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IntroductionColliot-Th�el�ene [CT] uses the technique of Koll�ar, Miyaoka, and Mori to prove thefollowing result.Theorem A: Let K be an ample �eld of characteristic 0, x a transcendental elementover K, and G a �nite group. Then there is a Galois extension F of K(x) with Galoisgroup G, regular over K. Moreover, F has a K-rational place '.In fact, Colliot-Th�el�ene proves a stronger version:Theorem B: Given a Galois extension L=K with Galois group � which is a subgroupof G, one can choose F and ' so that the residue �eld extension of F=K(x) under ' isL=K.Case � = G of Theorem B means that K has the arithmetic lifting property ofBeckmann and Black [BB].As the results of Koll�ar, Miyaoka, and Mori are valid only in characteristic 0,Colliot-Th�el�ene's proof works only in this case. Nonetheless, Theorem A holds in ar-bitrary characteristic ([Ha, Corollary 2.4] for complete �elds, [Po1, Main Theorem A];see also [Li] and [HV]). Moret-Bailly [MB], using methods of formal patching, extendsTheorem B to arbitrary characteristic.Here we use algebraic patching to prove Theorem B for arbitrary characteristic.In fact, the main ingredient of the proof is almost contained in [HJ1]. Therefore thisnote can be considered a sequel to [HJ1]; a large portion of it recalls the situation andfacts considered there.We also notice that if K is PAC and F is an arbitrary Galois extension of K(x)with Galois group G, regular over K, then, for every Galois extension L=K with Galoisgroup which is a subgroup of G, we can choose ' so that the residue �eld extension ofF=K(x) under ' is L=K. (After the �rst draft of this note has been written, P. D�ebesinformed us that he also made this observation in [De, Remark 3.3].) This answers aquestion of Harbater. Notice that this stronger property does not hold for an arbitraryample �eld K [CT, Appendix]. 1



The idea (displayed in our Lemma 2.1) to use the embedding problem GnG! Gin order to obtain the arithmetic lifting property has been used in [Po2]; we are gratefulto F. Pop for making his notes available to us.1. Embedding problems and decomposition groupsLet K=K0 be a �nite Galois extension with Galois group �. Let x be a transcendentalelement over K. Put E0 = K0(x). Suppose that � acts (from the right) on a �nitegroup G; let � n G be the corresponding semidirect product and �: � n G ! � thecanonical projection. We call(1) �: �nG! � = G(K=K0)a �nite constant split embedding problem. A solution of (1) is a Galois ex-tension F of E0 such that K � F , G(F=E0) = � n G, and � is the restriction mapresK : G(F=E0)! G(K=K0).In [HJ1, Theorem 6.4] we reprove the following result of F. Pop [Po1]:Proposition 1.1: Let K0 be an ample �eld. Then each �nite constant split embeddingproblem (1) has a solution F such that F has a K-rational place. (In particular, F=Kis regular.)In this section we show that the proof of Proposition 1.1 in [HJ1] yields a strongerassertion.Lemma 1.2: Let F be a solution of (1). Put F0 = F�. Let ': F ! fK0 be a K-place extending a K0-place of E0. Assume that ' is unrami�ed in F=E0 and let D'be its decomposition group in F=E0. Then '(F ) � K and the following assertions areequivalent:(a) '(F ) = K and � = D';(b) � � D';(c) '(F0) = K0;(d) '(F ) = K and '(f
) = '(f)
 for each 
 2 � and f 2 F with '(f) 6=1.2



Proof: As K � F , we have K = '(K) � '(F ). Since the inertia group of ' in F=E0is trivial, we have an isomorphism �: D' ! G('(F )=K0) given by(2) '(f
) = '(f)�(
); 
 2 D'; f 2 F; '(f) 6=1:Hence jD'j = ['(F ) : K0] � [K : K0] = j�j. This gives (a) , (b).Since ' is unrami�ed over E0, the decomposition �eld FD' is the largest inter-mediate �eld of F=E0 mapped by ' into K0, and hence (b) , (c).Clearly (d) ) (c). If '(F ) = K, apply (2) to f 2 K to see that �(
) = 
 for all
 2 D'. Hence (a) ) (d).Remark 1.3: Let K0 be an ample �eld and let F be a solution of (1). Suppose that Fhas a K-rational place extending K0-places of E0 and unrami�ed over E0 such that �is its decomposition group in F=E0. Then F has in�nitely many such places.Indeed, put F0 = F�. Recall that F0 is regular over K0. By Lemma 1.2,(a) the assumption is that there is a K0-place ': F0 ! K0 unrami�ed over K0(x), and(b) we have to show that there are in�nitely many such places.But (a) ) (b) is a property of an ample �eld.Proposition 1.4: Let K0 be an ample �eld. Then each �nite constant split embeddingproblem (1) has a solution F with a K-rational place of F extending a K0-place of E0and unrami�ed over E0 such that � is its decomposition group in F=E0.Proof: Put E = K(x) = KK0(x).Part A: As in the proof of [HJ1, Theorem 6.4], we �rst assume that K0 is completewith respect to a non-trivial discrete ultrametric absolute value, with in�nite residue�eld and K=K0 is unrami�ed.In this case [HJ1, Proposition 5.2] proves Proposition 1.1. Claim C of that proofshows that, for every b 2 K0 with jbj > 1, x ! b extends to a K-homomorphism'b: R! K, where R is the principal ideal ring Kf 1x�ci j i 2 Ig. From there it extendsto a K-place 'b: Q! K[f1g of the Q = Quot(R). Furthermore, [HJ1, Lemma 1.3(b)]gives an E-embedding �: F ! Q. The compositum ' = 'b Æ � is a K-rational place of3



F . Excluding �nitely many b's we may assume that ' is unrami�ed over E0. To verifythat ' satis�es condition (d) of Lemma 1.2, we �rst recall the relevant facts from [HJ1].(a) [HJ1, Proposition 5.2, Construction B] The group � = G(K=K0) lifts isomorphicallyto G(E=E0). By the choice of the ci we have � 1x�ci �
 = 1x�c
i , for each 
 2 �. Itfollows that � continuously acts on R in the following way�a0 +Xi2I 1Xn=1 ain� 1x� ci �n�
 = a
0 +Xi2I 1Xn=1 a
in� 1x� c
i �n:This action induces an action of � on Q.(b) [HJ1, (7) on p. 334] The above mentioned action of � on Q de�nes an action of �on the Q-algebra N = IndG1 Q = nX�2G a�� j a� 2 Qoin the following way:�X�2G a���
 = X�2G a
��
 a� 2 Q; 
 2 �:Furthermore, the �eld F is a subring ofN [HJ1, p. 332] and � acts on it by restrictionfrom N [HJ1, Proof of Proposition 1.5, Part A].(c) The embedding �: F ! Q is just the restriction to F of the projectionX�2G a�� 7! a1from N = IndG1 Q! Q [HV, Proposition 3.4].(d) The place 'b: Q! K[f1g is induced from the evaluation homomorphism 'b: R!K given by [HJ1, Remark 3.5]'b�a0 +Xi2I 1Xn=1 ain� 1x� ci �n� = a0 +Xi2I 1Xn=1 ain� 1b� ci �n:In order to prove condition (d) of Lemma 1.2 it suÆces to show that both � and 'b are�-equivariant. 4



Let f =P�2G a�� 2 F � N . Then, by (b) and (c),�(f
) = ��X�2G a
��
� = a
1 = ���X�2G a����
 = �(f)
:Furthermore, let r = a0 +Pi2IP1n=1 ain� 1x�ci �n 2 R. By (a) and (d),'b(r
) = 'b�a
0 +Xi2I 1Xn=1 a
in� 1x� c
i �n� = a
0 +Xi2I 1Xn=1 a
in� 1b� c
i �n= �a0 +Xi2I 1Xn=1 ain� 1b� ci �n�
 = 'b(r)
:Thus 'b is �-equivariant.Part B: K0 is an arbitrary ample �eld. As in the proof of [HJ1, Theorem 6.4] let K̂0be the �eld of Laurent series over K0. Then K̂ = KK̂0 is an unrami�ed extension ofK̂0 with Galois group � and in�nite residue �eld.By Part A, K̂0(x) has a Galois extension F̂ which contains K̂(x), such thatG(F̂ =K̂0(x)) = � n G and the restriction map G(F̂ =K̂0(x)) ! G(K=K0) is the pro-jection �: �nG! �. Furthermore, there is b 2 K̂0 such that the place x! b of K̂0(x)extends to an unrami�ed K̂-place '̂: F̂ ! K̂ and '̂(F̂�) = K̂0. Put m = jGj.Use Weak Approximation to �nd y 2 F̂� mapped by the m distinct extensions ofx! b to F̂� intom distinct elements of the separable closure of K̂0; then F̂� = K̂0(x; y).Thus there exist polynomials f 2 K̂0[X;Z], g 2 K̂0[X;Y ], elements z 2 F̂ , y 2 F̂�,and elements b; c 2 K̂0, such that the following conditions hold:(3a) F̂ = K̂0(x; z), f(x; Z) = irr(z; K̂0(x)); we may therefore identify G(f(x; Z); K̂0(x))with G(F̂ =K̂0(x));(3b) F̂� = K̂0(x; y), whence F̂ = K̂(x; y), and g(x; Y ) = irr(y; K̂0(x)); thereforeg(X;Y ) is absolutely irreducible;(3c) discrg(b; Y ) 6= 0 and g(b; c) = 0.All of these objects depend on only �nitely many parameters from K̂0. So, thereare u1; : : : ; un 2 K̂0 So, let u1; : : : ; un be elements of K̂0 such that the following condi-tions hold: 5



(4a) F = K0(u; x; z) is a Galois extension of K0(u; x), the coeÆcients of f(X;Z) lie inK0[u], f(x; Z) = irr(z;K0(u; x)), and G(f(x; Z); K0(u; x)) = G(f(x; Z); K̂0(x));(4b) the coeÆcients of g lie in K[u]; hence g(x; Y ) = irr(y;K0(u; x)); furthermore,K0(u; x; y) = F�;(4c) b; c 2 K0[u] and discrg(b; Y ) 6= 0 and g(b; c) = 0.Since K̂0 has a K-rational place, namely, x ! 0, the �eld K̂0 and therefore alsoK0(u) are regular extensions of K0. Thus, u generates an absolutely irreducible varietyU = Spec(K0[u]) over K0. By Bertini-Noether [FJ, Proposition 8.8] the variety U hasa nonempty Zariski open subset U 0 such that for each u0 2 U 0 the K0-specializationu ! u0 extends to a K-homomorphism 0: K[u; x; z; y] ! K[u0; x; z0; y0] such that thefollowing conditions hold:(5a) f 0(x; z0) = 0, the discriminant of f 0(x; Z) is not zero, and F 0 = K0(u0; x; z0) is thesplitting �eld of f 0(x; Z) over K0(u0; x); in particular F 0=K0(u0; x) is Galois;(5b) g0(X;Y ) is absolutely irreducible and g0(x; y0) = 0; so g0(x; Y ) = irr(y0; K(u0; x));furthermore, K0(u0; x; y0) = (F 0)�;(5c) b0; c0 2 K0[u0] and discrg0(b0; Y ) 6= 0 and g0(b0; c0) = 0.AsK0 is existentially closed in K̂0, and since u 2 U(K̂0), there is u0 2 U(K0). Nowrepeat the end of the proof of [HJ1, Lemma 6.2] (from \By (5a), the homomorphism: : :"to conclude that F 0 is a solution of (1).F 0
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2. Lifting property over ample �eldsLet � be a subgroup of a �nite group G. Let � act on G by the conjugation in Gg
 = 
�1g
:and consider the semidirect product �nG. To �x notation, �nG = f(
; g) j 
 2 �; g 2Gg and the multiplication on �nG is de�ned by(
1; g1)(
2; g2) = (
1
2; g
21 g2):Notice that �nG �= ��G by (
; g) 7! (
; 
g). However, the above presentation gives adi�erent splitting of the projection ��G! �. In particular, we have an epimorphism�: �nG! G given by (
; g) 7! 
g. Let N denote its kernel.Lemma 2.1: Let K0 be a �eld, K a Galois extension of K0 with Galois group �, and xa transcendental element over K0. Assume that (1) has a solution F̂ with a K-rationalplace '̂ of F extending a K0-place of K0(x) and unrami�ed over K0(x) such that � isits decomposition group in F=K0(x). Let F = F̂N and let ' be the restriction of '̂ toF . Then(6a) F is a Galois extension of K0(x) and G(F=K0(x)) �= G;(6b) F=K0 is a regular extension;(6c) ' represents a prime divisor p of F=K0 with decomposition group � in F=K0(x)and residue �eld K.Proof: By assumption, F̂ is a Galois extension of K0(x) containing K, with Galoisgroup �nG such that the restriction G(F̂ =K0(x))! G(K=K0) is the projection �nG!�, and F̂ =K is regular. Furthermore, '̂: F̂ ! K is a K-place unrami�ed over K0(x),with decomposition group � = f(
; 1) j 
 2 �g �= � in F̂ =K0(x) and residue �eldextension K=K0. In particular, F̂ is regular over K.From the de�nition of F we get (6a) and �(�) = � � G is the decompositiongroup of the restriction ': F ! K of '̂ to F . As j�j = [K : K0], the residue �eld of' is K. As �nG = NG, the �elds F = F̂N and K(x) = F̂G are linearly disjoint overK0(x). Therefore F is regular over K0. 7



Lemma 2.1 together with Proposition 1.4 and Remark 1.3 yield the followingresult, originally proved by Colliot-Th�el�ene [CT, Theorem 1] in characteristic 0:Theorem 2.2: Let K0 be an ample �eld, G a �nite group, � a subgroup, K a Galoisextension of K0 with Galois group �, and x a transcendental element over K0. Thenthere is F that satis�es (6a), (6b) and(6d) there are in�nitely many prime divisors p of F=K0 with decomposition group � inF=K0(x) and residue �eld K.Remark 2.3: In case of � = G, Theorem 2.2 says that an ample �eld K0 has theso-called arithmetic lifting property of Beckmann-Black [BB].If K0 is a PAC �eld, an even stronger property holds.Theorem 2.4: Let K0 be a PAC �eld, G a �nite group, F a function �eld of onevariable over K0, and E a sub�eld of F such that F=E is Galois with Galois group G.Let � be a subgroup of G and K a Galois extension of K0 with Galois group �. Thenthere are in�nitely many prime divisors p of F=K0 with decomposition group � in F=Eand residue �eld K.Proof: By de�nition, F is a regular extension of K0. In particular, F is linearly disjointfrom K over K0. Hence,G(FK=E) = G(FK=F )� G(FK=EK) �= ��G:Consider the subgroup � = f(
; 
) 2 � � G j 
 2 �g of G(FK=E). It satis�es thefollowing conditions:(7a) � � (�� 1) = �� � and � \ (�� 1) = 1.(7b) � � (1�G) = ��G and � \ (G� 1) = 1.Denote the �xed �eld of � in FK by D and the �xed �eld of the subgroup � ofG = G(F=E) by F0. Condition (7) translates via Galois theory to the following one:(8a) D \ F = F0 and DF = FK.(8b) D \EK = E and DK = FK.As F=K0 is regular, so is FK=K. Hence, by (8b), D=K0 is a regular extension.Since K0 is PAC, there exist in�nitely many K0-places ': D ! K0. Use (8b) to extend8



each such ' to a K-place  : FK ! K. As [FK : D] = j�j = j�j = [K : K0], D isthe decomposition �eld of  in FK=E. By (8a), F0 is the decomposition �eld of  jF inF=E.Corollary 2.5: Let K0 be a PAC �eld, E a function �eld of one variable over K0, andG a �nite group. For i = 1; : : : ; n let �i be a subgroup of G and Ki a Galois extensionof K0 with Galois group �i. Then E has a Galois extension F such that(9a) G(F=E) �= G.(9b) F=K0 is a regular extension.(9c) For each i there exists a prime divisor pi of F=K0 with decomposition group overE equal to �i and with residue �eld Ki. Moreover, p1; : : : ; pn are distinct.Proof: The existence of F with the properties (9a) and (9b) is well known [HJ2,Theorem 2]. Now apply Theorem 2.4 successively to �i and Ki instead of to � and K.References[BB] E.V. Black, Deformations of dihedral 2-group extensions of �elds, Transactions of theAMS 351 (1999), 3229{3241.[CT] J.-L. Colliot-Th�el�ene, Rational connectedness and Galois cover of the projective line, apreprint.[De] P. D�ebes, Galois Covers with Prescribed Fibers: The Beckmann-Black Problem, Ann.Scuola Norm. Sup. Pisa 28 (1999), 273{286.[FJ] M. D. Fried and M. Jarden, Field Arithmetic, Ergebnisse der Mathematik (3) 11, Sprin-ger, Heidelberg, 1986.[Ha] D. Harbater, Galois coverings of the arithmetic line, in: Lecture Notes in Mathematics1240, 165{195, Springer-Verlag 1987.[HJ1] D. Haran and M. Jarden, Regular split embedding problems over complete valued �elds,Forum Mathematicum 10 (1998), 329{351 .[HJ2] D. Haran and M. Jarden, Regular split embedding problems over function �elds of onevariable over ample �elds, Journal of Algebra, 208 (1998), 147{164.9
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