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PERMANENCE CRITERIA FOR SEMI-FREE PROFINITE GROUPS

LIOR BARY-SOROKER∗, DAN HARAN∗, AND DAVID HARBATER ∗∗

Dedicated to Moshe Jarden on the occasion of his 65th birthday

Abstract. We introduce the condition of a profinite group being semi-free, which is more general than being
free and more restrictive than being quasi-free. In particular, every projective semi-free profinite group is free.
We prove that the usual permanence properties of free groupscarry over to semi-free groups. Using this, we
conclude that ifk is a separably closed field, then many field extensions ofk((x, y)) have free absolute Galois
groups.

1. Introduction and results

A central problem is Galois theory is to understand the absolute Galois groups of fields, and a key aspect
is to find fields with free absolute Galois groups. For example, if C is an algebraically closed field, then
K = C(x) is such a field. This was proved forC = C by Douady; and in the general case by Pop [19] and the
third author [9], with another proof later by Jarden and the second author [8]. The major conjecture in this
context, Shafarevich’s conjecture, asserts that the maximal abelian extensionQab of the rational numbers
Q has a free absolute Galois group.

In [11], the third author and K. Stevenson suggest a strategyfor proving the freeness of a profinite
group: breaking the argument into two simpler pieces, viz. quasi-freeness and projectivity. This strategy
was carried out in [10] in the context of a two-variable Laurent series fieldK = k((x, y)). For any base field
k, the absolute Galois group Gal(K) is quasi-free [11], though it is not free since it is not projective. In
[10] the third author proves that the commutator subgroup ofa quasi-free group is quasi-free, and hence
Gal(Kab) is quasi-free. Now, if in additionk is separably closed, then Gal(Kab) is also projective. Therefore
Gal(Kab) is free, for suchk. This can be viewed as an analog of Shafarevich’s conjecture.

In the above situation, it is key that the commutator subgroup of a quasi-free group is quasi-free. This
leads to the question of when a closed subgroup of a quasi-free group is quasi-free, particularly in the
case of projective subgroups. Since closed subgroups inherit projectivity, this question generalizes the
corresponding classical question about free subgroups of afree profinite group. A partial answer is given
in [23], where Ribes, Stevenson, and Zalesskii prove that anopen subgroup of a quasi-free group is quasi-
free.

The classical question — when is a closed subgroup of a free group itself free — has been dealt with
in numerous papers, e.g. [5, 13, 15, 16, 18]. The second author has used twisted wreath products in [5] to
attack this question. Not only does this approach reprove many of the previously known results, but it also
proves the so-called ‘Diamond Theorem’ (see [4, Theorem 25.4.3]):

Theorem. Let F be a free profinite group of infinite rank m. Let M1,M2 be normal subgroups of F and let
M be a subgroup of F such that M1 ∩ M2 ≤ M but M1 � M and M2 � M. Then M is free of rank m.
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(The diagram
F

IIIIIIIIII

M1

uuuuuuuuuu

IIIIIIIII
M M2

M1 ∩ M2

uuuuuuuuu

suggests the name Diamond Theorem.) Recently the first author proved this theorem for finitem≥ 2 [2].
It would thus be desirable to carry over this and other permanence properties of free profinite groups

to the class of quasi-free profinite groups. However, our methods seem to work well only after a slight
modification of the notion: We say that a profinite group of infinite rankm is semi-freeif every nontrivial
finite split embedding problem for it hasm independentproper solutions. (See Section 2 below.)

The modified notion is in some ways more natural. First we have

(a) infinitely generated free profinite groups are semi-free(Theorem 3.6),
(b) semi-free groups are quasi-free, but not vice-versa (Proposition 6.1), and
(c) the absolute Galois group ofk((x, y)) is semi-free (Theorem 7.1).

Moreover, we are able to prove the following theorem (where case VI corresponds to the Diamond
Theorem above). Also, as Example 6.5 below shows, not all of these properties hold for the class of
quasi-free groups.

Main Theorem. Let F be a semi-free profinite group of infinite rank m and let M be a closed subgroup of
F. Then, in each of the following cases the group M is semi-free of rank m.

(I) (F : M) < ∞.
(II) F/M̂ is finitely generated, wherêM =

⋂

σ∈F Mσ is the normal core of M.
(III) weight(F/M) < m (the definition of weight is recalled at Section 5.1.5).
(IV) M is a proper subgroup of finite index of a closed normal subgroup of F.
(V) M is normal in F, and F/M is abelian.

(VI) There exist closed normal subgroups M1, M2 of F such that M1 ∩ M2 ≤ M but M1 � M and
M2 � M.

(VII) M contains a closed normal subgroup N of F such that F/N is pronilpotent and(F : M) is divisible
by at least two primes.

(VIII) M is sparse in F (see Definition 5.1).
(IX) (F : M) =

∏

pα(p), whereα(p) < ∞ for all p.

The proof of Main Theorem is in Section 5.
This theorem gives rise to new constructions of fields havingfree absolute Galois groups; see Section 8.

One of them generalizes the construction of fields with free absolute Galois groups discussed above in the
second paragraph of the introduction. Another was providedby Jarden, using ideas of Pop.

We conclude the introduction with some ideas of the proof. The goal is to prove thatM is semi-free,
i.e. that an arbitrary finite split embedding problemE1 for M has many independent proper solutions. We
know thatM is a subgroup of a semi-free groupF, so we wish to transfer the solvability problem toF. The
first thing we do is to induce a split embedding problemE for F with the property that a weak solution ofE
induces a weak solution toE1 (see Proposition 4.6 for the exact definition ofE). The embedding problem
E is constructed using atwisted wreath product(see Definition 4.1).

Now E has many independent proper solutions becauseF is semi-free. Each one of these proper solu-
tions, sayψ, induces a solutionν of E1. (Hereν = π ◦ψ|M, whereπ is the Shapiro map; see Definition 3.2.)
We encounter two difficulties: (1)ν is not necessarily apropersolution; (2) for two distinct proper solutions
ψ1 , ψ2 of E we may get thatν1 = ν2.

We extract from [5] a condition under whichν remains a proper solution. This settles the first difficulty.
To treat (2), we use that fact that in our situation,ψ1, ψ2 are not only distinct, but also independent. Hence
the image ofψ1 × ψ2 is also a wreath product (Lemma 4.4). This fact leads us to generalize the work in
[5], and find a necessary conditions for any two independent proper solutionsψ1, ψ2 to induce independent
proper solutionsν1, ν2, as needed forM to be semi-free. See Proposition 4.6 b.
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Note that this strategy does not apply to the corresponding problem for quasi-free groups, where the
distinct proper solutions for a split embedding problem need not be independent, and since the image ofψ1×

ψ2 for distinct solutionsψ1, ψ2 of E need not be a twisted wreath product in the absence of independence.
By avoiding this difficulty, our focus on semi-free groups permits us to show that many subgroups of semi-
free groups are semi-free (and in particular quasi-free); and that if such a subgroup is also projective then
it is free (see Theorem 3.6).

2. Independent subgroups and solutions of embedding problems

Definition 2.1. Let F be a profinite group.

(a) Open subgroupsM1, . . . ,Mn of F areF-independentif

(F :
n
⋂

i=1

Mi) =
n
∏

i=1

(F : Mi).

If M1, . . . ,Mn are normal inF, this is equivalent to

F/
n
⋂

i=1

Mi �

n
∏

i=1

F/Mi

(b) A familyM of open subgroups ofF is F-independentif every finite subset ofM is F-independent.

The notion ofF-independence coincides with independence with respect tothe Haar probability mea-
sure onF [4, Section 18.3]. There is also the following equivalent characterization of independence: Open
subgroupsM1, . . . ,Mn areF-independent if and only ifF acts transitively on

∏n
i=1 F/Mi . This criterion

can be used to obtain alternative short proofs of parts c and din Proposition 2.2 below.
A key example of independence occurs in the case of a Galois field extensionL/K. If F = Gal(L/K)

andL1, . . . , Ln are the fixed fields ofM1, . . . ,Mn in L, then by the Galois correspondence,M1, . . . ,Mn are
F-independent if and only ifL1, . . . , Ln are linearly disjoint overK.

The following properties can be either proven directly or deduced from the corresponding properties of
linear disjointness of fields:

Proposition 2.2. Let M1, . . . ,Mn be open subgroups of a profinite group F.

(a) (F :
⋂n

i=1 Mi) ≤
∏n

i=1(F : Mi).
(b) Let M1 ≤ N1 ≤ F. Then M1,M2 are F-independent if and only if N1,M2 are F-independent and

M1,N1 ∩ M2 are N1-independent.
(c) The subgroups M1, . . . ,Mn are F-independent if and only if M1, . . . ,Mn−1 are F-independent and
⋂n−1

i=1 Mi , Mn are F-independent.
(d) Let Mi ≤ Ni ≤ F for each1 ≤ i ≤ n. If M1, . . . ,Mn are F-independent, then so are N1, . . . ,Nn.
(e) Suppose M1 ⊳ F. Then M1,M2 are F-independent if and only if F= M1M2.

Proof. (a) This follows by induction from the casen = 2, which is standard.
(b) First assumeM1,M2 areF-independent. Then, since (N1 ∩ M2 : M1 ∩ M2) ≤ (N1 : M1) we have

(F : N1 ∩ M2) =
(F : M1 ∩ M2)

(N1 ∩ M2 : M1 ∩ M2)
=

(F : M1)(F : M2)
(N1 ∩ M2 : M1 ∩ M2)

=
(F : N1)(N1 : M1)(F : M2)

(N1 ∩ M2 : M1 ∩ M2)
≥ (F : N1)(F : M2).

Therefore equality holds by (a), andN1,M2 areF-independent. Similarly, since (N1 : N1∩M2) ≤ (F : M2)
we have

(N1 : M1 ∩ (N1 ∩ M2)) =
(F : M1 ∩ M2)

(F : N1)
=

(F : M1)(F : M2)
(F : N1)

≥ (N1 : M1)(N1 : N1 ∩ M2),

so M1,N1 ∩ M2 areN1-independent by (a). Conversely,

(F : M1 ∩ M2) = (F : N1)(N1 : M1 ∩ (N1 ∩ M2)) = (F : M1)(N1 : N1 ∩ M2)

= (F : M1)
(F : N1 ∩ M2)

(F : N1)
= (F : M1)(F : M2).
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(c) By part (a),

(F :
n
⋂

i=1

Mi) ≤ (F :
n−1
⋂

i=1

Mi)(F : Mn) ≤
n
∏

i=1

(F : Mi).

So (F :
⋂n

i=1 Mi) =
∏n

i=1(F : Mi) if and only if the above two inequalities are equalities, and the assertion
follows.

(d) Since (
⋂

i Mi :
⋂

i Ni) ≤
∏

i(Mi : Ni) we have

(F :
⋂

i

Ni) =
(F :
⋂

i Mi)
(
⋂

i Mi :
⋂

i Ni)
≥

∏

i(F : Mi)
∏

i(Mi : Ni)
=
∏

i

(F : Ni),

so equality holds by (a).
(e) We have (M1M2 : M1) = (M2 : M1 ∩ M2). Thus

(F : M1)(F : M2) = (F : M1M2)(M2 : M1 ∩ M2)(F : M2)

= (F : M1M2)(F : M1 ∩ M2).

�

Recall that anembedding problemfor a profinite groupF is a pair of epimorphisms of profinite groups

(1) (ϕ : F → G, α : H → G).

The embedding problem is calledfinite if H andG are finite. It is calledsplit (respectivelynontrivial )
if α splits (respectively is not an isomorphism). We abbreviate‘finite split embedding problem’ and write
‘FSEP’. A (weak) solutionfor an embedding problem is a homomorphismψ : F → H with α ◦ ψ = ϕ. A
solution is said to beproper if it is surjective.

Definition 2.3. We call solutions of a finite embedding problem (1)independentif their kernels are Kerϕ-
independent.

We now introduce a criterion for the independence of proper solutions of finite embedding problems in
terms of fiber products of groups.

Let {αi : Hi → G | i ∈ I } be a family of epimorphisms of profinite groups. Theirfiber product with
respect to theαi ’s is defined by�

G
Hi =

{

h ∈
∏

Hi | αi(hi) = α j(h j) ∀i, j ∈ I
}

.

(Herehi = h(i) is the value ofh at i.) This is a closed subgroup of
∏

Hi , hence a profinite group. The
projection on thei-th coordinate, pri :

�
G Hi → Hi , is surjective. The fiber product is equipped with a

canonical epimorphismαI = αi ◦ pri :
�

G Hi → G, which is independent ofi ∈ I .
In particular, ifI is a finite set, sayI = {1, . . . , n}, then�

G
Hi = H1 ×G · · · ×G Hn = {(h1, · · · , hn) ∈

∏

Hi | α1(h1) = · · · = αn(hn)}.

Fiber products are associative:

Lemma 2.4. Letαi : Hi → G0, i = 1, . . . , n, andβ : G → G0 be epimorphisms of finite groups. Then the
natural map

(�
G0

Hi
)

×G0 G→
�

G(Hi ×G0 G) is an isomorphism.

Proof. An element in
(�

G0
Hi
)

×G0 G is of the form ((h1, . . . , hn), g), where the elementshi ∈ Hi andg ∈ G
all have the same image inG0. An element in

�
G(Hi ×G0 G) is of the form ((h1, g) . . . , (hn, g)), for such

elementshi ∈ Hi andg ∈ G, because the fiber product is taken overG. The map that takes ((h1, . . . , hn), g)
to ((h1, g) . . . , (hn, g)) is clearly an isomorphism. �

A key property, in our setting, of fiber products is that solutionsψi of embedding problems (ϕ : F →
G, αi : Hi → G), i ∈ I , induce a canonical solution,ψI =

∏

ψi , of the embedding problem (ϕ : F →
G, αI :

�
G Hi → G). More precisely, (ψI (x))i = ψi(x) for eachx ∈ F; e.g., if I = {1, . . . , n}, then

ψI (x) = (ψ1(x), · · · , ψn(x)). We obtain the original solutions via the projection on the coordinates, i.e.
ψi = pri ◦ ψ

I for eachi ∈ I . In particular, takingF = G andϕ = id, we see that if all theαi ’s split, so does
αI .

Given a single epimorphismα : H → G and a setI , we writeH I
G for the fiber product

�
G Hi , where

Hi = H andαi = α for eachi ∈ I .
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Lemma 2.5. Let I be a set and letE = (ϕ : F → G, α : H → G) be a finite embedding problem for a
profinite group F. PutEI = (ϕ : F → G, αI : H I

G → G). Then solutions{ψi}i∈I of E are independent and
proper if and only if the solutionψI =

∏

ψi ofEI is proper.

Proof. We first assume thatI is finite, I = {1, . . . , n}. If one of theψi ’s is not surjective, thenψI is
not surjective. Hence, we may assume thatψ1, . . . , ψn are surjective. LetK = Kerϕ and Mi = Kerψi ,
i = 1, . . . , n. By the definition ofψI we have KerψI =

⋂n
i=1 Mi . Since|H I

G| = |H|
n/|G|n−1, we get thatψI is

surjective if and only if (F :
⋂n

i=1 Mi) = |H|n/|G|n−1. But (F :
⋂n

i=1 Mi) = (F : K)(K :
⋂n

i=1 Mi) = |G|(K :
⋂n

i=1 Mi); henceψI is surjective if and only if (K :
⋂n

i=1 Mi) = |H|n/|G|n =
∏n

i=1(K : Mi), as desired.
In the general caseH I

G is the inverse limit ofHJ
G, whereJ runs through the finite subsets ofI and

the epimorphisms prJ : H I
G → HJ

G are given by the restriction of coordinates fromI to J. Obviously,
ψJ = prJ ◦ ψI , for eachJ. HenceψI is proper if and only if allψJ’s are proper. By the first paragraph of
this proof this happens if and only if theψi ’s are independent and proper. �

3. Semi-free profinite groups

Definition 3.1. A profinite groupF of infinite rank isquasi-free if there exists an infinite cardinalm
such that every nontrivial FSEP forF has exactlym distinct proper solutions (see [10, 11, 23]). By [23,
Lemma 1.2] such a group is necessarily of rankm.

In the following definition we give a stronger variant of quasi-freeness.

Definition 3.2. A profinite groupF of infinite rank issemi-free1 if every nontrivial FSEP forF hasm
independent proper solutions, wherem is the rank ofF.

Remark3.3. The above definitions consider onlyinfinitely generated profinite groups, with the notions
of quasi-free and semi-free being left undefined in the finitely generated case. The reason is that for
a profinite groupF of finite rankm, there is no proper solution toany finite embedding problemE =
(ϕ : F → G, α : H → G) for which H has rank greater thanm. By leaving the notions undefined in the
finitely generated case, we thus avoid the perverse situation in which a finitely generated free group would
violate the conditions of being quasi-free or semi-free. One could instead consider the class of groupsF of
finite rank for which there is a proper solution to every FSEPE for which rank(H) ≤ rank(F). But a finite
rank group would satisfy that condition if and only if it is free, by [4, Lemma 17.7.1]; so this would not
be a new condition on such groups. For the purposes of this paper, the case of infinite rank is sufficient to
consider, and we restrict to that situation.

Remark3.4. In Definition 3.2, it would suffice to assume just that rankF is at mostm. More precisely, let
F be a profinite group and letmbe an infinite cardinal. Assume that rankF ≤ mand every nontrivial FSEP
for F hasm independent proper solutions. Then rankF = m, and thusF is semi-free.

Indeed, consider any nontrivial FSEP and let{ψi | i < m} be a set of independent proper solutions. Then
Kerψi , Kerψ j for all i , j. This implies thatF has at leastm open subgroups, the set{Kerψi | i < m}, and
hence rankF ≥ m (see [4, Proposition 17.1.2]). Therefore rankF = m, as needed.

Clearly, every semi-free group is quasi-free. One might suspect that the opposite is also true. Ifm= ℵ0,
then for both notions it suffices to have one proper solution of any nontrivial FSEP (see the lemma below),
and hence they are equivalent. Ifm > ℵ0, then there are quasi-free groups that are not semi-free. We
postpone the discussion of this to Section 6.

Lemma 3.5. Let F be a countably generated profinite group. Then F is semi-free of rankℵ0 if and only if
every FSEP for F is properly solvable.

Proof. Let E = (ϕ0 : F → G, α0 : H → G) be a nontrivial FSEP. For each integern > 0, letαn−1 : Hn
G →

Hn−1
G be the projection map. Inductively, we can find solutionsϕn : F → Hn

G of the FSEP

En = (ϕn−1 : G→ Hn−1
G , αn−1 : Hn

G → Hn−1
G ).

Thenϕ := lim
←−−

ϕn : G → HNG is surjective. Lemma 2.5 implies the existence ofℵ0 independent proper
solutions, and thusF is semi-free. �

1a term coined by Moshe Jarden as an alternative to “strongly quasi-free”, which we initially used.
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We extend [11, Theorem 2.1]:

Theorem 3.6. Let F be a profinite group of infinite rank m. The following conditions are equivalent:

(a) F is free.
(b) F is semi-free and projective.
(c) F is quasi-free and projective.

Proof. We show that (a)⇒ (b). LetE = (ϕ : F → G, α : H → G) be a nontrivial finite embedding problem
for F. Fix a setI of cardinalitym. Let H I

G be the corresponding fiber product; let pri : H I
G → H be

the projection on thei-th coordinate, for eachi ∈ I ; and letαI = α ◦ pri : H I
G → G be the canonical

epimorphism.
SinceF is free of rankm and since rank(H I

G) ≤ m, we have a proper solutionψ : F → H I
G of the

embedding problem (ϕ : F → G, ᾱ : H I
G → G) [22, Theorem 3.5.9]. Putψi = pri ◦ ψ for eachi ∈ I . Then,

by Lemma 2.5, the solutions{ψi}i∈I of E are independent and proper. AsE is nontrivial, they are distinct.
Implication (b)⇒ (c) is trivial and (c)⇒ (a) is [11, Theorem 2.1]. �

From a technical point of view, it is preferable to work with aset ofpairwiseproper solutions of a FSEP
instead of independent set of solutions. The following result shows that it is possible.

Proposition 3.7. LetM be an infinite family of pairwise F-independent open normal subgroups of a
profinite group F. ThenM contains an F-independent subfamilyM0 of cardinality |M|.

Proof. By Zorn’s Lemma there is a maximalF-independent subfamilyM0 ofM. We have to show that
|M0| = |M|. Assume the contrary; that is,|M0| < |M|.

LetM1 be the family of all finite intersections of the elements ofM0. If M0 is finite, then so isM1; if
M0 is infinite, then|M1| = |M0|. In particular,|M1| < |M|. The groups inM1 are open inF. LetM2 be
the family of all open subgroups ofF containing a group inM1. Again, ifM1 is finite, then so isM2; if
M1 is infinite, then|M2| = |M1|. In particular,|M2| < |M|.

For every proper subgroupN of F there exists at most oneM ∈ M such thatM ≤ N. Indeed, ifM1,M2 ∈

M are distinct, thenM1M2 = F, by Proposition 2.2(e), and hence we cannot haveM1,M2 ≤ N < F. Since
|M2| < |M|, there existsM ∈ M such that

M ≤ N ∈ M2 only for N = F.(*)

We claim thatM0 ∪ {M} is F-independent. (This will produce the desired contradiction to the maximality
ofM0.) Thus we have to show, for distinctM1, . . . ,Mn ∈ M0, thatM1, . . . ,Mn,M areF-independent.

PutN =
⋂n

i=1 Mi . By Proposition 2.2(c) it suffices to show thatM,N areF-independent. By construc-
tion, N ∈ M1. HenceMN ∈ M2. SinceM ≤ MN, by (*), MN = F. Hence, by Proposition 2.2(e),M,N
areF-independent. �

Corollary 3.8. Let m be an infinite cardinal and let F be a profinite group of rank at most m. Then F is
semi-free of rank m if and only if every nontrivial FSEP has m pairwise independent proper solutions.

4. Finite split embedding problems and twisted wreath products

We follow [5] and establish the connection between FSEPs andtwisted wreath products.

Definition 4.1 (Twisted wreath product). Let A, G0 ≤ G be finite groups with a (right) action ofG0 on
A. Write IndG

G0
(A) for all functions f : G → A such thatf (στ) = f (σ)τ for all σ ∈ G andτ ∈ G0 with

componentwise multiplication. Then IndG
G0

(A) � A(G:G0) andG acts on IndGG0
(A) by

f σ(ρ) = f (σρ), σ, ρ ∈ G, f ∈ IndG
G0

(A).

The twisted wreath product, AwrG0 G, is defined to be the semidirect product of IndG
G0

(A) andG, i.e.
AwrG0 G = IndG

G0
(A) ⋊G. Here and below,α : AwrG0 G → G denotes the canonical projectionfσ 7→ σ

(see [4, Definition 13.7.1]). Similarly,α0 : A ⋊G0 → G0 denotes the canonical projectionaσ 7→ σ of the
semidirect product.

There is an epimorphismπ0 : IndG
G0

(A) → A defined byπ0( f ) = f (1). It extends to an epimorphism
π : IndG

G0
(A) ⋊G0 → A⋊G0 defined byf τ 7→ f (1)τ for f ∈ IndG

G0
(A) andτ ∈ G0, sinceπ0( f τ) = f τ(1) =

f (τ) = f (1)τ = π0( f )τ for all f ∈ IndG
G0

(A) andτ ∈ G0. We callπ theShapiro mapof AwrG0 G.



SEMI-FREE PROFINITE GROUPS 7

Remark4.2. (a) If G = G0 in Definition 4.1, thenAwrG0 G = A⋊G.
(b) See [21], where a related notion, known as a permutational wreath product, is used in a similar

context.

The following technical result will be needed later.

Lemma 4.3. Under the above notation, let B= π−1(G0). Then B is a subgroup of AwrG0 G of index
(G : G0)|A|. If A , 1, then B does not containIndG

G0
(A).

Proof. As the Shapiro mapπ is surjective, (IndGG0
(A) ⋊G0 : B) = |A|. Thus the index ofB in AwrG0 G is

(G : G0)|A|.
If A , 1, there isf ∈ IndG

G0
(A) such thatf (1) , 1; thenπ( f ) < G0, and hencef < B. �

Lemma 4.4. Consider groups Hi = Ai wrG0 G, for i = 1, . . . , n. Then G0 acts on
∏

Ai componentwise and�
G Hi � (

∏

Ai) wrG0 G.

Proof. We have
�

G
Hi = {

(

( f1σ), . . . , ( fnσ)
)

| fi ∈ IndG
G0

(Ai), σ ∈ G},

(
∏

Ai) wrG0 G = {( f1, . . . , fn)σ | fi ∈ IndG
G0

(Ai), σ ∈ G},

and the isomorphism is given by
(

( f1σ), . . . , ( fnσ)
)

7→ ( f1, . . . , fn)σ. �

Lemma 4.5. Let ϕ : F → G be an epimorphism of a profinite group F onto a finite group G. Let M be a
closed subgroup of F, let G0 = ϕ(M) ≤ G, and assume that G0 acts on a finite group A. Consider the FSEP

E0(A) = (ϕ|M : M → G0, α0 : A⋊G0→ G0),

and letψ be a solution of the corresponding FSEP

E(A) = (ϕ : F → G, α : AwrG0 G→ G),

with notation as in Definition 4.1. Letπ be the Shapiro map of AwrG0 G. Thenψ(M) ≤ IndG
G0

(A) ⋊G0 and
π ◦ ψ|M is a solution ofE0(A).

Proof. We haveψ(M) ≤ α−1(G0) = IndG
G0

(A) ⋊G0. Thusπ ◦ ψ|M is defined. Letα′ : IndG
G0

(A) ⋊G0 → G0

be the restriction ofα. From the commutativity of

M
ψ|M

sshhhhhhhhhhhh

ϕ|M��
IndG

G0
(A) ⋊G0

α′ //

π ((QQQQQ
G0

A⋊G0

α0

;;wwwww

we haveα0 ◦ π ◦ ψ|M = ϕ|M, i.e.π ◦ ψ|M is a solution. �

Although the solutionπ ◦ ψ|M in the preceding lemma need not be proper, even ifψ is proper, the proof
of [4, Proposition 25.4.1] shows that, under some assumptions onM, the properness ofψ does imply the
properness ofπ ◦ ψ|M. Moreover, ifF is a free profinite group of infinite rankm, that proof produces a
family of m distinct proper solutions ofE0(A). We generalize this in part b of the following proposition,
where we consider proper solutions that are not just distinct, but in fact independent.

Proposition 4.6. Let M ≤ F be profinite groups, let A,G1 be finite groups together with an action of G1

on A, and let
E1(A) = (µ : M → G1, α1 : A⋊G1→ G1)

be a FSEP for M. Let D, F0, L be subgroups of F such that

(2a) D is an open normal subgroup of F with M∩ D ≤ Kerµ,
(2b) F0 is an open subgroup of F with M≤ F0 ≤ MD,
(2c) L is an open normal subgroup of F with L≤ F0 ∩ D.

Put G= F/L, G0 = F0/L ≤ G, and letϕ : F → G be the quotient map.
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(a) Then there is an epimorphism̄ϕ1 : G0 → G1, through which an action of G0 on A is defined, such
that every weak solutionψ of the FSEP

E(A) = (ϕ : F → G, α : AwrG0 G→ G)

induces a weak solutionν = ρ ◦ π ◦ ψ|M of E1(A). Hereπ is the Shapiro map of AwrG0 G and
ρ : A⋊G0→ A⋊G1 is the extension of̄ϕ1 by the identity of A.

(b) Let n∈ N. Assume that there is a closed normal subgroup N of F with N≤ M ∩ L such that there
is no nontrivial quotientĀ of An through which the action of G0 on An descends and for which the
FSEP

(3) (ϕ̄ : F/N → G, ᾱ : ĀwrG0 G→ G),

whereϕ̄ is the quotient map, is properly solvable. Then any n independent proper solutionsψ of
E(A) induce n independent proper solutionsν of E1(A).

M F0 MD F

M ∩ D

kerµ

F0 ∩ D D

N M ∩ L L

Proof. (a) We can extendµ to a mapMD → G1 by md 7→ µ(m) for all m ∈ M andd ∈ D. Its restriction to
F0 is an epimorphismϕ1 : F0 → G1. It decomposes asϕ1 = ϕ̄1 ◦ ϕ0, whereϕ0 : F0 → G0 is the restriction
of ϕ to F0 andϕ̄1 : G0 → G1 is an epimorphism. (Here we use that Kerϕ|F0 = L ≤ D ≤ Kerϕ1 to obtain
ϕ̄1.) LetG0 act onA via ϕ̄1. Then we have the following commutative diagram

F0

ϕ0

��

ϕ1

��

// F

ϕ

��
A⋊G0

α0 //

ρ

��

G0

ϕ̄1

��

// G

A⋊G1
α1 // G1,

whereρ is given byρ|G0 = ϕ̄1 andρ|A = idA. By Lemma 4.5,π ◦ ψ|M is a (not necessarily proper) solution
of E0(A) : (ϕ0|M : M → G0, α0 : A⋊G0→ G0). Henceν = ρ ◦ π ◦ ψ|M is a solution ofE1(A).

(b) Let {ψi}
n
i=1 be a family of independent proper solutions ofE(A). Let 1≤ i ≤ n, and letνi = ρ◦π◦ψi |M

be the induced solution ofE1(A), as in (a). It suffices to show that eachνi is proper and the family{νi}
n
i=1 is

independent.
By Lemma 4.4, (AwrG0 G)n

G = An wrG0 G. So by Lemma 2.5,ψ1, . . . , ψn define a proper solution,
ψ : F → An wrG0 G, of

E(An) = (ϕ : F → G, α : An wrG0 G→ G).

Applying Lemma 4.5, withAn playing the role ofA there, we get thatν = ρ′ ◦ π′ ◦ ψ is a solution of

E1(An) = (µ : M → G1, α1 : An ⋊G1→ G1).

(Hereρ′ andπ′ are defined asρ andπ with An replacingA.) By Part C of [4, Proposition 25.4.1] (again,
with An replacingA), π′(ψ(N)) = An. But ν(N) = ρ′(π′(ψ(N))) = ρ′(An) = An. ThereforeAn ≤ ν(M), and
thusν is a proper solution ofE1(An). As ψ =

∏

ψi , we get thatν =
∏

νi . Consequently,ν1, . . . , νn are
independent proper solutions (Lemma 2.5). �

Corollary 4.7 (cf. [4, Proposition 25.4.1]). Let F be a semi-free profinite group of infinite rank m and let
M be a closed subgroup of F. Assume that for every open normal subgroup D of F there exist L and F0 as
in (2b),(2c) of Proposition 4.6, and there exists N⊳ F with N ≤ M ∩ L such that no FSEP

(ϕ : F/N → F/L, α : AwrF0/L F/L→ F/L),

where A is a nontrivial finite group on which F0/L acts and whereϕ is the quotient map, is properly
solvable.
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Then M is semi-free of rank m.

Proof. By [4, Corollary 17.1.4], rank(M) ≤ rank(F) = m. Let E1(A) be a FSEP as in Proposition 4.6.
ChooseD as in (2a) of Proposition 4.6. WithF0, L,N be as above, letE(A) be as in Proposition 4.6. Since
F is quasi-free of rankm, there exists a familyΨ of independent proper solution ofE(A) of cardinalitym.
This in turn induces a familyN of solutions ofE1(A) (Lemma 4.5). The hypotheses of Proposition 4.6
hold by the assumptions of the present corollary. Thereforefor every positive integern and for every
non-trivial quotientĀ of An, the embedding problem (3) of Proposition 4.6 has no proper solution. Hence
ψ1, . . . , ψn ∈ Ψ induceν1, . . . , νn ∈ N which are independent and proper. ThereforeN is a family of
independent proper solutions of cardinalitym. �

5. Semi-free subgroups

5.1. Proof of Main Theorem. Let F be semi-free of rankm and letM ≤ F.

5.1.1. Case I. Assume thatM is open inF. We apply Corollary 4.7. Given an openD ⊳ F, we take an
openL ⊳ F with L ≤ M ∩ D. Then forF0 = M andN = L, there are no proper solutions of the embedding
problem appearing in Corollary 4.7, sinceϕ is an isomorphism andα is not. Therefore,M is semi-free.

5.1.2. Case II. Assume thatF/M̂ is finitely generated, wherêM =
⋂

σ∈F Mσ is the normal core ofM in
F.

We apply Proposition 4.6. LetE1(A) = (µ : M → G1, α1 : A ⋊G1 → G1) be a nontrivial FSEP forM.
Let D be an open normal subgroup ofF with M ∩ D ≤ Kerµ. Let F0 = MD andN = M̂ ∩ D. ThenF/N is
finitely generated (as an open subgroup ofF/M̂ × F/D). Thus,F has only finitely many open subgroups
containingN of index at mostr = (F : D)|A|2. Their intersection,L, is an open normal subgroup ofF
containingN and contained inD.

Now, for n = 2, the embedding problem (3), i.e.

(ϕ̄ : F/N → F/L, ᾱ : ĀwrF0/L F/L→ F/L),

for any nontrivial quotientĀ of A2, has no proper solution. Indeed, assume there exists a proper solution
ψ̄ : F/N → ĀwrF0/L F/L of (3). By Lemma 4.3 there is a subgroupB of H = ĀwrF0/L F/L of index
(H : B) = (F : F0)|Ā| ≤ r that does not contain Ker¯α. In particular, (H : B) > (H : BKerᾱ) = (F/L : ᾱ(B)).
Write ψ̄−1(B) asK/N, for someN ≤ K ≤ F. Then (F : K) = (F/N : K/N) = (H : B) ≤ r, and henceL ≤ K.
As ϕ̄ = ᾱ ◦ ψ̄, we haveK/L = ϕ̄(K/N) = ᾱ(ψ̄(K/N)) = ᾱ(B). Therefore

(H : B) = (F : K) = (F/L : K/L) = (F/L : ᾱ(B)) < (H : B),

a contradiction.
SinceF is semi-free, there exists a familyΨ of independent, and in particular pairwise independent,

proper solutions of the nontrivial FSEPE(A) = (ϕ : F → F/L, α : AwrF0/L F/L→ F/L) such that|Ψ| = m.
By Proposition 4.6(b) withn = 2, Ψ induces a familyN of pairwise independent proper solutions ofE1

and|N| = |Ψ| = m. By Corollary 3.8 we get thatM is semi-free of rankm.

5.1.3. Cases IV, VI, and VII.The proof of Case VI is verbally identical with the proof of the Diamond
Theorem, [4, Theorem 25.4.3], provided that we replace [4, Proposition 25.4.1] by our Corollary 4.7.

Case IV immediately follows from Case VI. So does Case VII: Since (F : M) = (F/N : M/N)
is divisible by two primes and the Sylow subgroups are normalin F/N, there are two (Sylow) normal
subgroupsP1,P2 of F/N such thatP1 ∩ P2 = 1 andP1,P2 * M/N. The preimagesM1,M2 of P1,P2 are
normal inF and satisfyM1 ∩ M2 = N ≤ M, but M1 � M andM2 � M.

5.1.4. Case V.Assume thatM ⊳ F andF/M is abelian. It follows thatM is also semi-free either by Cases
II and VI or directly from Corollary 4.7. We show the former. If F/M is cyclic, then, by Case II,M is
semi-free. Otherwise, there exists a pro-p subgroup of rank 2 inF/M, sayH. It factors asH = C1 × C2,
whereC1,C2 are nontrivial cyclic pro-p group. ThenC1∩C2 = 1 andC1,C2 ⊳F/M (sinceF/M is abelian).
The preimagesM1,M2 of C1,C2 are normal inF and satisfyM1 ∩ M2 = M, but M1 � M andM2 � M.
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5.1.5. Cases III, VIII, and IX.The proofs of these three cases are based on Case I and on more elementary
arguments than the other cases.

Recall that weight(F/M) = 1 if M is open, and weight(F/M) is the cardinality of the set of open
subgroups ofF that containM if ( F : M) = ∞ ([4, Section 25.2]).

Proof of Case III.Let E(M) = (ϕ : M → G, α : H → G) be a FSEP forM and letM0 = Kerϕ. There is an
openD ⊳ F such thatD ∩ M ≤ M0. By Case I we may replaceF by its open subgroupDM to assume that
DM = F. Thendm 7→ ϕ(m), for d ∈ D, m ∈ M, extendsϕ to an epimorphismϕ : F → G. Let F0 be its
kernel. It containsD, henceF0M = F andF0∩M = M0. Thus (M : M0) = (F : F0) and we have the FSEP
E(F) = (ϕ : F → G, α : H → G).

Let Ψ be a family of independent proper solutions ofE(F) of cardinalitym. Eachψ ∈ Ψ defines a
solutionψ′ := ψ|M of E(M). LetΨ′ = {ψ′ | ψ ∈ Ψ} and letX ⊆ Ψ′ be a maximal subset of independent
proper solutions (Zorn’s Lemma). We claim thatX has cardinalitym.

Assume differently, that is to say, assume|X| < m. Let N =
⋂

ψ′∈X Kerψ′ if X , ∅ andN = M0 if X = ∅.
In both casesN ≤ M0.

It suffices to findψ ∈ Ψ such thatNKerψ = F0. Indeed, then for every open subgroupN0 of M0

containingN we have (N0 : N0 ∩ Kerψ) = (F0 : Kerψ),

M F

N N0 M0 F0

N ∩ Kerψ N0 ∩ Kerψ M ∩ Kerψ = Kerψ′ Kerψ

i.e., N0 and Kerψ′ are M0-independent. In particular, takingN0 = M0, we have (M0 : Kerψ′) = (M0 :
M ∩ Kerψ) = (F0 : Kerψ), and henceψ′ is surjective. Furthermore, for any finite subsetX′ of X, taking
N0 =

⋂

ψ′∈X′ Kerψ′ we get by Proposition 2.2(c) thatX′ ∪{ψ′} is an independent set of solutions. Therefore
so isX ∪ {ψ′}, which contradicts the maximality ofX.

To complete the proof, for eachψ ∈ Ψ let Lψ = NKerψ and assume thatLψ , F0. Since{Kerψ | ψ ∈ Ψ}
is F0-independent, the set{Lψ | ψ ∈ Ψ} is also independent by Proposition 2.2(d). SinceLψ , F0 for all
ψ ∈ Ψ, this implies in particularLψ1 , Lψ2 for all distinctψ1, ψ2 ∈ Ψ. Hence weight(F0/N) ≥ m. But
weight(F0/M) < m by the hypothesis of Case III and the fact thatF0 is an open subgroup ofF. Moreover
weight(M/N) < m, by [4, Lemma 25.2.1(b)]. Hence weight(F0/N) < m by [4, Lemma 25.2.1(d)], a
contradiction. �

Definition 5.1. A closed subgroupM of a profinite groupF of infinite index is calledsparseif for all
n ∈ N there exists an open subgroupK of F containingM such that for every proper open subgroupL of K
containingM we have (K : L) ≥ n.

The following lemma shows that this definition is equivalentto [2, Definition 2.1]:

Lemma 5.2. If M is sparse in F, then for everyℓ, n ∈ N there exists K as in Definition 5.1 of index at least
ℓ in F.

Proof. Let ℓ, n ∈ N. Choose an open subgroupK0 of indexℓ0 ≥ ℓ in F such thatM ≤ K0. By the definition
there existsK1 with M ≤ K1 ≤ F such that (K1 : L) ≥ nℓ0 for all proper open subgroupsL of K1 that
containM. Then the assertion follows withK = K0 ∩ K1, since (K1 : K) ≤ ℓ0. �

Proof of Case VIII.Let M be a sparse subgroup ofF. Let E0(A) = (µ : M → G, α : A ⋊ G → G) be a
nontrivial FSEP forM.

Choose an open normal subgroupE0 of F such thatE0∩M ≤ Kerµ and letF0 = ME0. SinceM is sparse
in F0 [2, Corollary 2.3], there is an open subgroupK of F0 containingM such that (K : L) > |A|2|G| for each
proper open subgroupL of M that containsM. Extendµ to an epimorphismϕ : K → G by ϕ(re) = µ(r),
r ∈ M, e ∈ E0. By Case I,K is semi-free of rankm; hence it suffices to show that two independent proper
solutionsψ1, ψ2 of E(A) = (ϕ : K → G, α : A⋊G→ G) induce two independent proper solutionsψ1|M , ψ2|M
(Corollary 3.8).
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By Lemma 4.4,A2 ⋊ G is the fiber product ofA ⋊ G → G with itself. Thusψ1, ψ2 induce a proper
solutionψ of E(A2) = (ϕ : K → G, α : A2 ⋊ G → G) (Lemma 2.5). LetL = Kerψ. Then (K : ML) =
(A2 ⋊ G : ψ(M)) ≤ |A|2|G|. Hence, by the choice ofK, we get thatML = K. Therefore,ψ|M is a proper
solution ofE0(A2) = (ϕ : M → G, α : A2 ⋊G→ G). Butψ|M = ψ1|M × ψ2|M. Consequently,ψ1|M, ψ2|M are
independent proper solutions ofE0(A), as claimed. �

The following corollary of Case VIII extends [2, Lemma 2.4] to free groups of uncountable infinite rank.

Corollary 5.3. If M is a sparse subgroup of a free profinite group F of rank m≥ 2, then M is a free
profinite group ofrank(M) = max{ℵ0, rank(F)}.

Proof. The case where rank(F) ≤ ℵ0 is proven in [2]. Assumem= rank(F) is infinite. By Theorem 3.6,F
is semi-free of rankm. By Case VIII of the Main Theorem,M is semi-free of rankm. Also, M is projective,
being a closed subgroup of a free profinite group. Consequently M is free of rankm (Theorem 3.6). �

Case IX is, in fact, a special case of Case VIII:

Lemma 5.4. Let M be a closed subgroup of a profinite group F of infinite index. Assume(F : M) =
∏

p pα(p) with all α(p) finite. Then M is sparse in F.

Proof. For n ∈ N takeK to be an open subgroup ofF containingM such thatpα(p) | (F : K) for all p ≤ n.
Then for eachM ≤ L � K only primesp > n can divide (K : L). Therefore, (K : L) > n. �

As a consequence of Corollary 5.3 and Lemma 5.4, we get [15, Proposition 5.1]:

Corollary 5.5. Let M be a closed subgroup of a free profinite group F of rank m≥ 2. Assume(F : M) =
∏

p pα(p) with all α(p) finite. If (F : M) is infinite, then M is free profinite group of rankmax{ℵ0, rank(F)}.

6. Quasi-freeness vs. semi-freeness

We now construct an example of a quasi-free group that is not semi-free.
For a profinite groupC and an infinite setX denote by

∏

∗ X C the free product of copies{Cx}x∈X of C in
the sense of [1]. That is,

∏

∗ X C contains a copyCx of C for eachx ∈ X; and every family of homomorphisms
ψx : Cx → A into a finite groupA, such thatψx(Cx) = 1 for all but finitely manyx ∈ X, uniquely extends to
a homomorphismψ :

∏

∗ X C→ A. As usual letF̂ω denote the free profinite group of countable rank.

Proposition 6.1. Let X be a set of infinite cardinality m. Let C=
∏

pZ/pZ be the direct product of all
prime cyclic groups. Let F= (

∏

∗ X C) ∗ F̂ω. Then

(a) F is quasi-free of rank m, and
(b) the FSEP

(4) (F → 1,Z/4Z→ 1)

has at most countably many independent proper solutions.

In particular, for m> ℵ0, F is quasi-free but not semi-free.

Proof. (a) The rank of
∏

∗ X C is m and the rank ofF̂ω is ℵ0 ≤ m. Hence the rank ofF is m. In particular,
every FSEP forF has at mostm proper solutions. Let

(5) (ϕ : F → G, α : H → G)

be a nontrivial FSEP. Letβ : G → H be its splitting. We need two auxiliary maps: Firstly, thereexists a
nontrivial homomorphismπ : C→ Kerα; namely, an epimorphism ofC onto a subgroup of Kerα of prime
order. Secondly, sincêFω is free of infinite rank, there exists an epimorphismψ′ : F̂ω → α−1(ϕ(F̂ω)) such
thatα ◦ ψ′ is the restriction ofϕ to F̂ω. In particular,ψ′(F̂ω) contains Kerα. Sinceϕ is continuous, there is
a Y ⊆ X such thatX r Y is finite andϕ(Cy) = 1 for everyy ∈ Y.

For everyy ∈ Y define a homomorphismψy : F → H in the following manner: Its restriction toCy � C
coincides withπ; if y , x ∈ Y, the restriction ofψy to Cx is trivial; if x ∈ X r Y, the restriction ofψy to Cx

is β ◦ ϕ; and, finally, the restriction ofψy to F̂ω is ψ′. Thusα ◦ ψy = ϕ. As ψy(F) ⊇ ψ′(F̂ω) ⊇ Kerα, the
mapψy is a proper solution of (5).

As ψy1 , ψy2 for distincty1, y2 ∈ Y, (5) has at least|Y| = mdistinct proper solutions.
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(b) Let Ψ be an independent set of proper solutions of (4). The mapα : Z/4Z → 1 decomposes as
α = βγ, whereγ : Z/4Z → Z/2Z andβ : Z/2Z → 1. If ψ1, ψ2 ∈ Ψ are independent, thenγ ◦ ψ1, γ ◦ ψ2

are independent proper solutions of (β : Z/2Z→ 1, ϕ : F → 1) (Proposition 2.2(d)). In particular,γ ◦ ψ1 ,

γ ◦ ψ2. Thus{γ ◦ ψ | ψ ∈ Ψ} has at least the cardinality ofΨ.
On the other hand,Z/4Z is a 2-group and the 2-Sylow subgroup ofC is of order 2. Hence everyψ ∈ Ψ

maps eachCx � C into Kerγ, the unique subgroup ofZ/4Z of order 2, and henceγ ◦ ψ is trivial on Cx.
Thereforeγ ◦ ψ is trivial on

∏

∗ X C. It follows thatγ ◦ ψ is determined by its restriction tôFω. But there are
ℵ0 (continuous) homomorphismŝFω → Z/4Z. Thus|Ψ| ≤ ℵ0. �

Remark6.2. One can modify the construction in the proposition to get an absolute Galois groupF which is
quasi-free but not semi-free. E.g., letF =

∏

∗ (
∏

p,2Zp)∗D∗ F̂ω, whereD is the free product of the constant
sheaf of copies ofZ/2Z over some profinite space of weightm. One can show along the lines of the proof
of Proposition 6.1 thatF is quasi-free but not semi-free. Moreover,F is real projective in the sense of [6,
p. 472] and hence isomorphic to an absolute Galois group by [6, Theorem 10.4]. We leave out the details,
since the assertion is outside the scope of this work.

Remark6.3. In order to complete the picture we show that being semi-freeis strictly weaker than being
free. In fact, if F is semi-free of infinite rankm andG is of rank≤ m, thenF ∗ G is semi-free. This
leads to many examples of semi-free but not free profinite groups; e.g., takeG to be finite and recall that
a free group has no torsion. Furthermore, we can construct a semi-free group of arbitrary cohomological
dimensiond, by takingF free andG of cohomologicald. If d > 1 then the group is not free, or even
projective, since its cohomological dimension is greater than one. Another example is the absolute Galois
group given in Theorem 7.1 below, which is semi-free but is not projective (and hence not free) because its
cohomological dimension is greater than one.

The conditionm> ℵ0 in the above proposition is essential:

Remark6.4. If rank(F) = ℵ0, thenF is semi-free if and only if it is quasi-free.
Indeed, assumeF is quasi-free. Then every FSEP is solvable. By Lemma 3.5F is semi-free. The

opposite direction is immediate.

We now show that Case III of our Main Theoremdoes not carry over to quasi-free subgroups of quasi-
free groups.

Example6.5. Let X be a set of cardinalitym> ℵ0 and letF = (
∏

∗ X C)∗ F̂ω be the group of Proposition 6.1.
Let M be the kernel of the mapF → F̂ω. ThenF is quasi-free of rankm, weight(F/M) < m, but M is not
quasi-free.

Indeed, by Proposition 6.1,F is quasi-free of rankm. We have

weight(F/M) = rank(F̂ω) = ℵ0

sinceF/M = F̂ω. It is easy to see thatM is generated by the conjugates of
∏

∗ X C in F. Since
∏

∗ X C is
generated by copies ofC andC =

∏

pZ/pZ is generated by elements of prime order, alsoM is generated
by elements of prime order. HenceZ/q2Z is not an image ofM. In particular,M is not quasi-free.

Remark6.6. It is interesting to ask which of the cases of the Main Theoremholds for quasi-free groups. As
we have seen, Case III does not hold. In [23] Case I is proved. Case V is proved in [10] forM = [F, F].
Combining the methods of this paper together with [10], one can extend the result to anyM such that
F/M is abelian but not a pro-p group. The proof of Case VIII (and hence of (IX)) can be carried over to
quasi-free groups. However, we do not know if the diamond theorem, i.e. Case VI, which is the central
result of this paper, holds for quasi-free groups. All othercases are open in the quasi-free case.

In order to use our method, i.e. using wreath products, for quasi-free groups forM of infinite index in
F, one needs to come up with a new idea, as explained at the end ofSection 1.

7. Fields with semi-free absolute Galois groups

The main result in [11] (Theorem 5.1 there) was that for any field k, the absolute Galois group of
K := k((x, t)) is quasi-free. In fact more is true:
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Theorem 7.1. Let k be a field. Then the absolute Galois group of the field K:= k((x, t)) is semi-free of
rankcardK.

The proof of this stronger result is essentially contained in the proof of the original theorem in [11].
We explain below what additional observations need to be made to complete the argument, and how these
observations also yield stronger forms of other results in [11]. See also [12, Theorem 5.1] for more details.

First we recall the strategy used to prove [11, Theorem 5.1].The proof of that theorem relied on a
related geometric assertion, [11, Proposition 5.3]. That proposition asserted that given a split short exact

sequence 1→ N → Γ
f
→ G → 1 of finite groups with non-trivial kernel, anyG-Galois connected normal

branched coverY∗ → X∗ = Speck[[ x, t]] can be dominated by aΓ-Galois connected normal branched
coverZ∗ → X∗. Moreover it said that this cover may be chosen such thatZ∗ → Y∗ satisfied a splitting
condition (thatZ∗ → Y∗ is totally split at the generic points of the ramification locus ofY∗ → X∗), and that
the set of isomorphism classes of such coversZ∗ → X∗ has cardinality equal tom := cardk((x, t)).

The proof of [11, Proposition 5.3] relied on [11, Theorem 4.1], which was a more global version of that
assertion. Namely, it considered a smooth connected curveX over a fieldk̂ := k((t)), and then considered a
finite split embedding problem for the absolute Galois groupof the function fieldK of X (this fieldK being
a global analog of the more local fieldK considered in [11, Proposition 5.3]). The conclusion was similar:
that anyG-Galois branched coverY→ X of normal curves can be dominated by aΓ-Galois branched cover
Z→ X; that this cover can be chosen with a splitting property; andthat there arem := cardK distinct such
choices of corresponding normal branched coversZ → X. (The splitting property is thatZ → Y is totally
split over a given finite setD ⊂ Y of closed points, and the decomposition groups ofZ→ X at the points of
Z overδ ∈ D are the conjugates ofσ(Gδ), whereGδ is the decomposition group ofY→ X at δ and where
σ is a section off .)

Moreover, for the sake of [11, Proposition 5.3], more was shown in [11, Theorem 4.1], to enable passage
from a global solution to a more local solution. LetX̄ be a smooth projective model forX overk[[ t]]; and
with Y,Z as above, let̄Y, Z̄ be the corresponding normal branched covers. LetP be a closed point of̄X
whose residue field is separable overk, let X∗ be the spectrum of the complete local ring ofX̄ at P, and
suppose that the pullbackY∗ → X∗ of Ȳ → X̄ is connected. Then among the pullbacksZ∗ → X∗ of
the above solutions̄Z → X̄ there arem distinct proper solutions of the corresponding local embedding
problem. This additional condition was applied in the case of the x-line over k̂ in order to obtain [11,
Proposition 5.3].

More specifically, the relationship between the local assertion [11, Proposition 5.3] and the more global
assertion [11, Theorem 4.1] is based on viewingk((x, t)) as the fraction field of the complete local ring of
X̄ := P1

k[[ t]] at the pointx = t = 0. In order to apply [11, Theorem 4.1] to the proof of [11, Proposition 5.3],
a change of variables can be made to reduce to the case in whichthe prime (t) is unramified inY∗ → X∗.
The reduction of this cover modulo (t) is then induced from a branched cover of the projectivek-line, by
the Katz-Gabber theorem [17, Theorem 1.4.1]. A patching argument then shows that this cover ofP1

k is in
turn the closed fiber of a cover ofP1

k[[ t]] that restricts toY∗ → X∗. This enables [11, Theorem 4.1] to be
cited; and by the extra conditions in the paragraph above, the proper solutions to the embedding problem
over the function field ofP1

k[[ t]] yield distinct proper solutions to the embedding problem overk((x, t)).
Theorem 4.1 of [11] was a variant on results of Pop [20, Main Theorem A] and of Haran and Jarden

[7, Theorem 6.4], showing that finite split embedding problems over the function fields of curves over
complete discretely valued (or more generally large) fieldshave proper regular solutions (and that some
additional conditions can also be satisfied, e.g. the existence of an unramified rational point). Like those
earlier results, [11, Theorem 4.1] was proven using patching. Generators were chosen for the kernelN
of the given finite split embedding problem; and cyclic covers were constructed with groups generated by
each of those elements in turn. These were then patched together to form a global solution; in doing so, a
compatibility condition (agreement on overlaps) had to be satisfied by the cyclic covers on the “patches”.
Such a construction was carried out in [11, Proposition 3.5]. But the construction there assumed that branch
points ofZ → Y that correspond to distinct generators ofZ had the property that their closures in̄Y are
disjoint. In order to apply this to the proof of [11, Theorem 4.1] (where the branch points all coalesce on
the closed fiber atP, in order to preserve the solutions overX∗), it was necessary to blow up the closed
fiber to separate the branch points.

We can now describe the proof of Theorem 7.1:
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Proof. As discussed above, this theorem is a strong form of [11, Theorem 5.1], and to prove this result it
suffices to prove a corresponding strong form of [11, Proposition5.3]: that among the coversZ∗ → X∗

whose existence is asserted in that proposition, there is a subset having cardinalitym, and which is linearly
disjoint as a set of covers ofY∗. To prove this, we need to see that in the situation of [11, Theorem 4.1],
an additional property holds: that there arem choices ofZ → X that are linearly disjoint overY, that
properly solve the given global embedding problem, and thatinduce proper solutions overX∗ that are
linearly disjoint overY∗ = Y×X X∗.

To show this stronger version of [11, Theorem 4.1], the key point is that the branch points associated to
the generators ofN can be chosen inm different (and even disjoint) ways. As shown in the original proof,
given any choices of these points onX (which correspond to curves on̄X that are finite overk[[ x]]), any
other choice of points that is congruent to the original choice modulo a sufficiently high power oft will also
work. (Indeed, this is how it was shown that there aremdistinct solutions, both overX and overX∗.) What
needs to be shown here is that by varying the branch points we can obtainm solutions that are linearly
disjoint overY. Since Galois branched covers with no common subcover are linearly disjoint, it suffices to
show that the set ofmsolutionsZ→ X, such that the coversZ→ Y have pairwise disjoint branch loci, can
be chosen such that eachZ→ Y has no non-trivial étale subcoverW→ Y.

In the above situation, ifZ → Y has a non-trivial étale subcoverW → Y, then the Galois group
Gal(Z/W), which is a subgroup ofN = Gal(Z/Y), must contain all the inertia groups ofZ → Y. But this
is ruled out by the explicit construction in the proof of [11,Proposition 3.5]. Namely, that result asserts
that the closed fiber̄Z → Ȳ of Z → Y is anN-Galois mock cover; i.e., each irreducible component ofZ̄
maps isomorphically ontōY, with the irreducible components being indexed by the cosets of N in Γ. The
construction in the proof there shows that for each generator n of N, there is a closed pointQn ∈ Z̄ lying
in the ramification locus of̄Z → Ȳ, such thatn generates the inertia group of̄Z → Ȳ at Qn and also the
inertia groups at the generic points of the ramification components passing throughQn. Since the elements
n together generateN, this shows that theN-Galois coverZ → Y has no non-trivial étale subcovers, as
desired.

Thus the above strong form of [11, Theorem 4.1] indeed holds.Hence so does the strong form of [11,
Proposition 5.3]; and thus also Theorem 7.1 above, the strong form of [11, Theorem 5.1]. �

Another key result of [11], viz. Corollary 4.4 there, asserted that ifK is the function field of a smooth
projective curve over a very large fieldk, then the absolute Galois group ofK is quasi-free. This can also
be strengthened, as follows:

Theorem 7.2. If K is the function field of a smooth projective curve X0 over a large field k, then the
absolute Galois group of K is semi-free.

This result has been independently proved by Jarden [14].

Proof. By a recent result of Pop (see [10, Proposition 3.3]), every large field is very large. So the as-
sumption onk in [11, Corollary 4.4] can be (a priori) weakened from very large to large. Concerning the
strengthening of the conclusion, this can be done in a similar way to what was done above for Theorem 7.1.
Namely, [11, Corollary 4.4] followed from [11, Theorem 4.3], which was a variant of [11, Theorem 4.1] in
which the fieldk̂ = k((t)) was replaced by a more general large fieldF. As in the case of Theorem 7.1, to
prove 7.2 it suffices to show that the proper solutionsZ0→ X0 in [11, Theorem 4.3] can be chosen so as to
be linearly disjoint overY0; and for this it suffices to show that they can be chosen so that eachZ0 → Y0

has no non-trivial étale subcovers.
Theorem 4.3 of [11] was proven using [11, Theorem 4.1], by taking k = F; obtaining a proper solution

for the function field of the induced curvēX := X0 ×F R overR= k[[ t]]; descending fromR to ak-algebra
A of finite type, corresponding to ak-varietyV; considering the descendedΓ-Galois coverZA → XA as a
family of Γ-Galois covers ofX0 parametrized byV; and then specializing tok-points ofV (thereby obtaining
solutions overX0) using thatk is (very) large. To prove the desired strong form of [11, Theorem 4.3],
observe that in the context of the above use of [11, Theorem 4.1], the branch points (which can be varied
arbitrarily modulo some sufficiently high power oft) can be chosen so as not to be constant; i.e. not of the
form P′×k k̂ with P′ a point ofX0. As a result, the the varying branch locus of the family ofΓ-Galois covers
of X0 parametrized byV is base-point free. So as in the proof of the strong form of [11, Theorem 4.1],
the specialized covers can be chosen to have no non-trivial ´etale subcovers; and hence they are linearly
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disjoint. This shows that [11, Theorem 4.3] can be strengthened as claimed to include the desired linear
disjointness assertion; and hence Theorem 7.2, the strong form of [11, Corollary 4.4], also holds. �

8. Fields with free absolute Galois groups

We present two families of fields having free absolute Galoisgroups. For each we use Theorem 3.6 to
reduce the proof of freeness to proving that the group is semi-free and projective.

The semi-freeness follows from the Diamond Theorem (Main Theorem, Case VI) together with the
semi-freeness of the absolute Galois group of the base field,which was established in the previous section.
The projectivity is achieved by different means (here we just quote it).

8.1. Fields containing the maximal abelian extension ofk((x, t)). We follow [10] to find fields with free
absolute Galois group. Let us start with a general fact and then give some concrete examples.

Corollary 8.1. Let K = k((x, t)), where k is separably closed and let L be a separable extension of K. If
L contains the maximal abelian extension of K, and its absolute Galois groupGal(L) satisfies one of the
cases of the Main Theorem as a subgroup ofGal(K), thenGal(L) is a free profinite group.

Proof. The group Gal(K) is semi-free of rankm by Theorem 7.1. Hence so is Gal(L). Also, Gal(L) is
projective [10, Theorem 4.4] (see also [3]). Thus, Theorem 3.6 yields that Gal(L) is free. �

Example8.2. Let K = k((x, y)), wherek is separably closed. LetE be a Galois extension ofK not
containing the maximal abelian extensionKab of K. Let L be any subextension ofEKab/Kab. We claim
that Gal(L) is free of rank equal to the cardinality ofL.

To see this, first note that Gal(K) is semi-free (Theorem 7.1). IfL = Kab, then by [10, Theorem 4.6(b)]
it follows that Gal(L) is free. (Equivalently, this follows from Main Theorem Case V together with Corol-
lary 8.1.)

Now consider the caseL , Kab. SinceKab * E andKab ⊆ L, it follows thatL * E. Furthermore,E/K
andKab/K are Galois. Hence by the Galois correspondence,M = Gal(L) satisfies Case VI of the Main
Theorem withF = Gal(K), M1 = Gal(E), andM2 = Gal(Kab). By Corollary 8.1, Gal(L) is free.

Gal(Kab)

Gal(L)

Gal(K)

Gal(E) ∩Gal(Kab) Gal(E)

8.2. Jarden’s example – extension of roots.This example is adapted from [14]. Letk be a PAC field of
characteristicp ≥ 0 andK = k(x). LetF ⊆ k[x] ⊆ K be the set of all monic irreducible polynomials. For
eachf ∈ F choose a set of compatible roots

{

f
1
n

∣

∣

∣ p ∤ n
}

⊆ Ks.

(Here compatible means that (f
1

nn′ )n = f
1
n′ for all n, n′ prime top.) Let

L = K
(

f
1
n

∣

∣

∣ f ∈ F andp ∤ n
)

.

Note thatL/K is Galois if and only ifK contains all roots of unity. Thus in generalL/K is not Galois. In
what follows we show that Gal(L) is free of rank equal to the cardinality ofL.

Fact 8.3. Gal(L) is projective.

This fact follows from theorems of Efrat and Pop (see Theorems 10.4.9 and 11.6.4 in [14]).

Lemma 8.4. There exist Galois extensions L1, L2 of K such that L⊆ L1L2, but L* Li , i = 1, 2.

Proof. Let L0 denote the extension ofK generated by all roots of unity. Let

L1 = L0
(

x
1
n

∣

∣

∣ p ∤ n) andL2 = L0
(

f
1
n

∣

∣

∣ f ∈ F r {x} andp ∤ n).

ClearlyL1, L2 are Galois extensions ofK. It is obvious thatL ⊆ L1L2. Choose an integerm> 1 that is not
divisible byp. Since (x+ 1)

1
m < L1 we get thatL * L1; and similarlyx

1
m < L2 implies thatL * L2. �

Theorem 8.5. Gal(L) is free of rank equal to the cardinality of L.
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Proof. By Theorem 3.6 it suffices to show that Gal(L) is both projective and semi-free of rank equal to the
cardinality ofL. We already mentioned that Gal(L) is projective (Fact 8.3).

Theorem 7.2 implies that Gal(K) is semi-free of rankm := |K| = |L|. (Recall thatk is PAC, and in
particular large.) Taking absolute Galois groups of the fields L1, L2 in the above lemma establishes the
condition of Case VI of the Main Theorem, thus Gal(L) is semi-free of rankm. �

In fact, even more is true. Namely, we have learned from Pop that the proof of his theorem (referred
to above) applies more broadly. In particular, it applies inthe case thatk = F((t)) for some separably
closed fieldF (using that this fieldk, like a PAC field, has projective absolute Galois group and “satisfies
a universal local-global principle”). Following the same construction as above, we again deduce that the
resulting fieldL has free absolute Galois group of rank|L|. Note that by Corollary 25.4.8 of [4], this also
implies that the absolute Galois group ofF((t))(x)ab is free forF separably closed.

Moreover, ifk′ is the field obtained fromk by adjoining a set of compatiblenth roots to all the non-zero
elements ofk, then Pop’s argument also shows thatL′ := Lk′ has projective absolute Galois group in the
case thatk is a local field such asFp((t)) orQp. (Here the adjunction of additional roots is to deal with the
fact that Gal(k) is no longer projective.) Since Lemma 8.4 then holds withL replaced byL′ (and withLi in
the proof replaced by its compositum withk′), the above proof of Theorem 8.5 then shows that Gal(L′) is
a free profinite group.

AcknowledgmentWe thank Moshe Jarden for the suggestion to consider Case IIIof the Main Theorem.
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