NON-FREE TORSION-FREE PROFINITE GROUPS WITH OPEN FREE SUBGROUPS

BY
DAN HARAN ${ }^{\dagger}$
Mathematisches Institut, Bismarckstr. $1 \frac{1}{2}$, D-8520 Erlangen, W. Germany

ABSTRACT
For every integer $e \geqq 3$ there exists a non-free torsion-free profinite group containing \hat{F}, as an open subgroup.

The aim of this note is to disprove the following
Conjecture (Jarden [3], Conjecture 4.4). Let \mathscr{C} be a full family of finite groups and let $e \geqq 2$ be an integer. If a torsion-free pro- \mathscr{C}-group G contains an open subgroup F which is isomorphic to $\hat{F}_{\ell}(\mathscr{C})$ then G is a free pro- \mathscr{C}-group.

The Conjecture generalizes a result of Serre ([5], Corollaire 2): Every torsion-free pro-p-group containing an open free subgroup is free. Serre also asked whether the discrete analogue of this is true; a positive answer has been supplied by Stalling [6] and Swan [7]. Jarden has posed the profinite analogue as a conjecture in [2], section 13. Partial results with respect to the rank e of the free subgroup have been obtained since. The conjecture does not hold if e is infinite (Mel'nikov [4]); Jarden has proved the conjecture for $e=2$ ([3], Theorem 1.2) and together with Brandis constructed a counterexample for $e=1$ ([3], section 5), thereby stating the conjecture in the above-mentioned form. We claim:

Proposition. Let $e \geqq 3$. There exists a torsion-free non-free profinite group G with an open free subgroup H isomorphic to \hat{F}_{e}.

Proof. Choose primes p, q such that $p|e-1, p| q-1$ and let $n=(e-1) / p$.
By [2], Example 5.1 there exists an exact sequence of profinite groups

[^0]$$
1 \longrightarrow \hat{\mathbf{Z}} \longrightarrow \Gamma \xrightarrow{\varphi} \mathbf{Z} / p \mathbf{Z} \longrightarrow 1
$$
where Γ is torsion-free. Moreover, Γ possesses the following finite quotient
$$
\bar{\Gamma}=\left\langle\bar{z}, \bar{\pi} \mid \bar{z}^{q}=\bar{\pi}^{p}=1, \bar{z}^{\bar{\pi}}=\bar{z}^{a}\right\rangle,
$$
with $a \in \mathbf{Z}$ such that $a^{p} \equiv 1(\bmod q), a \neq 1(\bmod q)$. (Indeed, $\Gamma=\langle z, \pi\rangle$, where $z=\left(z_{i}\right)_{i}$ generates $\Pi_{l \neq p} \mathbf{Z}_{i}, \pi$ generates \mathbf{Z}_{p}, and $z_{i}^{\pi}=z_{i}^{a_{i}}$ with $a_{l} \in \mathbf{Z}_{l}$ chosen such that $\alpha_{l}^{p}=1$ for every $l \neq p$, and $\alpha_{q} \neq 1$. Note that this implies that $\alpha_{q} \neq 1$ $(\bmod q)$. Let $a \in \mathbf{Z}$ such that $a \equiv \alpha_{q}(\bmod q)$ and define an epimorphism $\Gamma \rightarrow \bar{\Gamma}$ by $z \mapsto \bar{z}, \pi \mapsto \bar{\pi}$.)
Now let G be the free profinite product $\hat{F}_{n} * \Gamma$, and define $\hat{\varphi}: G \rightarrow \mathbf{Z} / p \mathbf{Z}$ by $\operatorname{res}_{\hat{F}_{n}} \hat{\varphi}=1$, res $\hat{\varphi}=\varphi$. Let $H=\operatorname{Ker} \hat{\varphi}$. Then $G=H \Gamma$ and $G=\bigcup_{i=1}^{p} x_{i} H=$ $\bigcup_{i=1}^{p} x_{i} H \hat{F}_{n}=\bigcup_{i=1}^{p} H x_{i} \hat{F}_{n}$, where x_{1}, \ldots, x_{p} represent G / H. Moreover, $H \cap \Gamma=$ $\operatorname{Ker} \varphi=\hat{\mathbf{z}}$ and $H \cap \hat{F}_{n}^{x_{i}} \cong H \cap \hat{F}_{n}=\hat{F}_{n}$ for every i. Thus by the (Subgroup) Theorem of [1]
$$
H \cong \hat{\mathbf{Z}} *\left({\left.\underset{i=1}{*} \hat{F}_{n}^{p} \hat{F}_{n}\right) * \hat{F}_{m}, \quad \text { where } m=(p-1)+(p-p)-p+1=0, ~}_{\text {, }}\right.
$$
i.e., $H \cong \hat{F}_{p n+1}=\hat{F}_{e}$.

If $g \in G$ is of finite order then its image under the canonical projection $G \rightarrow \Gamma$ is 1 , since Γ is torsion-free. In particular $\hat{\varphi}(g)=1$, i.e., $g \in H$, whence $g=1$, since $H \cong \hat{F}_{e}$ is torsion-free. If G were free, then

$$
\mathrm{rk}(G)=\frac{\mathrm{rk}(H)-1}{(G: H)}+1=\frac{p n}{p}+1=n+1,
$$

by the Corollary of [1]. However, we now construct a finite quotient \bar{G} of G of rank $>n+1$:

Lemma. Let $B=\mathbf{Z} / q \mathbf{Z} \times \cdots \times \mathbf{Z} / q \mathbf{Z}(n+1$ times $)$, and let $\bar{G}=\mathbf{Z} / p \mathbf{Z} \mathbf{C} B$, where $\mathbf{Z} / p \mathbf{Z}=\langle c\rangle$ acts on B by

$$
b^{c}=b^{a}, \quad \text { for all } b \in B
$$

Then:
(i) If $1 \neq b \in B$ then $\langle b, c\rangle \cong \bar{\Gamma}$.
(ii) If $B^{\prime} \leqq B$ then B^{\prime} is normal in \bar{G}.
(iii) If $g \in \bar{G} \backslash B$ then ord $g=p$.
(iv) \bar{G} is a quotient of G.
(v) $\operatorname{rk}(\bar{G})>n+1$.

Proof. (i), (ii) - clear.
(iii) As B is the kernel of the projection $\psi: \bar{G} \rightarrow \mathbf{Z} / p \mathbf{Z}$, we have $\psi(g) \neq 1$, hence $p=\operatorname{ord} \psi(g) \mid$ ord g. On the other hand $g=b c^{i}$, for some $b \in B, i \in \mathbf{Z}$. Thus $g \in\langle b, c\rangle \cong \bar{\Gamma}$, by (i), whence ord $g \mid$ ord $\bar{\Gamma}=p q$. But $\bar{\Gamma}$ is of order $p q$ and not cyclic, hence ord $g \neq p q$. Therefore ord $g=p$.
(iv) Choose generators $b_{0}, b_{1}, \ldots, b_{n}$ for B. Then $\left\langle b_{1}, \ldots, b_{n}\right\rangle$ is a quotient of \hat{F}_{n} and $\left\langle b_{0}, c\right\rangle$ is a quotient of Γ, by (i), hence $\bar{G}=\left\langle c, b_{0}, b_{1}, \ldots, b_{n}\right\rangle$ is a quotient of G.
(v) Assume that $g_{0}, g_{1}, \ldots, g_{n} \in \bar{G}$ generate \bar{G}. W.l.o.g. $g_{0} \notin B$. We may also assume that $g_{1}, \ldots, g_{n} \in B$, otherwise premultiply them by suitable powers of g_{0}. By (ii),

$$
\bar{G}=\left\langle g_{0}\right\rangle\left\langle g_{1}, \ldots, g_{n}\right\rangle=\left\langle g_{0}\right\rangle\left(\left\langle g_{1}\right\rangle \cdots\left\langle g_{n}\right\rangle\right),
$$

hence $|\bar{G}| \leqq p q^{n}$, by (iii). A contradiction, since $|\bar{G}|=p|B|=p q^{n+1}$.

Note added in proof. The result of this note has been independently obtained by O. V. Mel'nikov.

References

[^1]
[^0]: ${ }^{\dagger}$ Supported by Rothschild Fellowship.
 Received June 26, 1984 and in revised form September 2, 1984

[^1]: 1. E. Binz, J. Neukirch and G. H. Wenzel, A subgroup theorem for free products of profinite groups, J. Algebra 19 (1971), 104-109.
 2. M. Jarden, Algebraic extensions of finite corank of Hilbertian fields, Isr. J. Math. 18 (1974), 279-307.
 3. M. Jarden, Torsion-free profinite groups with open free subgroups, Arch. Math. 39 (1982), 496-500.
 4. O. V. Mel'nikov, Normal subgroups of free profinite groups, Math. USSR Izv. 12 (1978), 1-20.
 5. J.-P. Serre, Sur la dimension cohomologique des groupes profinis, Topology 3 (1965), 413-420.
 6. J. R. Stalling, On torsion-free groups with infinitely many ends, Ann. Math. 88 (1968), 312-334.
 7. R. G. Swan, Groups of cohomological dimension one, J. Algebra 12 (1969), 585-610.
