QUANTIFIER ELIMINATION IN SEPARABLY CLOSED FIELDS OF FINITE IMPERFECTNESS DEGREE

DAN HARAN

Introduction. The theory of separably closed fields of a fixed characteristic and a fixed imperfectness degree is clearly recursively axiomatizable. Ershov [1] showed that it is complete, and therefore decidable. Later it became clear that this theory also has the prime extension property in a suitable language (cf. [4, Proposition 1]); hence it admits quantifier elimination. The purpose of this work is to give an explicit, primitive recursive procedure for such quantifier elimination in the case of a finite imperfectness degree.

To be precise, the language Λ that we have in mind is the first order language of fields enriched with $(m+1)$-place function symbols λ_{j}^{m}, where $m=0,1,2, \ldots$ and $1 \leq j \leq p^{m}$. To interpret λ_{j}^{m} in a field M of characteristic p, consider the p-adic expansion $j_{1}+j_{2} p+\cdots+j_{m} p^{m-1}$ of $j-1$, and for $x_{1}, \ldots, x_{m} \in M$ let $\alpha_{j}\left(x_{1}, \ldots, x_{m}\right)$ $=x_{1}^{J_{1}} \cdots x_{m}^{j_{m}}$. If x_{1}, \ldots, x_{m} are p-independent and $y \in M$ is p-dependent on them, then $\alpha_{1}\left(x_{1}, \ldots, x_{m}\right), \ldots, \alpha_{p^{m}}\left(x_{1}, \ldots, x_{m}\right)$ are linearly independent over M^{p} and y is linearly dependent on them. In this case there are unique $a_{1}, \ldots, a_{p^{m}} \in M$ such that $y=\sum_{j} a_{j}^{p} \alpha_{j}\left(x_{1}, \ldots, x_{m}\right)$; define $\lambda_{j}^{m}\left(x_{1}, \ldots, x_{m} ; y\right)=a_{j}$. Set $\lambda_{j}^{m}\left(x_{1}, \ldots, x_{m} ; y\right)=0$ otherwise.

Denote by $\operatorname{SCF}(p, e)$ the theory of separably closed fields of characteristic p and finite imperfectness degree e, containing the above interpretation of the functions λ_{j}^{m}. We will prove:

Main Theorem. The theory $\operatorname{SCF}(p, e)$ allows primitive recursive quantifier elimination in Λ and is primitive recursively decidable.

We intend to treat the case of infinite imperfectness degree in a subsequent paper; a unified treatment of both cases would involve many technical complications that can be avoided in the finite case.

The quantifier elimination procedure can be roughly described as follows: Given a well-formed formula in Λ, we first transform it into a form such that the variable to be eliminated represents roots of a separable polynomial over the field. Then we use the fact that our fields are separably closed, so we can eliminate one quantifier.

We do not attempt to find the "most effective" algorithm for the procedure in the Main Theorem; in fact, for the sake of clarity of the exposition we prefer to divide the

Received December 14, 1986; revised February 25, 1987.
algorithm into smaller steps, even though this makes the procedure sometimes unnecessarily longer.

Acknowledgement. This note is based on research done in 1985/86 at Rutgers University, partly supported by the NSF. The author wishes to thank C. Wood and G. Cherlin for their interest and encouragement.
§1. Reduction of the problem. We fix a nonnegative integer e, write $N=p^{e}$, and introduce the following notation. Let L_{0} denote the first order language of the theory of fields enriched with constants t_{1}, \ldots, t_{e}, and let L be L_{0} enriched with N unary function symbols $\lambda_{1}, \ldots, \lambda_{N}$. Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}$ be an enumeration of the monomials $t_{1}^{j_{1}} \cdots t_{e}^{j_{e}}$, where $0 \leq j_{1}, \ldots, j_{e}<p$, say, $\alpha_{j}=t_{1}^{j_{1}} \cdots t_{e}^{j_{e}}$, where $j_{1}+j_{2} p$ $+\cdots+j_{e} p^{e-1}$ is the p-adic expansion of $j-1$.
A field M of characteristic p and imperfectness degree e together with a p-basis is a structure in L_{0} and L in the following way. The constants t_{1}, \ldots, t_{e} are interpreted as elements of the given p-basis (so that $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}$ correspond to a linear basis of M over M^{p}), and $\lambda_{1}, \ldots, \lambda_{N}: M \rightarrow M$ are implicitly defined by $a=\left(\lambda_{1}(a)\right)^{p} \alpha_{1}+\cdots+$ $\left(\lambda_{N}(a)\right)^{p} \alpha_{N}$, for every $a \in M$.

Let T denote the theory of separably closed fields of characteristic p and imperfectness degree e in L. (In particular, T includes the axioms defining the functions $\lambda_{1}, \ldots, \lambda_{N}$ in the above manner.)

The following lemma serves as a "flow chart" for our algorithms. It lists various "subroutines" and shows how the main algorithm is composed from them.

Let $\boldsymbol{X}=\left(X_{1}, \ldots, X_{m}\right)$ and $\boldsymbol{Y}=\left(Y_{1}, \ldots, Y_{n}\right)$ be blocks (= finite sequences) of variables. In §2 we will define when a quantifier-free formula $\psi(\boldsymbol{X}, \boldsymbol{Y})$ in L_{0} is preseparable in \boldsymbol{Y} and assign to such a formula an integer $l \geq-1$, the level of ψ. With the aid of this notion (the precise definition is immaterial at this stage) we can give the layout for our procedure.
(Reduction) Lemma 1.1. Given a quantifier-free formula $\psi(\boldsymbol{X}, \boldsymbol{Y})$ in L_{0}, assume that we can do the following procedures in a primitive recursive way:
(a) Find an integer $l \geq-1$ and a formula $\psi^{\prime}(\boldsymbol{X}, \boldsymbol{Y})$ pre-separable in \boldsymbol{Y} at level l such that

$$
\left(\exists Y_{1}, \ldots, \exists Y_{n}\right) \psi(\boldsymbol{X}, \boldsymbol{Y}) \equiv_{T}\left(\exists Y_{1}, \ldots, \exists Y_{n}\right) \psi^{\prime}(\boldsymbol{X}, \boldsymbol{Y})
$$

(b) If ψ is pre-separable in \boldsymbol{Y} at level 0 or -1 , find a quantifier-free formula $\psi^{\prime}\left(X, Y_{1}, \ldots, Y_{n-1}\right)$ in L_{0} such that

$$
\left(\exists Y_{n}\right) \psi(\boldsymbol{X}, \boldsymbol{Y}) \equiv_{T} \psi^{\prime}\left(\boldsymbol{X}, Y_{1}, \ldots, Y_{n-1}\right)
$$

(c) If ψ is pre-separable in \boldsymbol{Y} at level $l \geq 1$, let \boldsymbol{Z} be a block of variables of length m $\times N$, and find a formula $\psi^{\prime}(\boldsymbol{Z}, \boldsymbol{Y})$ in L_{0} pre-separable in \boldsymbol{Y} at level $l-1$ such that

$$
\psi(\boldsymbol{X}, \boldsymbol{Y}) \equiv_{T} \psi^{\prime}\left(\lambda_{1}\left(X_{1}\right), \ldots, \lambda_{N}\left(X_{1}\right), \ldots, \lambda_{1}\left(X_{m}\right), \ldots, \lambda_{N}\left(X_{m}\right), \boldsymbol{Y}\right)
$$

Then we can find in a primitive recursive way a quantifier-free formula $\psi^{\prime}(\boldsymbol{X})$ in L such that

$$
\left(\exists Y_{1}, \ldots, \exists Y_{n}\right) \psi(\boldsymbol{X}, \boldsymbol{Y}) \equiv_{T} \psi^{\prime}(\boldsymbol{X})
$$

Proof. By (a) we may assume that ψ is pre-separable in \boldsymbol{Y}, say at level l. By induction, using (c), we may find for every $0 \leq k \leq l$ a formula $\psi_{k}(\boldsymbol{U}, \boldsymbol{Y})$ preseparable in \boldsymbol{Y} at level k such that $\psi(\boldsymbol{X}, \boldsymbol{Y}) \equiv_{T} \psi_{k}(\boldsymbol{u}, \boldsymbol{Y})$, where \boldsymbol{U} is a block of variables and \boldsymbol{u} is a block (of the same length) of terms in L constructed from the variables X_{1}, \ldots, X_{m} and the function symbols in L. Therefore we may assume that $l \leq 0$; by (b) we may eliminate Y_{n}.

Applying this argument, we may inductively find for every $0 \leq j \leq n$ a quantifierfree formula $\varphi_{j}\left(V_{j}, Y_{1}, \ldots, Y_{j}\right)$ in L_{0} such that

$$
\left(\exists Y_{1}, \ldots, \exists Y_{n}\right) \psi(\boldsymbol{X}, \boldsymbol{Y}) \equiv_{T}\left(\exists Y_{1}, \ldots, \exists Y_{j}\right) \varphi_{j}(v, \boldsymbol{Y}),
$$

where V_{j} is a block of variables, and \boldsymbol{v}_{j} is a block (of the same length) of terms in L constructed from the variables X_{1}, \ldots, X_{m} and the function symbols in L. If $j=0$, this gives the desired formula. //

Note that the formula $\lambda_{j}(V)=U$ is equivalent modulo T to

$$
\left(\exists V_{1}, \ldots, \exists V_{N}\right)\left(V_{1}^{p} \alpha_{1}+\cdots+V_{N}^{p} \alpha_{N}=V \wedge V_{j}=U\right),
$$

and $\lambda_{j}(V) \neq U$ is equivalent to

$$
\left(\exists V_{1}, \ldots, \exists V_{N}\right)\left(V_{1}^{p} \alpha_{1}+\cdots+V_{N}^{p} \alpha_{N}=V \wedge V_{j} \neq U\right)
$$

Therefore, if $\psi(\boldsymbol{X}, \boldsymbol{Y})$ is a quantifier-free formula in L we can find a block \boldsymbol{Y}^{\prime} $=\left(Y_{1}^{\prime}, \ldots, Y_{k}^{\prime}\right)$ and a quantifier-free formula $\psi^{\prime}\left(\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{Y}^{\prime}\right)$ in L_{0} such that

$$
\left(\exists Y_{1}, \ldots, \exists Y_{n}\right) \psi(\boldsymbol{X}, \boldsymbol{Y}) \equiv_{T}\left(\exists Y_{1}, \ldots, \exists Y_{n}, \exists Y_{1}^{\prime}, \ldots, \exists Y_{k}^{\prime}\right) \psi^{\prime}\left(\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{Y}^{\prime}\right)
$$

Thus if conditions (a)-(c) of the lemma are satisfied (as we show in $\S \S 2$ and 3), we obtain:

Theorem 1.2. The theory T of separably closed fields of characteristic p and finite imperfectness degree e in L allows primitive recursive quantifier elimination and is primitive recursively decidable.

The second assertion of Theorem 1.2 is an easy consequence of the following observation:

Remark 1.3. If t_{1}, \ldots, t_{e} are p-independent elements in a field of characteristic p, then they are algebraically independent over \mathbf{F}_{p}.

The Main Theorem immediately follows from Theorem 1.2. To see this, consider the set of axioms $S=T \cup \operatorname{SCF}(p, e)$ in the language $\Lambda \cup L$. Interpreting the functions λ_{j}^{m} according to their definition in $\operatorname{SCF}(p, e)$, we can find for every formula φ_{1} in Λ a formula φ_{2} in the language of fields, equivalent to $\varphi_{1} \operatorname{modulo} \operatorname{SCF}(p, e)$, and hence also modulo S. By Theorem 1.2 we can find a quantifier-free formula $\varphi_{3}(X)$ in L equivalent to φ_{2} modulo T, and hence also modulo S. Now $\varphi_{3}(\boldsymbol{X})$ is equivalent modulo S to

$$
\varphi=\left[\lambda_{1}^{e}\left(T_{1}, \ldots, T_{e}, 1\right)=1\right] \wedge \varphi_{3}^{\prime}(\boldsymbol{X})
$$

where $\varphi_{3}^{\prime}(\boldsymbol{X})$ is obtained from $\varphi_{3}(\boldsymbol{X})$ by replacing t_{1}, \ldots, t_{e} by the variables T_{1}, \ldots, T_{e}, and all terms of the form $\lambda_{j}(u)$ by $\lambda_{j}^{e}\left(T_{1}, \ldots, T_{e}, u\right)$, for $1 \leq j \leq p^{e}$. (Note that t_{1}, \ldots, t_{e} are p-independent elements in a field M if and only if $M \vDash \lambda_{1}^{e}\left(t_{1}, \ldots, t_{e}, 1\right)=1$.) Thus $\varphi_{1} \equiv \varphi$ modulo $\operatorname{SCF}(p, e)$.
§2. Elimination. Let $R=\mathbf{F}_{p}\left[t_{1}, \ldots, t_{e}\right]$ be the ring of polynomials and $E=$ $\mathbf{F}_{p}\left(t_{1}, \ldots, t_{e}\right)$ the field of rational functions in t_{1}, \ldots, t_{e} over the prime field \mathbf{F}_{p}. Since t_{1}, \ldots, t_{e} are assumed to be p-independent elements in a field of characteristic p, they are algebraically independent over \mathbf{F}_{p}.

Let \boldsymbol{X} and \boldsymbol{Y} be tuples of variables, $\boldsymbol{Y}=\left(Y_{1}, \ldots, Y_{n}\right)$, and let q be an integer. For $h(\boldsymbol{X}, \boldsymbol{Y}) \in E[\boldsymbol{X}, \boldsymbol{Y}]$ we shall abbreviate $h\left(\boldsymbol{X}, Y_{1}^{q}, \ldots, Y_{n}^{q}\right)$ by $h\left(\boldsymbol{X}, \boldsymbol{Y}^{q}\right)$.

Consider the formula

$$
\begin{equation*}
f_{1}(\boldsymbol{X}, \boldsymbol{Y})=0 \wedge \cdots \wedge f_{r}(\boldsymbol{X}, \boldsymbol{Y})=0 \wedge g_{1}(\boldsymbol{X}, \boldsymbol{Y}) \neq 0 \wedge \cdots \wedge g_{s}(\boldsymbol{X}, \boldsymbol{Y}) \neq 0 \tag{1}
\end{equation*}
$$

where $f_{1}, \ldots f_{r}, g_{1}, \ldots, g_{s} \in R[\boldsymbol{X}, \boldsymbol{Y}]$, and $r, s \geq 1$.
Definition 2.1. Let l be a nonnegative integer. Formula (1) is pre-separable in $\boldsymbol{Y}($ at level $l)$ if there is a polynomial $h(\boldsymbol{X}, \boldsymbol{Y}) \in R[\boldsymbol{X}, \boldsymbol{Y}]$ separable in Y_{n} such that $f_{1}(\boldsymbol{X}, \boldsymbol{Y})=h\left(\boldsymbol{X}, \boldsymbol{Y}^{p^{l}}\right)$ and $\left(\partial h / \partial Y_{n}\right)\left(\boldsymbol{X}, \boldsymbol{Y}^{p^{l}}\right)=g_{1}(\boldsymbol{X}, \boldsymbol{Y})$.

Furthermore, (1) is pre-separable in \boldsymbol{Y} at level -1 if Y_{n} does not appear in f_{1}, \ldots, f_{r}.

A quantifier-free formula $\varphi(\boldsymbol{X}, \boldsymbol{Y})$ is pre-separable (at level l) in \boldsymbol{Y} if it is a disjunction of pre-separable formulas $\varphi_{1}, \ldots, \varphi_{k}$ in \boldsymbol{Y} of the form (1) at levels l_{1}, \ldots, l_{k}, respectively, and $l=\max \left(l_{1}, \ldots, l_{k}\right)$.

We call a quantifier-free formula separable in \boldsymbol{Y} if it is pre-separable in \boldsymbol{Y} at level ≤ 0.
(Elimination) Lemma 2.2. Let $\psi(\boldsymbol{X}, \boldsymbol{Y})$ be a formula separable in \boldsymbol{Y} and let $\psi^{\prime}\left(\boldsymbol{X}, Y_{1}, \ldots, Y_{n-1}\right)$ be a quantifier-free formula in L_{0} such that

$$
\begin{equation*}
\left(\exists Y_{n}\right) \psi(\boldsymbol{X}, \boldsymbol{Y}) \equiv \psi^{\prime}\left(\boldsymbol{X}, Y_{1}, \ldots, Y_{n-1}\right) \tag{2}
\end{equation*}
$$

modulo the theory of algebraically closed fields containing E. Then (2) is true also modulo T.

Proof. Without loss of generality ψ is of the form (1). Let M be a separably closed field containing E and let \boldsymbol{x} and $\left(y_{1}, \ldots, y_{n-1}\right)$ be tuples of elements of M such that $\tilde{M}=\psi^{\prime}\left(\boldsymbol{x}, y_{1}, \ldots, y_{n-1}\right)$.

If Y_{n} does not appear in f_{1}, \ldots, f_{r}, then $f_{i}\left(\boldsymbol{x}, y_{1}, \ldots, y_{n-1}\right)=0$, for $i=1, \ldots, r$ and $g_{j}\left(x, y_{1}, \ldots, y_{n-1}, Y_{n}\right) \neq 0$, for $j=1, \ldots, s$. As M is infinite, there is $y_{n} \in M$ such that $g_{j}\left(\boldsymbol{x}, y_{1}, \ldots, y_{n-1}, y_{n}\right) \neq 0$, for $j=1, \ldots, s$. Thus $M \vDash \psi(\boldsymbol{x}, \boldsymbol{y})$.

If (1) is pre-separable in \boldsymbol{Y} at level 0 then by the definition of ψ^{\prime} there is y_{n} in the algebraic closure \tilde{M} of M such that $\tilde{M} \vDash \psi(\boldsymbol{x}, \boldsymbol{y})$, where $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n-1}, y_{n}\right)$. But $f_{1}(\boldsymbol{x}, \boldsymbol{y})=0$ and $\left(\partial f_{1} / \partial Y_{n}\right)(\boldsymbol{x}, \boldsymbol{y})=g_{1}(\boldsymbol{x}, \boldsymbol{y}) \neq 0$, so y_{n} is separable over M, whence y_{n} $\in M$. Thus $M \models \psi(x, y)$. //

It is well known that the theory of algebraically closed fields containing E allows a primitive recursive quantifier elimination in $L_{0}[3,8.3]$; thus we can find for a given ψ the formula ψ^{\prime} in Lemma 2.2 in a primitive recursive way. This gives condition (b) of Lemma 1.1.

Our attempt to write quantifier-free formulas as separable formulas leads us first to condition (a) of Lemma 1.1:
(Stratification) Lemma 2.3. Let $\varphi(\boldsymbol{X}, \boldsymbol{Y})$ be a quantifier-free formula in L_{0}. Then we can find an integer $l \geq-1$ and a formula $\varphi^{\prime}(\boldsymbol{X}, \boldsymbol{Y})$ pre-separable in \boldsymbol{Y} at levell such that

$$
\left(\exists Y_{1}, \ldots, \exists Y_{n}\right) \varphi(X, Y) \equiv_{T}\left(\exists Y_{1}, \ldots, \exists Y_{n}\right) \varphi^{\prime}(\boldsymbol{X}, \boldsymbol{Y})
$$

Proof. By [2, Lemma 2.14], φ can be effectively written as a disjunction of formulas describing basic sets, i.e., conjunctions of the form (1) with $s=1$ such that the affine variety V defined over E by f_{1}, \ldots, f_{r} is irreducible over E and g_{1} does not vanish on V. Considering each disjunct separately, we may assume that φ represents such a basic set.

Let $\left(\boldsymbol{x}, y_{1}, \ldots, y_{n}\right)$ be a generic point of V over E, and denote $F=E(\boldsymbol{x})$. We may assume that y_{1}, \ldots, y_{n} are algebraically dependent over F (otherwise φ is preseparable in \boldsymbol{Y} at level -1).

It suffices to find a polynomial $f(\boldsymbol{X}, \boldsymbol{Y}) \in R[\boldsymbol{X}, \boldsymbol{Y}]$ that vanishes on V, but $f(\boldsymbol{X}, \boldsymbol{Y})$ $=h\left(\boldsymbol{X}, \boldsymbol{Y}^{p^{l}}\right)$, where $h(\boldsymbol{X}, \boldsymbol{Y}) \in R[\boldsymbol{X}, \boldsymbol{Y}]$ and $\left(\partial h / \partial Y_{k}\right)\left(\boldsymbol{X}, \boldsymbol{Y}^{p^{l}}\right)$ does not vanish on V, for some $1 \leq k \leq n$ (so, in particular, $h(\boldsymbol{X}, \boldsymbol{Y})$ is separable in Y_{k}). Indeed, φ is then equivalent modulo the theory of fields to $\varphi_{1} \vee \varphi_{2}$, where φ_{1} is

$$
\begin{aligned}
f(\boldsymbol{X}, \boldsymbol{Y})= & 0 \wedge f_{1}(\boldsymbol{X}, \boldsymbol{Y})=0 \wedge \cdots \wedge f_{r}(\boldsymbol{X}, \boldsymbol{Y})=0 \\
& \wedge \frac{\partial h}{\partial Y_{k}}\left(\boldsymbol{X}, \boldsymbol{Y}^{\boldsymbol{p}^{l}}\right) \neq 0 \wedge g_{1}(\boldsymbol{X}, \boldsymbol{Y}) \neq 0
\end{aligned}
$$

and φ_{2} is

$$
\frac{\partial h}{\partial Y_{k}}\left(\boldsymbol{X}, \boldsymbol{Y}^{p^{l}}\right)=0 \wedge f_{1}(\boldsymbol{X}, \boldsymbol{Y})=0 \wedge \cdots \wedge f_{\mathbf{r}}(\boldsymbol{X}, \boldsymbol{Y})=0 \wedge g_{1}(\boldsymbol{X}, \boldsymbol{Y}) \neq 0
$$

Thus, abbreviating $\left(\exists Y_{1}, \ldots, \exists Y_{n}\right)$ by $(\exists Y)$,

$$
(\exists \boldsymbol{Y}) \varphi(\boldsymbol{X}, \boldsymbol{Y}) \equiv_{T}(\exists \boldsymbol{Y}) \varphi_{1}(\boldsymbol{X}, \boldsymbol{Y}) \vee(\exists \boldsymbol{Y}) \varphi_{2}(\boldsymbol{X}, \boldsymbol{Y}) \equiv_{T}(\exists \boldsymbol{Y}) \varphi_{1}^{\prime}(\boldsymbol{X}, \boldsymbol{Y}) \vee(\exists \boldsymbol{Y}) \varphi_{2}(\boldsymbol{X}, \boldsymbol{Y}),
$$

where φ_{1}^{\prime} is the formula obtained from φ_{1} by transposing Y_{k} and Y_{n}. Clearly φ_{1}^{\prime} is preseparable in \boldsymbol{Y} at level l, and φ_{2} can be effectively written as a disjunction of formulas representing basic sets of dimension strictly smaller than $\operatorname{dim} \boldsymbol{V}$. Thus the lemma will follow by induction on the dimension on V.

To find f as above, choose a minimal nonempty subset of $\left\{y_{1}, \ldots, y_{n}\right\}$ algebraically dependent over F, say (to simplify the notation) $\left\{y_{1}, \ldots, y_{d}\right\}$. Find $f \in R\left[\boldsymbol{X}, Y_{1}, \ldots, Y_{d}\right]$ such that $f\left(\boldsymbol{x}, y_{1}, \ldots, y_{d}\right)=0$ (e.g., let $f\left(\boldsymbol{x}, y_{1}, \ldots, y_{d-1}, Y_{d}\right)$ be an irreducible polynomial (not necessarily monic) of y_{d} over $F\left(y_{1}, \ldots, y_{d-1}\right)$). Without loss of generality $f(\boldsymbol{x}, \boldsymbol{Y})$ is irreducible in $\boldsymbol{F}[\boldsymbol{Y}]$-otherwise replace it by an appropriate factor. Let $1 \leq k \leq d$; by Gauss' lemma (cf. [5, p. 128]) $f(\boldsymbol{x}, \boldsymbol{Y})$ is irreducible within $F\left(Y_{1}, \ldots, Y_{k-1}, Y_{k+1}, \ldots, Y_{d}\right)\left[Y_{k}\right]$, and therefore $f\left(\boldsymbol{x}, y_{1}, \ldots, y_{k-1}, Y_{k}, y_{k+1}, \ldots, y_{d}\right)$ is an irreducible polynomial of y_{k} over $F\left(y_{1}, \ldots, y_{k-1}, y_{k+1}, \ldots, y_{d}\right)$.

Now find the largest power q of p such that $f \in R\left[\boldsymbol{X}, \boldsymbol{Y}^{q}\right]$, and write $f(\boldsymbol{X}, \boldsymbol{Y})$ $=h\left(\boldsymbol{X}, \boldsymbol{Y}^{q}\right)$ with $h \in R[\boldsymbol{X}, \boldsymbol{Y}]$. Then there is $1 \leq k \leq d$ and a monomial \boldsymbol{P} of $h(\boldsymbol{X}, \boldsymbol{Y})$ such that $p \mid \operatorname{deg}_{Y_{k}} P$. Thus $\left(\partial h / \partial Y_{k}\right)(\boldsymbol{X}, \boldsymbol{Y}) \neq 0$. But $\left(\partial h / \partial Y_{k}\right)\left(\boldsymbol{X}, \boldsymbol{Y}^{q}\right)$ is of smaller degree in Y_{k} than $f(\boldsymbol{X}, \boldsymbol{Y})=h\left(\boldsymbol{X}, \boldsymbol{Y}^{q}\right)$, and hence $\left(\partial h / \partial Y_{k}\right)\left(\boldsymbol{x}, \boldsymbol{y}^{q}\right) \neq 0$. //
§3. Substitution. We need some notation.
Let V be a block of variables over the field $E=F_{p}\left(t_{1}, \ldots, t_{e}\right)$. Then the basis $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}$ of R over R^{p} (see $\S 1$) is also a basis of the module $R\left[V^{p}\right]$ over the ring $R^{p}\left[\boldsymbol{V}^{p}\right]=(R[\boldsymbol{V}])^{p}$. Let $\Lambda_{1}, \ldots, \Lambda_{N}: R\left[\boldsymbol{V}^{p}\right] \rightarrow R[\boldsymbol{V}]$ be the maps defined by

$$
h=\left(\Lambda_{1}(h)\right)^{p} \alpha_{1}+\cdots+\left(\Lambda_{N}(h)\right)^{p} \alpha_{N}, \quad \text { where } h \in R\left[V^{p}\right] .
$$

(It will be clear from the context which block of variables $\Lambda_{1}, \ldots, \Lambda_{N}$ are associated with.) If $M \vDash T$ and $a_{1}, a_{2}, \ldots \in M$ then $\left(\Lambda_{j}(h)\right)(a)=\lambda_{j}(h(a))$; thus $h(a)=0$ if and only if $\left(\Lambda_{j}(h)\right)(a)=\lambda_{j}(h(a))=0, j=1, \ldots, N$. In other words,

$$
\begin{equation*}
h(\boldsymbol{V})=0 \equiv_{T} \Lambda_{1}(h(\boldsymbol{V}))=0 \wedge \cdots \wedge \Lambda_{N}(h(\boldsymbol{V}))=0 \equiv_{T} \bigwedge_{j \in J} \Lambda_{j}(h(\boldsymbol{V}))=0 \tag{3}
\end{equation*}
$$

We consider the R-homomorphism $\rho: R[\boldsymbol{X}, \boldsymbol{Y}] \rightarrow R\left[\boldsymbol{Z}^{p}, \boldsymbol{Y}\right]$, where $\boldsymbol{X}=\left(X_{1}, \ldots\right.$, $\left.X_{m}\right), \boldsymbol{Y}=\left(Y_{1}, \ldots, Y_{n}\right), \boldsymbol{Z}=\left(Z_{i j} \mid i=1, \ldots, m, j=1, \ldots, N\right)$, given by the substitutions $X_{i}=\sum_{j=1}^{N} Z_{i j}^{p} \alpha_{j}, i=1, \ldots, m$, i.e. by

$$
\rho(h(X, Y))=h\left(\sum_{j=1}^{N} Z_{1 j}^{p} \alpha_{j}, \ldots, \sum_{j=1}^{N} Z_{m j}^{p} \alpha_{j}, Y_{1}, \ldots, Y_{n}\right)
$$

Furthermore, let $\partial: R[X, Y] \rightarrow R[X, Y]$ and $\partial: R[Z, Y] \rightarrow R[Z, Y]$ denote the differentiation with respect to Y_{n}, and $\pi: R[\boldsymbol{X}, \boldsymbol{Y}] \rightarrow R\left[\boldsymbol{X}, \boldsymbol{Y}^{p}\right]$ and $\pi: R[\boldsymbol{Z}, \boldsymbol{Y}] \rightarrow$ $R\left[\boldsymbol{Z}, \boldsymbol{Y}^{p}\right]$ the substitution of $\left(Y_{1}^{p}, \ldots, Y_{n}^{p}\right)$ for $\left(Y_{1}, \ldots, Y_{n}\right)$.

Lemma 3.1. (a) The maps $\Lambda_{1}, \ldots, \Lambda_{n}, \partial, \rho$ and π are additive; moreover, ρ and π are ring-homomorphisms.
(b) $\rho \circ \partial=\partial \circ \rho$ and $\rho \circ \pi=\pi \circ \rho$.
(c) $\pi \circ \Lambda_{j}=\Lambda_{j} \circ \pi$ on $R\left[\boldsymbol{Z}^{p}, \boldsymbol{Y}^{p}\right]$.
(d) $\partial \circ \Lambda_{j} \circ \pi=\Lambda_{j} \circ \pi \circ \partial$ (either as maps from $R\left[X^{p}, \boldsymbol{Y}\right]$ to $R[\boldsymbol{X}, \boldsymbol{Y}]$ or as maps from $R\left[\boldsymbol{Z}^{p}, \boldsymbol{Y}\right]$ to $R[\boldsymbol{Z}, \boldsymbol{Y}]$).
(e) If $l \geq 1$ then $\Lambda_{j} \circ \rho \circ \pi^{l}=\pi^{l-1} \circ \Lambda_{j} \circ \rho \circ \pi$.
(f) If $l \geq 1$ then $\pi^{l-1} \circ \partial \circ \Lambda_{j} \circ \rho \circ \pi=\Lambda_{j} \circ \rho \circ \pi^{l} \circ \partial$.

Proof. (a) is trivial; the equalities of (b), (c) and (d) are easily checked on monomials with coefficients in R, which suffices by (a).
(e) Note that $\rho \circ \pi(R[\boldsymbol{X}, \boldsymbol{Y}]) \subseteq R\left[\boldsymbol{Z}^{p}, \boldsymbol{Y}^{p}\right]$. Therefore by (c) and (b)

$$
\pi^{l-1} \circ \Lambda_{j} \circ \rho \circ \pi=\Lambda_{j} \circ \pi^{l-1} \circ \rho \circ \pi=\Lambda_{j} \circ \rho \circ \pi^{l-1} \circ \pi=\Lambda_{j} \circ \rho \circ \pi^{l}
$$

(f) Note that $\pi \circ \partial \circ \rho(R[\boldsymbol{X}, \boldsymbol{Y}]) \subseteq R\left[\boldsymbol{Z}^{p}, \boldsymbol{Y}^{p}\right]$. Thus

$$
\begin{aligned}
\pi^{l-1} \circ \partial \circ \Lambda_{j} \circ \rho \circ \pi & =\pi^{l-1} \circ\left(\partial \circ \Lambda_{j} \circ \pi\right) \circ \rho & & (\text { by } 3.1(\mathrm{~b})) \\
& =\pi^{l-1} \circ \Lambda_{j} \circ \pi \circ \partial \circ \rho & & (\text { by } 3.1(\mathrm{~d})) \\
& =\Lambda_{j} \circ \pi^{l-1} \circ \pi \circ \partial \circ \rho & & (\text { by } 3.1(\mathrm{c})) \\
& =\Lambda_{j} \circ \rho \circ \pi^{l} \circ \partial & & \text { (by } 3.1(\mathrm{~b})) .
\end{aligned}
$$

Extend the map ρ to quantifier-free formulas: if φ is a quantifier-free formula in the blocks of variables $\boldsymbol{X}, \boldsymbol{Y}$, let $\rho(\varphi)$ be the formula in the blocks of variables $\boldsymbol{Z}, \boldsymbol{Y}$ obtained from φ by the substitution of $\sum_{j=1}^{N} Z_{i j}^{p} \alpha_{j}$ for $X_{i}, i=1, \ldots, m$, i.e., by replacing each atomic subformula $h(\boldsymbol{X}, \boldsymbol{Y})=0$ by $\rho(h)(\boldsymbol{Z}, \boldsymbol{Y})=0$.

Proposition 3.2. Let $\varphi(\boldsymbol{X}, \boldsymbol{Y})$ be a formula pre-separable in \boldsymbol{Y} at level l.
(a) If $\varphi(\boldsymbol{X}, \boldsymbol{Y})$ is separable in \boldsymbol{Y} then so is $\rho(\varphi)(\boldsymbol{Z}, \boldsymbol{Y})$.
(b) If $l \geq 1$ then we can effectively find a formula $\psi(\boldsymbol{Z}, \boldsymbol{Y})$ pre-separable in \boldsymbol{Y} at level $<l$ such that $\rho(\varphi)(\boldsymbol{Z}, \boldsymbol{Y}) \equiv_{T} \psi(\boldsymbol{Z}, \boldsymbol{Y})$. In particular,

$$
\varphi\left(X_{1}, \ldots, X_{m}, \boldsymbol{Y}\right) \equiv_{T} \psi\left(\lambda_{1}\left(X_{1}\right), \ldots, \lambda_{N}\left(X_{1}\right), \ldots, \lambda_{1}\left(X_{m}\right), \ldots, \lambda_{N}\left(X_{m}\right), \boldsymbol{Y}\right)
$$

Proof. Without loss of generality φ is of the form (1).
(a) If Y_{n} does not appear in f_{1}, \ldots, f_{r} then it does not appear in $\rho\left(f_{1}\right), \ldots, \rho\left(f_{r}\right)$. If $\partial\left(f_{1}\right)=g_{1} \neq 0$ (i.e., φ is pre-separable in \boldsymbol{Y} at level 0) then $\partial \circ \rho\left(f_{1}\right)=\rho\left(g_{1}\right) \neq 0$, by Lemma 3.1(b). Thus $\rho(\varphi)$ is separable in Y in both cases.
(b) By (3) we have $\rho(\varphi)(\boldsymbol{Z}, \boldsymbol{Y}) \equiv_{T} \bigvee_{\boldsymbol{j} \in J} \psi_{j}(\boldsymbol{Z}, \boldsymbol{Y})$, where $\psi_{j}(\boldsymbol{Z}, \boldsymbol{Y})$ is

$$
\begin{aligned}
\Lambda_{j} \circ \rho\left(f_{1}\right)=0 & \wedge \rho\left(f_{1}\right)=0 \wedge \cdots \wedge \rho\left(f_{r}\right)=0 \\
& \wedge \Lambda_{j} \circ \rho\left(g_{1}\right) \neq 0 \wedge \rho\left(g_{1}\right) \neq 0 \wedge \cdots \wedge \rho\left(g_{s}\right) \neq 0
\end{aligned}
$$

and $J=\left\{1 \leq j \leq N \mid \Lambda_{j} \circ \rho\left(g_{1}\right) \neq 0\right\}$. We claim that ψ_{j} is pre-separable in \boldsymbol{Y} at level $l-1$ for every $j \in J$.

By assumption there is $h \in E[X, Y]$ separable in Y_{n} such that

$$
f_{1}(\boldsymbol{X}, \boldsymbol{Y})=h\left(\boldsymbol{X}, \boldsymbol{Y}^{\boldsymbol{p}^{l}}\right) \quad \text { and } \quad\left(\partial h / \partial Y_{n}\right)\left(\boldsymbol{X}, \boldsymbol{Y}^{p^{l}}\right)=g_{1}(\boldsymbol{X}, \boldsymbol{Y}) .
$$

In our notation this can be written as

$$
\begin{equation*}
f_{1}=\pi^{l}(h) \quad \text { and } \quad \pi^{l} \circ \partial(h)=g_{1} . \tag{4}
\end{equation*}
$$

Denote $H(\boldsymbol{Z}, \boldsymbol{Y})=\Lambda_{j} \circ \rho \circ \pi(h)$. By Lemma 3.1(e) and (f),

$$
\Lambda_{j} \circ \rho\left(f_{1}\right)=\pi^{l-1}\left(\Lambda_{j} \circ \rho \circ \pi(h)\right)=\pi^{l-1}(H)
$$

and

$$
\pi^{l-1} \circ \partial(H)=\pi^{l-1} \circ \partial \circ \Lambda_{j} \circ \rho \circ \pi(h)=\Lambda_{j} \circ \rho\left(g_{1}\right) .
$$

In particular $\partial(H) \neq 0$, since $\Lambda_{j} \circ \rho\left(g_{1}\right) \neq 0$, i.e., H is separable in Y_{n}. Thus ψ_{j} is separable in \boldsymbol{Y} at level $l-1$.

The last assertion of (b) immediately follows from the definitions of ρ and $\lambda_{1}, \ldots, \lambda_{N}$. //

Thus condition (d) of Lemma 1.1 has been verified, which completes the proof of Theorem 1.2.

REFERENCES

[1] Yu. L. Ershov, Fields with solvable theory, Soviet Mathematics Doklady, 8 (1967), pp. 575-576.
[2] M. Fried, D. Haran and M. Jarden, Galois stratification over Frobenius fields, Advances in Mathematics, vol. 51 (1984), pp. 1-35.
[3] M. Fried and M. Jarden, Field arithmetics, Springer-Verlag, Berlin, 1986.
[4] G. Srour, The independence relation in separably closed fields, this Journal; vol. 51 (1986), pp. 715-725.
[5] S. Lang, Algebra, 2nd ed., Addison-Wesley, Reading, Massachusetts, 1984.

```
SCHOOL OF MATHEMATICAL SCIENCES
    RAYMOND AND BEVERLY SACKLER FACULTY OF EXACT SCIENCES
        TEL-AVIV UNIVERSITY
            RAMAT-AVIV, TEL-AVIV, ISRAEL
```

