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Introduction

A. Background and Motivation. One of the main features of Field Arithmetic is

the interplay between the arithmetic-geometrical properties of a field and the profinite

group theoretic properties of its absolute Galois group. Here is the prototype for this

kind of results:

Basic Theorem:

(a) If a field K is PAC, then Gal(K) is projective (Ax, [FrJ, Thm. 10.17]).

(b) For every projective group G there exists a PAC field K with Gal(K) ∼= G

(Lubotzky-v.d.Dries [FrJ, Cor. 20.16]).

Here we say that a field K is PAC if every absolutely irreducible variety V over

K has a K-rational point. By an absolutely irreducible variety over K we mean

a geometrically integral scheme of finite type over K. We denote the separable closure

of K by Ks and its algebraic closure by K̃. Then we call Gal(K) = Gal(Ks/K) the

absolute Galois group of K.

A profinite group G is projective if every finite embedding problem

(1) (ϕ: G→ A, α: B → A)

for G is solvable. Here A and B are finite groups, ϕ is a homomorphism, and α is an

epimorphism. A solution of (1) is a homomorphism γ: G→ B with α ◦ γ = ϕ.

Both concepts “projective group” and “PAC field” have relative counterparts

which we now describe.

Let G be a profinite group and G a collection of closed subgroups of G. Call G

G-projective if every finite embedding problem (1) for G has a solution provided for

each Γ ∈ G there is a homomorphism γΓ: Γ→ B with α ◦ γΓ = ϕ|Γ.

Let K be a field and K a collection of separable algebraic extensions of K. Call

K PKC (pseudo K-closed) if every smooth absolutely irreducible variety V over K

with a K ′-rational point for each K ′ ∈ K has a K-rational point.

Both definitions involve local-global principles. Thus, G is G-projective if the

existence of local solutions of embedding problems guaranties the existence of global
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solutions. Analogously, K is PKC if the existence of local points on smooth absolutely

irreducible varieties gives global points on them.

It is desirable to generalize the Basic Theorem to the relative case:

Target:

(a) Let K be a field and K a collection of separable algebraic extensions of K. Put

G = {Gal(K ′) | K ′ ∈ K}. Suppose K is PKC. Then Gal(K) is G-projective.

(b) Let G be a profinite group and G a collection of closed subgroups of G. Suppose G

is G-projective and for each Γ ∈ G there exists a field FΓ with Gal(FΓ) ∼= Γ. Then

there exists a field K and an isomorphism ϕ: G → Gal(K). Moreover, for each

Γ ∈ G let KΓ be the fixed field of ϕ(Γ) in Ks. Put K = {KΓ | Γ ∈ G}. Then K is

PKC.

The Basic Theorem is a special case of the Target in which both K and G are

empty.

Another special case of the Target occurs when K is the collection of all real

closures of K and G is the collection of all subgroups of G which are isomorphic to

Gal(R) [HaJ1, p. 450, Thm.]. In this case PKC fields are referred to as PRC fields.

However, in order for Part (b) of the Target to hold, we must assume 1 does not lie in

the closure of G; that is, G has an open subgroup U which contains no Γ ∈ G.

Similarly, the Target is reached when K is the collection of all p-adic closures of

K for some fixed prime number p and G is the collection of all subgroups of G which

are isomorphic to Gal(Qp) [HaJ2, p. 148, Thm.]. Again, we must assume 1 does not

belong to the closure of G. Then PKC fields are just PpC fields.

Another instance where the Target is obtained is when K = {K1, . . . ,Kn} and each

Ki is Henselian with respect to a valuation vi such that v1|K , . . . , vn|K are independent

([Koe, Thm. 2’] or [HaJ3, Theorems A and B]). Here one starts in Part (b) with a

profinite group G which is projective with respect to n closed subgroups G1, . . . , Gn,

each of which is isomorphic to the absolute Galois group of a field. Then one constructs

K and ϕ such that the fixed field Ki of ϕ(Gi) is Henselian with respect to a valuation

vi, i = 1, . . . , n. Moreover, the restrictions of v1, . . . , vn to K are independent.
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In general it is possible to prove Part (a) of the Target under some mild com-

pactness assumption on K [Pop, Thm. 3.3]. We are therefore allowed to make the same

assumption on G in Part (b) of the Target. Nevertheless, when we try to realize G as

an absolute Galois group, we are forced to solve certain infinite embedding problems

and not only finite ones. So, we must assume G is “strongly G-projective” rather than

only G-projective. This has actually been done in [Pop, Thm. 3.4] (Note however that

the adjective “strongly” is mistakenly omitted in the formulation of [Pop, Thm. 3.4]).

But replacing “G is G-projective” by “G is strongly G-projective” in Part (b) brings the

Target out of balance. To restore the balance we allow adding extra conditions to (a)

and to (b). The rule is that each assumption we make on K in (a) should appear as

a consequence in (b). Similarly, each assumption we make on G in (b) should appear

as a consequence in (a). The disturbed balance in [Pop] is restored only when “large

quotients” exist, as in the case of p-adically closed fields [Pop, Section 1, Lemma and

Definition]. The general case is left unbalanced in [Pop].

The goal of this work is to achieve a very general balanced Target. Like in the

above mentioned three instances, we extend both K and G to “structures” over a profi-

nite space X and let each field in K be a Henselian closure of a valuation of the base

field K. In order to prove projectivity of the group structure in (a) we must assume a

strong form of the weak approximation theorem. We call it the “block approximation

condition”. One of the main achievements of this work is the realization of the structure

in (b) as an “absolute Galois structure”of a “field-valuation structure” satisfying the

block approximation condition.

B. The main theorem. For the convenience of the reader we state the main result of

this work, define all concepts appearing in it, and describe the most essential ingredients

of the proof.

Main Theorem:

(a) Let K = (K,X,Kx, vx)x∈X be a proper Henselian field-valuation structure. Sup-

pose K satisfies the block approximation condition. Then Gal(K) = (Gal(K), X,Gal(Kx))x∈X

is a proper projective group structure.
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(b) Let G = (G,X,Gx)x∈X be a proper projective group structure and κ̄: G→ Gal(K̄)

be a Galois approximation of G. Then there exists a proper Henselian field-

valuation structure K = (K,X,Kx, vx)x∈X satisfying the block approximation con-

dition and there is an isomorphism κ: G→ Gal(K) such that res ◦ κ = κ̄.

Here are the definitions of the notions which occur in the Main Theorem.

We call G = (G,X,Gx)x∈X a group structure if G is a profinite group, X is

a profinite space, and for each x ∈ X, Gx is a closed subgroup of G satisfying these

conditions:

(2a) G acts continuously on X from the right.

(2b) Gxg = Ggx for all x ∈ X and g ∈ G.

(2c) Let Subgr(G) be the space of all closed subgroups of G equipped with the étale

topology. (A basis of the étale topology consists of all sets Subgr(U) with U open

in G.) Then the map δG: X → Subgr(G) defined by δG(x) = Gx is continuous in

the étale topology.

(2d) {g ∈ G | xg = x} ≤ Gx for each x ∈ X.

We say G is proper if the map δG: X → {Gx | x ∈ X} is a homeomorphism in

the étale topology.

A group structure G is projective if every finite embedding problem

(4) (ϕ: G→ A, α: B→ A)

for G is solvable. Here we call (4) an embedding problem if the following holds:

(5a) A = (A, I,Ai)i∈I and B = (B, J,Bj)j∈J are finite group structures, i.e., A, B,

I, and J are finite.

(5b) ϕ: G → A is a morphism; that is, ϕ is a pair consisting of a homomorphism

ϕ: G → A and a continuous map ϕ: X → I such that ϕ(xg) = ϕ(x)ϕ(g) and

ϕ(Gx) ≤ Aϕ(x) for all x ∈ X and g ∈ G.

(5c) α: B→ A is a cover; that is, α is a morphism, α(B) = A, α(J) = I, α: Bj → Aα(j)

is an isomorphism for each j ∈ J , and for all j1, j2 ∈ J with ϕ(j1) = ϕ(j2) there is

b ∈ Ker(α) with jb1 = j2.
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A solution of (4) is a morphism γ: G→ B satisfying α ◦ γ = ϕ.

We call (K,X,Kx)x∈X a field structure if K is a field, X is a profinite space,

and Kx is a separable algebraic extension, x ∈ X, such that

Gal(K) = (Gal(K), X,Gal(Kx))x∈X

is a group structure.

A Galois approximation of a group structure G = (G,X,Gx)x∈X is a morphism

κ̄: G → Gal(K̄) where K̄ = (K̄, X̄, K̄x̄)x̄∈X̄ is a field structure, κ̄(G) = Gal(K̄),

κ̄(X) = X̄, and κ̄: Gx → Gal(K̄κ̄(x)) is an isomorphism for each x ∈ X.

We call K = (K,X,Kx, vx)x∈X a field-valuation structure if (K,X,Kx)x∈X is

a field structure and vx is a valuation of Kx satisfying these conditions:

(6a) vxσ = vσx for all x ∈ X and σ ∈ Gal(K).

(6b) For each finite separable extension L the map νL: XL → Val(L) given by νL(x) =

vx|L is continuous. Here XL = {x ∈ X | L ⊆ Kx} and Val(L) is the space of all

valuation of L including the trivial one. A subbasis for the topology of Val(L) is

the collection of all sets

U = {w ∈ Val(L) | w(a) > 0} and U ′ = {w ∈ Val(L) | w(a) ≥ 0}

with a ∈ L.

We say that K is Henselian, if in addition (Kx, vx) is Henselian for each x ∈ X.

A block approximation problem for K is a data (V,Xi, Li,ai, ci)i∈I0 satisfying

these conditions:

(7a) I0 is a finite set.

(7b) Xi is an open-closed subset of X, i ∈ I0.

(7c) Li is a finite separable extension of K contained in Kx for all x ∈ Xi and i ∈ I0.

(7d) Gal(Li) = {σ ∈ Gal(L) | Xσ
i = Xi}, i ∈ I0.

(7e) For each i ∈ I0 let Ri be a subset of Gal(K) satisfying Gal(K) =
⋃
· ρ∈Ri

Gal(Li)ρ.

Then X =
⋃
· i∈I0

⋃
· ρ∈Ri

Xρ
i .

(7f) V is a smooth absolutely irreducible variety over K.

(7g) ai ∈ V (Li), i ∈ I0.
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(7h) ci ∈ K×, i ∈ I0.

A solution of the block approximation problem is a point a ∈ V (K) satisfying

vx(a − ai) > v(ci) for all i ∈ I0 and x ∈ Xi. We say that K satisfies the block

approximation condition if every block approximation problem for K has a solution.

Finally, in the notation of (b) of the Main Theorem, we say that κ lifts κ̄ if K

is a regular extension of K̄ and the epimorphism res: Gal(K) → Gal(K̄) extends to a

morphism ρ: Gal(K)→ Gal(K̄) with ρ ◦ κ = κ̄.

In the rest of the introduction we explain some of the main points of the proof.

This will partially explain why the notions in the Main Theorem are so involved.

In the proof of Part (b) of the Target we have to solve embedding problems

of the type (ϕ: G → Gal(K), α: Gal(L) → Gal(K)). Since Gal(K) and Gal(L) are

infinite, it does not follow immediately from the projectivity of G that a solution γ

exists. However, a result of Gruenberg [FrJ, Lemma 20.8] does give γ in the setup

of the Basic Theorem. In all other cases of the Target Theorem proved prior to this

work it is needed that for each Γ ∈ G, γ(Γ) belongs to a subset of Subgr(G) given

in advance. Therefore, the profinite groups G have been equipped with certain group

structures and homomorphisms have been replaced by morphisms such that solvability

of finite embedding problems in the so obtained category implies solvability of arbitrary

embedding problems.

Each of these structures consisted of a profinite group G acting on a profinite

space and local objects parametrized by X. It was further assumed that the action of

G on X is regular; that is xg = x for x ∈ X and g ∈ G implies g = 1. This gave

a closed system of representatives for the G-orbits of X [HaJ2, Lemma 2.4]. But in

general, closed system of representatives do not exist. Instead we find representatives

modulo each open normal subgroup of G. More precisely, let G = (G,X,Gx)x∈X be a

group structure as in the Main Theorem and N an open normal subgroup of G. Then

we find a finite system of triples (Gi, Xi, Ri)i∈I0 which we call a special partition of

G. It satisfies the following conditions:

(8a) I0 is a finite set, disjoint from X.

(8b) Xi is an open-closed subset of X, i ∈ I0.
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(8c) Gi is an open subgroup of G containing Gx for all x ∈ Xi, i ∈ I0.

(8d) Gi = {σ ∈ Gal(L) | Xσ
i = Xi}, i ∈ I0.

(8e) Ri is finite, G =
⋃
· ρ∈Ri

Giρ, and X =
⋃
· i∈I0

⋃
· ρ∈Ri

Xρ
i .

The existence of special partitions goes back to [Pop, Prop. 4.9].

We use special partitions on several occasions:

(9a) to extend each homomorphism ϕ: G → A with a finite group A to a morphism

ϕ: G → A where A = (A, I,Ai)i∈I is a finite group structure given in advance

(Lemma 3.7);

(9b) in the definition of “unirational arithmetical problem” (Section 6) and “block

approximation problem” (Section 12) and in the proof of Part (a) of the Main

Theorem (Lemma 14.2); and

(9d) in the proof of Part (b) of the Main Theorem (Lemma 15.1).

A second essential ingredient in the proof of Part (a) of the Main Theorem is

the local homeomorphism theorem for étale morphisms of varieties over Henselian fields

[GPR, Thm. 9.4]. A special partition, a “locally uniform Hensel’s lemma” (Corollary

10.4), and block approximation prepare the use of the local homeomorphism theorem.

The idea to use this set up goes back to [HaJ3, Prop. 3.2]. Block approximation can be

found in [FHV, Prop. 2.1] in the context of real closed fields.

In a subsequent work we intend to apply the Main Theorem to prove the Target

Theorem in a general p-adic setting which will make a far reaching generalization of

[HaJ1].
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1. Étale Topology

Let G be a profinite group. Denote the collection of all closed (resp. open, open normal)

subgroups of G by Subgr(G) (resp. Open(G), OpenNormal(G)). We introduce two

topologies on Subgr(G), the strict topology and the étale topology, and relate them to

each other.

A basis of the strict topology is the collection of all sets

(1) ν(H,N) = {A ∈ Subgr(G) | AN = HN},

with H ∈ Open(G) and N ∈ OpenNormal(G). When G is finite, the strict topology

is the discrete topology. In general, Subgr(G) ∼= lim←−Subgr(G/N) with N ranging over

all open normal subgroups of G. Thus, Subgr(G) is a profinite space under the strict

topology. Indeed, each of the sets ν(H,N) is also closed in the strict topology. We use

the adverb “strictly” as a substitute for “in the strict topology”. For example, given a

subset G of Subgr(G), we say G is strictly open (resp. closed, compact, Hausdorff)

if it is open (resp. closed, compact, Hausdorff) in the strict topology. Likewise, for a

function f from a topological space X into Subgr(G) we say f is strictly continuous

if f is continuous when Subgr(G) is equipped with the strict topology.

A basis of the étale topology is the collection of all sets

{Subgr(U) | U ∈ Open(G)}

with U ∈ Open(G). As above, for a subset G of Subgr(G) we say G is étale open

(closed, compact, Hausdorff, etc) if G is open (closed, compact, Hausdorff, etc) in

the étale topology. Likewise, for a function f from a topological space X into Subgr(G)

we say f is étale continuous if f is continuous when Subgr(G) is equipped with the

étale topology.

Note: We use the adjective compact for a topological space X in the sense of

Hewitt-Ross [HRo]. Thus, every open covering of X has a finite subcovering (but, in

contrast to the terminology of Bourbaki, X need not be Hausdorff).

Remark 1.1: Categorical properties of the étale topology.
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(a) Subgroups: Let H be a closed subgroup of G. Then a subgroup H0 of H is

open in H if and only if H0 = H ∩ G0 with G0 ∈ Open(G). Moreover, Subgr(H0) =

Subgr(H) ∩ Subgr(G0). Thus, the étale topology of Subgr(H) is the one induced from

the étale topology of Subgr(G).

(b) Quotients: Let N be a closed normal subgroup of G. Put Ḡ = G/N and let

π: G → Ḡ be the quotient map. Given Ū ∈ Open(Ḡ), put U = π−1(Ū) and observe

that π−1(Subgr(Ū)) = Subgr(U). It follows that the étale topology of Subgr(Ḡ) is the

quotient topology of Subgr(G) via the quotient map π: Subgr(G)→ Subgr(Ḡ).

Remark 1.2: Étale versus strict. The strict topology of Subgr(G) is finer than the

étale topology. Indeed, consider an open subgroup U of G. Choose an open normal

subgroup N of G in U . List the subgroups between N and U as H1, . . . ,Hn. Then

Subgr(U) =
⋃n
i=1{A ∈ Subgr(G) | AN = Hi}. Hence, Subgr(U) is strictly open (and

closed).

Since Subgr(G) is strictly profinite, this gives the following chain of implications

for a subset G of Subgr(G): G is étale closed =⇒ G is strictly closed ⇐⇒ G is strictly

compact =⇒ G is étale compact.

The intersection of two étale open basic sets contains the trivial group. So, if

G 6= 1, the étale topology of Subgr(G) is not Hausdorff. However, a subset G of Subgr(G)

can be étale Hausdorff. Indeed, we will be looking for such G which are even étale

profinite.

Denote the strict closure of a subset G of Subgr(G) (resp. a point H ∈ Subgr(G))

by StrictClosure(G) (resp. StrictClosure(H)).

Lemma 1.3: Let G be a subset of Subgr(G).

(a) Let H,H ′ ∈ G. Suppose H ∩H ′ contains no L which belongs to StrictClosure(G).

Then H and H ′ can be separated by the étale topology of G.

(b) Suppose H ∩H ′ contains no L ∈ StrictClosure(G) for all distinct H,H ′ ∈ G. Then

G is étale Hausdorff.

Proof: Statement (b) follows from (a). So, we prove (a). Assume H and H ′ cannot be

separated by the étale topology of G. Denote the set of all pairs (U,U ′) ∈ Open(G) ×
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Open(G) with H ≤ U and H ′ ≤ U ′ by U . Then, Subgr(U) ∩ Subgr(U ′) ∩ G 6= ∅ for all

(U,U ′) ∈ U . Hence, Subgr(U) ∩ Subgr(U ′) ∩ StrictClosure(G) 6= ∅ for all (U,U ′) ∈ U .

Each of the sets Subgr(U) ∩ Subgr(U ′) ∩ StrictClosure(G) is strictly closed (Remark

1.2). The intersection of finitely many of them is a set of the same type. Hence,

the intersection is nonempty. Since StrictClosure(G) is strictly compact, there is L ∈⋂
(U,U ′)∈U Subgr(U) ∩ Subgr(U ′) ∩ StrictClosure(G). It satisfies L ≤ H ∩ H ′. This

contradicts the assumption of the lemma.

Corollary 1.4: Let G be a subset of Subgr(G) with 1 /∈ StrictClosure(G).

(a) Let H,H ′ ∈ G. Suppose H ∩H ′ = 1. Then H and H ′ can be separated by the étale

topology of G.

(b) Suppose H ∩H ′ = 1 for all distinct H,H ′ ∈ G. Then G is étale Hausdorff .

Here is a certain converse to Corollary 1.4:

Lemma 1.5: Let G be a profinite group and G a subset of Subgr(G). Suppose G is étale

Hausdorff and contains at least two groups. Then 1 /∈ StrictClosure(G).

Proof: Let H1 and H2 be distinct groups in G. Then there are disjoint étale open

subsets U1 and U2 of G such that Hi ∈ Ui, i = 1, 2. For each i there is Ui ∈ Open(G)

with Hi ∈ G ∩ Subgr(Ui) ⊆ Ui. Let U = U1 ∩ U2. Then U ∈ Open(G) and

G ∩ Subgr(U) ⊆ G ∩ Subgr(U1) ∩ Subgr(U2) ⊆ U1 ∩ U2 = ∅.

It follows, 1 /∈ StrictClosure(G).
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2. Group Structures

The profinite group structures we introduce in this section replace the Artin-Schreier

Structures of [HaJ1], the Γ-structures of [HaJ2], and the étale spaces of [Har]. The

category of profinite group structures admits quotients (Example 2.5), fiber products

(Construction 2.9), and inverse limits (Remark 2.7). These are the necessary tools to

prove that solvability of finite embedding problems of a finite group structure G implies

the solvability of arbitrary embedding problems for G (Proposition 4.2).

A topological group space (also called a group space) is a pair (X,G) con-

sisting of a topological space X, a topological group G, and a continuous action of

G on X from the right (which we write exponentially). If X is a profinite space and

G is a profinite group, we say (X,G) is a profinite group space. A morphism

ϕ: (X,G)→ (Y,H) of group spaces is a couple consisting of a continuous map ϕ: X → Y

and a continuous group homomorphism ϕ: G → H satisfying ϕ(xg) = ϕ(x)ϕ(g) for all

x ∈ X and g ∈ G. Composition of morphisms of group spaces and the identity maps

are morphisms of profinite group spaces satisfying the associativity law. Thus, the class

of topological (resp. profinite) groups spaces with their morphisms form a category.

For each group space (X,G) and each element x ∈ X, we let Sx = {g ∈ G | xg =

x}. It is a subgroup of G called the stabilizer of x. For each σ ∈ G we have Sxσ = Sσx .

If ϕ: (X,G)→ (Y,H) is a morphism and x ∈ X, then ϕ(Sx) ≤ Sϕ(x).

Every profinite group G acts on Subgr(G) by conjugation. This action is strictly

continuous as well as étale continuous. Therefore, (Subgr(G), G) with Subgr(G) equip-

ped with the strict topology (resp. the étale topology) is a profinite (resp. topological)

group space. In Section 6 we encounter our second basic example of profinite group

spaces arising in the context of absolute Galois groups.

A profinite group structure is a triple G = (G,X, δ) consisting of a profinite

group space (X,G) and an étale continuous map δ: X → Subgr(G). This object must

satisfy the following conditions:

(1a) Gxg = Ggx for all x ∈ X and g ∈ G; thus δ is a morphism of group spaces.

(1b) Sx ≤ Gx for each x ∈ X.

Denote δ also by δG. The continuity of δG means that {x ∈ X | Gx ≤ U} is an
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open subset of X for each U ∈ Open(G).

We write G also as (G,X,Gx)x∈X and refer to G as a group structure (omitting

“profinite”).

A morphism of group structures

(2) ϕ: (G,X,Gx)x∈X → (H,Y,Hy)y∈Y

is a morphism ϕ: (X,G)→ (Y,H) of profinite group spaces such that ϕ(Gx) ≤ Hϕ(x).

We call ϕ an epimorphism if ϕ(G) = H, ϕ(X) = Y , and for each y ∈ Y there is

x ∈ X with ϕ(x) = y and ϕ(Gx) = Hy.

We call ϕ a cover if ϕ is an epimorphism with the following properties:

(3a) ϕ maps each Gx isomorphically onto Hϕ(x).

(3b) ϕ(x) = ϕ(x′) implies xk = x′ for some k ∈ Ker(ϕ).

If an epimorphism ϕ: G→ H satisfies (3a) (but not necessarily (3b)), we say ϕ is

rigid. We call G finite, if both G and X are finite.

Remark 2.1: Proper group structures. Let G = (G,X,Gx)x∈X be a group structure.

Write G = {Gx | x ∈ X}. We say G is proper, if δG: X → G is an étale homeomor-

phism. Then G is étale profinite. Moreover, Sx = Gx for each x ∈ X. Indeed, if g ∈ Gx,

then Gxg = Ggx = Gx, hence xg = x. Thus, NG(Γ) = Γ for each Γ ∈ G. If X = {x}

consists of one element and σ ∈ G, then xσ = x, hence σ ∈ Sx = Gx. Therefore,

Gx = G. If X contains at least two points, then 1 /∈ StrictClosure(G) (Lemma 1.5).

Let H = (H,Y,Hy)y∈Y be another proper group structure and ϕ: G→ H a group

homomorphism. Put H = {Hy | y ∈ Y }. Suppose ϕ(G) ⊆ H. Then δ−1
H ◦ ϕ ◦ δG is

a continuous map from X into Y which is compatible with the action of G and H.

This gives a unique extension of ϕ: G → H to a morphism ϕ: G → H satisfying

ϕ(Gx) = Hϕ(x) for each x ∈ X.

Consider now a third proper group structure A = (A, I,Ai)i∈I . Let α: G→ A and

β: H→ A be morphisms. Suppose ϕ(Gx) = Hϕ(x), β(Hy) = Aβ(y), and α(Gx) = Aα(x)

for all x ∈ X and y ∈ Y . Then α = β ◦ϕ as homomorphisms of groups implies α = β ◦ϕ

as morphisms of group structures.
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Finally suppose ϕ: G → H is a rigid epimorphism of group structures with G

proper and Ker(ϕ) = 1. Then ϕ is an isomorphism and H is proper. Indeed, ϕ: G→ H

is an isomorphism. It remains to prove that ϕ: X → Y is an isomorphism. Since both

X and Y are profinite spaces and ϕ: X → Y is continuous and surjective, it suffices

to prove that ϕ: X → Y is injective. Consider x, x′ ∈ X with ϕ(x) = ϕ(x′). Then

ϕ(Gx) = ϕ(Gx′). Hence, Gx = Gx′ . Since G is proper, x = x′, as desired.

Lemma 2.2: Suppose (2) is a cover of groups structures. Then ϕ(Sx) = Sϕ(x) for each

x ∈ X. In particular, if Hy = Sy for each y ∈ Y , then Gx = Sx for each x ∈ X.

Proof: Let x ∈ X and y = ϕ(x). We have already mentioned that ϕ(Sx) ≤ Sy. Also,

ϕ: Gx → Hy is an isomorphism. Hence, in order to prove that ϕ(Sx) = Sy, it suffices

to consider g ∈ ϕ−1(Sy) ∩Gx and to prove that g ∈ Sx.

Indeed, ϕ(xg) = yϕ(g) = y = ϕ(x). Hence, there is k ∈ Ker(ϕ) with xgk = x.

Thus, gk ∈ Sx. Therefore, k ∈ Ker(ϕ) ∩Gx = 1. It follows that g ∈ Sx.

Now assume Hy = Sy. Then, by the preceding paragraph, ϕ(Gx) = Hy = ϕ(Sx).

Since, ϕ: Gx → Hy is an isomorphism, Gx = Sx, as claimed.

Lemma 2.3: Let (G,X,Gx)x∈X be a group structure and Y a closed subset of X. Then⋃
x∈Y Gx is closed in G.

Proof (After [Gil, Lemma 1.4]): Let g ∈ Gr ⋃
x∈Y Gx. For each x ∈ Y there is an open

normal subgroup Nx of G with gNx ∩Gx = ∅. Thus, g /∈ GxNx. As GxNx ∈ Open(G),

continuity of δG implies Vx = {y ∈ Y | Gy ≤ GxNx} is an open neighborhood of x in

Y . As Y is compact, the covering {Vx | x ∈ Y } has a finite subcovering {Vx1 , . . . , Vxn}.

Then N =
⋂n
i=1Nxi

is an open normal subgroup of G and g /∈ GyN for each y ∈ Y .

Therefore, gN ⊆ Gr ⋃
y∈Y Gy.

Proper group structures are our main subject of research. We have introduced

the more general concept of group structures in order to be able to extend the basic

operations of the category of profinite groups to the category of group structures. This is

not always possible in the category of proper group structures. For example, a quotient

of a proper group structure need not be proper (Example 2.5).
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Example 2.4: Absolute Galois group structures. An absolute Galois group struc-

ture is a group structure G = (Gal(K), X,Gal(Kx))x∈X where each Kx is a separable

algebraic extension of K. Let H = (Gal(L), Y,Gal(Ly))y∈Y be another absolute Galois

group structure. Suppose both G and H are proper, K ⊆ L and for each y ∈ Y there

is x ∈ X with Ly ∩ Ks = Kx. By Remark 2.1, resLs/Ks
: Gal(L) → Gal(K) extends

to a unique morphism ρ: H → G of group structures satisfying resLs/Ks
(Gal(Ly)) =

Gal(Kx) for all y ∈ Y and x = ρ(y). We denote this morphism by res if the reference

to K and L is clear from the context.

Example 2.5: Quotient maps. Let G = (G,X,Gx)x∈X be a group structure and N

a closed normal subgroup of G. Put Ḡ = G/N and X̄ = X/N . Let π: G → Ḡ and

π: X → X̄ the quotient maps: π(g) = ḡ = gN and π(x) = x̄ = {xν | ν ∈ N}. Then X̄

is a profinite space [HaJ1, Claim 1.6]. For each x ∈ X let Ḡx̄ = π(Gx) = GxN/N .

Consider Ū ∈ Open(Ḡ). Put U = π−1(Ū). Then π−1({x̄ ∈ X̄ | Ḡx̄ ≤ Ū}) =

{x ∈ X | Gx ≤ U}. Hence, the map δḠ: X̄ → Subgr(Ḡ) given by δḠ(x̄) = Ḡx̄ is étale

continuous. Also, Ḡ acts continuously on X̄ by x̄ḡ = x̄ and x̄σ̄ = x̄ implies σ̄ ∈ Ḡx̄.

Thus, Ḡ = (Ḡ, X̄, Ḡx̄)x̄∈X̄ is a group structure which we denote by G/N and π: G→ Ḡ

is an epimorphism. Moreover, π(Gx) = Ḡπ(x) for every x ∈ X. We call π the quotient

map. If Gx ∩N = 1 for each x ∈ X, then π is a cover.

Let G = {Gx | x ∈ X} and Ḡ = {Ḡx̄ | x̄ ∈ X̄}. Then π induces a strictly continu-

ous map of Subgr(G) onto Subgr(Ḡ) and π(G) = Ḡ. Thus, if 1 /∈ StrictClosure(Ḡ), then

1 /∈ StrictClosure(G).

Conversely, every cover ϕ: G → H of group structures is isomorphic to the quo-

tient map G→ G/Ker(ϕ). Indeed, let H = (H,Y,Hy)y∈Y . Then ϕ induces a bijective

continuous map ϕ̄: X̄ → Y . As both X̄ and Y are profinite, ϕ̄ is a homeomorphism.

Consider now the case where N = G. Suppose |X̄| > 1. Then Ḡ = 1 and the

forgetful map δḠ is not injective. Thus, Ḡ need not be proper even if G is proper.

This is one of the reasons why we work in the category of group structures and not in

the category of proper group structures, which may look at first glance more attractive.

Another reason is the need to use morphisms called ”Galois approximations” (Section

14). The target objects of Galois approximations are group structures which need not
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be proper.

Quotient maps of group structures has the universal property of quotient maps

of groups. Thus, if π: G → Ḡ and ϕ: G → H are quotient maps satisfying Ker(ϕ) ≤

Ker(π), then there is a unique quotient map ψ: H → G/N satisfying ψ ◦ ϕ = π.

Moreover, π is a cover if and only if ϕ and ψ are covers. Finally, if N ′ ≤ N are closed

normal subgroup of G, then there is a natural isomorphism G/N ∼= (G/N ′)/(N/N ′).

Remark 2.6: Sub-group-structures. Let G = (G,X,Gx)x∈X and H = (H,Y,Hy)y∈Y

be group structures. We say H is a sub-group-structure of G if H ≤ G, Y is a

subspace of X, and Hy = Gy for each y ∈ Y . If G proper, then so is H.

Suppose we start with a group G, a profinite space X, and for each x ∈ X a closed

subgroup Gx of G. Consider a closed subgroup H of G which contains all Gx. If U is

an open subgroup of G, then V = U ∩ H is an open subgroup of H. Conversely, for

each open subgroup V of H there is an open subgroup U of G with V = U ∩ H. In

each case {x ∈ X | Gx ≤ U} = {x ∈ X | Gx ≤ V }. So, if one of the sets is open, so is

the other. Thus, (G,X,Gx)x∈X is a group structure if and only if (H,X,Gx)x∈X is a

group structure.

Remark 2.7: Inverse limit of group structures. Let Gi = (Gi, Xi, Gi,x)x∈Xi
, i ∈ I, be

an inverse system of group structures with connecting homomorphisms πji: Gj → Gi.

Put G = lim←−Gi, X = lim←−Xi, and let πi be the projections on the ith coordinate of G

and X. Since the πji’s commute with the action of Gi on Xi, they define a continuous

action of G on X.

Next observe that Subgr(G) = lim←−Subgr(Gi) as sets. Moreover, the étale topology

of Subgr(G) coincides with the inverse limit of the étale topologies of Subgr(Gi). Indeed,

let H ∈ Subgr(G). Each open neighborhood of H in the inverse limit of the étale

topologies contains a set of the form Subgr(π−1(Ui)) for some i ∈ I and Ui ∈ Open(Gi)

with H ≤ π−1(Ui). This set is étale open in Subgr(G) because π−1(Ui) is open in

G. Conversely, consider an open subgroup U of G containing H. For each i ∈ I

put Hi = πi(H) and Ui = {Ui ∈ Open(Gi) | Hi ≤ Ui}. Then Hi =
⋂
Ui∈Ui

Ui and
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H =
⋂
i∈I π

−1(Hi), hence H =
⋂
i∈I

⋂
Ui∈Ui

π−1(Ui). By compactness there are i ∈ I

and Ui ∈ Ui with π−1(Ui) ≤ U . They satisfy, πi
(
Subgr(π−1

i (Ui))
)
⊆ Subgr(Ui). Hence,

π−1
i

(
Subgr(Ui)

)
⊆ Subgr

(
π−1
i (Ui)

)
⊆ Subgr(U).

Since the πji’s commute with the maps δGi : Xi → Subgr(Gi), they define an map

δ: X → Subgr(G) which is continuous in the inverse limit of the étale topologies of

Subgr(Gi). By the preceding paragraph, δ is étale continuous. Specifically, for each

x = (xi)i∈I in X we have δ(x) = Gx = lim←−Gi,xi
.

Since each δGi
commutes with the action of Gi, the map δ commutes with the

action of G. Finally, with x = (xi)i∈I , it follows from Sxi
≤ Gxi

that Sx ≤ Gx.

Therefore, G = (G,X,Gx)x∈X is a group structure.

If each πji is rigid, then each πi is rigid. If each πji is a cover, then so is each πi.

Indeed, Let x = (xk)k∈I and y = (yk)k∈I be elements of X satisfying xi = yi. Then,

for each j ≥ i the closed subset Kj = {κ ∈ Ker(πji) | xκj = yj} of Gj is not empty. If

k ≥ j, then πkj(Kk) ⊆ Kj . Therefore, there is κ ∈ G with πj(κ) ∈ Kj for all j ≥ i.

This κ belongs to Ker(πi) and xκ = y, as claimed.

Lemma 2.8: Let G = (G,X,Gx)x∈X be a group structure andN an inductive collection

of closed normal subgroups of G with
⋂
N∈N N = 1. Then G = lim←−G/N where N

ranges over N .

Proof: The only point which is perhaps not clear is X = lim←−X/N . To prove this

equality define a map f : X → lim←−X/N by f(x) = (xN )N∈N , where xN = {xν | ν ∈ N}.

Then f is continuous. Compactness of X implies f is surjective. Since both X and

lim←−X/N are profinite spaces, it suffices now to prove that f is injective.

Consider distinct elements x, y ∈ X. Choose disjoint open subsets U and V of

X with x ∈ U and y ∈ V . Since the action of G on X is continuous, x has an open

neighborhood U0 and there is N ∈ N with UN0 ⊆ U . Then xν /∈ V , so xν 6= y for all

ν ∈ N . Therefore, f(x) 6= f(y).

Construction 2.9: Fiber products. Let A = (A, I,Ai)i∈I , B = (B, J,Bj)j∈J , and G =

(G,X,Gx)x∈X be group structures. Let α: B → A and ϕ: G → A be morphisms of

group structures. Put
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(5a) H = B ×A G = {(b, g) ∈ B ×G | α(b) = ϕ(g)},

(5b) Y = J ×I X = {(j, x) ∈ J ×X | α(j) = ϕ(x)}, and

(5c) Hy = Bj ×A Gx = {(b, g) ∈ Bj ×Gx | α(b) = ϕ(g)} for y = (j, x) ∈ Y .

Define a continuous action of H on Y by (j, x)(b,g) = (jb, xg). We claim: H =

(H,Y,Hy)y∈Y is a group structure.

To verify the claim it suffices to prove that the map y 7→ Hy is étale continuous.

Indeed, let y = (j, x). Consider an open subgroup W of H which contains Hy =

Bj ×A Gx. Let U be the set of all open subgroups of B which contain Bj . Let V be

the set of all open subgroups of G which contain Gx. The intersection of all U ×A V

with U ∈ U and V ∈ V is Bj ×A Gx. Since H rW is closed, there are an open

subgroup U of B and an open subgroup V of G with Hy ≤ U ×A V ≤ W . The set

Y0 = {(j′, x′) ∈ Y | Bj′ ≤ U , Gx′ ≤ V } is an open neighborhood of y in Y and

H(j′,x′) ≤W for each (j′, x′) ∈ Y0. Therefore, the above map is continuous.

Finally let β: H → B, β: Y → J , ψ: H → G, and ψ: Y → X be the projections

on the coordinates. Then the following diagram of group structures is commutative:

(6) H
ψ //

β

��

G

ϕ

��
B

α // A

If both B and G are finite, then so is H.

Definition 2.10: Cartesian squares. Let (6) be a commutative diagram of group struc-

tures. Call (6) a cartesian square if this holds: For all group structures F and

morphisms β′: F→ B and ψ′: F→ G with α ◦ β′ = ϕ ◦ ψ′ there is a unique morphism

ε: F→ H satisfying β ◦ ε = β′ and ψ ◦ ε = ψ′.

Lemma 2.11: Let (6) be a commutative diagram of group structures.

(a) Suppose H = B ×A G and β, ψ are the coordinate projections. Then (6) is a

cartesian square.

(b) Suppose (6) is a cartesian square. Put H′ = B ×A G. Let ψ′: H′ → B and

β′: H′ → G be the projection maps. Then there is a unique isomorphism γ: H′ → H

with ψ ◦ γ = ψ′ and β ◦ γ = β′.
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Proof: Statement (a) follows from the definition of B ×A G. Statement (b) follows

from (a) and from the uniqueness of ε in Definition 2.10.

Lemma 2.12: Suppose (6) is a cartesian square of group structures. Then:

(a) β: Ker(ψ)→ Ker(α) is an isomorphism.

(b) For each y ∈ Y , ψ: Hy → Gψ(y) is injective if and only if α: Bβ(y) → Aα(β(y)) is

injective.

(c) If α is a cover, then ψ is a cover.

(d) If ψ is a cover and ϕ is an epimorphism, then α is a cover.

Proof: By Lemma 2.11(b) we may assume that H is B×A G and β, ψ are the projec-

tions.

Proof of (a) and (b): By assumption, Ker(ψ) = Ker(α)×{1}, which gives (a). Similarly,

for y = (j, x) ∈ Y , (5c) and (a) imply that β maps Ker(ψ) ∩ Hy isomorphically onto

Ker(α) ∩Bj . This gives (b).

Proof of (c): Suppose α is a cover. Then α(B) = A. Hence, for each g ∈ G there

is b ∈ B with α(b) = ϕ(g). Therefore, (b, g) ∈ H and ψ(b, g) = g. Thus, ψ(H) = G.

Similarly, ψ(Y ) = X and ψ(Hy) = Gψ(y) for each y ∈ Y . Since α: Bβ(y) → Aα(β(y)) is

an isomorphism, (b) implies ψ: Hy → Gψ(y) is an isomorphism.

Finally, suppose ψ(j, x) = ψ(j′, x′). Then x = x′ and α(j) = α(j′). The rigidity

of α gives b ∈ Ker(α) with j′ = jb. Then (b, 1) ∈ Ker(ψ) and (j′, x′) = (j, x)(b,1). This

proves ψ is a cover.

Proof of (d): By assumption, α(β(H)) = ϕ(ψ(H)) = A and α(β(Y )) = ϕ(ψ(Y )) = I.

Hence, α(B) = A and α(J) = I.

Now let j ∈ J and i = α(j). Since ϕ is an epimorphism, there is x ∈ X with

ϕ(x) = i and ϕ(Gx) = Ai. Put y = (j, x). Since ψ is a cover, ψ: Hy → Gx is an

isomorphism. Hence, Ai ≥ α(Bj) ≥ α(β(Hy)) = ϕ(ψ(Hy)) = Ai, so α(Bj) = Ai. We

conclude from (b) that α: Bj → Ai is an isomorphism.

Finally, consider j, j′ ∈ J with α(j) = α(j′). Choose x ∈ X with α(j) = α(j′) =

ϕ(x). Then ψ(j, x) = ψ(j′, x). Hence, there is (b, 1) ∈ Ker(ψ) with (j′, x) = (j, x)(b,1).

Therefore, b ∈ Ker(α) and j′ = jb. This proves α is a cover.
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3. Completion of a Cover to a Cartesian Square

There are several places in this work where a group structure G = (G,X,Gx)x∈X is

given and we need to define a morphism f : (X,G) → (Y,H) of group spaces, where

f : G → H is a given homomorphism. If the set of G-orbits of X has a closed system

of representatives X ′ (also called a fundamental domain), then X ∼= X ′×G. Hence,

we may first define f on X ′ and then extend it to X by the rule

(1) f(xσ) = f(x)f(σ), x ∈ X ′, σ ∈ G.

This could considerably simplify the proof of the Main Theorem. Unfortunately, fun-

damental domains do not always exist. (One may find a counter example of J. L. Kelly

on page 473 of [ArK].) Instead we produce a “special partition” of G giving rise to a

subset X ′ of X that “approximates” a fundamental domain in a way that allows the

definition of the desired function f .

Lemmas 3.1, 3.2, 3.3, and 3.4 below prepare ingredients of the construction of

special partitions in Lemma 3.6. The definition of “special partition” appears in Lemma

3.5. It follows by a specification of the above mentioned set X ′.

Lemma 3.1: Let G be a profinite group acting continuously on a compact Hausdorff

space X. Then:

(a) Sx is a closed subgroup of G.

(b) The map x 7→ Sx from X to Subgr(G) is étale continuous.

(c) (G,X, Sx)x∈X is a profinite group structure.

Proof of (a): The action a: X × G → X and the projection p: X × G → X are

continuous, so {x} × Sx = p−1(x) ∩ a−1(x) is closed in X ×G. Therefore, Sx is closed

in G.

Proof of (b): Let N be an open normal subgroup of G and let x ∈ X. We have to find

an open neighborhood V of x with Sy ≤ SxN for all y ∈ V .

Case A: G is finite and N = 1. Consider σ ∈ GrSx. Then, xσ 6= x. Since X

is Hausdorff, it has disjoint open subsets U1, U2 with x ∈ U1 and xσ ∈ U2. Then
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Vσ = U1 ∩ Uσ
−1

2 is an open neighborhood of x. If y ∈ Vσ, then y ∈ U1 and yσ ∈ U2, so

yσ 6= y. Since G is finite, V =
⋂
σ∈GrSx

Vσ is open. Each y ∈ V satisfies Sy ≤ Sx.

Case B: The general case. The quotient space X̄ = X/N is Hausdorff [Bre,

Thm. 3.1(1)] and Ḡ = G/N acts continuously on X̄. Use a bar for reduction mod-

ulo N . Case A gives an open neighborhood V̄ of x̄ in X̄ with Sȳ ≤ Sx̄ for each ȳ ∈ V̄ .

Then the preimage V of V̄ in X is an open neighborhood of x in X. For each y ∈ V we

have Sȳ = SyN/N . Hence, Sy ≤ SxN .

Proof of (c): This is a consequence of (b) and of the identity Sxσ = Sσx mentioned in

the third paragraph of Section 2.

Lemma 3.2: Let Y be a profinite space and A,B disjoint closed subsets. Then there

are disjoint open-closed subsets U, V with A ⊆ U and B ⊆ V .

Proof: As a profinite space, Y is compact and Hausdorff. Hence, it has disjoint

open subsets U ′, V ′ with A ⊆ U ′ and B ⊆ V ′. The set U ′ is a union of open-closed

subsets. Since A is compact, finitely many of them cover A. Their union U is an open-

closed subset satisfying A ⊆ U ⊆ U ′. Similarly, Y has an open-closed subset V with

B ⊆ V ⊆ V ′. It satisfies U ∩ V = ∅.

Lemma 3.3: Let (X,G) be a profinite group space, x ∈ X, and V an open neighborhood

of x. Suppose xG ⊆ V . Then x has an open-closed G-invariant neighborhood W with

W ⊆ V .

Proof: Denote the images of points and subsets of X under the quotient map π: X →

X/G by a bar. Since F = X rV is closed in X, F̄ is closed in X/G. Moreover,

x̄ /∈ F̄ . Lemma 3.2 gives an open-closed subset W̄ with x̄ ∈ W̄ and W̄ ∩ F̄ = ∅. Put

W = π−1(W̄ ). Then W is open-closed in X, invariant under G, and x ∈W ⊆ V .

Lemma 3.4: Let (X,G) be a profinite group space, x ∈ X, and H an open subgroup of

G. Suppose Sx ≤ H. Write G =
⋃
· ρ∈RHρ. Then xH has an H-invariant open-closed

neighborhood U satisfying UG =
⋃
· ρ∈R Uρ.

Proof: The closed sets xHρ, ρ ∈ R, are disjoint, because Sx ≤ H. Hence, X has open

disjoint sets Vρ satisfying xHρ ⊆ Vρ, ρ ∈ R. For each ρ ∈ R we have xH ⊆ V ρ
−1

ρ .
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By Lemma 3.3, with H replacing G, there is an H invariant open-closed set Uρ with

xH ⊆ Uρ ⊆ V ρ
−1

ρ .

Now consider the H-invariant open-closed set U =
⋂
ρ∈R Uρ. It satisfies Uρ ⊆ Vρ

for each ρ ∈ R, so the Uρ are disjoint. Therefore, UG =
⋃
· ρ∈R Uρ.

Definition 3.5: Special partition. Let G = (G,X,Gx)x∈X be a group structure. A

special partition of G is a data (Gi, Xi, Ri)i∈I0 satisfying these conditions:

(2a) I0 is a finite set which is disjoint from X.

(2b) Xi is a nonempty open-closed subset of X, i ∈ I0.

(2c) Gi is an open subgroup of G containing Gx for all x ∈ Xi and i ∈ I0.

(2d) Gi = {σ ∈ G | Xσ
i = Xi}, i ∈ I0.

(2e) Ri is a finite subset of G and G =
⋃
· ρ∈Ri

Giρ, i ∈ I0.

(2f) X =
⋃
· i∈I0

⋃
· ρ∈Ri

Xρ
i .

Here is a consequence of (2a)-(2f):

(2g) Suppose i, j ∈ I0 and Xσ
i ∩Xj 6= ∅. Then, i = j and σ ∈ Gi.

To prove (2g) write σ = ζρ with ζ ∈ Gi and ρ ∈ Ri. By (2d), Xρ
i ∩ Xj 6= ∅.

Hence, by (2f), i = j and Xρ
i = Xi. By (2d), ρ ∈ Gi. Therefore, σ ∈ Gi.

By (2d), each Ri can be replaced by every set R′i satisfying G =
⋃
· ρ∈R′i Giρ. Thus,

we also call (Gi, Xi)i∈I0 a special partition of G is there exist Ri, i ∈ I0 satisfying

(2a)-(2f). In this case every system (Ri)i∈I0 satisfying (2e) also satisfies (2f).

Suppose now G = (G,X,Gx)x∈X is a group structure, (Y,H) is a profinite

group space, and ϕ: G → H is a homomorphism which we wish to extend to a mor-

phism ϕ: (X,G) → (Y,H) of profinite group spaces. We construct a special partition

(Xi, Gi, Ri)i∈I0 of G such that ϕ has a natural definition on X ′ =
⋃
i∈I0 Xi satisfying

ϕ(x) = ϕ(x)ϕ(σ) for all x ∈ X ′ and σ ∈ G with xσ ∈ X ′. Then ϕ(xτ ) = ϕ(x)ϕ(τ) for

arbitrary τ ∈ G will define the desired extension ϕ.

This procedure allows extending each epimorphism ϕ of G onto a finite group

A to an epimorphisms of G onto a finite group structure A = (A, I,Ai)i∈I (Lemma

3.7). Consequently, each cover ψ: H → G of group structures with a finite kernel can

be completed to a cartesian square as in (6) of Section 2 such that α: B → A is a
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cover of finite group structures (Lemma 3.9). The latter result is the main ingredient in

the transition from solving finite embedding problems to solving arbitrary embedding

problems of projective group structures (Proposition 4.2).

Lemma 3.6: Let G = (G,X,Gx)x∈X be a group structure, Y be a subset of X, and

Y0 a finite subset of Y . Suppose X = Y G and the elements of Y0 belong to distinct

G-orbits. For each y ∈ Y let G′y be an open subgroup of G containing Gy and Vy an

open neighborhood of yG
′
y in X. Then there exists a finite subset {yi | i ∈ I0} of Y

containing Y0 and a special partition (G′yi
, Xi)i∈I0 of G such that yi ∈ Xi ⊆ Vyi

for all

i ∈ I0.

Proof: We may assume Y is a (not necessarily closed) system of representatives of the

G-orbits of X. For each y ∈ Y use Lemma 3.4 to replace Vy by another set, if necessary,

to assume:

(3a) Vy is open-closed, G′y-invariant and yG
′
y ⊆ Vy.

(3b) Writing G =
⋃
· ρ∈Ry

G′yρ, we have V Gy =
⋃
· ρ∈Ry

V ρy .

(3c) Vy ⊆ {x ∈ X | Gx ≤ G′y}.

The rest of the proof has three parts.

Part A: Finite covering of X. By assumption, X =
⋃
y∈Y y

G ⊆
⋃
y∈Y V

G
y . Hence,

by compactness, there is a finite subset {yi | i ∈ I0} of Y with X =
⋃
i∈I0 V

G
yi

. Add

the elements of Y0 to {yi | i ∈ I0}, if necessary, to assume that Y0 ⊆ {yi | i ∈ I0}. By

our choice of Y , the sets yGi , i ∈ I0, are closed and disjoint. Hence, there are disjoint

open subsets W ′
i with yGi ⊆ W ′

i , i ∈ I0. For each i ∈ I0 Lemma 3.3 gives a G-invariant

open-closed set Wi with yGi ⊆Wi ⊆ V Gyi
∩W ′

i .

Part B: Making Vyi smaller. By Part A, yi ∈ Wi r
⋃
j 6=iWj ⊆ V Gyi

r ⋃
j 6=iWj and⋃

j 6=iWj is G-invariant. Let Vi = Vyi
r ⋃

j 6=iWj . Then Vi is a G′yi
-invariant open-closed

set which, by (3), satisfies

(4) V Gi =
⋃
· ρ∈Ri

V ρi

where Ri = Ryi . Moreover, yi ∈ Vi r
⋃
j 6=i V

G
j . Indeed yi ∈ Wi. If yi ∈ V Gj for j 6= i,

then there is σ ∈ G with yσi ∈ Vj , so yσi /∈ Wi. But Wi is G-invariant. Hence, yi 6∈ Wi,

a contradiction.
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We claim that X =
⋃
i∈I0 V

G
i . Indeed, let x ∈ X. If there is i with x ∈ Wi, then

x /∈
⋃
j 6=iWj . Hence, x ∈ V Gi . Else, x /∈

⋃
j∈I0 Wj and there is i with x ∈ V Gyi

(Part A).

Therefore, x ∈ V Gyi
r ⋃

j 6=iWj = V Gi .

Part C: Separating Vi. Let Xi = Vi r
⋃i−1
j=1 V

G
j , i ∈ I0. Then Xi ⊆ Vyi

, so by (3c),

Gx ≤ Gyi
for each x ∈ Xi. This proves Condition (2c).

Now observe that X =
⋃
· i∈I0 X

G
i . Also, Xi is a G′yi

-invariant open-closed neigh-

borhood of yi and Xi ⊆ Vyi
. By (4), XG

i =
⋃
· ρ∈Ri

Xρ
i .

Finally, consider σ ∈ G with Xσ
i = Xi. Write σ = ζρ with ζ ∈ G′yi

and ρ ∈ Ri.

Then Xi = Xσ
i = Xρ

i . By the preceding paragraph, ρ ∈ G′yi
. Therefore, σ ∈ G′yi

.

Lemma 3.7: Let G = (G,X,Gx)x∈X be a group structure, A a finite group, and

ϕ: G→ A an epimorphism. Then:

(a) ϕ extends to an epimorphism ϕ of G onto a finite group structure A = (A, I,Ai)i∈I .

(b) Let X0 be a finite subset of X. Then ϕ may be constructed in (a) with ϕ(Gx) =

Aϕ(x) for each x ∈ X0.

(c) Suppose X =
⋃
· j∈J Yj with J finite, each Yj is open-closed, G permutes the Yj ’s,

and Y νj = Yj for all j ∈ J and ν ∈ Ker(ϕ). Then ϕ may be constructed in (a) such

that ϕ(Yj), j ∈ J , are disjoint.

(d) Let y1, . . . , ym be elements of X lying in distinct G-orbits. Then ϕ may be con-

structed in (a) such that ϕ(y1), . . . , ϕ(yn) lie in distinct A-orbits.

Proof of (a): We may assume A = G/N with N = Ker(ϕ). Both maps x 7→ Gx

and x 7→ Sx of X into Subgr(G) are étale continuous (by definition and by Lemma

3.1). Hence, for each y ∈ X the set Vy = {x ∈ X | Sx ≤ SyN, Gx ≤ GyN} is open and

contains yN = ySyN . Lemma 3.6, applied to the profinite group structure (G,X, Sx)x∈X

(Lemma 3.1(c)) and with SyN replacing G′y, gives a finite subset {yi | i ∈ I0} of X and

a special partition (Syi
N,Xi)i∈I0 of G such that

(5) yi ∈ Xi ⊆ Vyi for all i ∈ I0.

Thus, the following holds:

(6a) Xi is open closed in X, i ∈ I0.

(6b) Syi
N = {σ ∈ G | Xσ

i = Xi}.

23



(6c) X =
⋃
· i∈I0

⋃
· ρ∈Ri

Xρ
i , where G =

⋃
· ρ∈Ri

Syi
Nρ.

Set I =
⋃
i∈I0{X

σ
i | σ ∈ G} =

⋃
i∈I0{X

ρ
i | ρ ∈ Ri}. Since Ri are finite, I is

finite and G acts on I from the right. For i ∈ I0, σ ∈ G, and ν ∈ N , (6b) implies

Xσν
i = (Xσνσ−1

i )σ = Xσ
i . Hence, the action of G induces an action of G/N on I.

Next define a map ϕ: X → I such that ϕ(x) = Xρ
i for all i ∈ I0 and ρ ∈ Ri and

each x ∈ Xρ
i . Since (6c) is a partition of X into open-closed sets, ϕ is surjective and

continuous. Let i ∈ I0, y ∈ Xi, and σ ∈ G. Write σ = τρ with τ ∈ SyiN and ρ ∈ Ri.

Then yσ ∈ Xρ
i (by (6b)) and ϕ(yσ) = Xρ

i = Xσ
i . Thus,

(7) ϕ(yσ) = Xσ
i for y ∈ Xi, σ ∈ G.

It follows that ϕ(xσ) = ϕ(x)ϕ(σ) for all x ∈ X and σ ∈ G.

For each Xσ
i ∈ I put AXσ

i
= ϕ(Gσyi

) = ϕ(Gyi
)ϕ(σ). This is a good definition: If

Xσ
i = Xσ′

j , then, by (6), i = j and σ′ = ζνσ with ζ ∈ Syi ≤ Gyi and ν ∈ N . Then

ϕ(Gσ
′

yj
) = ϕ(Gζyi

)ϕ(ν)ϕ(σ) = ϕ(Gyi)
ϕ(σ) = ϕ(Gσyi

).

We claim that ϕ(Gx) ≤ Aϕ(x) for all x ∈ X. Indeed, there are y ∈ Xi and σ ∈ G

such that x = yσ. By (5), y ∈ Vyi
. Hence, Gy ≤ Gyi

N , so ϕ(Gy) ≤ ϕ(Gyi
). Therefore,

ϕ(Gx) = ϕ(Gσy ) = ϕ(Gy)ϕ(σ) ≤ ϕ(Gyi)
ϕ(σ) = AXσ

i
= Aϕ(x).

Finally, by (6b), the stabilizer of Xi ∈ I in G/N is contained in Syi
N/N = ϕ(Syi

).

Therefore it is contained in ϕ(Gyi) = AXi . Consequently, (G/N, I,Ai)i∈I is a finite

group structure.

Proof of (b): Let Y0 be a subset of X0 with X0 ⊆ Y G0 and yσ 6= y′ for all distinct

y, y′ ∈ Y0 and σ ∈ G. By Lemma 3.6 we may assume {yi | i ∈ I0} contains Y0. Write

each x ∈ X0 as x = yσ with y ∈ Y0 and σ ∈ G. Then y = yi for some i ∈ I0 and

ϕ(Gx) = ϕ(Gσyi
) = AXσ

i
= Aϕ(x).

Proof of (c): For each y ∈ Y we may choose Vy at the beginning of the proof of (a)

such that Vy is contained in the unique Yj which contains yN . By (5), each Xi with

i ∈ I0 is contained in a unique Yj with j ∈ J . Since G permutes the Yj ’s, each Xρ
i with
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ρ ∈ Ri is contained in a unique Yj with j ∈ J . Hence, Yj =
⋃
· (i,ρ)∈Sj

Xρ
i with disjoint

subsets Sj of {(i, ρ) | i ∈ I0, ρ ∈ Ri}. Therefore, ϕ(Yj) = {Xρ
i | (i, ρ) ∈ Sj} are disjoint.

Proof of (d): Lemma 3.6 allows us to choose I0 at the beginning of the proof of (a)

such that {1, . . . ,m} ⊆ I0. By (7), ϕ(yi) = Xi belong then to distinct A-orbits.

Lemma 3.7 has several consequences.

Lemma 3.8: Let ϕ: G → A a morphism of group structures with A finite and N0 an

open subgroup of the underlying group of G. Then there are a morphism ϕ̄: Â → A

of finite group structures and an epimorphism ϕ̂: G → Â satisfying ϕ = ϕ̄ ◦ ϕ̂ and

Ker(ϕ̂) ≤ N0.

Proof: Let G = (G,X,Gx)x∈X and A = (A, I,Ai)i∈I . For each i ∈ I let Xi = ϕ−1(i).

Then G permutes the finite set {Xi | i ∈ I}. Hence, G has an open normal subgroup

N such that N ≤ N0 ∩Ker(ϕ) and Xν
i = Xi for each ν ∈ N and i ∈ I.

Set Â = G/N and let ϕ̂: G→ Â be the quotient map. Use Lemma 3.7 to extend

ϕ̂: G → Â to an epimorphism ϕ̂: G → Â such that Â = (Â, J, Âj)j∈J is finite and

ϕ̂(Xi), i ∈ I, are disjoint.

Now define ϕ̄: Â→ A to be the map induced by ϕ. Define ϕ̄: J → I by ϕ̄(j) = i

for all j ∈ ϕ̂(Xi) and i ∈ I. Then ϕ̄: Â → A is a morphism of finite group structures

and ϕ = ϕ̄ ◦ ϕ̂.

Lemma 3.9: Let ψ: H → G be a cover of group structures with a finite kernel. Then

there is a cartesian square of group structures

(8) H
ψ //

β

��

G

ϕ

��
B

α // A

in which A and B are finite and α is a cover.

Proof: Let G = (G,X,Gx)x∈X and H = (H,Y,Hy)y∈Y . By Lemma 2.3,
⋃
y∈Y Hy is

a closed subset of H. By assumption, K = Ker(ψ) is a finite group and
⋃
y∈Y Hy ∩

(K r 1) = ∅. Hence, H has an open normal subgroup N with
( ⋃

y∈Y Hy

)
N ∩(K r 1) =

∅. Thus, N ∩K = 1 and HyN ∩KN = N for each y ∈ Y .
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Let B = H/N and let β: H → B be the quotient map. Use Lemma 3.7 to complete

β to an epimorphism β: H→ B with B = (B, J,Bj)j∈J a finite group structure.

By Example 2.5, we may assume ψ is the quotient map H → H/K. Put A =

(A, I,Ai)i∈I = B/β(K). Then let α: B → A be the quotient map and ϕ: G → A

the epimorphism which β induces. This gives the commutative diagram (8). The

assumption HyN ∩ KN = N implies Bj ∩ Ker(α) = 1 for each j ∈ J . Hence, by

Example 2.5, α is a cover.

To prove (8) is cartesian, it suffices to check that the unique morphism ε: H →

B ×A G induced by β and ψ is an isomorphism. Indeed, the group homomorphism

ε: H → B ×A G is an isomorphism [FrJ, Section 20.2]. We show ε: Y → J ×I X is a

bijection (hence, a homeomorphism): Let (j, x) ∈ J ×I X. There is y ∈ Y such that

ψ(y) = x. As α(β(y)) = ϕ(x) = α(j), there is a unique b ∈ Ker(α) = β(K) with

β(y)b = j. Choose k ∈ K with β(k) = b. Then β(yk) = j and ψ(yk) = ψ(y) = x.

Hence, ε(yk) = (j, x). Therefore, ε is surjective.

Next let y, y′ ∈ Y with ε(y) = ε(y′). Then β(y) = β(y′) and ψ(y) = ψ(y′). Since

ψ is a cover, there is k ∈ K with yk = y′. Hence, β(y)β(k) = β(y′) = β(y). Hence,

β(k) ∈ β(K) ∩ Sβ(y) ≤ β(K) ∩ Bβ(y) = 1 (because Ker(α) = β(K) and α is a cover).

Thus, k ∈ N ∩ K = 1. Therefore, y = y′. We conclude that ε is injective, hence

bijective.

Since α is a cover, Lemma 2.12(c) implies that the projection ψ′: B ×A G → G

is a cover. By assumption ψ is a cover. Hence, for each y ∈ Y and (j, x) = ε(y) both

ψ′: Bj ×A Gx → Gx and ψ: Hy → Gx are isomorphisms. Also, ε(Hy) ≤ Bj ×A Gx.

Since ψ = ψ ◦ ε, the map ε: Hy → Bj ×A Gx is an isomorphism. This concludes the

proof that (8) is cartesian.
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4. Projective Group Structures

The notion “projective group structure” which we introduce here replaces the notion

“relatively projective group” of [HaJ3, Def. 4.2], also called “strongly relatively projec-

tive” in [Pop, p. 4]. The projective group structure is one of the two main objects which

we put in duality in this work, the other one being “field-valuation structure with the

block approximation condition” (Section 12).

Let G be a group structure. An embedding problem for G is a pair

(1)
(
ϕ: G→ A, α: B→ A

)
of morphisms of group structures in which α is a cover. A solution of (1) is a morphism

γ: G→ B with α ◦ γ = ϕ. The embedding problem is finite if B is finite. We say G is

projective, if every finite embedding problem for G has a solution.

Lemma 4.1: Let G be a group structure. Suppose every finite embedding problem (1)

for G where ϕ is an epimorphism is solvable. Then G is projective.

Proof: Lemma 3.8 gives a morphism ϕ̄: Â → A of finite group structures and an

epimorphism ϕ̂: G → Â satisfying ϕ = ϕ̄ ◦ ϕ̂. Set B̂ = B ×A Â. Let β: B̂ → B and

α̂: B̂ → Â be the projection maps. By Lemma 2.12, α̂: B̂ → Â is a cover. Hence,

(ϕ̂: G → Â, α̂: B̂ → Â) is a finite embedding problem. By assumption, there is a

morphism γ̂: G→ B̂ with α̂ ◦ γ̂ = ϕ̂. Then γ = β ◦ γ̂ is a solution of (1). Consequently,

G is projective.

Gruenberg proved that if every finite embedding problem for a profinite group G

is solvable, then every embedding problem for G is solvable [FrJ, Lemma 20.8]. Gruen-

berg’s proof goes through in the category of group structures almost verbatim.

Proposition 4.2: Let G be a projective group structure. Then every embedding

problem for G has a solution.

Proof: Let (1) be an embedding problem for G. Put K = Ker(α).
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Part A: Suppose K is finite. Lemma 3.9 gives a cartesian square of group structures

G

ϕ

���
�
�

γ

xxp p p p p p p

�
�

�
�

γ̄

���
�

�
�B
α //

ψ′

��

A

ϕ′

��
B̄

ᾱ // Ā

(without the dashed morphisms) in which B̄ and Ā are finite, ᾱ is a cover, and B =

B̄×Ā A. Put ϕ̄ = ϕ′ ◦ ϕ. Then
(
ϕ̄: G→ Ā, ᾱ: B̄→ Ā

)
is a finite embedding problem

for G. By assumption there is a morphism γ̄: G → B̄ with ᾱ ◦ γ̄ = ϕ̄. Hence, there is

a morphism γ: G→ B with α ◦ γ = ϕ and ψ′ ◦ γ = γ̄ (Definition 2.10). In particular γ

solves embedding problem (1).

Part B: Application of Zorn’s lemma. Suppose (1) is an arbitrary embedding problem

for G. By Example 2.5 we may assume A = B/K and α is the quotient map. For each

closed normal subgroup L of B contained in K let αL: B/L→ A be the quotient map

B/L→ (B/L)/(K/L). Then, αL is a cover (Example 2.5) and

(2) (ϕ: G→ A, αL: B/L→ A).

is an embedding problem for G. Let Λ be the set of pairs (L, γ) where L is a closed

normal subgroup of B contained in K and γ is a solution of (2). The pair (K,ϕ)

belongs to Λ. Partially order Λ by (L′, γ′) ≤ (L, γ) if L′ ≤ L and αL′,L ◦ γ′ = γ. Here

αL′,L: B/L′ → B/L is the cover B/L′ → (B/L′)/(L/L′).

Suppose Λ0 = {(Lj , γj) | j ∈ J} is a descending chain in Λ. Then lim←−B/Lj =

B/L with L =
⋂
j∈J Lj (Lemma 2.8). The γj ’s define a morphism γ: G → B/L with

αL,Lj ◦ γ = γj for each j ∈ J . Thus, (L, γ) is a lower bound to Λ0.

Zorn’s lemma gives a minimal element (L, γ) of Λ. It suffices to prove that L = 1.

Assume L 6= 1. Then B has an open normal subgroup N with L 6≤ N . Thus,

L′ = N ∩ L is a proper open subgroup of L which is normal in B. Then (γ: G →

B/L, αL′,L: B/L′ → B/L) is an embedding problem for G. Its kernel Ker(αL′,L) =
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L/L′ is a finite group. Hence, by Part A, it has a solution γ′. The pair, (L′, γ′) is an

element of Λ which is strictly smaller than (L, γ). This contradiction to the minimality

of (L, γ) proves that L = 1, as desired.

Corollary 4.3: Let ψ: H→ G be a cover of group structures. Suppose G is projec-

tive. Then H has a sub-group-structure H′ which ψ maps isomorphically onto G.

Proof: Suppose G = (G,X,Gx)x∈X and H = (H,Y,Hy)y∈Y . Proposition 4.2 gives

a morphism γ: G → H with ψ ◦ γ = idG. Let H ′ = γ(G) and Y ′ = γ(X). Then

ψ: H ′ → G is an isomorphism and ψ: Y ′ → X is a homeomorphism. Next, let x ∈ X

and y′ = γ(x). Then ψ(y′) = x and γ(Gx) ≤ Hy′ . As a cover, ψ maps both Hy′

and γ(Gx) isomorphically onto Gx. Hence, γ(Gx) = Hy′ . In particular, Hy′ ≤ H ′. It

follows that y′ 7→ Hy′ is a continuous map of Y ′ into Subgr(H ′) (Remark 2.6). Thus,

H′ = (H ′, Y ′,Hy′)y′∈Y is a sub-group-structure of H which ψ maps isomorphically onto

G.

We shall have several occasions to use the following result of Herfort and Ribes.

Proposition 4.4 (Herfort-Ribes): Let G =
∏
∗ i∈I Gi be the free profinite product of

finitely many profinite groups Gi. Then Ggi ∩Gj 6= 1 implies i = j and g ∈ Gi.

Proof: The case i = j is a combination of Proposition 2 and Theorem B’ of [HeR].

The case i 6= j cannot occur, otherwise the canonical map
∏
∗ k∈I Gi →

∏
k∈I Gi maps

Ggi ∩Gi injectively onto 1.

Lemma 4.5: Let A = (A, I,Ai)i∈I be a group structure, α: B → A an epimorphism of

profinite groups, and I0 be a finite system of representatives of the A-orbits of I. For

each i ∈ I0 let Bi be a closed subgroup of B which α maps isomorphically onto Ai. Then

α extends to a cover α: B→ A, where B = (B, J,Bj)j∈J is a group structure. Moreover,

there is a map α′: I0 → J such that J = α′(I0)B , α(α′(i)) = i, and Bi = Bα′(i) for each

i ∈ I0.

Proof: Consider i ∈ I0. Then Si = {a ∈ A | ia = i} is a closed subgroup of Ai. Hence,

Ti = α−1(Si) ∩ Bi is a closed subgroup of Bi which α maps bijectively onto Si. Also,

the set {(i, Tib) | b ∈ B} bijectively corresponds to the profinite quotient space B/Ti.
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Hence, J =
⋃
· i∈I0{(i, Tib) | b ∈ B} is a profinite space. The rule (i, Tib)b

′
= (i, Tibb′)

defines a continuous action of B on J . For each j = (i, Tib) ∈ J let Bj = Bbi . Then

j 7→ Bj is a strictly continuous, (hence also étale continuous) map from J into Subgr(B).

Now suppose (i, Tib)b
′

= (i, Tib). Then Tibb
′ = Tib. Hence, b′ ∈ T bi ≤ Bbi .

Therefore, B = (B, J,Bj)j∈J is a group structure.

Next define a map α: J → I by α(i, Tib) = iα(b). If α(i′, Ti′b′) = α(i, Tib), then

iα(b) = (i′)α(b′). Since i, i′ ∈ I0, this implies i = i′ and α(b) = siα(b′) for some si ∈ Si.

Let ti be the element of Ti with α(ti) = si. Then there is k ∈ Ker(α) with b = tib
′k.

Hence, (i, Tib) = (i, Titib′k) = (i′, Ti′b′)k. It follows, α: B→ A is a cover.

Finally define a map α′: I0 → J by α′(i) = (i, Ti). Then (i, Tib) = α′(i)b for each

i ∈ I0 and b ∈ B, so J = α′(I0)B . Also, α(α′(i)) = α(i, Ti) = i and Bα′(i) = B(i,Ti) = Bi

for each i ∈ I0.

The assumption on a group structure G to be projective poses some restrictions

on G:

Proposition 4.6: Let G = (G,X,Gx)x∈X be a projective group structure.

(a) Let x, y ∈ X with Gx ∩Gy 6= 1. Then y = xg for some g ∈ Gx. Hence, Gx = Gy.

(b) Let x ∈ X with Gx 6= 1. Then Gx is its own normalizer in G.

(c) Suppose 1 /∈ StrictClosure{Gx | x ∈ X} and Gx = Sx for each x ∈ X. Then G is a

proper structure.

Proof of (a): There is an epimorphism ϕ̄: G → Ā with Ā finite and ϕ̄(Gx ∩ Gy) 6= 1.

Consider an arbitrary epimorphism ϕ: G → A with A finite and Ker(ϕ) ≤ Ker(ϕ̄).

Then ϕ(Gx ∩Gy) 6= 1.

Use Lemma 3.7 to complete ϕ to an epimorphism ϕ: G→ A of group structures

with A = (A, I,Ai)i∈I finite such that ϕ(Gx) = Aϕ(x) and ϕ(x), ϕ(y) are not in the

same A-orbit if x, y are not in the same G-orbit.

Assume without loss that I does not contain the symbol 0. Choose a system

of representatives I0 for the A-orbits of I which does not contain the symbol 0. Put

I ′0 = {0} ·∪ I0 and A0 = A. For each i ∈ I ′0 choose an isomorphic copy Bi of Ai and an

isomorphism αi: Bi → Ai.
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Now consider the free profinite product B =
∏
∗ i∈I′0 Bi. Let α: B → A be the

unique epimorphism with α|Bi = αi, i ∈ I ′0. Lemma 4.5 extends B to a group structure

B = (B, J,Bj)j∈J and α to a cover α: B → A. Moreover, there is a map α′: I0 → J

such that J = α′(I0)B , α(α′(i)) = i, and Bi = Bα′(i) for each i ∈ I0.

Since G is projective, Proposition 4.2 gives a morphism γ: G→ B with α◦γ = ϕ.

In particular α(γ(Gx ∩ Gy)) = ϕ(Gx ∩ Gy) 6= 1. Hence, 1 < γ(Gx ∩ Gy) ≤ γ(Gx) ∩

γ(Gy) ≤ Bγ(x) ∩ Bγ(y). Write γ(x) = α′(i)b and γ(y) = α′(i′)b
′

with i, i′ ∈ I0 and

b, b′ ∈ B. Then Bbi ∩ Bb
′

i′ = Bbα′(i) ∩ B
b′

α′(i′) = Bγ(x) ∩ Bγ(y) 6= 1. By Proposition 4.4,

i = i′. Hence γ(x) and γ(y) are in the same B-orbit. Therefore, ϕ(x) and ϕ(y) are in

the same A-orbit. The choice of ϕ gives g ∈ G with xg = y.

By the preceding paragraph, Bγ(x) ∩B
γ(g)
γ(x) = Bγ(x) ∩Bγ(xg) = Bγ(x) ∩Bγ(y) 6= 1.

Since Bγ(x) = Bbi , Proposition 4.4 implies γ(g) ∈ Bγ(x). Hence, ϕ(g) ∈ Aϕ(x). Since

this relation holds for all ϕ with Ker(ϕ) ≤ Ker(ϕ̄), we have g ∈ Gx, as desired.

Proof of (b): Suppose Gx 6= 1. Consider g ∈ G with Ggx = Gx. By (a), there is a ∈ Gx
with xga = x. Then ga ∈ Gx. Hence, g ∈ Gx.

Proof of (c): Suppose Gx = Gy for some x, y ∈ X, then there is g ∈ Gx with y = xg.

Hence, by assumption, y = x. Thus, the forgetful map δG is an étale continuous

bijection of X onto G = {Gx | x ∈ X}. By Corollary 1.4, G is étale Hausdorff. Since X

is compact, δG is an étale homeomorphism. It follows, G is proper.

Example 4.7: Projective structures.

(a) Projective group. Let G be a profinite group and X the empty space. Then

G = (G,X, ) is a projective proper group structure if and only if G is a projective

group.

(b) Trivial stabilizers. Let G be an arbitrary profinite group. Put X = G.

Then X is a profinite space and G acts continuously on X by multiplication from the

right. In particular, Sx = 1 for each x ∈ X. For each x ∈ X put Gx = G. Then

G = (G,X,Gx)x∈X is a projective group structure.

Indeed, let (ϕ: G → A, α: B → A) be a finite embedding problem for G. Let

i ∈ I and j ∈ J be elements with ϕ(1) = i and α(j) = i. Then G1 = G, so ϕ(G) ≤ Ai.
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Also, α: Bj → Ai is an isomorphism. Hence, γg = (α|Bj )
−1◦ϕ is a homomorphism from

G to B satisfying α ◦ γg = ϕ. Define γs: X → J by γs(x) = jγg(x). Then γ = (γg, γs) is

a solution of the embedding problem, as desired.

If G is nontrivial, then 1 /∈ StrictClosure{Gx | x ∈ X} but G is not proper. It

follows that the assumption Sx 6= Gx in Proposition 4.6(c) (which is violated in our

example) is necessary.

(c) Free products of finitely many profinite groups.

Let K be a finite set and K0 a subset. For each k ∈ K let Gk be a nontrivial

profinite group. Suppose Gk is projective for each k ∈ K rK0. Write G =
∏
∗ k∈K Gk for

the free product of the Gk’s. For each k ∈ K the orbit Gk = {Ggk | g ∈ G} of Gi under

conjugation is a strictly closed subset of Subgr(G). Hence, G =
⋃
k∈K0

Gk is a strictly

profinite subspace of Subgr(G), so strictly closed. In particular, 1 /∈ StrictClosure(G).

By Proposition 4.4, H ∩H ′ = 1 for all distinct H,H ′ ∈ G. It follows from Corollary 1.4

that G is étale Hausdorff.

Choose a homeomorphic copy X of G with the strict topology and a strict home-

omorphism δ: X → G. Since the strict topology of Subgr(G) is finer than its étale

topology, δ is étale continuous. Since G is étale Hausdorff, δ is an étale homeomorphism.

For each x ∈ X let Gx = δ(x). By Proposition 4.4, each H ∈ G is its own normalizer in

G. Thus, in the terminology of Section 2, Sx = Gx. Therefore, G = (G,X,Gx)x∈X is

a proper group structure.

We prove G is projective. To this end consider finite group structures A =

(A, I,Ai)i∈I and B = (B, J,Bj)j∈J , a cover α: B→ A, and an epimorphism ϕ: G→ A.

By Lemma 4.1 it suffices to find a morphism γ: G→ B with γ ◦ α = ϕ.

Choose a map α′: I → J with α(α′(i)) = i for each i ∈ I. Now consider k ∈ K. If

k ∈ K0, let xk be the unique element of X with δ(xk) = Gk, i = ϕ(xk), and j = α′(i).

Then α: Bj → Ai is an isomorphism. Hence, γk = (α|Bj
)−1 ◦ (ϕ|Gk

) is an epimorphism

of Gk onto Bj satisfying α ◦ γk = ϕ|Gk
. If k ∈ K rK0, then Gk is projective and we

choose a homomorphism γk: Gk → B satisfying α ◦ γk = ϕ|Gk
. The basic property of

free products gives a homomorphism γ: G → B whose restriction to each Gk is γk. In

particular, α ◦ γ = ϕ. Together with the map γ = α′ ◦ ϕ from X to B, γ: G → B is a
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morphism satisfying α ◦ γ = ϕ, as desired.
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5. Special Covers

As in Lemma 4.5 we consider a group structure G = (G,X,Gx)x∈X and an epimorphism

of profinite groups π: H → G. In contrast to Lemma 4.5, we do not assume that X

has only finitely many G-orbits. Nor do we assume that X has a fundamental domain

(beginning of Section 3). Nevertheless, we are able to extend π: H → G to a cover

π: H → G in special cases described in Lemma 5.1 below. They occur three times in

Galois-theoretic set-ups (in Lemma 14.2 and twice in Lemma 15.1).

Lemma 5.1: Let G = (G,X,Gx)x∈X be a group structure and (Gi, Xi)i∈I0 a special

partition of G (Definition 3.5). Let π: H → G be an epimorphism of profinite groups.

For each i ∈ I0 let Hi be a subgroup of H which π maps isomorphically onto Gi.

Then H extends to a profinite group structure H = (H,Y,Hy)y∈Y and π extends

to a cover H → G. Moreover, for each i ∈ I0 there is a subspace Yi of Y such that

π: Yi → Xi is a homeomorphism, Hy ≤ Hi for each y ∈ Yi, and
⋃
i∈I0 Y

H
i = Y .

If, in addition, G is proper and

(1) Hκ
i ∩Hi = 1 for all κ ∈ Ker(π) with κ 6= 1 and each i ∈ I0,

then H is proper.

Proof: The proof has four parts.

Part A: The space Ŷ . LetX ′ =
⋃
· i∈I0 Xi. This is a profinite space and hence so is the

product Ŷ = X ′×H. The groupH acts continuously on Ŷ by (x, h)η = (x, hη) and there

is a continuous map π̂: Ŷ → X defined by π̂(x, h) = xπ(h). Since X =
⋃
· i∈I0

⋃
· ρ∈Ri

Xρ
i ,

this map is surjective.

For each y = (x, h) ∈ Ŷ define a subgroup Hy of H in the following way. There

is a unique i ∈ I0 with x ∈ Xi. Then Gx ≤ Gi. Let Hx be the unique subgroup of Hi

satisfying π(Hx) = Gx. Put Hy = Hh
x . Then

(2a) π̂(yη) = π̂(y)π(η) for all y ∈ Ŷ and η ∈ H,

(2b) Hη
y = Hyη for all y ∈ Ŷ and η ∈ H, and

(2c) π: Hy → Gπ̂(y) is an isomorphism, y ∈ Ŷ .

Claim A1: The map δ̂n: Ŷ → Subgr(H) defined by δ̂(y) = Hy is étale continuous. It

suffices to prove that the map Xi → Subgr(H) defined by x 7→ Hx is étale continuous.
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By Remark 2.6 we have to prove that the corresponding map Xi → Subgr(Hi) is

étale continuous. Now, by assumption, the map X → Subgr(G) given by x 7→ Gx is

étale continuous. Hence, by Remark 2.6, the corresponding map Xi → Subgr(Gi) is

continuous. Since Gi is isomorphic to Hi, we get our claim.

Equivalence relation: Define an equivalence relation ≡ on Ŷ as follows. Let

(x1, h1) ≡ (x2, h2) if there is a (unique) i ∈ I0 with x1, x2 ∈ Xi, Hih1 = Hih2, and

x
π(h1)
1 = x

π(h2)
2 . This relation satisfies the following rules:

(3a) If y1 ≡ y2, then π̂(y1) = π̂(y2).

(3b) If y1 ≡ y2, then Hy1 = Hy2 .

Indeed, both Hx1 and H
h2h

−1
1

x2 are contained in Hi for some i ∈ I and π(Hxi) =

π(Hh2h
−1
1

x2 ). Hence, Hx1 = H
h2h

−1
1

x2 , so Hy1 = Hy2 .

(3c) If y1 ≡ y2 and η ∈ H, then yη1 ≡ y
η
2 .

Let K = Ker(π).

Claim A2: π̂(x1, h1) = π̂(x2, h2) if and only if there is k ∈ K with (x2, h2) ≡ (x1, h1k).

Indeed, let i ∈ I0 with x1, x2 ∈ Xi. If π̂(x1, h1) = π̂(x2, h2), then x
π(h1h

−1
2 )

1 = x2.

Hence, by (2d) and (2f) of Section 3, π(h1h
−1
2 ) ∈ Gi = π(Hi). Therefore, there is

k0 ∈ K with h1h
−1
2 k0 ∈ Hi. Then k = h−1

2 k0h2 ∈ K, Hih1k = Hih2, and x
π(h1k)
1 =

x
π(h1)
1 = x

π(h2)
2 . Consequently (x2, h2) ≡ (x1, h1k).

Conversely, if (x2, h2) ≡ (x1, h1k), then x
π(h2)
2 = x

π(h1k)
1 = x

π(h1)
1 , so π̂(x2, h2) =

π̂(x1, h1).

Part B: The quotient space Y . Let Y be the quotient space of Ŷ modulo ≡. By (3a),

π̂: Ŷ → X induces a continuous surjection π: Y → X. By (3b), δ̂H : Ŷ → Subgr(H)

induces a étale continuous map δH : Y → Subgr(H). By (3c), the H-action on Ŷ induces

a continuous action of H on Y . By (2),

(4a) π(yη) = π(y)π(η) for all y ∈ Y and η ∈ H,

(4b) Hη
y = Hyη for all y ∈ Y and η ∈ H, and

(4c) π: Hy → Gπ(y) is an isomorphism, for each y ∈ Y .

Finally, by Claim A2,

(5) π(y1) = π(y2) if and only if there is k ∈ K with y2 = yk1 .
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Claim B1: Y is a profinite space. Indeed, Ŷ is compact, hence so is Y . Consider

inequivalent y1, y2 ∈ Ŷ . It suffices to produce an open-closed neighborhood U of y1

which is closed under ≡ and does not contain y2.

If π̂(y1) 6= π̂(y2), we choose an open-closed neighborhood V of π̂(y1) in X which

does not contain π̂(y2). Then U = π̂−1(V ) has the required property.

If π̂(y1) = π̂(y2), we use Claim A2 to replace y2 by an equivalent element of Ŷ

to assume that y1 = (x1, h1), y2 = (x1, h1k), where 1 6= k ∈ K. Let i ∈ I0 such that

x1 ∈ Xi. Then Hi ∩ K = 1, so h1kh
−1
1 /∈ Hi. There is an open subgroup H ′

i which

contains Hi and h1kh
−1
1 /∈ H ′

i. Let U = Xi×H ′
ih1. Then (x1, h1) ∈ U but h1k /∈ H ′

ih1,

so (x1, h1k) /∈ U . Clearly U is an open-closed subset of Ŷ closed under ≡.

Claim B2: The stabilizer Sy of each y ∈ Y is contained in Hy.

Indeed, let y be represented by (x, h) ∈ Ŷ . Let i ∈ I0 with x ∈ Xi. Let η ∈ H.

Then
yη = y =⇒ (x, h)η ≡ (x, h)

=⇒ (x, hη) ≡ (x, h)

=⇒ Hihη = Hih and xπ(hη) = xπ(h)

=⇒ η ∈ Hh
i and π(η) ∈ Sxπ(h) .

Hence, Sy ≤ Hh
i and π(Sy) ≤ Sxπ(h) ≤ Gxπ(h) ≤ G

π(h)
i . In addition, π maps Hh

i

isomorphically onto Gπ(h)
i and π(Hy) = Gxπ(h) . Therefore, Sy ≤ Hy, as claimed.

Claim B2 completes the proof that H = (H,Y,Hy)y∈Y is a group structure and

π: H→ G is a cover.

Part C: The spaces Yi. For each i ∈ I0 let Yi be the image of Xi × 1 in Y . Then, π

maps Yi homeomorphically onto Xi. By definition, Hy ≤ Hi for each y ∈ Yi. By the

assumption on X we have X =
⋃
i∈I0 X

G
i . Since π: H→ G is a cover and π(Yi) = Xi,

we have Y =
⋃
i∈I0 Y

H
i .

Part D: H is proper under the assumption that G is proper and (1) holds.

Indeed, let H = {Hy | y ∈ Y } and G = {Gx | x ∈ X}. Since π(H) = G, we have

π(StrictClosure(H)) ⊆ StrictClosure(G). Since 1 is not in StrictClosure(G), it is not in

StrictClosure(H).
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Let y1, y2 ∈ Y be distinct. We prove that Hy1 ,Hy2 are distinct and can be

separated in the étale topology of Subgr(H).

First suppose π(y1) 6= π(y2). Then Gπ(y1) 6= Gπ(y2). Since G is étale profinite,

there are open subgroups E1, E2 of G with π(Hyi
) = Gπ(yi) ≤ Ei, i = 1, 2, and G ∩

Subgr(E1)∩Subgr(E2) = ∅. Then F1 = π−1(E1) and F2 = π−1(E2) are open subgroups

of H, Hy1 ≤ F1, Hy2 ≤ F2, and H ∩ Subgr(F1) ∩ Subgr(F2) = ∅.

Now suppose π(y1) = π(y2). Since π is a cover, there is κ ∈ K with y2 = yκ1 . Since

y1 6= y2, we have κ 6= 1. Let y1 be represented by (x, h) ∈ Ŷ , with x ∈ Xi, where i ∈ I0,

and h ∈ H. Then Hy1 = Hh
x ≤ Hh

i and Hy2 = Hhκ
x ≤ Hhκ

i . By (1), Hhκh−1

i ∩Hi = 1,

that is, Hhκ
i ∩Hh

i = 1. Hence, Hy1 ∩Hy2 = 1. By Corollary 1.4(a), Hy1 and Hy2 can

be separated by the étale topology of H.

It follows that H is étale Hausdorff and the étale continuous map δH : Y → H is

bijective. By Claim B1, Y is compact. Hence, δH is a homeomorphism. Consequently,

H is proper.
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6. Unirationally Closed Fields

Galois correspondence naturally translates groups structures G = (G,X,Gx)x∈X with

G = Gal(K) and K a field to “field structures” K = (K,X,Kx)x∈X with Gal(Kx) = Gx

for each x ∈ X. We give an arithmetically geometric criterion for G to be projective.

It generalizes Ax’s theorem saying that Gal(K) is projective if K is PAC. The standard

proof of Ax’s result [FrJ, p. 137] actually uses only the existence of K-rational points on

varieties over K which become unirational over a finite extension of K. Our criterion

has the same nature amended with a local-global flavor.

Let K be a field. Denote the set of all algebraic (resp. separable algebraic) exten-

sions of K by AlgExt(K) (resp. SepAlgExt(K)). Galois theory puts SepAlgExt(K) in a

bijective order-reversing correspondence with Subgr(Gal(K)). It equips SepAlgExt(K)

with two natural topologies, the strict topology and the étale topology. A basic

étale open subset of SepAlgExt(K) is SepAlgExt(L), where L is a finite extension of K.

Thus, SepAlgExt(K) is not étale Hausdorff unless K = Ks. A basic strictly open subset

of SepAlgExt(K) is {K ′ ∈ SepAlgExt(K) | L∩K ′ = L0} where L0 is a finite separable

extension of K and L is a finite Galois extension of K containing L0. SepAlgExt(K) is

a profinite space under the strict topology. Denote the strict closure of a subset X of

SepAlgExt(K) by StrictClosure(X ).

A field structure is a triple K = (K,X, δ) consisting of a field K, a profinite

space X, an étale continuous map δ: X → SepAlgExt(K), and a continuous action

(from the right) of Gal(K) on X satisfying the following condition:

(1a) For each x ∈ X put Kx = δ(x). Then Kxσ = Kσ
x for all x ∈ X and σ ∈ Gal(K).

(1b) x ∈ X, σ ∈ Gal(K), and xσ = x imply σ ∈ Gal(Kx).

As with group structures, we usually write K as (K,X,Kx)x∈X . The absolute

Galois group structure associated with K is Gal(K) = (Gal(K), X,Gal(Kx))x∈X .

Conversely, to each absolute Galois group structure G = (Gal(K), X,Gx)x∈X we as-

sociate a field structure K = (K,X,Kx)x∈X , where Kx is the fixed field of Gx in Ks.

Then Gal(K) = G. We use the correspondence between field structures and absolute

Galois group structures to translate the terminology and results obtained so far from

group structures to field structures.
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Definition 6.1: A unirational arithmetical problem for a field structure K =

(K,X,Kx)x∈X is a data

(2) Φ = (V,Xi, Li, πi: Ui → V ×K Li)i∈I0

satisfying these conditions:

(3a) (Gal(Li), Xi)i∈I0 is a special partition of Gal(K) (Definition 3.5).

(3b) V is a smooth affine variety over K.

(3c) Ui is a smooth variety over Li birationally equivalent to Adim(V )
Li

.

(3d) πi: Ui → V ×K Li is an étale morphism.

Let X ′ =
⋃
i∈I0 Xi. A solution of Φ is an “extended point” (a,bx)x∈X′ with

a ∈ V (K), bx ∈ Ui(Kx), and πi(bx) = a for each i ∈ I0 and all x ∈ Xi. Call K

unirationally closed if each unirational arithmetical problem for K has a solution.

Lemma 6.2 ([HJK, Lemma 3.1]): Let L/K be a finite Galois extension. Let ψ: B →

Gal(L/K) be an epimorphism of finite groups. Then there exists a finitely generated

regular extension E of K and a finite Galois extension F of E containing L such that

B = Gal(F/E) and ψ is the restriction resF/L: Gal(F/E)→ Gal(L/K).

Moreover, let K ⊆ L0 ⊆ L and E ⊆ F0 ⊆ F be fields with L0 ⊆ F0. Suppose

ψ: Gal(F/F0) → Gal(L/L0) is an isomorphism. Then F0 is a purely transcendental

extension of L0 of transcendence degree |B|.

Proof: Let xβ , β ∈ B, be algebraically independent elements over K. Define a faithful

action of B on F = L(xβ | β ∈ B) by (xβ)β
′
= xββ

′
and aβ

′
= aψ(β′) for a ∈ L. Denote

the fixed field of B in F by E. Then F/K is a finitely generated separable extension.

By [Lan, p. 64, Prop. 6], E/K is also a finitely generated separable extension. Also,

res: Gal(F/E) → Gal(L/K) coincides with ψ: B → Gal(L/K). Hence, E ∩ K̃ =

E ∩ F ∩ K̃ = E ∩ L = K. Therefore, E/K is regular.

Now let L0 and F0 as in the second paragraph of the lemma. Put B0 = Gal(F/F0).

Choose a set of representatives R for the left cosets of B modulo B0. Let w1, . . . , wm
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be a basis for L/L0. By assumption, m = |B0|. Consider ρ ∈ R. Put

tρj =
∑
β∈B0

wβj x
ρβ , j = 1, . . . ,m.

Since det(wβj ) 6= 0, each xρβ is a linear combination of tρj with coefficients in L. Put

t = (tρj | ρ ∈ R, j = 1, . . . ,m), x = (xβ | β ∈ B), and n = |B|. Both tuples contain

exactly n elements and L(t) = L(x) = F . So, L0(t) is a purely transcendental extension

of L0.

Each tρj is fixed by B0. Hence, L0(t) ⊆ F0. Moreover, m = [L : L0] = [L(t) :

L0(t)] ≥ [F : F0] = |B0| = m. Consequently F0 = L0(t) and F0/L0 is purely transcen-

dental.

Lemma 6.3: Let G = (G, X,Gx)x∈X and A = (A, I, Ai)i∈I be groups structures and

ϕ: G → A be an epimorphism. Suppose Sx = Gx for each x ∈ X. Then Si = Ai for

each i ∈ I.

Proof: By assumption, Si ≤ Ai. Conversely, let a ∈ Ai. By assumption, there is

x ∈ X with ϕ(x) = i and ϕ(Gx) = Ai. Choose g ∈ Gx with ϕ(g) = a. Then

ia = ϕ(x)ϕ(g) = ϕ(xg) = ϕ(x) = i. Thus, a ∈ Si.

Proposition 6.4: Let K = (K,X,Kx)x∈X be a unirationally closed field structure.

Suppose Sx = Gal(Kx) for each x ∈ X. Then Gal(K) is a projective group structure.

Proof: Let (ϕ: Gal(K) → A, α: B → A) be a finite embedding problem for Gal(K).

Thus B = (B, J,Bj)j∈J and A = (A, I,Ai)i∈I are finite group structures and α is

a cover. By Lemma 4.1, we may assume ϕ is an epimorphism. By assumption, I is

discrete and the map ϕ: X → I is continuous. Hence, Xi = {x ∈ X | ϕ(x) = i} is an

open-closed subset of X, i ∈ I and X =
⋃
· i∈I Xi. Moreover, Xσ

i = Xiϕ(σ) for all i ∈ I

and σ ∈ Gal(K).

Choose a set of representatives I0 for the A-orbits of I and for each i ∈ I0 choose

j(i) ∈ J with α(j(i)) = i.

The rest of the proof has six parts.
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Part A: Replacing A and B by Galois structures. Replace A by Gal(L/K), where

L is a finite Galois extension of K, to assume that ϕ: Gal(K)→ Gal(L/K) is resKs/L.

Denote the fixed field of Ai in L by Li. By assumption, Sx = Gal(Kx) for each x ∈ X.

Hence, by Lemma 6.3, Gal(L/Li) = {σ ∈ Gal(L/K) | iσ = i}. Therefore,

(4) Gal(Li) = {σ ∈ Gal(K) | Xσ
i = Xi}.

and (Gal(Li), Xi,Gal(Kx))x∈Xi is a group structure.

Lemma 6.2 gives a finitely generated regular extension E of K and a finite Galois

extension F of E containing L and allows us to replace B by Gal(F/E) and α: B →

Gal(L/K) by resF/L: Gal(F/E)→ Gal(L/K). For each i ∈ I0 denote the fixed field of

Bj(i) in F by Fi. Since α is a cover, resF/L: Gal(F/Fi)→ Gal(L/Li) is an isomorphism.

Hence, by Lemma 6.2, Fi is a purely transcendental extension of Li of transcendence

degree r = [F : E].

Since ϕ: Gal(K) → A is a morphism, resKs/L

(
Gal(Kx)

)
≤ Gal(L/Li) for all

x ∈ Xi. Hence, Li ≤ Kx.

E Fi F

K Li L

Part B: Setting up a unirational arithmetical problem. Choose y1, . . . , yn ∈ E, zi ∈

Fi, and z̃ ∈ F satisfying this:

(5a) E = K(y) and V = Spec(K[y]) is a smooth affine absolutely irreducible subvariety

of AnK with generic point y and dim(V ) = r.

(5b) For each i ∈ I0 the following holds: Fi = Li(y, zi) and Ui = Spec(Li[y, zi]) is

a smooth Zariski closed subvariety of An+1
Li

birationally equivalent to ArLi
with

generic point (y, zi).

(5c) zi is integral over Li[y] and the discriminant of irr(zi, Li(y)) is a unit of Li[y].

Hence, Li[y, zi]/Li[y] is a ring cover in the terminology of [FrJ, Definition 5.4].

Thus, projection on the first n coordinates is an étale morphism πi: Ui → V ×K Li.

(5d) F = K(y, z̃) and L[y, z̃]/L[y] is a ring cover.

Then, (2) is a unirational arithmetical problem for K satisfying Condition (3).
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Part C: A solution of a unirational arithmetical problem. Since K is unirationally

closed, Problem (2) has a solution. Thus, there are a ∈ V (K) and bx = (a, cx) ∈ Ui(Kx)

for each i ∈ I0 and all x ∈ Xi.

Let i ∈ I0 and x ∈ Xi. Then Gal(Li(cx)) is an open subgroup of Gal(Li) which

contains Gal(Kx). Also, Wx = {x′ ∈ Xi | Li(cx) ⊆ Kx′} is an open subset of Xi which

contains xGal(Li(cx)). Lemma 3.6 with Gal(Li), Xi, Xi, x, Gal(Li(cx)),Wx respectively

replacing G,X, Y, y,G′y, Vy, gives

(6a) a finite set Λi, and

(6b) for each l ∈ Λi an open-closed subset Xil of Xi, an element xil ∈ Xil, and a finite

subset Til of Gal(Li),

such that (Gal(Li(cil)), Til, Xil)l∈Λi
is a special partition of (Gal(Li), Xi,Gal(Kx))x∈Xi

,

where cil = cxil
. Thus,

(7a) Gal(Li(cil)) = {σ ∈ Gal(K) | Xσ
il = Xil} for each l ∈ Λi,

(7b) Gal(Li) =
⋃
· τ∈Til

Gal(Li(cil))τ , and

(7c) Xi =
⋃
· l∈Λi

⋃
· τ∈Til

Xτ
il.

Part D: A homomorphism γ: G → B. Since a is simple on V , there is a K-place

ρ: E → K∪{∞} with ρ(y) = a [JaR, Cor. A2]. Extend ρ to an L-place ρ: F → K̃∪{∞}.

Let F̄ be the residue field of ρ. By (5d), F̄ is a finite Galois extension of K containing

L [FrJ, Lemma 5.5]. Moreover, there is an embedding ρ∗: Gal(F̄ /K) → Gal(F/E)

with ρ(ρ∗(σ)u) = σ(ρ(u)) for all σ ∈ Gal(F̄ /K) and u ∈ F with ϕ(u) 6= ∞ [FrJ,

Lemma 5.5]. Then γ = ρ∗ ◦resKs/F̄ is a homomorphism from Gal(K) to Gal(F/E) with

resF/L ◦ γ = resKs/L.

Part E: A continuous map γ: X → J . Let i ∈ I0 and l ∈ Λi. By (5c), there

exists f ∈ L[Y, Z] such that f(y, Z) is irreducible over L(y), monic, f(y, zi) = 0, and

f(a, cil) = 0. By Part D, ρ(y) = a. Let R be the valuation ring of ρi = ρ|L(y). Then

R[zi]/R is a ring cover, in particular R[zi] is the integral closure of R in Fi. Moreover,

the L-speczializtion (y, zi)→ (a, cil) extend to an L epimorphism of R[zi] onto L(a, cil)

and from there to an epimorphism of the local ring of the kernel. The latter is the

valuation ring of an L-place ρil: Fi → L(cil) ∪ {∞} with ρil(y, zi) = (a, cil). Extend it
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to an L-place ρil: F → K̃ ∪ {∞}. Since ρil|EL = ρ|EL, there is σil ∈ Gal(F/EL) and

ρil = ρ ◦σ−1
il . Define γ on Xil as the constant map: γ(x) = j(i)σil for all x ∈ Xil. Then

ρ(Fσil
i ) = ρ ◦ σ−1

il (Fi) = ρil(Fi) ⊆ Li(cil) ∪ {∞} ⊆ Kx ∪ {∞}. This implies

(8) γ(Gal(Kx)) ≤ γ(Gal(Li(cil))) ≤ Gal(F/Fi)σil = Bj(i)σil = Bγ(x), x ∈ Xil.

Also, α(γ(x)) = α(j(i)σil) = α(j(i)) = i = ϕ(x).

Let X ′ =
⋃
· i∈I0

⋃
· l∈Λi

Xil. Then X =
⋃
σ∈Gal(K)(X

′)σ. Since each Xil is open,

γ: X ′ → J is well defined and continuous. Extend γ: X ′ → J to X by γ(xσ) = γ(x)γ(σ)

for each σ ∈ Gal(K). To prove this is a good definition, we have to show that if

x, y ∈ X ′, σ1, σ2 ∈ Gal(K) and xσ1 = yσ2 , then γ(x)γ(σ1) = γ(y)γ(σ2). In other words,

with σ = σ1σ
−1
2 , we have to prove that

(9) x ∈ X ′, σ ∈ Gal(K), and xσ ∈ X ′ imply γ(x)γ(σ) = γ(xσ).

Indeed, there are i, i′ ∈ I0, l ∈ Λi, and l′ ∈ Λi′ with x ∈ Xil and xσ ∈ Xi′l′ . By

(6b), x ∈ Xi and xσ ∈ Xi′ . Hence, xσ ∈ Xσ
i ∩ Xi′ = Xiσ ∩ Xi′ . Therefore, iσ = i′.

By the choice of I0, this implies i = i′. Hence xσ ∈ Xiσ ∩ Xi, so Xσ
i = Xi. By (4),

σ ∈ Gal(Li). It follows, x ∈ Xil and xσ ∈ Xil′ , so xσ ∈ Xσ
il∩Xil′ . By (7b), σ = σ′τ with

σ′ ∈ Gal(Li(cil)) and τ ∈ Til. Then, by (7c) and (7a), Xil′ = Xσ′τ
il = Xτ

il. Hence, by

(7c), τ ∈ Gal(Li(cil)), so also σ ∈ Gal(Li(cil)). By (7c), Xil′ = Xil. We have therefore

proved both x and xσ belong to Xil. By definition, γ(x) = j(i)σil = γ(xσ). By (8),

γ(σ) ∈ γ(Gal(Li(cil))) ≤ Bγ(x). Hence, ϕ(σ) = α(γ(σ)) ∈ Aϕ(x). By assumption,

Sx = Gal(Kx) for each x ∈ X. By Lemma 6.3, α(γ(σ)) ∈ Sϕ(x). Hence, by Lemma 2.2,

γ(x)γ(σ) = γ(x). Therefore γ(xσ) = γ(x) = γ(x)γ(σ), as claimed.

Part F: Conclusion of the proof. By (9), γ(x)γ(σ) = γ(xσ) for all x ∈ X and σ ∈

Gal(K). Hence, by (8), γ(Gal(Kxσ )) ≤ Bγ(xσ) for all x ∈ X. Therefore, γ: Gal(K)→ B

is a morphism. Finally, α ◦ γ = ϕ on Gal(K) and on X ′, hence on X. Thus, γ solves

the embedding problem we posed for Gal(K). It follows, Gal(K) is projective.
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7. Valued Fields

The results of this section are well known, although there is some novelty in the

presentation∗. We begin with a brief review of inertia and ramification groups.

Denote the residue field of a valued field (F, v) by F̄ . For each x ∈ F with v(x) ≥ 0

let x̄ be the residue of x in F̄ . Finally, let Fins be the maximal purely inseparable

extension of F .

Consider a Galois extension (N, v)/(F, v) of Henselian fields. Then N̄/F̄ is a

normal extension. For each σ ∈ Gal(N/F ) define σ̄ ∈ Aut(N̄/F̄ ) by this rule: σ̄x̄ = σx

for x ∈ N with v(x) ≥ 0. The map σ 7→ σ̄ is an epimorphism ρ: Gal(N/F )→ Aut(N̄/F̄ )

[End, Thm. 19.6]. Its kernel is the inertia group:

G0(N/F ) = {σ ∈ Gal(N/F ) | v(σx− x) > 0 for each x ∈ N with v(x) ≥ 0}.

Denote the fixed field in N of G0(N/F ) by N0. Then N̄0 is the maximal separable

extension of F̄ in N̄ [End, Thm. 19.12]. Hence, N̄0/F̄ is Galois and there is a short

exact sequence

(1) 1 −→ Gal(N/N0) −→ Gal(N/F )
ρ−→ Gal(N̄0/F̄ ) −→ 1.

Here we have identified each σ̄ ∈ Aut(N̄/F̄ ) with its restriction to N̄0. In addition,

v(N×
0 ) = v(F×) [End, Cor. 19.14]. Hence, N0/F is an unramified extension.

The ramification group of Gal(N/F ) is

G1(N/F ) = {σ ∈ Gal(N/F ) | v
(σx
x
− 1

)
> 0 for each x ∈ N×}.

It is a normal subgroup of Gal(N/F ) which is contained in G0(N/F ) [End, (20.8)].

Denote the fixed field of G1(N/F ) in N by N1. When p = char(F̄ ) > 0, Gal(N/N1)

is the unique p-Sylow subgroup of Gal(N/N0) [End, Thm. 20.18]. When char(F̄ ) = 0,

Gal(N/N1) is trivial. So, in both cases, char(F̄ ) does not divide [N1 : N0].

Suppose now N = Fs. Then N0 = Fu is the inertia field and N1 = Fr is the

ramification field of F . In this case (1) becomes the short exact sequence

(2) 1 −→ Gal(Fu) −→ Gal(F )
ρ−→ Gal(F̄ ) −→ 1.

* This section is a rewrite of the unpublished paper [HJK, Sec. 2].
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Also, F ⊆ Fu ⊆ Fr ⊆ Fs, Fu/F and Fr/F are Galois extensions, char(F̄ ) - [Fr : Fu],

and Gal(Fr) is a pro-p group if p = char(F̄ ) 6= 0.

Consider now a finite extension (L, v)/(F, v) of Henselian fields. Let e = e(L/F )

=
(
v(L×) : v(F×)

)
be the ramification index. There is a positive integer d such that

[L : F ] = de[L̄ : F̄ ]. If char(F̄ ) = p > 0, then d is a power of p [Art, p. 62, Thm. 10].

If char(F̄ ) = 0, then d = 1. When d = 1 we say L/F is defectless. An arbitrary

algebraic extension M/F is defectless if each finite subextension is defectless. This is

the case when char(F̄ ) - [M : F ]. For example, Fr/Fu is defectless. In addition, by (2),

[L : F ] = [L̄ : F̄ ] for each finite subextension L/F of Fu/F . Hence, Fu/F is defectless.

Consequently, Fr/F is defectless.

Lemma 7.1: Let (F, v) be a Henselian valued field. Use the above notation.

(a) There is a field F ′ with FuF
′ = Fr and Fu ∩ F ′ = F .

(b) The short exact sequence 1→ Gal(Fr/Fu)→ Gal(Fr/F )→ Gal(Fu/F )→ 1 splits.

Proof: Statement (b) is a Galois theoretic interpretation of (a). So, we prove (a).

Zorn’s lemma gives a maximal extension F ′ of F in Fr with residue field F̄ .

For each prime number l 6= char(F̄ ) the value group of F ′ is l-divisible. Otherwise,

there is a ∈ F ′ with v(a) /∈ lv((F ′)×). Put L = F ′( l
√
a). Then [L : F ′] = l and

l ≤ (v(L×) : v((F ′)×)). Since e(L/F ′)[L̄ : F ′] ≤ [L : F ′] = l, we have L̄ = F ′ = F̄ .

Recall: Gal(Fr) is a pro-p group if char(F̄ ) = p > 0 and trivial if char(F̄ ) = 0. Hence,

L ⊆ Fr. This contradicts the maximality of F ′.

By the discussion preceding Lemma 7.1, Fu ∩ F ′ = F . Let E = FuF
′. Consider

a prime number l 6= char(F̄ ). Since E/F ′ is an algebraic extension, v(E×) is contained

in the divisible hull of v(F ′). Since v((F ′)×) is l-divisible, so is v(E×). Since Fu ⊆

E ⊆ Fr ⊆ Fs and F̄u = F̄s, we have Ē = F̄r. Hence, e(E′/E) = [E′ : Ē] = 1 and

therefore [E′ : E] = 1 (because E′/E is defectless) for every finite extension E′ of E in

Fr. Consequently, E = Fr.

Lemma 7.2 (Kuhlmann-Pank-Roquette [KPR, Thm. 2.2]): Let (F, v) be a Henselian

field.

(a) There is a field F ′ with Fr ∩ F ′ = F and FrF
′ = Fs.
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(b) The short sequence 1→ Gal(Fr)→ Gal(F )→ Gal(Fr/F )→ 1 splits.

Proof: Statement (a) is a Galois theoretic interpretation of (b). So, we prove (b). Let

p = char(F̄ ). If p = 0, then Fr = Fs and we may take F ′ = F . Suppose p 6= 0.

By (2), Gal(Fu/F ) ∼= Gal(F̄ ). By Witt, the p-Sylow subgroups of Gal(F̄ ) are

free [Rib, p. 256, Thm. 3.3]. Hence, so are the p-Sylow subgroups of Gal(Fu/F ). Since

p - [Fr : Fu], restriction maps each p-Sylow subgroup of Gal(Fr/F ) isomorphically onto

a p-Sylow subgroup of Gal(Fu/F ). Hence, each p-Sylow subgroup of Gal(Fr/F ) is free.

Thus, cdp(Gal(Fr/F )) ≤ 1 [Rib, p. 207, Cor. 2.2]. Since Gal(Fr) is a pro-p group, the

short sequence in (b) splits [Rib, p. 211, Prop. 3.1(iii)’].

Proposition 7.3: Let (F, v) be a valued field.

(a) Suppose (F, v) is Henselian. Then the epimorphism ρ: Gal(F ) → Gal(F̄ ) induced

by reduction at v splits.

(b) Each subgroup of Gal(F̄ ) is isomorphic to a subgroup of Gal(F ).

Proof of (a): The map ρ decomposes as Gal(F ) res−→ Gal(Fr/F ) res−→ Gal(Fu/F )
ρ̄−→

Gal(F̄ ). The map ρ̄ which is also induced by reduction is an isomorphism (by (2)). By

Lemmas 7.1 and 7.2, each of the restriction maps splits. Hence ρ splits.

Proof of (b): Let (F ′, v) be the Henselization of (F, v). Then F ′ = F̄ . By (a), each

subgroup of Gal(F̄ ) is isomorphic to a subgroup of Gal(F ′), hence of Gal(F ).

Proposition 7.4: Let F/K be an extension of fields. Suppose v is a valuation of F

which is trivial on K and F̄ = K. Then

(a) res: Gal(F ) → Gal(K) is an epimorphism which splits. If, in addition, (F, v) is

Henselian and v is extended to Fs such that ā = a for each a ∈ Ks, then res is the

epimorphism induced by reduction at v.

(b) (F, v) has a separable algebraic Henselian extension (F ′, v) such that res: Gal(F ′)→

Gal(K) is an isomorphism and F ′ is a purely inseparable extension of K.

(c) Suppose K is perfect. Then (F, v) has an algebraic Henselian extension (F ′′, v) such

that F ′′ is perfect, F ′′ = K, and res: Gal(F ′′)→ Gal(K) is an isomorphism.

Proof: Replace (F, v) by a Henselian closure, if necessary, to assume (F, v) is Hensel-
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ian. Let ρ: Gal(F ) → Gal(K) be the epimorphism induced by reduction at v. Then,

for each a ∈ Ks and each σ ∈ Gal(F ) we have, σa = σa = σ̄ā = σ̄a = ρ(σ)a. Thus,

res: Gal(F )→ Gal(K) coincides with ρ.

Proposition 7.3(a) gives a section ρ′: Gal(K)→ Gal(F ) of ρ. Let F ′ be the fixed

field of ρ′(Gal(K)) in Fs. Then Gal(F ′) → Gal(K) is an isomorphism. Also, for all

u ∈ F ′ and σ ∈ Gal(F ′) we have σ̄ū = σu = ū. Hence, F ′ is a purely inseparable

extension of K. This concludes the proof of (a) and (b).

When K is perfect, F ′′ = F ′ins satisfies (c).

The following Proposition gives more details to a result of Efrat [Efr. Prop. 4.7].

Proposition 7.5: Let K be a field, E0 its prime field, and T a set of variables with

card(T ) ≥ trans.deg(K/E0). Let F0 be either E0 or Q. Then there is a field L, algebraic

over F0(T ), with G(L) ∼= G(K).

Proof: There is a unique place ϕ0: F0 → E0∪{∞}. Choose a transcendence base T̄ for

K/E0. By assumption, card(T̄ ) ≤ card(T ). Choose a surjective map ϕ1: T → T̄ . Then

extend ϕ0 and ϕ1 to a place ϕ: F0(T ) → E0(T̄ ) ∪ {∞} and denote the corresponding

valuation by v. Corollary 7.3(b) gives the desired field L.

Definition 7.6: Rigid Henselian extensions. Let K be a field and (L, v) a valued field.

We say, (L, v) is a rigid Henselian extension of K if (L, v) is Henselian, K ⊆ L, v

is trivial on K, L̄v = K, and res: Gal(L)→ Gal(K) is an isomorphism. In this case we

also call the place ϕ: L→ K ∪ {∞} associated with v rigid.

An arbitrary field extension L/K is a rigid Henselian extension if L admits a

valuation v such that (L, v) is a rigid Henselian extension K.

Proposition 7.7: Let F/K be a purely transcendental extension. Then:

(a) F has a valuation v which is trivial on K and F̄ = K.

(b) F has a separable algebraic extension F ′ such that res: Gal(F ′) → Gal(K) is an

isomorphism.

(c) If K is perfect, then F has a perfect algebraic extension F ′ which is a rigid Henselian

extension of K.
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Proof of (a): The assertion is evident when F = K(t) and t is transcendental. The

general case follows from the special case by transfinite induction and using composition

of valuations.

Proof of (b): Apply Proposition 7.4(b).

Proof of (c): Apply Proposition 7.4(c).
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8. The Space of Valuations of a Field

Let K be a field. Denote the collection of all valuations of K by Val(K). We include in

Val(K) also the trivial valuation v0 defined by v0(a) = 0 for each a ∈ K× and v0(0) =∞.

Also, we do not distinguish between equivalent valuations. Thus, we identify valuations

with the same valuation rings. Given a ∈ K, we write

Vala(K) = {v ∈ Val(K) | v(a) > 0}, Val′a(K) = {v ∈ Val(K) | v(a) ≥ 0}.

Intersections of finitely many sets of these form build a basis for a topology on Val(K),

the so called patch topology (see more about the patch topology in [Hoe, Sec. 2]).

The following identities make the use of open subsets of Val(K) easier:

(1)

Vala/b(K) = {v ∈ Val(K) | v(a) > v(b)},

Val′a/b(K) = {v ∈ Val(K) | v(a) ≥ v(b)},

Val′a(K) = Val(K) r Vala−1(K), Val0(K) = Val(K), Val1(K) = ∅.

Example 8.1: Val(Q). It consists of vp, with p ranging over all prime numbers, and v0.

For each p, {v ∈ Val(Q) | v(p) > 0} = {vp}. Thus vp is a discrete point of Val(Q). On

the other hand, v0(a) = 0 for each a ∈ Q×. Hence, if B =
⋂m
i=1 Valai

(Q)∩
⋂n
j=1 Val′bj

(Q)

contains v0, then we may assume m = 0. Hence, B contains all vp with p relatively

prime to all denominators of bj . This implies, every open neighborhood of v0 consists of

almost all elements of Val(Q). Hence, Val(Q) consists of a discrete sequence converging

to v0. In particular, Val(Q) is compact.

The following result generalizes the last conclusion of Example 8.1.

Proposition 8.2: Val(K) is profinite.

Proof: The space Sign(K) =
∏
a∈K×{−1, 0} with the product topology is a profinite

space. For each v ∈ Val(K) and a ∈ K× let sign(v(a)) be −1 if v(a) < 0 and 0 if

v(a) ≥ 0. Define a map σ: Val(K) → Sign(K) by σ(v)(a) = sign(v(a)). It suffices to

prove that σ is a homeomorphism onto a closed subset of Sign(K).

Indeed, let v, v′ ∈ Val(K) with σ(v) = σ(v′). Then v(a) ≥ 0 if and only if

v′(a) ≥ 0. Hence, v = v′. Therefore, σ is injective.

49



A basic open subset of σ(Val(K)) has the form

{σ(v) | v ∈ Val(K), sign(v(ai)) = −1, i = 1, . . . ,m, sign(v(bj)) = 0, j = 1, . . . , n}

with a1, . . . , am, b1, . . . , bn ∈ K× and m,n ≥ 0. It is the image of the basic open subset⋂m
i=1 Vala−1

i
(K) ∩

⋂n
j=1 Val′bj

(K). Therefore, σ is a homeomorphism.

Next consider an element f ∈ Sign(K) which belongs to the closure of Im(σ). We

construct w ∈ Val(K) with σ(w) = f . This will conclude the proof of the proposition.

Put O = {a ∈ K× | f(a) = 0} ∪ {0}.

Claim: O is a valuation ring. Indeed, assume a, b ∈ O but a + b /∈ O. Then a, b 6= 0

and {g ∈ Sign(K) | g(a) = 0, g(b) = 0, g(a + b) = −1} is an open neighborhood of f .

Hence, there is v ∈ Val(K) with sign(v(a)) = 0, sign(v(b)) = 0, and sign(v(a+b)) = −1.

Thus, v(a) ≥ 0, v(b) ≥ 0, and v(a+ b) < 0. This contradiction proves that O is closed

under addition.

Similarly, O is closed under multiplication and contains 0,−1. Hence, O is a

subring of K.

Let now a ∈ K×. If f(a) = f(a−1) = −1, there is v ∈ Val(K) with v(a) < 0 and

v(a−1) < 0, a contradiction. Hence, a ∈ O or a−1 ∈ O. Therefore, O is a valuation

ring.

Denote the valuation associated with O by w. Then sign(w(a)) = f(a) for each

a ∈ K. Therefore, f = σ(w).

For a valued field (K, v) and a polynomial f(X) =
∑n
i=0 aiX

i with ai ∈ K

we write v(f) = min(v(a0), . . . , v(an)). Also, for x = (x1, . . . , xn) ∈ Kn we write

v(x) = min(v(x1), . . . , v(xn)).

Lemma 8.3: Let (K, v) be a valued field, (Kv, vh) be a Henselian closure of (K, v), and

L a finite separable extension of K. Then the following conditions are equivalent:

(a) There is a K-embedding of L into Kv.

(b) L/K has a primitive element x such that irr(x,K) = Xn + Xn−1 + an−2X
n−2 +

· · ·+ a0 with v(ai) > 0, i = 0, . . . , n− 2.
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Proof of “(a) =⇒ (b)”: The embedding of L into Kv induces a valuation vL of L which

extends v. Let L̂ be the Galois closure of L/K. Choose an extension v̂ of vL to L̂. Then,

L is contained in the decomposition field L′ of v̂ over K. Hence, Gal(L̂/L′) ≤ Gal(L̂/L).

Every extension of v to L̂ has the form v̂ ◦ σ with σ ∈ Gal(L̂/K). We have,

resL(v̂ ◦ σ) = resLv̂ if and only if there is τ ∈ Gal(L̂/L) with v̂ ◦ σ = v̂ ◦ τ , that is, στ−1

lies in the decomposition group Gal(L̂/L′) of v̂. Conclude: resL(v̂ ◦ σ) = resLv̂ if and

only if σ ∈ Gal(L̂/L).

Now use the Chinese remainder theorem [Jar, Lemma 6.7(c)] to find y ∈ L with

v̂(y) = 0 and v̂(σy) > 0 for each σ ∈ Gal(L̂/K) r Gal(L̂/L). Next choose a primitive

element z for L/K. Multiply z by a suitable element of K to assume

(2) v̂(σz) > max(0, v̂(y′ − y))

for each σ ∈ Gal(L̂/K) and every conjugate y′ of y over K with y′ 6= y. Put x = y + z.

Then

(3) v̂(x) = 0 and v̂(σx) > 0 for each σ ∈ Gal(L̂/K) r Gal(L̂/L).

We prove L = K(x).

To this end consider τ ∈ Gal(L̂/K(x)). Then τ(y)− y = z − τ(z). Therefore,

v̂(τ(y)− y) ≥ min(v̂(z), v̂(τ(z))) ≥ min
σ∈Gal(L̂/K)

v̂(σz).

By (2), τ(y) = y. Hence, τ(z) = z. Therefore, L = K(z) ⊆ K(x) ⊆ L. It follows that

L = K(x), as contended.

Let x1, . . . , xn be the conjugates of x in L̂ with x1 = x. For each j ≥ 2 there is

σ ∈ Gal(L̂/K) r Gal(L̂/L) with σx = xj . Hence, by (3),

(4) v̂(x1) = 0 and v̂(xj) > 0 if j ≥ 2.

Let f(X) = Xn+bn−1X
n−1 +bn−2X

n−2 + · · ·+b0 = irr(x,K). By (4), v̂(bn−1) =

v̂(x1 + x2 + · · ·+ xn) = 0, v̂(bn−2) = v̂(
∑
j 6=k xjxk) > 0, · · ·, v̂(b0) = v̂(x1 · · ·xn) > 0.

Obviously, x
bn−1

is a primitive element for L/K. Its irreducible polynomial over K is

Xn +Xn−1 +
bn−2

b2n−1

Xn−2 + · · ·+ b0
bnn−1

.
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This polynomial has the required form.

Proof of “(b) =⇒ (a)”: In the notation of (b) let f = irr(x,K). Then v(f(−1)) > 0

and v(f ′(−1)) = v((−1)n−1) = 0. Hence, by Hensel’s Lemma, f has a root x′ ∈ Kv.

The map x 7→ x′ extends to a K-embedding of L into Kv.

Lemma 8.4 (Open map theorem): Let L be a field extension of K. Then the map

resL/K : Val(L)→ Val(K) is continuous. If L/K is separable algebraic, then the map is

also open.

Proof: By definition, res−1
L/K(Vala(K)) = Vala(L) and res−1

L/K(Val′a(K)) = Val′a(L) for

each a ∈ K×. Hence, restriction of valuations of L to K is a continuous map.

Suppose now L/K is Galois. Put G = Gal(L/K). Then G acts on Val(L) con-

tinuously and resL/K induces a continuous bijective map ρ: Val(L)/G→ Val(K). Since

both spaces are profinite, ρ is a homeomorphism. By definition, the quotient map

π: Val(L)→ Val(L)/G is open. Thus, resL/K = ρ ◦ π is also open.

Finally suppose L/K is separable algebraic. Let L̂ be the Galois closure of L/K.

Then resL̂/L is continuous and resL̂/K is open. Let U be an open subset of Val(L).

Then resL/K(U) = resL̂/K(res−1

L̂/L
(U)) is open, as desired.
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9. Locally Uniform v-adic Topologies

Every valuation v of a field K gives rise to a topology on K which naturally extends

to a topology on V (K) (called the v-topology) for every variety V defined over K.

Polynomials f ∈ K[X] and in general morphisms between varieties over K are continu-

ous in the v-topology. The proof of continuity uses only finitely many conditions of the

form v(a) > 0 and v(a′) ≥ 0. Therefore, it holds for all valuations v′ of K satisfying

the same conditions. In other words, polynomials are “locally uniform continuous”.

This observation holds even if we consider the polynomials as functions of valued fields

extending (K, v).

The aim of this section is the make this heuristic argument precise. It will be used

in Proposition 12.4 to prove that every field-valuation structure satisfying the block

approximation condition is unirationally closed.

We start by choosing a large universal extension of K. This is an algebraically

closed field extension Ω of K with trans.deg(Ω/K) > card(K). Denote the set of all

field extensions L of K with L ⊆ Ω and trans.deg(L/K) ≤ card(K) by Extend(K).

For each v ∈ Val(K) denote the set of all valued fields (L,w) extending (K, v) with

L ∈ Extend(K) by Extend(K, v). For each subset B of Val(K) let Extend(K,B) =⋃
v∈B Extend(K, v). In addition, let Hensel(K,B) be the set of all Henselian fields

(L,w) in Extend(K,B).

The reason for working inside Ω is to avoid using classes, especially to avoid

operations with classes which may led to set theoretic paradoxes.

Denote the collection of all subsets of a set A by Subset(A). Consider a reduced

scheme of finite type V over K and a subset B of Val(K). Let

Set(K,V,B) =
∏

(L,v)∈Extend(K,B)

Subset(V (L)).

Thus, each element of Set(K,V,B) is a set valued function V from Extend(K,B) satis-

fying V(L, v) ⊆ V (L) for each (L, v) ∈ Extend(K,B). Regard V itself as an element of

Set(K,V,B).

Let V,V ′ ∈ Set(K,V,B). We write V ⊆ V ′ if V(L, v) ⊆ V ′(L, v) for all (L, v) ∈

Extend(K,B),
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The restriction of V to a subset B0 of B is the function V|B0 ∈ Set(K,V,B0)

defined by V|B0(L, v) = V(L, v) for each L ∈ Extend(K,B0).

Define unions and intersections in Set(K,V,B) via unions and intersections of

sets: ( ⋃
i∈I
Vi

)
(L, v) =

⋃
i∈I
Vi(L, v)

( ⋂
i∈I
Ui

)
(L, v) =

⋂
i∈I
Ui(L, v)

These operations satisfy the usual de-Morgan laws. Similarly define the direct product

of U ∈ Set(K,U,B) with V ∈ Set(K,V,B) by the rule (U×V)(L, v) = U(L, v)×V(L, v).

Let a ∈ Kn, c ∈ (K×)m, and f1, . . . , fm ∈ K[X1, . . . , Xn]. Define an element

Oa,c,f ,B in Set(K,An,B) in the following way: For all (L, v) ∈ Extend(K,B)

Oa,c,f ,B(L, v) = {x ∈ Ln | v(fi(x)− fi(a)) > v(ci), i = 1, . . . ,m}.

Note that Oa,c,f ,B(L, v) is a v-open neighborhood of a in Ln. If we embedKn diagonally

in
∏

(L,v)∈Extend(K,B) L
n, then a belongs to

∏
(L,v)∈Extend(K,B)Oa,c,f ,B(L, v). Hence, we

call Oa,c,f ,B a basic open neighborhood of a in Set(K,AnK ,B). The intersection of

finitely many basic open neighborhoods of a is again a basic open neighborhood of a in

Set(K,AnK ,B). Define an open neighborhood of a in Set(K,AnK ,B) to be a union of

basic open neighborhoods of a in Set(K,AnK ,B).

An example of an open neighborhood of a in Set(K,AnK ,B) is an open ball:

Ba,c,B(L, v) = {x ∈ Ln | v(x− a) > v(c)}.

Let V be a Zariski closed subset of AnK , a ∈ V (K), and V an open neighborhood

of a in Set(K,AnK ,B). Refer to V ∩V as an open neighborhood of a in Set(K,V,B).

Remark 9.1: Let v ∈ Val(K), a ∈ Kn, and c, d ∈ K. Suppose v(c) ≤ v(d). Then

B = {w ∈ Val(K) | w(c) ≤ w(d)} is an open neighborhood of v in Val(K). Moreover,

Ba,d,B(L,w) ⊆ Ba,c,B(L,w) for all (L,w) ∈ Extend(K,B).

Definition 9.2: Uniform local topology on schemes. Let V be a Zariski closed subset

of AmK , W a Zariski closed subset in AnK , and ϕ: V → W be a K-morphism. Then
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there are polynomials f1, . . . , fn ∈ K[X1, . . . , Xm] with ϕ(x) = (f1(x), . . . , fn(x)) for

all L ∈ Extend(K) and x ∈ V (L).

Let B be a subset of Val(K). For each V ∈ Set(K,V,B) define ϕ(V) to be

the element of Set(K,W,B) given by ϕ(V)(L, v) = ϕ(V(L, v)). Similarly, for each W ∈

Set(K,W,B) define ϕ−1(W) to be the element of Set(K,V,B) defined by

ϕ−1(W)(L, v) = ϕ−1(W(L, v)).

As an example, let a ∈ V (K), b = ϕ(a), and g1, . . . , gk ∈ K[Y1, . . . , Yn]. Then

g ◦ ϕ = (h1, . . . , hk) with hi(X) = gi(f1(X), . . . , fn(X)) and

ϕ−1(W ∩ Ob,c,g,B) = V ∩ Oa,c,g◦ϕ,B.

Hence, the inverse image under ϕ of any open neighborhood of b in Set(K,W,B) is

an open neighborhood of a in Set(K,V,B). In particular, if ϕ is an isomorphism, V

is an open neighborhood of a in Set(K,V,B), and W = ϕ(V), then W is an open

neighborhood of b in Set(K,W,B) and ϕ−1(W) = V.

Let now V be a reduced scheme of finite type over K and a ∈ V (K). Choose

a Zariski K-open affine neighborhood V0 of a in V . Each open neighborhood of a in

Set(K,V0,B) is an open neighborhood of a in Set(K,V,B). The observation of the

preceding paragraph shows this definition is independent of V0.

Lemma 9.3 (Local uniform continuity of polynomials): Let (K, v) be a valued field

g ∈ K[X1, . . . , Xn], a,x ∈ Kn, and e ∈ K×. Suppose v(g) ≥ 0, v(a,x) ≥ 0, and

v(x− a) > v(e). Then v(g(x)− g(a))) > v(e).

Proof: We prove the Lemma by induction on n.

Suppose first n = 1. Write g(X) =
∑r
i=0 ciX

i with ci ∈ K satisfying v(ci) ≥ 0,

i = 0, . . . , r. Then

v(g(x)− g(a)) = v
( r∑
i=0

ci(xi − ai)
)

≥ min
1≤i≤r

(v(ci) + v(x− a) + v(xi−1 + xi−2a+ · · ·+ ai−1))

> v(e).
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Assume now n > 2 and the statement holds up to n− 1. Then

v(g(x)− g(a)) ≥ min
(
v(g(x1, . . . , xn−1, xn)− g(x1, . . . , xn−1, an)),

v(g(x1, . . . , xn−1, an)− g(a1, . . . , an−1, an))) > v(e).

This concludes the induction.

As a consequence we show that open balls are locally basic open neighborhoods

of K-rational points on varieties over K.

Lemma 9.4: Let K be a field, V a Zariski closed subset of AnK , a ∈ V (K), B a

closed subset of Val(K), and V an open neighborhood of a in Set(K,V,B). Then

there is a partition B =
⋃
· mi=1 Bi with Bi closed and for each i there is an open ball

Ba,ci,Bi
in Set(K,AnK ,Bi) such that V (L) ∩ Ba,ci,Bi

(L, v) ⊆ V(L, v) for each (L, v) ∈

Extend(K,Bi).

Proof: Assume without loss V = AnK . Choose c′1, . . . , c
′
l ∈ K× and f1, . . . , fl ∈

K[X1, . . . , Xn] such that Oa,c′,f ,B is an open neighborhood of a in V. For each v ∈ B

choose ev ∈ K× with v(eva) ≥ 0. Put gv,k(X) = fk( 1
ev

X), k = 1, . . . , l. Next choose

dv ∈ K× with v(dvgv,k) ≥ 0 for k = 1, . . . , l. Finally choose cv ∈ K× with v(cvev) ≥ 0

and v
(
cvev

dvc′k

)
≥ 0 for k = 1, . . . , l. Then

B′
v = {v′ ∈ B | v′(eva) ≥ 0, v′(dvgv,k) ≥ 0, v′(cvev) ≥ 0, v′

( cvev
dvc′k

)
≥ 0, k = 1, . . . , l}

is an open neighborhood of v in B.

By Lemma 8.2, B is profinite. Hence, B′
v has a subset Bv which is open-closed

in B and contains v. Compactness of B gives v1, . . . , vm ∈ B with B =
⋃m
i=1 Bvi . Let

B1 = Bv1 and Bi = Bvi
r(Bv1∪· · ·∪Bvi−1), i = 2, . . . ,m. Then Bi is closed in Val(K),

Bi ⊆ B′
vi

, i = 1, . . . ,m, and B =
⋃
· mi=1 Bi.

Consider now an i between 1 and m. Put ci = cvi
, di = dvi

, ei = evi
, and

gik = gvi,k for k = 1, . . . , l. It suffices to prove that

Ba,ci,Bi
(L,w) ⊆ Oa,c′,f ,Bi

(L,w)

for each (L,w) ∈ Extend(K,Bi).
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Indeed, our choices imply

(5) w(eia) ≥ 0, w(digik) ≥ 0, w(ciei) ≥ 0, w(ciei) ≥ w(dic′k), k = 1, . . . , l.

Let x ∈ Ba,ci,Bi(L,w). Then w(x−a) > w(ci). Hence, by (5), w(eix−eia) > w(ciei) ≥

0. Hence, by (5), w(eix) ≥ 0. It follows from (5) and Lemma 9.3 that

w(digik(eix)− digik(eia)) > w(ciei) ≥ w(dic′k), k = 1, . . . , l.

Thus, w(fk(x) − fk(a)) > w(c′k), k = 1, . . . , l. This means x ∈ Oa,c′,f ,Bi
(L,w), as

claimed.
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10. Locally Uniform Hensel’s Lemma

Let (K, v) be a valued field, ϕ: V → W a morphism of absolutely irreducible varieties

over K, a ∈ Vsimp(K), b ∈ Wsimp(K), and ϕ(a) = b. Suppose ϕ is étale at a. Let

(L, v) be a Henselian extension of (K, v). Then a has a v-open neighborhood V in

V (L) and b has a v-open neighborhood W in W (L) such that ϕ: V(L)→W(L) is a v-

homeomorphism [GPR, Thm. 9.4]. The proof of this result relies on a higher dimensional

Hensel’s Lemma.

We strengthen this result by making V and W uniform on an open neighborhood

of v in Val(K). The proof reduces the general case to the case where V is a hypersurface

in Ar+1
K , W = ArK , and ϕ is the projection on the first r coordinates. Then we use a

sharper form of Hensel’s lemma.

Lemma 10.1: Let (L,w) be a Henselian field and f ∈ L[T1, . . . , Tr, X] monic in X. Put

f ′ = ∂f
∂X . Assume w(f) ≥ 0 (hence w(f ′) ≥ 0). Let b0,b ∈ Lr, c0 ∈ L, and ε ≥ δ ≥ 0

be in w(L×). Suppose

w(b0, c0) ≥ 0,(1a)

w
(
f ′(b0, c0)

)
= δ,(1b)

w
(
f(b0, c0)

)
> δ + ε, and(1c)

w(b− b0) > δ + ε.(1d)

Then w(b) ≥ 0 and there is a unique c ∈ L with f(b, c) = 0 and w(c − c0) > ε. In

particular, w(c) ≥ 0 and w
(
f ′(b, c)

)
= δ.

Proof: By (1a) and (1d), w(b) ≥ 0. By (1d) and Lemma 9.3

w
(
f ′(b, c0)− f ′(b0, c0)

)
> δ + ε ≥ δ,(2a)

w
(
f(b, c0)− f(b0, c0)

)
> δ + ε,(2b)

Hence by (1a) and (1c)

(3) w
(
f ′(b, c0)

)
= δ, w

(
f(b, c0)

)
> δ + ε = 2δ + (ε− δ).

58



A sharp form of Hensel’s lemma [Jar, Prop. 11.1(e)] gives a unique c ∈ L such that

f(b, c) = 0 and w(c− c0) > δ+(ε− δ) = ε ≥ δ. By (1a), w(c) ≥ 0. By (1d) and Lemma

9.3, w(f ′(b, c)− f ′(b0, c0)) > δ. Hence, by (1b), w
(
f ′(b, c)

)
= δ.

For each f ∈ K[X1, . . . , Xn] let V (f) be the hypersurface in AnK defined by f = 0.

Lemma 10.2: Let f ∈ K[T1, . . . , Tr, X], v ∈ Val(K), and (b0, c0) ∈ Kr+1. Put V =

V (f) and f ′ = ∂f
∂X . Suppose f is monic in X,

(4) v(f) ≥ 0, v(b0, c0) ≥ 0, and v(f(b0, c0)) > 2v(f ′(b0, c0)).

Then v has an open neighborhood B in Val(K), b0 has an open neighborhood B in

Set(K,ArK ,B), and c0 has an open neighborhood C in Set(K,A1
K ,B) satisfying this:

For each (L,w) ∈ Hensel(K,B) the projection

(5) pr: (B(L,w)× C(L,w)) ∩ V (L)→ B(L,w)

is a w-homeomorphism.

Proof: The sharp inequality in (4) implies f ′(b0, c0) 6= 0. Hence,

B = {w ∈ Val(K) | w(f) ≥ 0, w(b0, c0) ≥ 0, and w(f(b0, c0)) > 2w(f ′(b0, c0))}

is an open neighborhood of v in Val(K).

Consider (L,w) ∈ Hensel(K,B). Let δ = w(f ′(b0, c0)). Then

w(f) ≥ 0, w(b0, c0) ≥ 0, and w(f(b0, c0)) > 2δ.

Let

B(L,w) = {b ∈ Lr | w(b− b0) > 2δ} and C(L,w) = {c ∈ L | w(c− c0) > δ}.

By Lemma 5.1 (with ε = δ) the map pr in (5) is bijective. As a projection map, pr is

continuous. We prove that pr−1 is continuous.

Consider b1 ∈ B(L,w). Let c1 be the unique element of L with (b1, c1) ∈(
B(L,w)× C(L,w)

)
∩ V (L). Let ε ∈ w(L×) with δ ≤ ε. By Lemma 10.1, w(b1, c1) ≥ 0
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and w(f ′(b1, c1)) = δ. Let b ∈ B(L) with w(b− b1) > δ + ε. Then the unique element

c ∈ L which Lemma 10.1 (with (b1, c1) replacing (b0, c0)) gives satisfies f(b, c) = 0 and

w(c− c1) > ε. In particular, c ∈ C(L,w), pr(b, c) = b, and w
(
(b, c)− (b1, c1)

)
> ε, as

desired.

Proposition 10.3: Let ϕ: V → W be a morphism of absolutely irreducible varieties

over K, v ∈ Val(K), a ∈ Vsimp(K), and b ∈ Wsimp(K). Suppose ϕ is étale at a and

ϕ(a) = b. Then v has an open neighborhood Bv in Val(K), a has an open neighborhood

Vv in Set(K,V,Bv), and b has an open neighborhood Wv in Set(K,W,Bv) satisfying

this: For each (L,w) ∈ Hensel(K,Bv) the map ϕ: Vv(L,w)→Wv(L,w) is a w−home-

omorphism.

Proof: Let r = dim(W ) = dim(V ).

Part A: Suppose W = ArK . By [Ray, p. 60], ϕ is locally standard étale. That is, there

are a Zariski K-open neighborhood A of b in ArK , a Zariski K-open affine neighborhood

V0 of a in V , a polynomial f ∈ K[T1, . . . , Tr, X] which is monic in X (and absolutely

irreducible), an element c ∈ K, and an isomorphism θ: V0 → (A× A1
K) ∩ V (f) over K

with f(b, c) = 0, ∂f
∂X (b, c) 6= 0, θ(a) = (b, c), ϕ(V0) = A, and pr ◦ θ = ϕ. Multiply b

and c, respectively, with appropriate elements u1, u2 ∈ K× and and the coefficients of

f with elements of the form ui1u
j
2 and replace θ by µu ◦ θ, where µu(x, y) = (u1x, u2y),

to assume v(f) ≥ 0 and v(b, c) ≥ 0.

Lemma 10.2 gives an open neighborhood B of v in Val(K), an open neighborhood

B of b in Set(K,ArK ,B), an open neighborhood C of c in Set(K,A1
K ,B) satisfying this:

(6) For each (L,w) ∈ Hensel(K,B) the projection pr: (B(L,w)×C(L,w))∩V (f)(L)→

B(L,w) is a w-homeomorphism.

Replace B by B ∩A, if necessary, to assume B ⊆ A.

Put V = θ−1
(
(B × C)) ∩ V (f)

)
. By Definition 9.2, V is an open neighborhood

of a in Set(K,V,B). Also, for each (L,w) ∈ Hensel(K,Val(K)) the map θ: V(L,w) →

(B(L,w) × C(L,w)) ∩ V (f)(L) is a w-homeomorphism. If, in addition, w|K ∈ B, (6)

implies the map ϕ: V(L,w)→ B(L,w) is a w-homeomorphism.
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Part B: The general case. Since b is simple on W , the maximal ideal mW,b of the

local ring of W has r generators t1, . . . , tr, τ = (t1, . . . , tr) is an étale map of W into

ArK at b and τ(b) = o = (0, . . . , 0) [Mum, p. 255, Thm. 1]. Part A gives an open

neighborhood B1 of v in Val(K), an open neighborhood W1 of b in Set(K,W,B1), and

an open neighborhood A1 of o in Set(K,ArK ,B1) satisfying this: For each (L,w) ∈

Hensel(K,B1) the map τ :W1(L,w)→ A1(L,w) is a w-homeomorphism.

By [Hrt, p. 268, Prop. 10.1(b)], τ ◦ ϕ is an étale morphism of V into ArK at a.

Part A gives an open neighborhood B2 of v in Val(K), an open neighborhood V2 of a

in Set(K,V ), and an open neighborhood A2 of o in Set(K,ArK ,B2) satisfying this: For

all (L,w) ∈ Hensel(K,B2) the map τ ◦ϕ: V2(L,w)→ A2(L,w) is a w-homeomorphism.

Let B = B1 ∩ B2, A = A1 ∩ A2, W = W1 ∩ τ−1(A2), and V = ϕ−1(W). Then

B,V,W satisfy the requirements of the lemma.

Corollary 10.4: Let ϕ: V → W be a morphism of absolutely irreducible varieties

over K, a ∈ Vsimp(K), b ∈ Wsimp(K), and B a closed subset of Val(K). Suppose ϕ

is étale at a and ϕ(a) = b. Then there is a partition B =
⋃
· ni=1 Bi with Bi closed, a

has an open neighborhood Vi in Set(K,V,Bi), and b has an open neighborhood Wi in

Set(K,W,Bi), i = 1, . . . , n, satisfying this: For all i, w ∈ Bi, and (L,w) ∈ Hensel(K,w)

the map ϕ: Vi(L,w)→Wi(L,w) is a w−homeomorphism.

Proof: For each v ∈ B let Bv, Vv, and Wv as in Proposition 10.3. Choose an open-

closed subset B′
v of Val(K) with v ∈ B′

v ⊆ Bv. Then, the collection of all B′
v is an open

covering of B. Since B is closed in Val(K) and Val(K) is compact (Proposition 8.2),

B is compact. Thus there are v1, . . . , vn ∈ B such that B =
⋃n
i=1 B′

vi
. Let Bi =

B′
vi

rB′
v1 ∪ · · · ∪ B

′
vi−1

, Vi = Vvi
, and Wi = Wvi

. They satisfy the conclusion of the

corollary.
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11. Field-Valuation Structures

We extend field structures to “field-valuation structures” by equipping each local field

with a valuation.

A field-valuation structure is a structure K = (K,X,Kx, vx)x∈X satisfying the

following conditions:

(1a) (K,X,Kx)x∈X is a field structure. Thus, for each finite separable extension L of

K the set XL = {x ∈ X | L ⊆ Kx} is open in X.

(1b) vx is a valuation of Kx satisfying vxσ = vσx for all x ∈ X and σ ∈ Gal(K). Here

vσx (uσ) = vx(u) for each u ∈ Kx.

(1c) For each finite separable extension L of K define a map νL: XL → Val(L) by

νL(x) = vx|L. Then νL is continuous.

The absolute Galois structure associated with K is the same associated with

the underlying field structure, namely Gal(K) = (Gal(K), X,Gal(Kx))x∈X . We call K

proper if Gal(K) is proper. Call K Henselian if (Kx, vx) is Henselian for each x ∈ X.

Lemma 11.1: Let K = (K,X,Kx, vx)x∈X be a field-valuation structure.

(a) LetK ′ be a separable algebraic extension ofK andX ′ a closed subset ofX. Suppose

X ′ is closed under the action of Gal(K ′) and K ′ ⊆ Kx for each x ∈ X ′. Then

K′ = (K ′, X ′,Kx, vx)x∈X′ is a field-valuation structure.

(b) For each x ∈ X let vx,ins be the unique extension of vx to Kx,ins. Then Kins =

(Kins, X,Kx,ins, vx,ins) is a field-valuation structure. Moreover, there is an isomor-

phism res: Gal(Kins)→ Gal(K) of group structures.

Proof of (a): By Remark 2.6, (K ′, X ′,Kx)x∈X′ is a field structure. It remains to prove

that νL′ : X ′
L′ → Val(L′) is continuous for each finite separable extension L′ of K ′. It

suffices to consider u ∈ L′ and to prove that each of the sets Y = {x ∈ X ′
L′ | vx(u) > 0}

and Y ′ = {x ∈ X ′
L′ | vx(u) ≥ 0} is open in X ′. To this end choose a finite separable

extension L of K containing u with L′ = K ′L. Then Y = X ′ ∩ {x ∈ XL | vx(u) > 0},

so Y is open by (1c). Similarly, Y ′ is open.

Proof of (b): It suffices to consider the case when p = char(K) > 0. Let L′ be a finite

extension of Kins and u ∈ L′. Put L = Ks ∩ L′. Then Lins = L′ and there is a power

62



q of p with uq ∈ L. Thus, {x ∈ X | L′ ⊆ Kx,ins} = {x ∈ X | L ⊆ Kx} is open. Also,

vx,ins(u) = 1
q vx(u

q). This implies, Kins is a field-valuation structure.

When all (Kx, vx) are Henselian, we may replace Condition (1c) by a more con-

venient condition:

Lemma 11.2: Let (K,X,Kx)x∈X be a field structure. For each x ∈ X let vx be a

Henselian valuation on Kx such that vxσ = vσx for all x ∈ X and σ ∈ Gal(K). Extend

each vx to Ks in the unique possible way. Then (K,X,Kx, vx)x∈X is a field-valuation

structure if and only if

(2) the map ν: X → Val(Ks) defined by x 7→ vx is continuous.

Proof: By the uniqueness of the extension of vx from Kx to Ks, the equality vxσ = vσx

holds in Val(Ks) for all x ∈ X and σ ∈ Gal(K).

Field-valuation structure implies (2): Let u ∈ K×
s and let x ∈ X. We have to

show that if vx(u) > 0 (resp. vx(u) ≥ 0), and x′ ∈ X is sufficiently close to x, then

vx′(u) > 0 (resp. vx′(u) ≥ 0).

Let f(X) = Xn + an−1X
n−1 + · · · + a0 be the irreducible polynomial of u over

Kx. Then

(3) u = −an−1 − an−2u
−1 − · · · − a0(u−1)n−1.

Let u1, . . . , un be the roots of f in Ks. Since vx uniquely extends to Ks, we have

(4) vx(u1) = · · · = vx(un) = vx(u).

Let N/K be a finite separable extension of K containing u1, . . . , un. Put L =

N ∩Kx. Then a0, . . . , an−1 ∈ L. We distinguish between two cases.

(a) Suppose vx(u) > 0. We have L ⊆ Kx. Since a0, . . . , an−1 are the elementary

symmetric functions in u1, . . . , un, (4) implies that vx(a0), . . . , vx(an−1) > 0. Hence, by

(1), if x′ ∈ X is sufficiently close to x, then L ⊆ Kx′ and vx′(a0), . . . , vx′(an−1) > 0. It

follows vx′(u) > 0. Indeed, if vx′(u) ≤ 0, then vx′(u−1) ≥ 0, hence, by (3), vx′(u) > 0,

a contradiction.
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(b) Suppose vx(u) ≥ 0. We have L ⊆ Kx. By (4), vx(a0), . . . , vx(an−1) ≥ 0.

Hence, by (1), if x′ ∈ X is sufficiently close to x, then L ⊆ Kx′ and vx′(a0), . . . , vx′(an−1)

≥ 0. It follows that vx′(u) ≥ 0. Indeed, if vx′(u) < 0, then vx′(u−1) > 0, and by(3),

vx′(u) ≥ 0, a contradiction.

(2) implies Field-valuation structure: Let L be a finite separable extension of

K. Then, ν: X → Val(Ks) and res: Val(Ks) → Val(L) are continuous (Lemma 8.4).

Hence, νL = res ◦ ν|XL
is continuous.
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12. Block Approximation

Let K = (K,X,Kx, vx)x∈X be a field valuation structure. Put K = {Kx | x ∈ X}.

Suppose K is PKC, X has only finitely many Gal(K)-orbits, and the restriction of

the corresponding valuations to K are independent. Using the local homeomorphism

theorem [GPR, Thm. 9.4] for varieties over Henselian fields and the weak approximation

theorem, Proposition 3.2 of [HaJ3] proves that K is unirationally closed. In the general

case, when X has possibly infinitely many Gal(K)-orbits, the block approximation

condition substitutes all three conditions. It says roughly that finitely many algebraic

points of a variety V overK, each associated with an open-closed subset ofX (a “block”)

can be simultaneously approximated within the block by a single K-rational point of

V . Here is the precise definition:

Definition 12.1: Block approximation condition. A block approximation problem

for a field-valuation structure K = (K,X,Kx, vx)x∈X is a data (V,Xi, Li,ai, ci)i∈I0

satisfying this:

(1a) (Gal(Li), Xi)i∈I0 is a special partition of Gal(K).

(1b) V is a smooth affine variety over K.

(1c) ai ∈ V (Li).

(1d) ci ∈ K×.

An analogous condition where valuations are replaced by orderings appears in

[Pre, p. 354] and [FHV, Prop. 1.2].

A solution of the problem is a point a ∈ V (K) with vx(a − ai) > vx(ci) for all

i ∈ I0 and x ∈ Xi. We say K satisfies the block approximation condition if each

block approximation problem for K is solvable.

Note that we could reformulate the block approximation condition by dropping

the condition on V to be smooth and demanding instead ai to be smooth on V .

The block approximation condition has several interesting consequences.

Definition 12.2: Pseudo-K-closed fields. Let K be a field and K a set of field extensions

of K. We say K is PKC if this holds: Every smooth absolutely irreducible variety V

over K with a K ′-rational point for each K ′ ∈ K has a K-rational point.
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Proposition 12.3: Let K = (K,X,Kx, vx)x∈X be a Henselian field-valuation struc-

ture satisfying the block approximation condition.

(a) Put K = {Kx | x ∈ X}. Then K is PKC.

(b) Let x1, . . . , xn ∈ X lie in distinct Gal(K)-orbits. Then vx1 |K , . . . vxn
|K satisfies the

weak approximation theorem.

(c) Suppose x, y ∈ X lie in distinct Gal(K)-orbits. Then vx|K and vy|K are indepen-

dent.

(d) Suppose X has more than one Gal(K)-orbit. Then the trivial valuation is not in

νK(X).

(e) For each x ∈ X, K is vx-dense in Kx; and

(f) (Kx, vx) is a Henselian closure of (K, vx|K).

(g) Suppose Kx 6= Ks. Then Aut(Kx/K) = 1.

Proof of (a): Let V be a smooth absolutely irreducible variety over K with a point ax ∈

V (Kx) for each x ∈ X. Then Gal(K(ax)) is an open subgroup of Gal(K) containing

Gal(Kx). Lemma 3.6 gives a special partition (Gal(K(axi
)), Xi)i∈I0 with xi ∈ Xi for

each i ∈ I0. Thus, (V,Xi,K(axi),axi , 1)i∈I0 is a block approximation problem for K.

Our assumption gives a point a ∈ V (K). It follows, K is PKC.

Proof of (b): Put vi = vxi
|K , i = 1, . . . , n. Let ai, ci be elements of K with ci 6= 0.

Since X/Gal(K) is profinite, there are open-closed distinct Gal(K)-invariant subsets

X1, . . . , Xn of X with xi ∈ Xi, i = 1, . . . , n. Let I = {0, 1, . . . , n}, X0 = X rX1 ∪ · · · ∪

Xn, a0 = 0, and c0 = 1. Then (A1
K , Xi,K, ai, ci)i∈I0 is a block approximation problem

for K.

By assumption, there is a ∈ K with vi(a − ai) > vi(ci), i = 1, . . . , n. It follows,

v1, . . . , vn satisfy the weak approximation theorem.

Proof of (c): Use (b).

Proof of (d): Assume v0 = vx|K is trivial for some x ∈ X. Choose y ∈ X outside

the Gal(K)-orbit of x. By (c), v1 = vy|K is nontrivial. Hence, there is a1 ∈ K with

v1(a1) < 0. Statement (b) gives a ∈ K with v0(a− a1) > 0 and v1(a) > 0. By the first
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inequality, a = a1. Hence, by the second inequality, v1(a1) > 0, in contradiction to the

choice of a1.

Proof of (e): Let x ∈ X, a1 ∈ Kx, and c1 ∈ K×. We have to find a ∈ K satisfying

vx(a− a1) > vx(c1).

We apply Lemma 3.6 to the group structure Gal(K) with Y = X and Y0 =

{x}. First we notice that G′x = Gal(K(a1)) is an open subgroup of Gal(K) containing

Gal(Kx). For each y ∈ X r{x} let G′y = Gal(K). Finally, for each y ∈ X let Vy = X.

By Lemma 3.6, there exist a finite set I0 which we may assume to contain 1, a finite set

{yi | i ∈ I0} with y1 = x, and a special partition (G′yi
, Xi)i∈I0 such that yi ∈ Xi ⊆ Vyi

for each i ∈ I0.

Let V = A1
K and L1 = K(a1). For each i ∈ I0 r{1} let Li = K, ai = 0,

and ci = 1. Then (V,Xi, Li, ai, ci)i∈I0 is a block approximation problem for the field-

valuation structure K. By assumption, K satisfies the block approximation condition.

Hence, there exists a ∈ K with vx(a− a1) > vx(c1), as desired.

Proof of (f): By assumption, (Kx, vx) is Henselian. Choose a Henselian closure (K ′, vx)

of (K, vx|K) in (Kx, vx). Consider a ∈ Kx. Let a1, . . . , an be the conjugates of a over

K ′. By (e) there is b ∈ K with vx(b − a) > maxi 6=j vx(ai − aj). Hence, by Krasner’s

Lemma [Jar, Lemma 12.1], K ′(a) ⊆ K ′(b) = K ′. Therefore, Kx = K ′.

Proof of (g): Let σ ∈ Aut(Kx/K). Then both vx and vσx are Henselian valuations of

Kx. Therefore, Kx has a nontrivial valuation w which is coarser than both vx and vσx

[Jar, Lemma 13.2]. In particular, the vx-topology of K coincides with the w-topology

of K [Jar, Lemma 3.2]. Hence, by (e), K is w-dense in Kx.

Assume there exists b ∈ Kx with b 6= bσ. Then there exists c ∈ K× with v(c) >

v(b− bσ−1
) and there exists a ∈ K with w(a− b) > w(c). Since w is coarser than both

v and vσ, we have v(a − b) > v(c) and vσ(a − b) > v(c). Hence, v(a − bσ−1
) > v(c).

Therefore, v(b− bσ−1
) > v(c), in contradiction to the choice of c.

Proposition 12.4: Let K be a Henselian field-valuation structure that satisfies the

block approximation condition. Then K is unirationally closed.
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Proof: Consider a unirational arithmetical problem

Φ = (V,Xi, Li, πi: Ui → V ×K Li)i∈I0

for K as in Definition 6.1. Let X ′ =
⋃
i∈I0 Xi. We find a solution (a,bx)x∈X′ of Φ.

To this end consider i ∈ I0. Since νLi is continuous, Bi = νLi(Xi) is a closed subset

of Val(Li). For each x ∈ Xi put vx,i = νLi(x). Then (K, vx|K) ⊆ (Li, vx,i) ⊆ (Kx, vx).

Since Ui is birationally equivalent to ArLi
, there exists ai ∈ Ui(Li). Then bi =

πi(ai) ∈ V (Li). By definition, πi is étale at ai (see (3d) of Section 6). Thus, Corollary

10.4 (with Li, πi: Ui → V ×K Li replacing K, ϕ: V → W ) gives a partition Bi =⋃
· j∈Ji

Bij with Bij closed in Val(Li), an open neighborhood Uij of ai in Set(Li, Ui,Bij),

and an open neighborhood Vij of bi in Set(Li, V ×K Li,Bij), j ∈ Ji satisfying this:

(2) For all j ∈ Ji and x ∈ Xi with vx,i ∈ Bij the map πi: Uij(Kx) → Vij(Kx) is a

vx-homeomorphism.

For all i ∈ I0 and j ∈ Ji Lemma 9.4 gives a partition Bij =
⋃
· l∈Λij

Bijl with Λij

finite, Bijl closed, and cijl ∈ L×i , l ∈ Λij , such that Bbi,cijl,Bijl
(M,w) ⊆ Vij(M,w) for

each (M,w) ∈ Hensel(Li,Bijl), l ∈ Λij . For all l ∈ Λij put Lijl = Li, Xijl = ν−1
Li

(Bijl),

and bijl = bi. Then Xijl is a closed subset of Xi, Xi =
⋃
· j∈Ji

⋃
· l∈Λij

Xijl, and

(3) {b ∈ V (Kx) | vx(b− bi) > vx(cijl)} ⊆ Vij(Kx)

for all x ∈ Xijl and l ∈ Λij .

Since Xi is open-closed in X, so are Xijl. If σ ∈ Gal(Li), then Xσ
ijl = Xijl.

Indeed, let x ∈ Xijl. Then νLi(x
σ) = vxσ |Li = vσx |Li = vx|Li ∈ Bijl, so xσ ∈ Xijl. If

σ ∈ Gal(K), i, i′ ∈ I0, j ∈ Ji, j′ ∈ Ji′ , l ∈ Λij , l′ ∈ Λi′j′ , and Xσ
ijl ∩ Xi′j′l′ 6= ∅, then

Xσ
i ∩Xi′ 6= ∅, so i′ = i and σ ∈ Gal(Li). Thus our assumption becomes Xijl∩Xij′l′ 6= ∅.

Therefore, j = j′ and l = l′. It follows that

(V,Xijl, Lijl,bijl, cijl)i∈I0, j∈Ji, l∈Λij

is a block approximation problem for K.

The block approximation condition gives b ∈ V (K) with vx(b − bi) > vx(cijl)

for all i ∈ I0, j ∈ Ji, l ∈ Λij , and x ∈ Xijl. By (3), b ∈ Vij(Kx). By (2), there is
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ax ∈ Uij(Kx) with πi(ax) = b. In particular, ax ∈ Ui(Kx). Thus, (b,ax)x∈X′ is a

solution of Φ.

Theorem 12.5: Let K = (K,X,Kx, vx)x∈X be a proper Henselian field-valuation

structure. Suppose K satisfies the block approximation condition. Then Gal(K) is

a projective group structure.

Proof: By Proposition 12.4, K is unirationally closed. Since Gal(K) is a proper group

structure, Sx = Gal(Kx) for each x ∈ X (Remark 2.1). Hence, by Proposition 6.4,

Gal(K) is projective.

This completes the proof of Part (a) of the Main Theorem. The rest of the work

is devoted to the proof of Part (b) of the Main Theorem.
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13. Rigid Henselian Extensions

This section continuous of Section 7. It contains various results about valued fields

which are needed in the proof of Part (b) of the Main Theorem.

For a field extension F/K let Val(F/K) be the space of all valuations of F (includ-

ing the trivial one) which are trivial on K. Denote the valuation ring of a valuation w of

K by Ow, its maximal ideal by Mw, and its residue field by K̄w. Another valuation v of

K is said to be finer than w if Ov ⊆ Ow, equivalently if Mw ⊆Mv. Thus, w(x) < w(y)

implies v(x) < v(y) for all x, y ∈ K. Then E = K̄w has a unique valuation v̄ satisfying

v̄(x+Mw) = v(x) for x ∈ Ow. In particular, K̄v = Ēv̄. Denote v̄ by v/w.

Conversely, given a valuation v̄ of E, there is a unique valuation v of K which

is finer than w for which v/w = v̄ [Jar, §3]. Then the place ϕv: K → K̄v ∪ {∞}

corresponding to v is the compositum of the place ϕw: K → K̄w ∪ {∞} and the place

ϕv̄: K̄w → K̄v ∪ {∞}. We write v = v̄ · w.

Lemma 13.1: Let K be a field, K̃ its algebraic closure, and T a set of indeterminates

with card(T ) ≥ card(K̃). Put F = K(T ). Then, for each algebraic extension L of K

there exists v ∈ Val(F/K) with F̄v = L.

Proof: Put m = card(T ). Choose a well ordered transfinite sequence (aα)α<m which

generates L over K. Well-order T as (tα)α<m. For each β ≤ m let Fβ = K(tα | α < β)

and Lβ = L(aα | α ≤ β).

Consider γ ≤ m. Inductively suppose for each β < γ there is a vβ ∈ Val(Fβ/K)

with F̄β = Lβ such that vβ′ extends vβ whenever β ≤ β′.

If γ is a limit cardinal, then the union of all vβ is a valuation vγ of Fγ with residue

field Lγ . Otherwise, γ = β + 1, Fγ = Fβ(tγ), and tγ is transcendental over Fβ . Extend

vβ to a valuation v′ of Fγ with residue field Lβ(tγ) with tγ being its own residue [Bou,

Chap. VI, §10.1, Lemma 1, p. 434]. Let w be the Lβ-valuation of Lβ(tγ) with t̄γ = aγ

and Lβ(tγ) = Lβ(aγ) = Lγ . Then ϕw ◦ ϕv′ extends ϕvβ
. Hence, vγ = w · v′ extends vβ

and has Lγ as residue field. This completes the induction.

The valuation v = vm of F is trivial on K and satisfies F̄v = L.

Lemma 13.2: Consider a perfect field K.
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(a) Let L be an extension of K and v ∈ Val(L/K). Suppose (L, v) is Henselian, L̄v is

an algebraic extension of K, and res: Gal(L) → Gal(K) is an isomorphism. Then,

L̄v = K.

(b) Let L be a rigid Henselian extension of a K (Definition 7.6) and L′ a separable

algebraic extension of L. Then L′ is a rigid Henselian extension of L′ ∩ K̃.

(c) Suppose L/K and M/L are rigid Henselian extensions. Then so is M/K.

(d) Let K be a field and I a totally ordered set. For each i ∈ I let (Li, vi) be a

rigid Henselian extension of K. Suppose (Li, vi) ⊆ (Lj , vj) if i ≤ j. Put (L, v) =⋃
i∈I(Li, vi). Then (L, v) is a rigid Henselian extension of K.

Proof of (a): By Lemma 7.4(a), reduction modulo v defines an epimorphism

ρ: Gal(L)→ Gal(L̄v) and ρ = resLs/K̃
. Hence,

Gal(L̄v) = ρ(Gal(L)) = resLs/K̃
(Gal(L)) = Gal(K).

Therefore, K = L̄v.

Proof of (b): By definition, L has a valuation v such that (L, v) is Henselian, L̄v = K,

and res: Gal(L) → Gal(K) is an isomorphism. Denote the unique extension of v to L′

by v. Then, (L′, v) is Henselian, L′v/K is algebraic, and res: Gal(L′)→ Gal(L′ ∩ K̃) is

an isomorphism. By (a), L′v = L′ ∩ K̃. Therefore, (L′, v) is a rigid Henselian extension

of L′ ∩ K̃.

Proof of (c): By assumption, L admits a valuation v and M admits a valuation w

such that (L, v) is a rigid Henselian extension of K and (M,w) is a rigid Henselian

extension of L. Let w′ = v · w. Then (M,w′) is Henselian and M̄w′ = K [Jar,

Prop. 13.1]. Also, ϕw′(a) = ϕv(ϕw(a)) = a for each a ∈ K. Hence, w′ is trivial

on K. Finally, res: Gal(M) → Gal(L) and res: Gal(L) → Gal(K) are isomorphisms.

Therefore, res: Gal(M) → Gal(K) is an isomorphism. Consequently, (M,w′) is a rigid

Henselian extension of K.

Proof of (d): Routine check.

An earlier version of the following result appears on page 24 of [Pop] without a

proof.
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Lemma 13.3: Let K be a field and T a set of indeterminates with card(T ) ≥ card(K̃).

Put F = K(T )ins. Then, for each perfect algebraic extension L of K there are v ∈

Val(F/K) and a Henselian closure (Fv, v) of (F, v) which is a rigid Henselian extension

of L.

Proof: We may replace K by Kins, if necessary, to assume K is perfect. Write T =⋃
· ∞i=1 Ti with card(Ti) = card(T ) for each i. Inductively define K0 = K and Ki =

Ki−1(Ti)ins for i = 1, 2, 3 . . . . ThenKi is perfect and card(K̃i) = card(Ti) i = 1, 2, 3, . . . .

Also, F =
⋃∞
i=1Ki.

Let v0 be the trivial valuation of K. Put K ′
0 = K0 and L0 = L. Suppose by

induction we have constructed algebraic extensions K ′
i ⊆ Li of Ki and a valuation vi of

Li satisfying this:

(1a) (K ′
i, vi) is a Henselian closure of (Ki, vi|Ki).

(1b) (Li, vi) is a rigid Henselian extension of L.

(1c) Li−1 ⊆ K ′
i.

(1d) vi extends vi−1.

Lemma 13.1 gives a valuation w ∈ Val(Ki+1/Ki) with residue field Li. Let vi+1 =

vi ·w. Since Li/Ki is separable, (Ki+1, w) has a Henselian closure E which contains Li.

Since vi+1 is finer than w, there is a Henselian closure (K ′
i+1, vi+1) of (Ki+1, vi+1) which

contains E [Jar, Cor. 14.4], hence Li. By Proposition 7.4(c), K ′
i+1 has an algebraic

extension Li+1 such that res: Gal(Li+1) → Gal(L) is an isomorphism. Denote the

unique extension of vi+1 to Li+1 again by vi+1. Then (Li+1, vi+1) is a rigid Henselian

extension of L (Lemma 13.2(b)).

Let Fv =
⋃∞
i=1K

′
i, L∞ =

⋃∞
i=1 Li, and v =

⋃∞
i=1 vi. Then v is a valuation of Fv

over K, (Fv, v) is a Henselian closure of (F, v), Fv = L∞, L ⊆ L∞, and res: Gal(L∞)→

Gal(L) is an isomorphism. Thus, (Fv, v) is a rigid Henselian extension of L.

Lemma 13.4: Let (K, v) be a valued field and (E,w) a Henselian closure. Suppose

E 6= Ks and for each separable algebraic extension F 6= Ks of E the residue field F̄ of

F under the unique extension of w to F is not separably closed. Then Aut(E/K) = 1

and EEσ = Ks for each σ ∈ Gal(K) r Gal(E).
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Proof: By assumption, Ē is not separably closed. Hence, by F. K. Schmidt - Engler,

Aut(E/K) = 1 [Jar, Prop. 14.5].

Consider now σ ∈ Gal(K). Put E′ = Eσ and w′ = wσ. Then (E′, w′) is also a

Henselian closure of (K, v). Let F = EE′. Denote the unique extension of w (resp. w′)

to F by wF (resp. w′F ). Then both wF and w′F extend v. We prove: Either σ ∈ Gal(E)

or F = Ks.

Case A: wF = w′F . Denote the unique extension of wF to Ks by ws. It coincide with

the unique extension w′s of w′F to Ks. In addition, wσs is the unique extension of w′

to Ks, so also the unique extension of w′F to Ks. Thus, ws = w′s = wσs . Therefore, σ

belongs to the decomposition group of ws over K, which is Gal(E).

Case B: wF 6= w′F . By Engler, wF and w′F are incomparable [Jar, Prop. 6.6]. Since

F is Henselian with respect to both wF and w′F , the field F̄wF
is separably closed [Jar,

Prop. 13.4]. Hence, by assumption, F = Ks.
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14. Projective Group Structures as Absolute Galois Structures

Part (b) of the Main Theorem gives for each proper projective group structure

G = (G,X,Gx)x∈X a proper field-valuation structure L and isomorphism λ: G →

Gal(L). We call λ a Galois isomorphism of G. An obvious necessary condition for

the existence of a Galois isomorphism of G is the existence of a Galois approximation

of G. This is a rigid epimorphism κ: G→ Gal(K) where K is a field structure. In this

section we generalize [Pop, Thm. 3.4] and “lift” each Galois approximation of G to an

isomorphism κ′: G → Gal(K′) where K′ is a field structure. Then, in Section 15, we

lift κ′ further to a Galois isomorphism λ as above.

Here κ′: G → Gal(K′) is said to lift κ if K ⊆ K ′ and res: Gal(K ′) → Gal(K)

extends to a morphism ρ: Gal(K′) → Gal(K) with res ◦ κ′ = κ. Then ρ is a rigid

epimorphism.

Lemma 14.1: Let G be a profinite group, H an open subgroup, K a closed normal

subgroup, and G a étale compact subset of Subgr(G). Suppose Γ ∩ K = 1 for each

Γ ∈ G. Then G has an open normal subgroup N with N ≤ H and ΓN ∩KN = N for

each Γ ∈ G.

Proof: Let N be the set of open normal subgroups of G containing K. Assume

without loss H / G. Now consider ∆ ∈ G. Assume, for each M ∈ N , the closed subset

∆ ∩M rH of G is nonempty. Then, by compactness of G,
⋂
M∈N ∆ ∩M rH 6= ∅.

On the other hand,
⋂
M∈N ∆ ∩M = ∆ ∩

⋂
M∈N M = ∆ ∩K = 1. This contradiction

gives M∆ ∈ N with ∆ ∩M∆ rH = ∅. In other words, ∆ ∩M∆ ≤ H. It follows that

∆(H ∩M∆) ∩M∆ ≤ H.

Now consider the étale open neighborhood U∆ = Subgr
(
∆(H ∩M∆)

)
∩ G of ∆ in

G. For each Γ ∈ U∆ we have Γ ∩M∆ ≤ ∆(H ∩M∆) ∩M∆ ≤ H.

Since G is étale compact, there are ∆1, . . . ,∆r ∈ G with G =
⋃r
i=1 U∆i

. Then

N = H ∩
⋂r
i=1M∆i is the desired open normal subgroup of G. Indeed, let Γ ∈ G. Then

Γ ∈ U∆j for some j. Hence, Γ∩KN ≤ Γ∩M∆j ≤ H. Thus, Γ∩KN ≤ H∩
⋂r
i=1M∆i =

N . Therefore, ΓN ∩KN = N .

In the following Lemma and its applications we use the relation A ⊂ B between
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sets to mean “A is a proper subset of B”.

Lemma 14.2: Let G = (G,X,Gx)x∈X be a proper projective group structure, κ: G→

Gal(K) a Galois approximation, and G0 an open subgroup of G. Then κ can be

lifted to a Galois approximation ε: G → Gal(E′) with K ⊂ E′, Ker(ε) ≤ G0, and

trans.deg(E′/K) <∞.

Proof: Replacing K by Kins (Lemma 11.1), if necessary, we may assume K is perfect.

The rest of the proof has three parts.

Part A: Replace Gal(K) by a relative Galois group. By definition, Gx ∩Ker(κ) = 1

for each x ∈ X. Hence, Lemma 14.1 gives an open normal subgroup N of G contained

in G0 with

(1) GxN ∩Ker(κ)N = N for each x ∈ X.

Put B = G/N , A = Gal(K)/κ(N), let β: G → B and ι: Gal(K) → A be the quotient

maps, and α: B → A the epimorphism induced by κ. Then α ◦ β = ι ◦ κ. Let

Ḡ = B ×A Gal(K). Then let κ̄: Ḡ → Gal(K) and β̄: Ḡ → B be the coordinate

projections. There is a unique morphism ρ: G→ Ḡ with κ̄ ◦ ρ = κ and β̄ ◦ ρ = β.

G

ρ
��?

??
??

??
?

κ

((QQQQQQQQQQQQQQ

β

��/
//

//
//

//
//

//
//

Ḡ
κ̄ //

β̄

��

Gal(K)

ι

��
B

α // A

Since Ker(ι ◦ κ) = NKer(κ) = Ker(β)Ker(κ), we may assume that Ḡ = G/N ∩Ker(κ)

and ρ is the quotient map [FrJ, Section 20.2].

Let L be the fixed field of κ(N) in K̃. Identify A with Gal(L/K) and ι with

resK̃/L. Lemma 6.2 gives a regular extension E of K of transcendence degree equal

to |B| (in particular, E 6= K) and a finite Galois extension F of E containing L with

B = Gal(F/E) and α = resF/L. Since E/K is regular, Ḡ = Gal(F/E) ×Gal(L/K)

Gal(K) = Gal(FK̃/E), β̄ = resFK̃/F , and κ̄ = resFK̃/K̃ .
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Extend Ḡ to a group structure Ḡ = G/Ker(ρ) and ρ to the quotient map ρ: G→

Ḡ. Then κ̄ extends to a rigid epimorphism κ̄: Ḡ→ Gal(K) such that κ = κ̄ ◦ ρ.

Part B: The cover π: Gal(E) → Ḡ. Write Ḡ as (Ḡ, Y, Ḡy)y∈Y . Put N̄ = ρ(N).

For each y ∈ Y choose x ∈ X such that ρ(x) = y. Then Ḡy = ρ(Gx) and ḠyN̄ =

ρ(GxN) is an open subgroup of Ḡ which contains Ḡy. Let Ly be the fixed field of

κ̄(ḠyN̄) = κ(GxN) in K̃ and Fy the fixed field of β̄(ḠyN̄) = β(GxN) = GxN/N

in F . Then κ(GxN) = Gal(Ly), β(GxN) = Gal(F/Fy), and ḠyN̄ = Gal(FK̃/Fy).

Since α = resF/L maps Gal(F/Fy) onto resK̃/L(Gal(Ly)) = Gal(L/Ly), we have Ly ⊆

Fy. Also, Ker(α) = Ker(κ)N/N . Hence, by (1), α is injective on GxN/N . Thus α

maps Gal(F/Fy) isomorphically onto Gal(L/Ly). By Lemma 6.2, Fy/Ly is a purely

transcendental extension.

Proposition 7.7(c) gives a perfect algebraic extension Ey of Fy which is a rigid

Henselian extension of Ly. In particular, resẼ/K̃ : Gal(Ey) → Gal(Ly) is an isomor-

phism. Therefore, Ẽ = EyK̃ and FK̃ = FyLK̃ = FyK̃. Consequently, res: Gal(Ey) →

Gal(FK̃/Fy) is an isomorphism.

Ey • Ẽ

Fy F FK̃

E •

K Ly L K̃

Lemma 3.6 gives a finite subset {yi | i ∈ I0} of Y and a special partition (Ḡi, Yi, Ri)i∈I0

of Ḡ (Definition 3.5) such that Ḡi = ḠyiN̄ and yi ∈ Yi for each i ∈ I0. Thus,

resẼ/FK̃ : Gal(Eyi
) → Ḡi is an isomorphism, i ∈ I0. Therefore, Lemma 5.1 extends

resẼ/FK̃ : Gal(E) → Ḡ to a cover of group structures. This means there is a field

structure E on E and a cover π: Gal(E)→ Ḡ.
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Part C: Applying projectivity. Since G is projective, there is a morphism ε: G →

Gal(E) with π ◦ε = ρ. Let E′ be the fixed field of ε(G) in Ẽ. Then E′ extends to a field

structure E′ such that Gal(E′) is a sub-group-structure of Gal(E) and ε: G→ Gal(E′)

is an epimorphism. Since both ρ and π are covers, ρ: Gx → Ḡρ(x) and π: Gal(E′ε(x))→

Ḡρ(x) are isomorphisms, so ε: Gx → Gal(E′ε(x)) is an isomorphism for each x ∈ X. Thus

ε is a rigid epimorphism, hence ε is a Galois approximation of G which lifts κ.

G
ε

{{ww
ww

ww
ww

w
ρ

��

κ

##GG
GG

GG
GG

G

Gal(E′) π // Ḡ
κ̄ // Gal(K)

Finally Ker(ε) ≤ Ker(ρ) ≤ N ≤ G0 and E′ is a proper extension of K.

Proposition 14.4: Let G be a proper projective group structure and κ: G→ Gal(K)

a Galois approximation. Then κ can be lifted to a Galois isomorphism λ: G→ Gal(L)

with an underlying perfect field.

Proof: Let {Gα | α < m} be a well ordering of all open subgroups of G. By transfinite

induction we construct for each α ≤ m a Galois approximation κα: G→ Gal(Kα) such

that K0 = K, κ0 = κ, κβ lifts κα if α ≤ β ≤ m, the underlying field Kα of Kα is

perfect, and Ker(κα+1) ≤ Gα.

Indeed, suppose β is an ordinal number at most m and κα have already been

constructed for each α < β. If β = α + 1 is a successor ordinal, use Lemma 14.2

to construct a Galois approximation κβ : G → Gal(Kβ) and a rigid epimorphism

ρβ,α: Gal(Kβ) → Gal(Kα) with ρβ,α ◦ κβ = κα such that Kβ is perfect, Kα ⊆ Kβ ,

ρβ,α: Gal(Kβ) → Gal(Kα) is the restriction map, and Ker(κβ) ≤ Gα. If β is a

limit ordinal, then {Gal(Kα), ρα′,α | α ≤ α′ < β} is an inverse system of Galois group

structures with Kα ⊆ Kα′ , ρα,α′ : Gal(K ′
α) → Gal(Kα) are the restriction maps, and

ρα,α′ : Gal(K′
α) → Gal(Kα) are rigid epimorphisms. Then Gal(Kβ) = lim←−Gal(Kα) is

a group structure with Kβ =
⋃
α<βKα and with rigid projections ρβ,α: Gal(Kβ) →

Gal(Kα) (Remark 2.7). Moreover, the inverse limit of the κα’s gives a Galois approxi-

mation κβ : G→ Gal(Kβ) with ρβ,α ◦ κβ = κα for each α < β.
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Having completed the transfinite induction, we put L = Km and λ = κm. Then

the underlying field of L is perfect and λ: G → Gal(L) is a Galois approximation

lifting κ (Remark 2.7). Moreover, Ker(λ) ≤
⋂
α<mGα = 1. Since G is proper, λ is an

isomorphism (Remark 2.1).

Remark 14.3: Cardinality of L. We may assume that the cardinality of L in Propo-

sition 14.4 is not smaller than any given cardinality m. Indeed, without loss κ is an

isomorphism. Hence, if λ lifts κ, then λ is an isomorphism. Put λ0 = κ. By transfinite

induction construct a family of Galois approximations λα: G→ Gal(Lα) with underly-

ing fields Lα such that λβ lifts λα and Lα ⊂ Lβ for all α ≤ β ≤ m. Namely, if β is a

limit ordinal, put Lβ =
⋃
α<β Lβ and Lβ,x =

⋃
α<β Lα,x; otherwise use Lemma 14.2 to

construct a lifting λβ of λβ−1. Then λ = λm has the required property.
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15. From Field Structures to Field-Valuation Structures

Having lifted a given Galois approximation κ: G → Gal(K) of a proper projective

group structure to a Galois isomorphism ε: G → Gal(E), we wish to extend E to

a proper field-valuation structure L which satisfies the block approximation condition

and res: Gal(L)→ Gal(K) is an isomorphism.

The crucial step in the construction is, starting from a field-valuation structure

K and a data (V,Xi, Li,bi)i∈I0 satisfying (2) below, to extend K to a field-valuation

structure with a point z ∈ V (K ′) blockwise approximating each bi infinitely well over

K; that is, z satisfies Condition (3c) below.

Let K = (K,X,Kx, vx)x∈X and K′ = (K ′, X ′,K ′
x, v

′
x)x∈X′ be field-valuation

structures. We say K′ extends K and write K ⊆ K′ if K ⊆ K ′, Kx ⊆ K ′
x, and

vx = v′x|Kx
for each x ∈ X.

Lemma 15.1: Let K = (K,X,Kx, vx)x∈X and K̄ = (K̄,X, K̄x, v̄x)x∈X be proper

Henselian field-valuation structures satisfying this:

(1a) K̄ and K are perfect.

(1b) K̄ ⊆ K and the map resKs/K̄s
: Gal(K)→ Gal(K̄) (with the identity map X → X)

is an isomorphism.

(1c) Gal(K̄) is projective.

(1d) v̄x is the trivial valuation of K̄x, x ∈ X.

(1e) K̄x is the residue field of (Kx, vx), x ∈ X.

Consider a data (V,Xi, Li,bi)i∈I0 satisfying this:

(2a) (Gal(Li), Xi)i∈I0 is a special partition of Gal(K).

(2b) V is a smooth absolutely irreducible affine variety over K.

(2c) bi ∈ V (Li).

Then K has a proper field-valuation extension K′ = (K ′, X,K ′
x, v

′
x)x∈X with K ′

perfect satisfying this:

(3a) (K ′
x, v

′
x) is a Henselian field with residue field K̄x, x ∈ X.

(3b) resK̃′/K̃ : Gal(K ′) → Gal(K) together with the identity map X → X form an

isomorphism Gal(K′)→ Gal(K).
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(3c) There is z ∈ V (K ′) with v′x(z− bi) > v′x(c) for all i ∈ I0, x ∈ Xi, and c ∈ K×.

Proof: Suppose first X = {x}. By Remark 2.1, Kx = K. Let (V,Xi, Li,bi)i∈I0 is a

data satisfying (2). Then I0 = {i} and Li = K. Hence, K′ = K and z = bi satisfy (3).

We may therefore suppose X has at least two elements.

We construct an extension F of K of large transcendence degree such that V (F )

contains a generic point z of V over K. Then we extend F to a proper field-valuation

structure F = (F, Y, Fy, wy) with a cover π: Gal(F) → Gal(K) such that (Fy, wy) is a

rigid Henselian extension of (Kπ(y), vπ(y)), y ∈ Y . Since Gal(K) is projective, F has a

extension F′ = (K ′, X ′, Fy, wy)y∈X′ such that π: Gal(K′)→ Gal(K) is an isomorphism.

Renaming X ′ as X gives the desired extension K′ of K. In this construction, the

valuations wy are defined in such a manner that z blockwise approximates the bi’s

infinitely well over K. The construction has six parts.

Part A: The field F . Let z be a generic point of V over K. Put E = K(z)ins.

Since V is absolutely irreducible and K is perfect, E/K is a regular extension. Hence,

res: Gal(E)→ Gal(K) is an epimorphism. Let i ∈ I0. By [JaR, p. 456, Cor. A2], there

is an Li-place ρ̄i: Li(z) → Li ∪ {∞} with ρ̄i(z) = bi. By Proposition 7.4, there is a

perfect algebraic extension Ei of Li(z) and an extension of ρ̄i to a rigid Henselian place

ρi: Ei → Li ∪ {∞}. In particular, E ⊆ Ei and ρi(z) = bi.

Choose a set T of indeterminates with card(T ) ≥ card(E). Put F = E(T )ins.

Then F is a regular extension of E, hence of K. Therefore, res: Gal(F ) → Gal(K) is

an epimorphism. In addition, z ∈ V (F ).

Part B: The field structure (F, Y, Fy)y∈Y . Lemma 13.3 gives for each i ∈ I0 a valua-

tion w′i of F with residue field Ei and a Henselian closure (Fi, w′i) of (F,w′i) such that

the corresponding place ϕi: Fi → Ei ∪ {∞} is rigid.

Put ψi = ρi ◦ ϕi. Then ψi: Fi → Li ∪ {∞} is a rigid Li-place (Lemma 13.2(c)).

In particular, res: Gal(Fi) → Gal(Li) is an isomorphism. Moreover, ψi extends to a

K̃-place ψi: F̃ → K̃ ∪ {∞} with ψi(F ′) = (F ′ ∩ K̃) ∪ {∞} for each algebraic extension

F ′ of Fi. Denote the corresponding valuation by w′i. Thus, if F ′ is not algebraically

closed, then the residue field of F ′ with respect to w′i is not algebraically closed. By
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Lemma 13.4,

(4) FiF
κ
i = F̃

for each κ ∈ Gal(F ) r Gal(Fi).

By Lemma 5.1, Gal(F ) extends to a proper group structure

(5) Gal(F) = (Gal(F ), Y,Gal(Fy))y∈Y

and res: Gal(F )→ Gal(K) extends to a cover π: Gal(F)→ Gal(K) of group structures.

Part C: The field-valuation structure F = (F, Y, Fy, wy)y∈Y . In addition to the cover

π mentioned in Part B, Lemma 5.1 gives for each i ∈ I0 a subspace Yi of Y such that

π(Yi) = Xi, Fi ≤ Fy for each y ∈ Yi, and Y =
⋃
i∈I0 Y

Gal(F )
i .

Consider i ∈ I0 and y ∈ Yi. Let x = π(y). Then Fi ≤ Fy, Li ≤ Kx, and

res: Gal(Fy)→ Gal(Kx) is an isomorphism (because π is a cover). Thus, Fy = FiKx and

Kx = Fy ∩ K̃. Since ψi: Fi → Li∪{∞} is a rigid Li-place (Part B), ψi(Fy) = Kx∪{∞}

(Lemma 13.2(b)). Since K is proper and X has at least two elements, Kx 6= K̃ (Remark

2.1), so Fy 6= F̃ .

F Fi Fy F̃

E Ei

K Li Kx K̃

K̄ K̄x
¯̃K

By assumption, (Kx, vx) is Henselian. Hence, vx uniquely extends to a valuation

vx of K̃. Let wy = vx · w′i be the unique valuation of F̃ finer than w′i such that

wy(u) = vx(ψi(u)) for each u ∈ F̃ with ψi(u) ∈ K̃×. Then Owy = {u ∈ F̃ | ψi(u) ∈

K̃ and vx(ψi(u)) ≥ 0}, Thus, if u ∈ F̃ satisfies ψi(u) = ∞, then wy(u) < 0. If u ∈ K̃,

then ψi(u) = u, so wy(u) = vx(u). Hence, wy extends vx (See also the beginning
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of Section 13.) Since (Kx, vx) and (Fy, w′i) are Henselian, (Fy, wy) is Henselian [Jar,

Prop. 13.1]. In addition, K̄x is the residue field of Fy at wy.

We would like to define (Fy, wy) for all y ∈ Y . So, we consider σ ∈ Gal(F ) and

suppose, in addition to the assumption made above, that yσ ∈ Yj for some j ∈ I0. We

prove that wyσ = wσy .

Indeed, π(y) ∈ Xi and π(y)π(σ) ∈ Xj . Hence, Xπ(σ)
i ∩ Xj 6= ∅. By (2a) and

by (2g) of Section 3, i = j and π(σ) ∈ Gal(Li). Hence, there are ζ ∈ Gal(Fi) and

κ ∈ Gal(FK̃) with σ = κζ. Since yσ ∈ Yi, we have Fi ⊆ Fyσ = Fσy . Therefore,

FiF
κ−1

i = FiF
ζσ−1

i = FiF
σ−1

i ⊆ Fy ⊂ F̃ . By (4), κ = 1, so σ ∈ Gal(Fi). Now consider

u ∈ Fσy with ψi(u) ∈ K×
x . Since ψi is rigid, ψi(uσ

−1
) = ψi(u)π(σ)−1

(Proposition 7.4(a)).

Therefore, wσy (u) = wy(uσ
−1

) = vx(ψi(uσ
−1

)) = vx(ψi(u)π(σ)−1
) = v

π(σ)
x (ψi(u)) =

vxπ(σ)(ψi(u)) = vπ(yσ)(ψi(u)) = wyσ (u). It follows, wσy = wyσ on Fyσ , and therefore also

on F̃ , as claimed.

For an arbitrary y′ ∈ Y there are τ ∈ Gal(F ), i ∈ I0, and y ∈ Yi with y′ = yτ .

Since (F, Y, Fy)y∈Y is a field structure, Fy′ = F τy . Define wy′ to be wτy . By the preceding

paragraph, this is a good definition. Thus, with x′ = π(y′), the valued field (Fy′ , wy′)

is a rigid Henselian extension of (Kx′ , vx′). Moreover, w(y′)σ = wσy′ for all σ ∈ Gal(F ).

Part D: Continuity of the map νF : YF → Val(F̃ ). For each x ∈ X let νK(x) = vx.

Since K is a Henselian field-valuation structure, the map νK : X → Val(K̃) is continuous

(Lemma 11.2). Similarly, for each y ∈ Y let νF (y) = wy. By Lemma 11.2, it suffices to

prove that the map νF : Y → Val(F̃ ) is continuous.

We start by proving that for each i ∈ I0, the restriction of νF to Yi is contin-

uous. Let y ∈ Yi and let u ∈ F̃ such that wy(u) > 0. By Part C, ψi(u) 6= ∞ and

vπ(y)(ψi(u))) = wy(u) > 0. If y′ ∈ Y is sufficiently close to y, then π(y′) is sufficiently

close to π(y), and hence vπ(y′)(ψi(u))) > 0 (because νK is continuous). Thus wy′(u) > 0.

Similarly, if wy(u) ≥ 0 and y′ is sufficiently close to y, then wy′(u) ≥ 0.

It follows that the map νi: Yi × Gal(F ) → Val(F̃ ) given by νi(y, τ) = wτy is

continuous. Indeed, let a ∈ F̃ and suppose wτy (a) > 0. Then wy(aτ
−1

) > 0. If y′ ∈ Yi is

sufficiently close to y and τ ′ ∈ Gal(F ) is sufficiently closed to τ , then, by the preceding
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paragraph, wτ
′

y′ (a) = wy′(a(τ ′)−1
) = wy′(aτ

−1
) > 0. Similar statement holds for ≥

replacing >.

Let ν̃i be the restriction of νF to Y Gal(F )
i . Let µ: Yi × Gal(F ) → Y

Gal(F )
i be the

map defined by µ(y, τ) = yτ . By Part C, νi = ν̃i ◦µ. Also, µ a continuous map between

profinite spaces, hence closed. By the preceding paragraph, for each closed subset C of

Val(F ), the set ν−1
i (C) is closed in Yi × Gal(F ). Therefore, ν̃−1

i (C) = µ(ν−1
i (C)) is a

closed subset of Y Gal(F )
i . Consequently, ν̃i is continuous.

Since Y =
⋃
i∈I0 Y

Gal(F )
i , the preceding paragraph implies νF : Y → Val(F̃ ) is

continuous, as claimed.

Part E: The proper group structure G′. By (1b) and (1c), Gal(K) is projective. By

Part B, π: Gal(F) → Gal(K) is a cover of group structures. Hence, by Corollary 4.3,

Gal(F) has a proper sub-group-structure

G′ = (Gal(K ′), X ′,Gal(Fx′))x′∈X′ ,

where K ′ is an algebraic extension of F and X ′ ⊆ Y such that π: G′ → Gal(K) is an

isomorphism. In particular, res: Gal(K ′)→ Gal(K) is an isomorphism and π: X ′ → X

is a homeomorphism. Then F′ = (K ′, X ′, Fx′ , wx′)x′∈X′ is a field-valuation structure.

Part F: The proper field-valuation structure K′. For each x ∈ X let x′ be the

unique element of X ′ with π(x′) = x. Put K ′
x = Fx′ and v′x = wx′ . Then K′ =

(K ′, X,K ′
x, v

′
x)x∈X is a proper field structure isomorphic to F′. In addition, K′ extends

K and satisfies Conditions (3a) and (3b).

We still have to prove Condition (3c) (block approximation). Let z = (z1, . . . , zn)

and bi = (bi1, . . . , bin), i ∈ I0. Then ψi(z) = ρi(z) = bi, ψi(bi) = bi, and ψi(c) = c for

all c ∈ K̃. Let y ∈ Yi and put x = π(y). Then, for all c ∈ K× and 1 ≤ j ≤ n we have

wy

(zj − bij
c

)
= vx

(ψi(zj)− bij
c

)
= vx

(0
c

)
> 0.

Therefore, wy(z− bi) > wy(c).

Finally, consider x ∈ Xi. Choose x′ ∈ X ′ and y ∈ Yi with π(x′) = x = π(y). Then

there is κ ∈ Gal(FK̃) with x′ = yκ. Then zκ
−1

= z and bκ
−1

= b. By the preceding
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paragraph, v′x(z−bi) = wx′(z−bi) = wy(zκ
−1−bκ

−1
) = wy(z−bi) > wy(c) = vx(c) =

v′x(c) for all c ∈ K×. This concludes the proof of the Lemma.

We apply Lemma 15.1 in each step of a transfinite induction. In the rest of this

section we write res: Gal(L)→ Gal(K) for proper field structures K ⊆ L to denote the

unique morphism that extend the homomorphism res: Gal(L)→ Gal(K) (Remark 2.1).

Lemma 15.2: Let K = (K,X,Kx, vx)x∈X and K̄ = (K̄,X, K̄x, v̄x) be proper Henselian

field-valuation structures satisfying (1). Then K has a proper field-valuation extension

L = (L,X,Lx, wx)x∈X with L perfect satisfying this:

(6a) (Lx, wx) is Henselian with residue field K̄x, x ∈ X.

(6b) res: Gal(L)→ Gal(K) is an isomorphism.

(6c) L satisfies the block approximation condition.

Proof: Well-order all data satisfying (2) in a transfinite sequence

(Vα, Xα,i,Kα,i,bα,i)i∈Iα , α < m.

Use transfinite induction and Lemma 15.1 to construct for each ordinal number α ≤ m a

proper field-valuation structure Kα = (Kα, X,Kα,x, vα,x)x∈X withKα perfect satisfying

these conditions:

(7a) (Kα,x, vα,x) is a Henselian field with residue field K̄x, x ∈ X.

(7b) Kα ⊆ Kβ and res: Gal(Kβ)→ Gal(Kα) is an isomorphism for all α < β ≤ m.

(7c) Kβ =
⋃
α<β Kα for each limit ordinal β ≤ m.

(7d) For each ordinal number α < m there is a point z ∈ Vα(Kα+1) with vα+1,x(z −

bα,i) > vα+1,x(c) for all i ∈ Iα, x ∈ Xα,i, and c ∈ K×
α .

Rewrite Km as L1 = (L1, X, L1,x, w1,x)x∈X . Then:

(8a) (L1, v1,x) is a Henselian field with residue field K̄x, x ∈ X.

(8b) K ⊆ L1 and res: Gal(L1)→ Gal(K) is an isomorphism.

(8c) Each approximation problem (V,Xi,Ki,bi)i∈I0 for K has a solution z ∈ V (L1).

Finally use usual induction to construct an ascending sequence of proper field-

valuation structures Lj , j = 1, 2, 3, . . . , such that Lj+1 relates to Lj in the same way

that L1 relates to K, j = 1, 2, 3, . . . . The structure L =
⋃∞
j=1 Lj satisfies (6).
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Proposition 15.3: Let K = (K,X,Kx)x∈X be a proper field structure with Gal(K)

projective. Then there is a proper field-valuation structure L = (L,X,Lx, wx)x∈X with

L perfect having these properties:

(9a) (L,X,Lx)x∈X extends K.

(9b) (Lx, wx) is Henselian with residue field (Kx)ins, x ∈ X.

(9c) res: Gal(L)→ Gal(K) is an isomorphism.

(9d) L satisfies the block approximation condition.

Proof: Replace K by Kins, if necessary, to assume K is perfect. Identify K with

(K,X,Kx, vx)x∈X , where vx the trivial valuation on Kx for each x ∈ X. Put K̄x = Kx,

v̄x = vx, K̄ = K, and K̄ = K. Then (K̄,K) satisfies (1). Lemma 15.2 gives L satisfying

(9).

We are finally ready to prove Part (b) of the Main Theorem:

Theorem 15.4: Let K be a field structure, G a projective group structure, and κ: G→

Gal(K) a Galois approximation. Then there exists a proper Henselian field-valuation

structure L = (L,X,Lx, wx)x∈X and an isomorphism ψ: G → Gal(L) with L perfect

having these properties:

(10a) K ⊆ L and res ◦ ψ = κ.

(10b) wx is trivial on K, x ∈ X.

(10c) L satisfies the block approximation condition.

Proof: Replace K by Kins and Kx by (Kx)ins, if necessary, to assume K is perfect.

Proposition 14.4 gives a proper field structure K′ which extends K and an isomorphism

κ′: G → Gal(K′) with resK̃′/K̃ ◦ κ′ = κ. Proposition 15.3 extends K′ to a proper

Henselian field-valuation structure L = (L,X,Lx, wx)x∈X that satisfies the block ap-

proximation theorem such that L is perfect and resL̃/K̃′ : Gal(L) → Gal(K′) is an

isomorphism. Thus, there is an isomorphism ψ: G → Gal(L) with resLs/K′
s
◦ ψ = κ.

This establishes (10a), (10b), and (10c).

An easy consequence of Theorem 15.4 is the realization of free profinite products

of finitely many absolute Galois groups as an absolute Galois group. Of course, one
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may get away with a much reduced machinery than the one we have developed here.

See [Ers], [Koe], or [HJK].

Theorem 15.5: For each i in a finite set I0 let Ki be a field which is not separably

closed. Then there is a proper Henselian field-valuation structure L = (L,X,Lx, wx)x∈X

with char(L) = 0 satisfying the block approximation condition andG(L) ∼=
∏
∗ i∈I0 Gal(Ki).

Proof: Choose a set T of cardinality at least the transcendence degree of Ki over its

prime field for all i ∈ I0. By Proposition 7.5, Q(T ) has an algebraic extension K ′
i with

Gal(Ki) ∼= Gal(K ′
i). Let K =

⋂
i∈I0 K

′
i. Then replace Ki by K ′

i, if necessary, to assume

all Ki are algebraic extension of K and Gal(K) = 〈Gal(Ki) | i ∈ I0〉.

For each i ∈ I0 let Gi be an isomorphic copy of Gal(Ki) and κi: Gi → Gal(Ki)

an isomorphism. Example 4.7(c) constructs a proper projective group structure G =

(G,X,Gx)x∈X with G =
∏
∗ i∈I0 Gi. Let κ: G → Gal(K) be the epimorphism whose

restriction to Gi is κi. By Example 2.5, G/Ker(κ) is a group structure and the quotient

map G → G/Ker(κ) is a cover. Thus, there is a field structure K = (K,Y,Ky) and

κ extend to a cover κ: G → Gal(K). Theorem 15.4 gives the desired field-valuation

structure L.
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