approximation property. If all G_{i} are absolute Galois groups of fields of the same characteristic p, then K can be chosen to have characteristic p.

Proof: Lemma 3.3 gives a field structure $\left(\bar{E}, \bar{E}_{1}, \ldots, \bar{E}_{n}\right)$ with $\mathbf{G} \cong \operatorname{Gal}\left(\bar{E}, \bar{E}_{1}, \ldots, \bar{E}_{n}\right)$. Let \bar{v}_{i} be the trivial valuation of \bar{E}_{i}. Put $\overline{\mathbf{E}}=\left(\bar{E}, \bar{E}_{1}, \bar{v}_{1}, \ldots, \bar{E}_{n}, \bar{v}_{n}\right)$.

The pair $(\overline{\mathbf{E}}, \overline{\mathbf{E}})$ has all properties that $(\overline{\mathbf{K}}, \mathbf{K})$ of Proposition 3.5 has. So, Proposition 3.5 gives an extension $\mathbf{K}=\left(K, K_{1}, v_{1}, \ldots, K_{n}, v_{n}\right)$ of \mathbf{E} with these properties:
(6a) $\left(K_{i}, v_{i}\right)$ is a Henselian field, $i=1, \ldots, n$.
(6b) The map res: $\operatorname{Gal}(\mathbf{K}) \rightarrow \operatorname{Gal}(\mathbf{E})$ is an isomorphism.
(6c) \mathbf{K} is pseudo closed with the approximation property.
$\operatorname{By}(6 \mathrm{~b}), \operatorname{Gal}(\mathbf{K}) \cong \mathbf{G}$. By $(6 \mathrm{a}),\left(K, v_{i}\right)$ has a Henselian closure $\left(H_{i}, v_{i}\right)$ which is contained in $\left(K_{i}, v_{i}\right)$. By (6c) applied to \mathbb{A}_{K}^{1}, K is v_{i}-dense in K_{i}. Hence, H_{i} is v_{i}-dense in K_{i}. Therefore, by Lemma 3.6, $\left(K_{i}, v_{i}\right)$ is the Henselian closure of K at v_{i}.

References

[FrJ] M. D. Fried and M. Jarden, Field Arithmetic, Ergebnisse der Mathematik (3) 11, Springer-Verlag, Heidelberg, 1986.
[GPR] B. Green, F. Pop, and P. Roquette, On Rumely's local-global principle, Jahresbericht der Deutschen Mathematiker-Vereinigung 97 (1995), 43-74.
[Har] D. Haran, On closed subgroups of free products of profinite groups, Proceedings of London Mathematical Society 55 (1987), 266-298.
[HaJ] D. Haran and M. Jarden, The absolute Galois group of a pseudo p-adically closed field, Journal für die reine und angewandte Mathematik 383 (1988), 147-206.
[HJK] D. Haran, M. Jarden, and J. Koenigsmann, Free products of absolute Galois groups, http://front.math.ucdavis.edu/ANT/0241
[HeP] B. Heinemann and A. Prestel, Fields regularly closed with respect to finitely many valuations and orderings, Canadian Mathematical Society Conference Proceedings 4 (1984), 297-336.
[HJP] D. Haran, M. Jarden, and F. Pop, Projective group structures as absolute Galois structures with block approximation, manuscript, Tel Aviv, October 2002.
[HeR] W. Herfort and L. Ribes, Torsion elements and centralizers in free products of profinite groups, Journal für die reine und angewandte Mathematik 358 (1985), 155-161.
[JaR] M. Jarden and Peter Roquette, The Nullstellensatz over p-adically closed fields, Journal of the Mathematical Society of Japan 32 (1980), 425-460.
[Jar] M. Jarden, Intersection of local algebraic extensions of a Hilbertian field (A. Barlotti et al., eds), NATO ASI Series C 333 343-405, Kluwer, Dordrecht, 1991.
[Koe] J. Koenigsmann, Relatively projective groups as absolute Galois groups, Israel Journal of Mathematics 127 (2002), 93-129.
[Lep] H. Leptin, Ein Darstellungssatz für kompakte, total unzusammenhängende Gruppen, Archiv der Mathematik 6 (1955), 371-373.
[Pop] F. Pop, Classically projective groups, preprint, Heidelberg, 1990.
[Sch] J. Schmid, Regularly T-closed fields, Hilbert's tenth problem: relations with arithmetic and algebraic geometry (Ghent, 1999), Contemporary Mathematics 270 187-212, American Mathematical Society, Providence, RI, 2000.

[^0]: * Research supported by the Minkowski Center for Geometry at Tel Aviv University, established by the Minerva Foundation.

