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Abstract

We define quasi-formations, a generalization of formations of finite groups. For a
quasi-formation C we construct an analogue of a free pro-C group.

Introduction

In the study of profinite groups (see [FrJ] or [RiZ]) one often considers pro-C groups for
a class C of finite groups. In order to have a good theory, one has to impose several
reasonable conditions on C. The minimal requirement in the literature seems to be that C
be a formation, that is, closed under quotients and fiber products. One then has free pro-
C groups; these have nice properties (e.g. the embedding property) and play an important
role in Galois theory: For instance, if K is a Hilbertian field with a projective absolute
Galois group of rank at most ℵ0, then Gal(Ksolv/K) ∼= F̂ω(C) where C is the formation of
all solvable finite groups and Ksolv is the maximal solvable extension of K ([FrJ, Corollary
24.8.4]). In particular, Gal(Qsolv/Qab) ∼= F̂ω(C) ([FrJ, Example 24.8.5(a)]).

Can one make a similar statement about Gal(Ksolv) and, in particular, about Gal(Qsolv)?
In the latter case the problem is that the family C′ of finite quotients of Gal(Qsolv) is not
even a formation, since it is not closed under taking fiber products (Corollary 1.10). More
generally, let C be a formation and let C′ be the class of all finite groups which have no
nontrivial quotients in C. Then C′ need not be closed under taking fiber products. Nev-
ertheless (Lemma 3.2), C′ satisfies the following weakening of the formation conditions:

Definition. A class of finite groups C′ is a quasi-formation if it is closed under taking
quotients and compact cartesian squares. The latter condition means that if

G
π2 //

π1

��

G2

ϕ2

��
G1 ϕ1

// A

is a cartesian square of epimorphisms of finite groups with G1, G2 ∈ C′, then G ∈ C′,
provided there is no subgroup H � G with πi(H) = Gi, i = 1, 2.

Another natural example of a quasi-formation is the class Im(G) of all finite quotients
of a profinite group G with the embedding property (Proposition 4.3).
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For every formation C there exists a free pro-C group F = F̂ω(C). It is well known
that F has the embedding property, Im(F ) = C and F with these properties is unique up
to an isomorphism. The construction of F is based on the fact that C is a formation. We
generalize it to quasi-formations: For every quasi-formation C′ there exists a pro-C′ group
E = Ê(C′) with the embedding property and Im(E) = C′, and such E is unique up to an
isomorphism (Theorem 4.4). Its rank is the supremum of the ranks of the groups in C′
(in particular, E is of at most countable rank). We call it the free pro-C′ group. We
show (Theorem 5.5):

Theorem. Let C′ be the quasi-formation of finite groups which have no nontrivial quo-
tients in a Melnikov formation C. Then Ê(C′) ∼= F̂ Cω .

In Section 6 we apply the theory of quasi-formations to countable fields for which a
generalization of Shafarevich’s conjecture is known to be true, namely, that the absolute
Galois group of the maximal abelian extension of the field is free; e.g. the function fields of
one variable over a countable algebraically closed field. For such a field K it immediately
follows that the absolute Galois group of the maximal solvable extension of K is Ê(C′)
(the free pro-C′ group of rank ℵ0), where C is the formation of all finite solvable groups.

Shafarevich’s original conjecture asserts that the absolute Galois group of the maximal
abelian extension of Q is free. In this case the conjecture is still open, but if it is true, then
the absolute Galois group of the maximal solvable extension Qsolv of Q is again Ê(C′).

It may be worthwhile to mention that the same conclusion regarding the absolute
Galois group of Qsolv follows also from a different conjecture, namely that Qsolv is ample.
This result appears in [Fri] and uses, among other ingredients, a generalization of the
Hilbertianity notion.

Groups in this work are tacitly assumed to be profinite groups, their subgroups are
assumed to be closed and all the homomorphisms between profinite groups are continuous.

1 Maximal pro-C quotients

We begin by recalling some well-known definitions and facts (cf. [FrJ] and [RiZ]).

Definition 1.1. Let C be a nonempty class of finite groups (this will always mean that
C contains all the isomorphic images of the groups in C).
(a) C is called a formation if it is closed under taking quotients and fiber products.

(b) Let 1 → N → G → Ḡ → 1 be a short exact sequence of finite groups. We call
C extension-closed if from N, Ḡ ∈ C it follows that G ∈ C. If, in addition, the
converse holds, i.e., from G ∈ C it follows that N, Ḡ ∈ C, we call C a Melnikov
formation.

(c) A Melnikov formation C which is closed under taking subgroups is called a full
formation.

(d) A pro-C group G is an inverse limit G = lim←−Gi, where Gi ∈ C for every i, such
that the connecting homomorphisms Gj → Gi are epimorphisms.

Notice that a Melnikov formation is indeed a formation ([FrJ, p. 344]). We refer the
reader to [FrJ, Example 17.3.3 and Remark 17.3.4] for examples of formations.

Definition 1.2. [FrJ, Definition 17.3.2] Let C be a formation and let G be a profinite
group. Put

GC =
⋂

N/G, G/N∈C

N.

Lemma 1.3. Let G,H be profinite groups and let C be a formation.
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(a) G/GC is the largest pro-C quotient group of G, i.e., if K / G and G/K is a pro-C
group, then GC ≤ K.

(b) If ϕ : G→ H is an epimorphism, then ϕ(GC) = HC.

(c) Suppose C is a full formation and let ϕ : G→ H be a homomorphism. Then ϕ(GC) ≤
HC.

(d) Assume C is a Melnikov formation. Then, if GC ≤ K / G, we have GC = KC.

Proof. See [RiZ, Lemma 3.4.1].

Definition 1.4. Let C be a formation. Put

C′ = {G | G is a finite group with GC = G}.

Clearly, a finite group is in C′ if and only if it has no nontrivial quotients in C.

Lemma 1.5. Let C be a formation. Then

(a) C′ is closed under taking quotients.

(b) C′ is extension-closed.

(c) If C is a Melnikov formation, then C′ = {GC | G is a finite group} and for every
profinite group G we have that GC is pro-C′.

Proof. (a) If a group G has no nontrivial quotients in C, then also a quotient of G has no
nontrivial quotients in C.

(b) Let 1→ N → G→ Ḡ→ 1 be a short exact sequence of finite groups and assume
N, Ḡ ∈ C′. By Lemma 1.3(b), it induces the short exact sequence 1 → NGC/GC →
G/GC → Ḡ/ḠC → 1. As Ḡ/ḠC = 1, we have

N/(N ∩GC) ∼= NGC/GC ∼= G/GC ∈ C.

But N has no nontrivial quotients in C. Thus, N/(N∩GC) = 1. Conclude that G/GC = 1.
(c) By Lemma 1.3(d), (GC)C = GC for every profinite group G. Now let ϕ : GC → A

be an epimorphism with A a finite group. By Lemma 1.3(b) and (d), A = ϕ(GC) =
ϕ((GC)C) = AC . Hence, A ∈ C′. It follows that GC is pro-C′.

Remark 1.6. Let C be a formation. It may well happen that C′ is trivial, i.e., C′ = {1}.
Obviously, this happens if and only if C contains all finite simple groups. If C is a Melnikov
formation, then by [FrJ, Remark 17.3.4], this happens if and only if C is the class of all
finite groups.

In general, if C is a formation, C′ need not be a formation, for it need not be closed
under taking fiber products. This is demonstrated in Example 1.9 below.

Proposition 1.7. Let 1 → P → H
π−→ S → 1 be a central extension of groups. Put

Ĥ = H ×S H. Then

(a) Ĥ ∼= P ×H.

(b) Let C be a formation such that 1 6= P ∈ C and HC = H. Then ĤC 6= Ĥ. In
particular, C′ is not a formation.

Proof. (a) Let Λ be the image of the diagonal map H → Ĥ given by x 7→ (x, x). Clearly,
(1 × P ) ∩ Λ = 1. Moreover, Ĥ = (1 × P )Λ. Indeed, let (h, h′) ∈ Ĥ. Then π(h) = π(h′)
and therefore h′ = gh for some g ∈ P . Thus, (h, h′) = (1, g)(h, h) ∈ (1 × P )Λ. As 1 × P
is central in Ĥ, it follows that Ĥ = (1× P )× Λ ∼= P ×H.

(b) By (a), Ĥ has a nontrivial quotient in C.

Lemma 1.8. Let p be a prime number and let P = Z/pZ. Then there exists a central
extension 1→ P → H → S → 1 of a finite simple group S by P such that H is perfect.

3



Proof. By Dirichlet’s Theorem ([Ser, p. 61]), there exists a prime number q ≥ 5 such that
p|q − 1. Let H = SLp(Fq) and S = PSLp(Fq). By [Rot, Theorems 8.13 and 8.23], S is
simple. By [Rot, Theorems 8.9 and 8.10], H is a central extension of S by P . By [Lan,
Chapter XIII, Theorems 8.3 and 9.2], H is perfect.

Example 1.9. If C is the class of all finite p-groups for a fixed prime p, or abelian
or nilpotent or solvable groups, then C′ is not a formation. Indeed, in each of these
four cases there is a prime p such that P = Z/pZ ∈ C. Consider a central extension
1 → P → H → S → 1 as in Lemma 1.8. Since a nontrivial group in C has a nontrivial
abelian quotient, the perfect group H is in C′, that is, HC = H. By Proposition 1.7, C′ is
not a formation. (Notice that the last three cases produce the same class C′.)

Corollary 1.10. The class C of all finite images of Gal(Qsolv) is not a formation.

Proof. By [Son, Theorem 3], H = SL2(F5) ∈ C. Let S = PSL2(F5) and P = Z/2Z. By
Lemma 1.8, 1→ P → H → S → 1 is a central extension. By Proposition 1.7(a), H ×S H
has P as a quotient. But Qsolv has no nontrivial solvable extensions. Thus, H ×S H is
not realizable over Qsolv and therefore C is not a formation.

On the other hand, we show in Proposition 1.13 below that if C is a Melnikov for-
mation generated by non-abelian finite simple groups ([FrJ, Remark 17.3.4]), then C′ is a
formation. To that end we need the following two lemmas:

Lemma 1.11. Let G be a group and let K1, K2 and N be normal subgroups of G. Assume
K1 ∩K2 = 1 and NK1 = NK2 = G. Then G/N is abelian.

Proof. Let x̄, ȳ ∈ G/N . By assumption, there exist x ∈ K1, y ∈ K2 that lift x̄, ȳ. As K1

and K2 are normal, [x, y] ∈ [K1,K2] ⊆ K1 ∩K2 = 1. Hence, [x̄, ȳ] = 1.

Lemma 1.12. Let πi : Gi → A, i = 1, 2 be two epimorphisms of finite groups and let
G = G1 ×A G2. Let C be a Melnikov formation generated by finite non-abelian simple
groups. Then GC = GC1 ×AC GC2 .

Proof. By Lemma 1.3(b), πi(G
C
i ) = AC for i = 1, 2. Thus, G′ = GC1 ×AC GC2 and Ḡ =

(G1/G
C
1)×A/AC (G2/G

C
2) are well defined. Moreover, the quotient maps Gi → Gi/G

C
i for

i = 1, 2 induce an epimorphism G→ Ḡ with kernel G′. As Ḡ ∈ C, it follows from Lemma
1.3(a) that GC ≤ G′. Since G′ is a normal subgroup of G, by Lemma 1.3(d), GC = (G′)C .
Thus, it suffices to show that G′ = (G′)C . Replacing G,G1, G2 and A by G′, GC1 , G

C
2 and

AC , respectively, we may therefore assume that G1 = GC1 , G2 = GC2 and A = AC . Thus,
G = G′. Suppose G 6= GC .

For i = 1, 2 let Ki be the kernel of the canonical projection G→ Gi. Then GCKi = G.
Indeed, as a homomorphic image of G/GC ∈ C, G/GCKi ∈ C. On the other hand, G/GCKi

is a homomorphic image ofG/Ki
∼= Gi which, by Definition 1.4, has no nontrivial quotients

in C. Hence, G/GCKi = 1 and therefore GCKi = G.
It follows from Lemma 1.11 that G/GC is abelian, in contradiction to the assumption.

Proposition 1.13. Let C be the Melnikov formation generated by finite non-abelian simple
groups. Then C′ is a formation.

Proof. By Lemma 1.5(a), C′ is closed under taking quotients. It remains to show that if
G = G1 ×A G2 where G1, G2 ∈ C′, then G ∈ C′. For i = 1, 2, GCi = Gi. Furthermore,
AC = A since A is a quotient of G1. By Lemma 1.12, GC = G, that is, G ∈ C′.
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2 Compact cartesian squares

We recall the definition and basic properties of a cartesian square ([FrJ, Proposition 22.2.1
and Definition 22.2.2]):

Definition 2.1. A commutative diagram of epimorphisms of profinite groups

G
β //

α

��

G2

π2

��
G1 π1

// A

(1)

(abbreviated as (G,G1, G2, A)) is called a cartesian square if G ∼= G1 ×A G2, that is,
whenever H is a profinite group and ϕ : H → G1, ψ : H → G2 are homomorphisms such
that π1 ◦ϕ = π2 ◦ψ, there exists a unique homomorphism π : H → G such that α ◦ π = ϕ
and β ◦ π = ψ.

The following is taken from [FrJ, p. 570]: Let G1 and G2 be profinite groups. Consider
the collection P of all triples (π1, π2, A) with πi : Gi → A an epimorphism, i = 1, 2.
Partially order P by (π1, π2, A) ≤ (π′1, π

′
2, A

′) if there exists an epimorphism π : A′ → A
which makes the diagram

G1

π′1

��
π1

��

G2

π2

��

π′2

��
A′

π

��
A

(2)

commutative. Write (π1, π2, A) ∼ (π′1, π
′
2, A

′) if π is an isomorphism. Then ≤ induces a
partial ordering on the quotient set P(G1, G2) := P/ ∼.

Let pri : G1 × G2 → Gi be the projection onto the ith coordinate, i = 1, 2. Define
H = H(G1, G2) to be the collection of all closed subgroups H of G1×G2 with pri(H) = Gi,
i = 1, 2. Partially order H by inclusion.

The definition of quasi-formations in the next section is based on the following defini-
tion:

Definition 2.2. A cartesian square (1) is called compact if one of the following equivalent
([FrJ, Lemma 24.4.1]) conditions is satisfied:

(a) G1 ×A G2 is minimal in H(G1, G2).

(b) (π1, π2, A) is maximal in P(G1, G2).

Notice that if π1 or π2 is an isomorphism, then (b) holds, so (1) is compact.

Lemma 2.3. Let I = (G,G1, B,B1) and II = (B,B1, G2, A) be two commutative diagrams
of epimorphisms of profinite groups. Let III = (G,G1, G2, A) be the induced commutative
diagram

G

α

��

β // B

γ

��

ξ // G2

η

��
G1

δ
// B1

ζ
// A

(3)

Then:
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(a) If two of the commutative squares are cartesian, then so is the third.

(b) Assume I, II and III are cartesian. Then III is compact if and only if both I and II
are compact.

Proof. (a) Assume both I and II are cartesian. We show that III is cartesian. Let H
be a profinite group and let ϕ : H → G1 and ψ : H → G2 be homomorphisms such that
ζ ◦ δ ◦ϕ = η ◦ψ. As II is cartesian, there exists a unique homomorphism π2 : H → B such
that ξ ◦ π2 = ψ and γ ◦ π2 = δ ◦ϕ. As I is cartesian, there exists a unique homomorphism
π : H → G such that β ◦ π = π2 and α ◦ π = ϕ. It follows that α ◦ π = ϕ and ξ ◦ β ◦ π =
ξ ◦ π2 = ψ.

In order to see that π is unique, assume there exists π′ : H → G such that ξ ◦β ◦π′ = ψ
and α ◦ π′ = ϕ. Define π′2 = β ◦ π′ : H → B. Then ξ ◦ π′2 = ξ ◦ β ◦ π′ = ψ and
γ ◦ π′2 = γ ◦ β ◦ π′ = δ ◦ α ◦ π′ = δ ◦ϕ. As π2 is unique with this property, π′2 = π2. Thus,
π2 = β ◦ π′. Since α ◦ π′ = ϕ, it follows from the uniqueness of π applied to I that π′ = π.

Assume both I and III are cartesian. By [FrJ, Lemma 22.2.4] we may assume that (3)
is of the form

G

��

// G/K2

��

// G/L

��
G/K1

// G/K1K2
// G/K1L

with K1,K2, L / G such that K2 ≤ L and K1 ∩ K2 = K1 ∩ L = 1. It suffices to show
that K1K2L = K1L and K1K2 ∩ L = K2. The former equality is obvious. Let g ∈ K1

and h ∈ K2 such that gh ∈ L. As K2 ≤ L, we have g ∈ K1 ∩ L = 1. It follows that
gh = h ∈ K2.

Assume both II and III are cartesian. Again, we may assume that (3) is of the form

G

��

// G/K2

��

// G/L

��
G/K1

// G/M // G/K1L

with K1,K2, L,M / G such that K2 ≤ L,K1,K2 ≤ M,K1 ∩ L = 1,M ∩ L = K2 and
ML = K1L. It suffices to show that K1K2 = M and K1 ∩K2 = 1. The latter equality
is obvious. Let g ∈ M . Then g = hl for some h ∈ K1, l ∈ L. As h ∈ M , also l ∈ M and
therefore l ∈M ∩ L = K2. It follows that g ∈ K1K2.

(b) Assume both I and II are compact. Let H be a subgroup of G such that α(H) = G1

and ξ◦β(H) = G2. Put H ′ = β(H). Then ξ(H ′) = ξ◦β(H) = G2 and γ(H ′) = γ◦β(H) =
δ ◦ α(H) = B1. By the compactness of II, H ′ = B. By the compactness of I, H = G.
Thus, III is compact.

Assume III is compact. Let H be a subgroup of G such that α(H) = G1 and β(H) = B.
Then ξ ◦ β(H) = G2. By the compactness of III, H = G and therefore I is compact. Now
let H ′ be a subgroup of B such that ξ(H ′) = G2 and γ(H ′) = B1. Let H = β−1(H ′).
Then ξ ◦ β(H) = G2 and B1 = γ ◦ β(H). Denote K1 = ker(α) and K2 = ker(β). By [FrJ,
Lemma 22.2.4], ker(γ ◦ β) = K1K2. As (γ ◦ β)(H) = B1, we have HK1K2 = G. But
K2 ≤ H and therefore HK1 = G. Thus, α(H) = G1. By the compactness of III, H = G.
Hence, H ′ = β(H) = β(G) = B. Conclude that II is compact.

The following notion helps to characterize compact cartesian squares:

Definition 2.4. An epimorphism ϕ : A → B of profinite groups is called indecompos-
able if whenever ψ : A → C and ρ : C → B are epimorphisms such that ϕ = ρ ◦ ψ, then
either ψ or ρ is an isomorphism. In particular, an isomorphism is indecomposable.
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Lemma 2.5. Consider a cartesian square (1).

(a) If π2 : G2 → A is indecomposable, then (1) is compact if and only if either π2 is an
isomorphism or there exists no epimorphism θ : G1 → G2 such that π1 = π2 ◦ θ.

(b) Assume both π1 : G1 → A and π2 : G2 → A are indecomposable and not isomor-
phisms. Then (1) is compact if and only if there exists no isomorphism θ : G1 → G2

such that π1 = π2 ◦ θ.

Proof. (a) Let θ : G1 → G2 be an epimorphism such that π1 = π2 ◦ θ and assume that π2
is not an isomorphism. Then (π1, π2, A) < (θ, id, G2) in P(G1, G2):

G1

θ

��
π1

��

G2

id

��
π2

��

G2

π2

��
A

Thus (1) is not compact.
Conversely, assume (1) is not compact. Then there is a commutative diagram (2) of

epimorphisms with π not an isomorphism. As π2 is indecomposable, π′2 is an isomorphism.
Thus, π2 is not an isomorphism. Put θ = (π′2)

−1◦π′1. Then θ : G1 → G2 is an epimorphism
such that π1 = π2 ◦ θ.

(b) If θ : G1 → G2 is an epimorphism such that π1 = π2 ◦ θ, then θ is an isomorphism,
since π1 is indecomposable and π2 is not an isomorphism. Hence, the assertion follows
from (a).

Lemma 2.7 below is used in the next section to characterize quasi-formations. The
following technical lemma is needed in its proof:

Lemma 2.6. Consider a cartesian square (1). If there exist either

(a) epimorphisms δ1 : G1 → B and δ2 : B → A such that δ2 ◦ δ1 = π1; or

(b) epimorphisms β1 : G→ D and β2 : D → G2 such that β2 ◦ β1 = β,

then there exists a commutative diagram with three cartesian squares

G
β1

//

α

��

β

))
D

β2
//

π

��

G2

π2

��
G1

π1

66
δ1 // B

δ2 // A

(4)

Proof. (a) Let D = B ×A G2 and let β2 : D → G2, π : D → B be the canonical pro-
jections. Then (D,B,G2, A) is a cartesian square. By Definition 2.1, there exists a
unique homomorphism β1 : G → D such that β2 ◦ β1 = β and π ◦ β1 = δ1 ◦ α. As
(G,G1, G2, A) is cartesian, by [FrJ, Lemma 22.2.4], ker(π1 ◦ α) = ker(α) ker(β). Thus,
ker(π1 ◦ α) ≤ ker(δ1 ◦ α) ker(β). By [FrJ, Lemma 22.2.6(b)], β1 is surjective. By
Lemma 2.3(a), (G,G1, D,B) is a cartesian square.

(b) Let B = G1/α(ker(β1)) and let δ1 : G1 → B be the canonical projection. We have
ker(δ1 ◦ α) = α−1(ker(δ1)) = α−1(α(ker(β1))) = ker(α) ker(β1). Thus, ker(β1) ⊆ ker(δ1 ◦
α). It follows that there exists a unique epimorphism π : D → B such that δ1 ◦α = π ◦β1.
Moreover, ker(α) ∩ ker(β1) ⊆ ker(α) ∩ ker(β) = 1. Hence, ker(δ1 ◦ α) = ker(α)× ker(β1).
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By [FrJ, Proposition 22.2.4], (G,G1, D,B) is a cartesian square. Furthermore, by [FrJ,
Lemma 22.2.5], α(ker(β)) = ker(π1). It follows that ker(δ1) = α(ker(β1)) ⊆ α(ker(β)) =
ker(π1). Hence, there exists a unique epimorphism δ2 : B → A such that δ2 ◦ δ1 = π1. We
have δ2 ◦ π ◦ β1 = δ2 ◦ δ1 ◦ α = π1 ◦ α = π2 ◦ β = π2 ◦ β2 ◦ β1. Hence, δ2 ◦ π = π2 ◦ β2. By
Lemma 2.3(a), (D,B,G2, A) is a cartesian square.

Lemma 2.7. Consider a cartesian square (1). Then

(a) α (resp. β) is an isomorphism if and only if π2 (resp. π1) is an isomorphism.

(b) α (resp. β) is indecomposable if and only if π2 (resp. π1) is indecomposable.

Proof. (a) By [FrJ, Lemma 22.2.5], ker(π1) ∼= ker(β). By symmetry, ker(π2) ∼= ker(α).
(b) We prove the claim in the parentheses, since diagram (4) is better suited to this

proof. The other case follows by symmetry.
Since isomorphisms are, by definition, indecomposable, by (a), we may assume that

both π1 and β are not isomorphisms.
Suppose β is indecomposable and let δ1 : G1 → B, δ2 : B → A be epimorphisms such

that δ2◦δ1 = π1. By Lemma 2.6(a), there exists a commutative diagram (4) with cartesian
squares. As β is indecomposable, either β1 or β2 is an isomorphism. By (a), either δ1 or
δ2 is an isomorphism. Hence, π1 is indecomposable.

Conversely, suppose π1 is indecomposable and let β1 : G→ D,β2 : D → G2 be epimor-
phisms such that β2 ◦ β1 = β. By Lemma 2.6(b), there exists a commutative diagram (4)
with cartesian squares. As π1 is indecomposable, either δ1 or δ2 is an isomorphism. By
(a), either β1 or β2 is an isomorphism. Hence, β is indecomposable.

3 Quasi-formations

Definition 3.1. Let C be a class of finite groups. We call C a quasi-formation if it is
closed under taking quotients and compact cartesian squares (i.e., if (G,G1, G2, A) is a
compact cartesian square with G1, G2 ∈ C, then G ∈ C).

We have seen in Proposition 1.13 that if C is a Melnikov formation generated by finite
non-abelian simple groups, then C′ is a formation. If we take out the non-abelianity
assumption, we get a quasi-formation:

Lemma 3.2. Let C be a formation. Then C′ is a quasi-formation.

Proof. By Lemma 1.5(a), C′ is closed under taking quotients. Consider a compact carte-
sian square (G,G1, G2, A) with G1, G2 ∈ C′. By Lemma 1.3(b), for i = 1, 2, the image
of GC in Gi is GCi = Gi. Thus, GC ∈ H(G1, G2). By the compactness, GC = G, that is,
G ∈ C′.

Example 3.3. Let C be the class of all finite p-groups for a fixed prime p, or abelian, or
nilpotent, or solvable groups. Then C′ is a quasi-formation but not a formation. Indeed,
by Example 1.9, C′ is not a formation. By Lemma 3.2, C′ is a quasi-formation.

Definition 3.4. Let C be a class of finite groups. Define the rank of C as

rank(C) = sup{rank(G) | G ∈ C}.

For a cardinal number d define Cd = {G ∈ C | rank(G) ≤ d}.
(Here rank(G) denotes the minimal number of elements in a generating set of G, cf.

[FrJ, p. 328].)

This definition gives rise to new quasi-formations:

Lemma 3.5. Let C be a quasi-formation and d a cardinal number. Then Cd is a quasi-
formation.
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Proof. As all groups in C are finite, if d ≥ ℵ0, then Cd = C and the assertion follows.
Assume d < ℵ0. Obviously, Cd is closed under taking quotients.

Let (G,G1, G2, A) be a compact cartesian square with G1, G2 ∈ Cd. Then G ∼= G1 ×A
G2 ∈ C. By assumption, there exist g1, . . . , gd ∈ G1 that generate G1. By Gaschütz
Lemma ([FrJ, Lemma 17.7.2]), the images of g1, . . . , gd in A can be lifted to generators
h1, . . . , hd of G2. Let G′ = 〈(g1, h1), . . . , (gd, hd)〉 ≤ G. For i = 1, 2 the projection G→ Gi
maps G′ onto Gi. Thus, by the compactness of the cartesian square, G′ = G and therefore
G is generated by d elements. It follows that G ∈ Cd.

In fact, a quasi-formation (modulo isomorphisms) can even be a finite set:

Example 3.6. Let p be a prime number and d a nonnegative integer. Let C be the
class of all finite elementary abelian p-groups. Clearly, C is a formation. By Lemma 3.5,
Cd = {(Z/pZ)n | 0 ≤ n ≤ d} is a quasi-formation. Thus, modulo isomorphisms, Cd is a
finite set.

In contrast, a formation is always an infinite set (modulo isomorphisms):

Lemma 3.7. Let C be a class of finite groups, closed under taking direct products that
contains a nontrivial group. Then rank(C) = ℵ0. In particular, a formation that contains
a nontrivial group is infinite (modulo isomorphisms).

Proof. Let G ∈ C be a nontrivial group. By assumption, Gn ∈ C for every n ∈ N and by
[Dey, Theorem 2], rank(Gn) tends to infinity with n. As direct products are a particular
case of fiber products, the last assertion follows.

The following characterization of quasi-formations will be used in the next section.

Lemma 3.8. Let C be a class of finite groups, closed under taking quotients. The following
conditions are equivalent:

(a) C is a quasi-formation.

(b) For every pair of indecomposable epimorphisms (β : B → A, γ : C → A) with B,C ∈
C there exist G ∈ C and indecomposable epimorphisms πB : G→ B, πC : G→ C such
that β ◦ πB = γ ◦ πC .

(c) For every pair of epimorphisms (β : B → A, γ : C → A) with B,C ∈ C there exist
G ∈ C and epimorphisms πB : G→ B, πC : G→ C, such that β ◦ πB = γ ◦ πC .

Proof. “(a) ⇒(b)”: Let G = B ×A C and let πB : G → B, πC : G → C be the canonical
epimorphisms. If β (or γ) is an isomorphism, by Lemma 2.7(a), so is πC (or πB), hence
G ∈ C. So we may assume that β, γ are not isomorphisms. If there is no isomorphism
θ : C → B such that β ◦ θ = γ, then (G,B,C,A) is compact by Lemma 2.5(b), hence
G ∈ C. If there is such θ, put G = C ∈ C, πB = θ and πC = id.

“(b) ⇒(c)”: First assume that one of the maps β, γ, say γ, is indecomposable. There
is a sequence

B = Bm
βm−−→ Bm−1

βm−1−−−→ · · · β2−→ B1
β1−→ B0 = A (5)

of indecomposable epimorphisms such that β1 ◦ · · · ◦ βm = β. We complete it to a
commutative diagram of epimorphisms of groups in C

G

πB

��

Gm

γm

��

πm // Gm−1

γm−1

��

πm−1 // · · · π2 // G1
π1 //

γ1

��

G0

γ0

��

C

γ

��
B Bm

βm
// Bm−1

βm−1

// · · ·
β2
// B1

β1
// B0 A

(6)

with γ0, γ1, . . . , γm indecomposable: Suppose i ≥ 1 and Gj , γj , πj have already been
constructed for j < i. By (b), there exist Gi ∈ C and indecomposable epimorphisms
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γi : Gi → Bi, πi : Gi → Gi−1 such that γi−1 ◦ πi = βi ◦ γi. Then πB = γm and
πC = π1 ◦ · · · ◦ πm satisfy β ◦ πB = γ ◦ πC .

In the general case in which both β and γ are decomposable we proceed similarly.
Let (5) be a decomposition of β into indecomposable epimorphisms. We complete it to a
commutative diagram (6) of epimorphisms of groups in C: Suppose i ≥ 1 and Gj , γj , πj
have already been constructed for j < i. By the preceding paragraph, applied to the pair
(γ : Gi−1 → Bi−1, βi : Bi → Bi−1) instead of the pair (β : B → A, γ : C → A), there exist
Gi ∈ C and epimorphisms γi : Gi → Bi, πi : Gi → Gi−1 such that γi−1 ◦ πi = βi ◦ γi. Then
πB = γm and πC = π1 ◦ · · · ◦ πm satisfy β ◦ πB = γ ◦ πC .

“(c) ⇒(a)”: Let (β : B → A, γ : C → A) be two epimorphisms such that B,C ∈ C.
Let pB : B ×A C → B and pC : B ×A C → C be the canonical projections and assume
(B ×A C,B,C,A) is compact. By assumption, there exist G ∈ C and epimorphisms
πB : G → B, πC : G → C, such that β ◦ πB = γ ◦ πC . By Definition 2.1, there exists a
homomorphism π : G→ B ×A C such that pB ◦ π = πB and pC ◦ π = πC . Let H = π(G).
Then pB(H) = πB(G) = B and pC(H) = πC(G) = C. Since (B×AC,B,C,A) is compact,
B ×A C = H ∈ C.

Remark 3.9. For every class of finite groups C there exists the smallest quasi-formation
that contains it, namely, the intersection of all quasi-formations containing C. Indeed,
the class of all finite groups is a quasi-formation containing C and any intersection of
quasi-formations is also a quasi-formation.

4 Free groups over quasi-formations

Let C be a formation and let m ≤ ℵ0 be a cardinal number. In [FrJ, Lemma 17.4.2] a
pro-C group F̂ of rank m is constructed. It follows from its definition that Im(F̂ ) = Cm.
In [FrJ, Lemma 24.3.3] it is shown that F̂ has the embedding property. Furthermore,
[FrJ, Theorem 24.8.1] shows that a pro-C group G of at most countable rank with the
embedding property and such that Im(G) = C is unique up to an isomorphism. These
results remain true if we replace C by a quasi-formation. This is the content of Theorem
4.4.

The following definition is taken from [FrJ, Definitions 22.3.1 and 24.1.2] and [FrJ, p.
506].

Definition 4.1. Let G be a profinite group and let C be a class of finite groups.

(a) An embedding problem for G is a pair

(ϕ : G→ A,α : B → A) (7)

in which ϕ and α are epimorphisms. We call (7) a C-embedding problem if G,A,B
are pro-C groups, finite if B is finite, and split if there exists a homomorphism
α′ : A→ B with α◦α′ = idA. A weak solution to (7) is a homomorphism γ : G→ B
such that α ◦ γ = ϕ. A weak solution γ to (7) is a solution if γ is surjective.

(b) We say that G has the embedding property if every finite embedding problem
(7) for G such that B ∈ Im(G) has a solution.

(c) A profinite group G is projective if every embedding problem (7) for G has a weak
solution.

The following easy lemma seems to be nowhere explicitly stated:

Lemma 4.2. Let C be a class of finite groups, closed under taking quotients. If every
finite C-embedding problem (7) with α indecomposable has a solution, then every finite
C-embedding problem has a solution.
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Proof. Let (ϕ0 : G → B0, α : B → B0) be a finite C-embedding problem. There exists a
sequence

B = Bm
αm−−→ · · · α2−→ B1

α1−→ B0

of indecomposable epimorphisms such that α1 ◦ · · · ◦ αm = α. By induction on the
assumption for each 1 ≤ i ≤ m there exists an epimorphism ϕi : G → Bi such that
αi ◦ ϕi = ϕi−1. Then α ◦ ϕm = ϕ0.

Profinite groups with the embedding property give rise to quasi-formations:

Proposition 4.3. Let G be a profinite group with the embedding property. Then Im(G)
is a quasi-formation.

Proof. Clearly, Im(G) is closed under taking quotients. That Im(G) is closed under taking
compact cartesian squares follows from [FrJ, Lemma 24.5.1(a)].

Conversely, quasi-formations give rise to profinite groups with the embedding property:

Theorem 4.4. Let C be a quasi-formation of finite groups. Then there exists a pro-C
group Ê(C) of at most countable rank, unique up to an isomorphism, with the embedding
property and Im(Ê(C)) = C.

Proof. The cardinality of C, modulo isomorphisms, is at most countable. Given B,A ∈ C
there is only a finite number of epimorphisms α : B → A. Thus, the cardinality of all
epimorphisms α : B → A, up to composition with isomorphisms, is at most countable. We
may therefore construct a sequence E = (α1, α2, . . .) of all indecomposable epimorphisms
αj : Bj → Aj with Aj , Bj ∈ C, that contains each element, up to composition with
isomorphisms, countably many times.
Part A: Construction of the group: Inductively construct a sequence (possibly finite)

· · ·
ϕ3,2−−→ G2

ϕ2,1−−→ G1
ϕ1,0−−→ G0 = 1

of indecomposable epimorphisms (denoting ϕk,i = ϕi+1,i ◦ · · · ◦ϕk,k−1 : Gk → Gi for i ≤ k)
of groups in C and a sequence

. . . > j2 > j1 > j0 = 0

of integers in the following way: Assume Gi, ϕi,i−1, and ji have already been constructed
for each 0 ≤ i ≤ k. If there exists no j ∈ N such that

(a) j > jk, and

(b) there exists i ∈ {0, 1, . . . , k} such that Gi = Aj , and the finite C-embedding problem
(ϕk,i : Gk → Gi, αj : Bj → Gi = Aj) has no solution,

end the construction and let G = Gk; thus, G = lim←−Gi. Otherwise let jk+1 be the minimal
j that satisfies (a) and (b), set Gk+1 = Bj ×Gi Gk, and let ϕk+1,k be the canonical projec-
tion Gk+1 → Gk. By (b) and by Lemma 2.5(a), the cartesian square (Gk+1, Bj , Gk, Gi) is
compact. As C is a quasi-formation, Gk+1 ∈ C.

If the sequence (G0, G1, . . .) is infinite, let G = lim←−Gi. For every Gi in the sequence
let ϕi : G→ Gi be the canonical map of the inverse limit.

In any case, by [FrJ, Example 17.1.7(a)], rank(G) ≤ ℵ0.
Part B: Every finite C-embedding problem (ϕi : G → Gi, α : B → Gi) with α indecom-
posable has a solution: Assume no solution exists. Then for every k > i (such that Gk
is defined) the finite C-embedding problem (ϕk,i : Gk → Gi, α : B → Gi) has no solution.
As α appears infinitely many times in E , there exists j > ji+1 such that α = αj . Let
k > i be maximal such that j > jk. Then j satisfies conditions (a) and (b). Moreover, j
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is minimal with that property. Indeed, if j′ < j is minimal, then j′ = jk+1, so j > jk+1, a
contradiction to the choice of k. By Part A, we have the following cartesian square:

Gk+1

ϕk+1,k //

πB

��

Gk

ϕk,i

��
B

α // Gi

Thus, πB solves the finite C-embedding problem (ϕk+1,i : Gk+1 → Gi, α : B → Gi), con-
trary to the assumption.
Part C: Every finite C-embedding problem (7) has a solution: By Lemma 4.2, we may
assume that α is indecomposable. There exist i ∈ N and an epimorphism ϕ̄ : Gi → A
such that ϕ = ϕ̄ ◦ ϕi. If there exists an epimorphism θ : Gi → B such that α ◦ θ = ϕ̄,
then θ ◦ ϕi solves (7). If no such epimorphism exists, by Lemma 2.5(a), the cartesian
square (B ×A Gi, B,Gi, A) is compact. As C is a quasi-formation, B ×A Gi ∈ C. Let
πGi : B ×A Gi → Gi (resp. πB : B ×A Gi → B) be the canonical projection onto Gi (resp.
B). By Lemma 2.7, πGi is indecomposable. It follows from Part B that the finite C-
embedding problem (ϕi : G→ Gi, πGi : B ×A Gi → Gi) has a solution. Thus, there exists
an epimorphism γ : G→ B×AGi such that πGi ◦ γ = ϕi. Then πB ◦ γ is a solution of (7).
Part D: Every B ∈ C is a quotient of G: Put A = 1 in Part C.
Part E: Uniqueness: Since G is pro-C, it follows from Part D that Im(G) = C. By Part
C, G has the embedding property. In Part A we have seen that rank(G) ≤ ℵ0. By [FrJ,
Lemma 24.4.7], G with these properties is unique up to an isomorphism.

Definition 4.5. We call the group Ê(C) of Theorem 4.4 the free pro-C group.

Remark 4.6. As Im(Ê(C)) = C, we have rank(Ê(C)) = rank(C).

Lemma 4.7. If C is a formation, then Ê(C) ∼= F̂ω(C) and Ê(Cd) ∼= F̂d(C), for every
d ∈ N.

Proof. By [FrJ, Lemma 24.3.3], F̂ω(C) has the embedding property. Clearly Im(F̂ω(C)) =
C. Hence, the first assertion follows from the uniqueness in Theorem 4.4. The second
assertion follows from [FrJ, Lemma 17.7.1] (we tacitly assume that there is G ∈ C such
that 1 ≤ rank(G) ≤ d, otherwise F̂d(C) is not defined).

5 Some properties of Ê(C)
We examine projectivity and connection to smallest embedding covers.

Recall ([FrJ, Definition 22.5.1]) that an epimorphism ϕ : G → H of profinite groups
is called a Frattini cover if for every closed subgroup G0 of G satisfying ϕ(G0) = H it
follows that G0 = G.

By [FrJ, Lemma 22.5.6], if ϕ : G → H is an epimorphism of profinite groups, then G
has a closed subgroup G0 such that ϕ|G0 : G0 → H is a Frattini cover.

Definition 5.1. We call a class C of finite groups Frattini-closed if the following holds:
Let ϕ : G→ H be a Frattini cover of finite groups such that H ∈ C. Then G ∈ C.

Notice that in [FrJ, Exercise 11 on p. 541] the term “admissible” is mentioned in a
similar situation.

Lemma 5.2. Let C be a formation. Then C′ is Frattini-closed.

Proof. Let ϕ : G → H be a Frattini cover of finite groups such that H ∈ C′. By Lemma
1.3(b), ϕ(GC) = HC = H. Since ϕ is a Frattini cover, GC = G, that is, G ∈ C′.

12



Lemma 5.3. Let G be a profinite group with the embedding property and let C = Im(G).
Then G is projective if and only if C is Frattini-closed.

Proof. Suppose G is projective and let α : B → A be a Frattini cover of finite groups with
A ∈ C. As C = Im(G), there exists an epimorphism ϕ : G → A. By assumption there
exists a homomorphism ψ : G → B such that α ◦ ψ = ϕ. As α is a Frattini cover, ψ is
surjective. Hence, B ∈ Im(G) = C.

Conversely, assume C is Frattini-closed and let (ϕ : G → A,α : B → A) be a finite
embedding problem for G. Then A ∈ Im(G) = C. Let B0 be a subgroup of B such that
α0 = α|B0 : B0 → A is a Frattini cover. By assumption B0 ∈ C. As G has the embedding
property, there exists an epimorphism ψ : G→ B0 such that α0 ◦ ψ = ϕ. We may regard
ψ as a homomorphism into B. It follows that every finite embedding problem for G has
a weak solution. Thus, G is projective ([FrJ, Lemma 22.3.2]).

Recall ([FrJ, p. 565]) that a profinite group is called superprojective if it is both
projective and has the embedding property.

Proposition 5.4. Let C be a formation such that C′ is nontrival. Then Ê(C′) is super-
projective of rank ℵ0.

Proof. By Lemma 3.2, C′ is a quasi-formation. By Lemma 5.2, C′ is Frattini-closed and
by Lemma 1.5(b), it is extension-closed. In particular, C′ is closed under taking direct
products. Therefore, by Lemma 3.7, rank(C′) = ℵ0. By Theorem 4.4, Ê(C′) has the
embedding property and Im(Ê(C′)) = C′. By Remark 4.6, rank(Ê(C′)) = ℵ0. By Lemma
5.3, Ê(C′) is projective.

For Melnikov formations C there is a deep connection between maximal pro-C kernels
of free profinite groups and free pro-C′ groups:

Theorem 5.5. Let C and D be two Melnikov formations such that C ∪ C′ ⊆ D. Suppose
C is different from the class of all finite groups. Then Ê(C′) ∼= F̂d(D)C for every cardinal
2 ≤ d ≤ ℵ0 such that there exists G ∈ C with rank(G) ≤ d.

Proof. It suffices to prove the assertion only for d = ℵ0. Indeed, let F = F̂d(D) and
N = F C . By [FrJ, Lemma 17.4.10], F/N ∼= F̂d(C). By [FrJ, Corollary 17.6.5], F̂d(C) is
infinite. Thus, (F : N) = ∞. By a result of Melnikov [FrJ, Proposition 25.8.3], there
exists a normal subgroup K of F which contains N and is isomorphic to F̂ω(D). By
Lemma 1.3(d), KC = N . Thus, F C ∼= (F̂ω(D))C .

So assume F = F̂ω(D). By Lemma 1.5(c), N is pro-C′. By Lemma 3.2, C′ is a quasi-
formation. Thus, by Theorem 4.4, it suffices to show that C′ ⊆ Im(N), that N has the
embedding property and that rank(N) = ℵ0.

Let A ∈ C′ ⊆ D. By [FrJ, Theorem 24.8.1], there exists an epimorphism ϕ : F → A.
By Lemma 1.3(b), ϕ(N) = AC = A. Thus, C′ ⊆ Im(N). By Remark 1.6, C′ is nontrivial.
It follows that N is nontrivial.

Let (ϕ : N → A,α : B → A) be a finite C′-embedding problem for N . By [FrJ, Lemma
1.2.5(c)], ϕ extends to an epimorphism ϕ′ : N ′ → A where N ′ is an open normal subgroup
of F containing N . By [FrJ, Proposition 25.2.2], N ′ ∼= F . By [FrJ, Lemma 24.3.3], N ′ has
the embedding property and by [FrJ, Theorem 24.8.1], B ∈ Im(N ′). Thus, there exists an
epimorphism γ′ : N ′ → B such that α◦γ′ = ϕ′. By Lemma 1.3(d), (N ′)C = N . Therefore,
by Lemma 1.3(b), γ′(N) = γ′((N ′)C) = BC = B. It follows that γ = γ′|N : N → B is an
epimorphism with α ◦ γ = ϕ.

Finally, since N is a nontrivial closed subgroup of F of infinite index, rank(N) = ℵ0
([FrJ, Theorem 25.4.7(b)]).

Remark 5.6. (a) The previous theorem gives an alternative proof of Proposition 5.4 in
the case of a Melnikov formation C: Free profinite groups are projective ([FrJ, Corollary
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22.4.5]) and every closed subgroup of a projective profinite group is projective ([FrJ,
Proposition 22.4.7]). Thus, Ê(C′) ∼= F̂ Cω is projective.

(b) By [FrJ, Corollary 24.9.4], every closed normal subgroup N of a free profinite group
F has the embedding property. We give a different proof of this fact in the special case
N = (F̂ω(D))C that uses the properties of maximal pro-C quotients (Lemma 1.3).

We have seen (Theorem 5.5) that —for Melnikov formations C different from the class
of all finite groups— free pro-C′ groups arise as maximal pro-C kernels of free profinite
groups. It turns out that for quasi-formations C the free pro-C groups are related to
smallest embedding covers as well. Recall ([FrJ, Definition 24.4.3]) that an epimorphism
ϕ : H → G of profinite groups is called an embedding cover if H has the embedding
property. An epimorphism ε : E → G is called a smallest embedding cover if ε is an
embedding cover and if for every embedding cover ϕ : H → G there exists an epimorphism
γ : H → E such that ε ◦ γ = ϕ.

By [FrJ, Proposition 24.4.5], every profinite group G has a smallest embedding cover
E. By [FrJ, Lemma 24.4.6(b)], rank(E) = rank(G). By [FrJ, Corollary 24.4.8], if G is of
at most countable rank, then E is unique up to an isomorphism. It turns out that in this
case E is the free group constructed in this section:

Proposition 5.7. Let G be a profinite group of at most countable rank. Let C be the
smallest quasi-formation containing Im(G). Let ε : E → G be a smallest embedding cover
of G. Then E ∼= Ê(C).

Proof. For the existence of C see Remark 3.9.
We first show that there exists an epimorphism ψ : Ê(C) → G. By [FrJ, Example

17.1.7(a)], there exists a sequence of epimorphisms of finite groups in C · · · π2−→ G2
π1−→

G1
π0−→ G0 = 1 such that G = lim←−Gi. We construct inductively a family of epimorphisms

ψi : Ê(C) → Gi with ψi−1 = πi−1 ◦ ψi for each i: Let ψ0 : Ê(C) → G0 = 1 be the trivial
map. Assume we have already constructed ψ0, . . . , ψi. By Theorem 4.4, Ê(C) has the
embedding property, hence there exists an epimorphism ψi+1 : Ê(C) → Gi+1 such that
ψi = πi ◦ ψi+1. By [FrJ, Corollary 1.1.6], there exists an epimorphism ψ : Ê(C)→ G.

By assumption, E is a smallest embedding cover. Thus, there exists an epimorphism
γ : Ê(C) → E such that ψ = ε ◦ γ. By Proposition 4.3, Im(E) is a quasi-formation.
As G is a quotient of E, Im(G) ⊆ Im(E). Therefore, C ⊆ Im(E). It follows that
Im(E) ⊆ Im(Ê(C)) = C ⊆ Im(E). Hence, Im(E) = Im(Ê(C)). By [FrJ, Lemma 24.4.6(b)],
rank(E) = rank(G). As both E and Ê(C) are of at most countable rank and have the
embedding property, by [FrJ, Lemma 24.4.7], E ∼= Ê(C).

Corollary 5.8. Let G be a profinite group of rank ℵ0. Let E be a smallest embedding
cover of G.

(a) Suppose C is a Melnikov formation such that Im(G) = C′. Then E ∼= (F̂ω)C.

(b) Suppose C = Im(G) is a formation. Then E ∼= F̂ω(C).

Proof. (a) By Lemma 3.2 and Proposition 5.7, E ∼= Ê(C′). By Theorem 5.5, Ê(C′) ∼=
(F̂ω)C .

(b) By Proposition 5.7, E ∼= Ê(C). By Lemma 4.7, Ê(C) ∼= F̂ω(C).

6 Connection to Shafarevich’s conjecture

During a series of talks in 1964 I. R. Shafarevich posed the following assertion, now called
the Shafarevich’s conjecture: The absolute Galois group Gal(Qab) of the maximal abelian
extension of Q is free. As of 2017, the conjecture remains open.
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If the conjecture is true, we immediately get Gal(Qsolv) ∼= Ê(C′), where C is the
Melnikov formation of all finite solvable groups. Indeed, Gal(Qsolv) ≤ Gal(Qab) /Gal(Q);
by Lemma 1.3(d) and Theorem 5.5,

Gal(Qsolv) = Gal(Q)C = Gal(Qab)C ∼= (F̂ω)C = Ê(C′).

Shafarevich’s conjecture has a natural generalization to global fields which asserts that
the absolute Galois group of the maximal abelian extension of any global field is free. It
was proven in the function field case by D. Harbater [Ha2, Theorem 4.1]. In this case
the conjecture follows from the fact that the absolute Galois group of the function field
of every curve over the algebraic closure F̃p of Fp is free.

In [Ha1], [Pop], and [HaJ] even more is shown: The absolute Galois group of the
function field of every curve over any algebraically closed field is free. This fact naturally
leads to the question what happens over fields K which are “almost” algebraically closed,
i.e, [K̃ : K] is finite, where K̃ is an algebraic closure of K. By Artin-Schreier theory
such fields are precisely the real closed fields. In [Ha2, Theorem 4.2] it is proven that the
absolute Galois group of a function field of a curve X over a real closed field K is free if
and only if X has no K-points.

While the above generalizations of Shafarevich’s conjecture concern one-dimensional
function fields, it is possible to consider fields of higher dimension: In [Ha2, Theorem 4.5]
it is proven that if K is a separably closed field, then the absolute Galois group of the
maximal abelian extension of K((x, y)) is free.

The theory of quasi-formations developed in the previous chapters and, in particular,
Theorem 5.5 together with the above mentioned proven cases of Shafarevich’s conjecture
immediately give the following:

Theorem 6.1. Let C be a Melnikov formation different from the class of all finite groups
and let F be a function field in one variable over a countable algebraically closed field
K. Then the absolute Galois group of the maximal C-extension FC of F is isomorphic to
Ê(C′).

Proof. By definition, FC is the compositum of all finite Galois extensions E of F with
Gal(E/F ) ∈ C. By [Ha1, Theorem 4.4] or [HaV, Theorem 4.6], Gal(F ) ∼= F̂ω. Hence, by
Theorem 5.5, Gal(FC) ∼= (F̂ω)C ∼= Ê(C′).

Remark 6.2. (a) Theorem 5.5 does not apply to the result concerning K((x, y)) since
K((x, y)) is uncountable for every field K.

(b) Suppose C is the Melnikov formation of all finite solvable groups. It is then possible

in Theorem 6.1 to replace K with any subfield of F̃p: Let F be a function field in one

variable over K. Then F ′ = F F̃p is a function field in one variable over the algebraically

closed field F̃p and F ′ is a Galois extension of F , contained in FC . By Lemma 1.3(d),

FC = F ′C . Thus, we may apply Theorem 6.1 to the function field F ′ over F̃p.
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