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A B S T R A C T  

An e-fold ordered field is said to be Frobenius if it is a PRCe field which 
has the embedding property. By means of a Galois stratification procedure 
we prove that the theory of e-fold ordered Frobenius fields is decidable. 

I n t r o d u c t i o n  

A field M is said to be p s e u d o  a l g e b r a i c a l l y  c l o s e d  (PAC) if every absolutely 

irreducible variety over M has an M-ra t iona l  point.  A F r o b e n i u s  field is a PAC 

field with the embedding property.  Developing the method  of Galois stratif ication 

introduced in [FS], M. Fried, M. Jarden,  and the first author  established a decision 

procedure for Frobenius fields [FHJ1]. 

The analogue of PAC, in the case of ordered fields, is p s e u d o  r e a l  c l o s e d  

( P R C ) .  A field M is PRC if every absolutely irreducible variety over M has 

an M-ra t iona l  point  provided it has an M-ra t iona l  simple point  for each real 
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closure M of M [P2, Theorem 1.2]. A P R C e  field is a PRC field with exactly e 

orderings. 

The main goal of this paper is to establish an equivalent of Frobenius fields in 

the class of PRCe fields. To achieve this we use a technical tool: "e-structures". 

An e - s t r u c t u r e  is an (e + 1)-tuple G = (G;gl,...,g~), where G is a profinite 

group and the s are conjugacy classes of involutions. A typical example is 

G = G(M/M,  P),  where G is the absolute Galois group of an e-fold ordered field 

(M, P )  = (M, P1 , . - . ,  P~), and Cj is the set of the involutions in G such that  Pj 

extends to their fixed fields. 

A PRCe field (M, P)  is said to be F r o b e n i u s  i fG(M/M,  P)  has the embedding 

property (in the category of e-structures). Geyer fields and v.d. Dries fields are 

shown to be Frobenius. Along the lines of treatment in [FHJ1] we find a decision 

procedure for the theory of Frobenius fields in the language of e-fold ordered 

fields. 

A theorem of M. Knebusch allows us to extend the notion of decomposition 

group to the case of e-fold ordered fields. This, together with the use of non- 

singular basic sets are the main new ingredients to obtain this result. 

We shall assume, for simplicity, that  all our fields are of characteristic 0. This 

partly excludes the case e = 0, dealt with in [FHJ1]. 

We thank M. Jarden for helpful remarks. 

1. Ordered fields and effectiveness 

An o r d e r i n g  on a field F is a set P C_ F such that P+P C_ P, P.P C_ P, P n - P  = 

{0} and P t3 - P  = F.  Let XF denote the set of orderings of F.  The Harrison 

topology on XF is defined by the basis {HF(al , . . . ,  an)l a l , . . . ,  an E F}, where 

the Harrison set HF(al , . . . ,  an) is {P  E XFI a l , . . . ,  an E P}. This topology 

makes XF a Boolean space [P1, Theorem 6.5]. Let K / F  be an arbitrary field 

extension. The map resF: XK --~ XF defined by resF(P)  = P N F is continuous. 

If the extension K / F  is finitely generated, then resF is also open [ELW, 4.bis]. 

We call K / F  t o t a l l y  rea l  if resF is surjective. 

The rea l  c losu re  (K, P)  of an ordered field (K, P )  is a maximal ordered 

algebraic extension of (K, P).  It exists, is unique up to a K-isomorphism, and 

Definition 1.1: Let ~: R ~ K be a homomorphism from a domain R into a field 

K.  Let P be an ordering on K.  An ordering Q on the quotient field of R is 
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~-compat ib le  with P if a E R M Q implies ~(a) E P. I 

The following theorem guarantees the extension of compatible orderings. 

PROPOSITION 1.2 (Knebusch): Let R C_ S be regular domains, and let E C_ F 

be their quotient fields. Let (K, P) be an ordered field, and let ~: R --+ K be 

a homomorphism that extends to a homomorphism r S --* K.  Then every 

ordering on R that is ~-compatible with P extends to an ordering on S that 

is C-compatible with P. In particular, there exists an ordering on S that is 

C-compatible with P. 

Proof." We may assume that (K, P) is real closed, otherwise replace it by its 

real closure. As S is regular (i.e., its localization at each prime is a regular local 

ring), r extends to a place r F ~ K U {c~} [JR, Appendix A]. Its restriction 

to E is a place ~1: E -~ K U {co} that  extends ~. By [K, Theorem 2.6] every 

~-compatible ordering on E extends to a r ordering on F. 

The last assertion of the theorem follows by replacing ~ by its restriction 

~0: Z --+ K,  since the unique ordering on Q is ~o-compatible with P. I 

Remark  1.3: Note that if R is a finitely generated ring over a field K then there 

is 0 ~ d G R such that Rid -1] is regular. Indeed, write R as K[x, g(x)-l] ,  where 

x = ( x : , . . . , x n )  is a generic point of a K-irreducible set V over K,  and let 

A = V \ V(g). Put k = n - dimg V. Since x is a non-singular point of V, there 

exists a (k x k)-submatrix of the Jacobian matrix (Of i /OXj)  with determinant 

d(x) r 0. The open subset A ~ = A \ V(d) of A is non-singular, and hence 

K[A'] = g[x ,  (gd)(x) -1] = R[d -1] is a regular ring [N, Theorem 46.3, Corollary 

14.6]. I 

The primitive recursiveness of a decision procedure for fields requires that all 

operations involved are computable in a primitive recursive way. We supplement 

the extensive treatment of IF J, w by discussion of orderings and inequalities. 

Let K be a presented field [FJ, Definition 17.1]. An ordering P on K is 

p r e s e n t e d  if "E P" or, equivalently, ">p  0" is a primitive recursive relation. 

An e-fold ordered field (K, P1 , . . . ,  P~) is p r e s e n t e d  if K is a presented field and 

P1, . . - ,  Pe are presented orderings. 

A p o l y n o m i a l  r e l a t ion  (or a quantifier free formula in the language of ordered 

fields) is a Boolean combination of relations of the form p ( x : , . . . ,  xn) > 0, where 

p is a polynomial with integral coefficients. 
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P.J. Cohen [C, w Theorems A.  ,B.] proves the following version of Tarski's 

Principle: 

PROPOSITION 1.4: Let n > 1. For each polynomial relation A ( X 1 , . . . ,  Xn)  we 

can find by a primitive recursive procedure a polynomial relation B(X2,. �9 �9 Xn) 

such that 

(3Xl) A ( X l , . . . , X n )  r > B ( X 2 , . . . , X n )  

holds over every real closed field. 

We will need the following criterion (cf. [P2, (0.4)] and [L, XI, w 

COROLLARY 1.5: Let (K, P) be an ordered field and let (K, P) be its real clo- 

sure. Let V c A '~ be an atone K-variety with generic point x over K and let 

F = K(x) be its function field. Let h l , . . . , h ,  E K [ X 1 , . . . , X n ]  be polyno- 

mials not vanishing on V. Then P extends to an ordering on F contained in 

HF = H F ( h l ( x ) , . . . ,  h,(x)) if  and only if  there is a nonsingular point a E V ( K )  

such that h i ( a ) , . . . ,  h~(a) > 0 with respect to P. 

Proo~ Write V as V ( f l , . .  :, fro), with f~ E K[X]. If P extends to an ordering 

Q on F contained in HF, then the substitution X --* x shows that  the sentence 

A (3X) A fi(X) = 0 A h~,(X) > 0 A rank(Ofi/OXj) = n - dim V 
i = 1  u = l  

holds in (F, Q), and hence also in its real closure. It immediately follows from 

Proposition 1.4 that  the sentence also holds in (K, P). This produces the desired 

nonsingular point a E V(K) .  

Conversely, let a E V ( K )  be a nonsingular point with h i ( a ) , . . . ,  h~(a) > 0. 

The local ring S of a on V is regular and x --* a defines a K-homomorphism 

r S ~ K.  Proposition 1.2, applied to the rings K C S, produces an extension 

Q E XF  of P that  is C-compatible with P. We have h~(x) E Q for each u, other- 

wise -h~(x)  e Q, and hence the r gives -h~(a)  = r >_ 0, 

a contradiction. | 

Let K be a presented field. A union U~=I H g ( h i l , . . . ,  hi,,) of Harrison sets is 

p r e s e n t e d  if all the hij E K and the numbers k, r b . . . ,  rk are explicitly given. 

The intersection, union, and complement are effective operations on the Har- 

rison topology, i.e., the result of the operation on presented sets is presented. 

Furthermore: 
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LEMMA 1.6: Let K be a presented feld, and let F be a field finitely generated 

and presented over K.  Let HF be a presented Harrison set. Then HK ---- r e sgHF 

can be effectively computed. 

Moreover, let R be a presented subring of K,  and let f l , . . . ,  fm, h i , . . . ,  h~ �9 

R [ X 1 , . . . ,  X~] be given polynomials such that F is the function field of the K-  

variety V = V ( f l , . . . ,  fro). Let x be the generic point of V over K.  Then we 

can compute a fn i te  subset {qijI i �9 I,  j �9 J(i)} of R and 0 ~ p �9 R such that 

(a) resKHF(h l (X) , . . . ,  h~(x)) = UiEI NjEJ(i) HK(qij). 

(b) Let qo: R ~ K r be a homomorphism into a field K I (write qo as a H a ~ and 

extend it to polynomials) such that p' ~ 0 and V' = V ( f ~ , . . . ,  f'm) is a 

K'-variety. Let x ~ be the generic point of V ~ over K ~ and let F ~ = K/(x~). 

Then resg, gF,(h~l(X'), . . . , h~(x')) = Uiel  NjeJ(i) gg,(q~j).  

Proof." Let N be a bound on the total degrees of the fi and hi. It follows 

from Corollary 1.5 that there is a formula 0(Y) in the language of rings with 

the predicate >, that depends only on n, N, m, and r, with the following 

property. Let ( K ' , P ' )  be the real closure of an ordered field (K',  P'). Let 

f i , . . . ,  f~ ,  h l , . . . ,  hl �9 K'[X] be of total degree < N, and let c' be the sequence 

of their coefficients. Assume that Y' = V ( f i , . . . ,  ffm) is a K'-variety, let x' be 

its generic point over K',  and let F '  = K'(V ' ) .  Then P' �9 resg ,HF,(h~ , . . . ,  h~) 

if and only if (K',  P ' )  ~ 0(c'). 

By Proposition 1.4 we may assume that O is quantifier free. After some trivial 

identifications we can write it as Vki=lpi(Y) # 0AAjej ( i  ) qi j (Y)  >_ O, for suitable 

Pl, qij �9 Z[Y]. Furthermore, ( g ' ,  P ' )  ~ 0(c') if and only if (K',  P~) ~ O(c'). 

Finally, the clause 'pi(c') # O' does not depend on P' .  Therefore 

(1.7) P '  E resK,HF,(h~l(X'),. . . ,  h'~(x')) ~=~ P '  �9 U N Hg(qij(c ' )) ,  
ieI(e') jEd(i) 

where I(c ' )  = {1 < i < k I pi(c') # 0}. 

Let c be the sequence of coefficients of the fl and hi. Assertion (a) follows 

from (1.7) with I = I(c)  and qij = qij(c). 

Furthermore, put p = Hie lp i (c ) .  Let qo: R ~ K '  be as in (b). Then c' = qo(c) 

is the sequence of coefficients of the f/~ and h}. If p' ~ O, then I(c ' )  = I(c).  

Therefore assertion (b) follows from (1.7). I 
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2. e - S t r u c t u r e s  

Definition 2.1: An e - s t r u c t u r e  G is a system G = (G; g l , . . . ,  ge), where G is a 

profinite group and s  s are conjugacy classes of involutions in G. If G is a 

pro-2 group, then G is said to be a p ro -2  e-structure. For an e-structure G we re- 
e fer to gj as ~j(G),  and to the underlying group as G. We put s  = Uj=I s  

A m o r p h i s m  ( e p i m o r p h i s m )  ~: G -* H between two e-structures is a mor- 

phism (epimorphism) ~: G -~ H that maps g j (G)  into (onto, a fortiori) g j (H) .  

We say that  G is a s u b s t r u c t u r e  of H if G _< H and g j (G)  C_ g j (H)  for each 

j .  
Let n >_ 0. For a sequence (e; x) = (Cl , . . . ,  6e; x l , . - - ,  xn) of elements of G we 

write (e;x) E G (~;n), i f e j  E g j (G)  for j = 1 , . . . , e .  We say that (e;x) E G (~m) 

g e n e r a t e s  G if G = (r | 

Example 2.2: Let (E, Q) = (E, Q1, - . . ,  Q~) be an e-fold ordered field, and let 

FIE be a Galois extension such that F is not formally real. Let G = G(F/E) 
be the Galois group of F/E. Denote by s = gj(F/E, Q) the set of involutions 

e in G such that  Qj extends to an ordering of F(e).  This is a conjugacy class in 

G [H J1, Proposition 2.1]. The e-structure G(F/E, Q) = (G; s  g~) is called 

a Galo ls  e-structure. 

The a b s o l u t e  Galois e-structure of (K, Q) is G(K,  Q) = G(K/K, Q), where 

i~ is the algebraic closure of K.  

Let G(L/K,P) be another Galois e-structure such that ( K , P )  c (E ,Q) ,  

E and L are linearly disjoint over K,  and L C_ F.  Then the restriction map 

res: G(F/E, Q) --* G(L/K, P)  is an epimorphism [HJ1, Lemma 3.5]. | 

Definition 2.3: Let (K, P )  be an e-fold ordered field, and let FIE be a Galois 

extension with K C_ E" and F not formally real. Denote 

Sub[F/E,P] = {G(F/E',Q')I E c E' C_ F, ( K , P )  _C (E ' ,Q ' )}  

This is the collection of all e-structures H such that H <_ G(F/E) and Pj extends 

to the fixed field of ~ e s  for each 1 < j < e. | 

Definition 2.4: A (a pro-2) e-structure G is f ree  if there is n > 0 and (e; x) E 

G (e;n) with the following property. Given a (pro-2) e-structure A and (6; a) E 

A (e;n), there exists a unique morphism ~: G --* A that  maps (e; x) on (~f; a). We 

then call (e; x) a basis of the structure G. | 
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Example  2.5: Let D~,,~ be the real free group with basis (r er x l , . . . ,  xn) 

[H J2, p. 157]. Let s be the conjugacy class of the involution ej in De,n. Then 

the e-structure I)e,n = (D~,,~; E l , . . . ,  s is free. 

The corresponding example in the category of pro-2 e-structures will be de- 

noted ~)e,n(2). I 

3. Projective and superprojective e-structures 

An embedding problem for an e-structure G is a diagram 

G 

(3.1) 10 
B ~ A  

in which ~r is an epimorphism and p is a morphism of e-structures. The problem is 

f ini te  if B is finite. The problem is p rope r  if p is an epimorphism. A morphism 

(epimorphism) A: G --* B such that r o A = p is called a solution (proper 
solution) to the embedding problem (proper embedding problem). 

Let Im G be the set of finite e-structures B for which there exists an epimor- 

phism G -~ B. 

Definition 3.2: An e-structure G is s u p e r p r o j e c t i v e  if 

(i) G is pro jec t ive ,  i.e., every finite embedding problem (3.1) for G is solvable. 

(Replacing A by p(G) and B by ~r-l(A) we may assume that (3.1) is 

proper.) 

(ii) G has the embedding property, i.e., every finite proper embedding prob- 

lem (3.1) with B E I m G  has a proper solution. I 

To prove that free e-structures are superprojective we need the following ana- 

logue of Gaschiitz' lemma [F J, Lemma 15.30 and J1, Lemma 5.3]. 

LEMMA 3.3: Let p: G --~ A be an epimorphism of  e-structures. Assume that 

(~; an) E A (e;n) generates A and that an element of G (e;n) generates G. Then 

there exists a system of generators (6; g) E G (~;'~) of G such that p(6; g) = (r a=). 

Proof: Since the epimorphism p can be represented by an inverse limit of epi- 

morphisms between finite structures and since an inverse limit of finite nonempty 

sets is not empty, we may assume that G is a finite e-structure. 

Let C be an e-substructure of G such that p(C) = A. For every (r a) E A (r 

that generates A let ~c(r  a) be the set of (6; g) E C (e;'~) that satisfy p(~; g) = 
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(c; a), and let ~c(e ;  a) be the set of those (5; g) �9 ~c(e ;  a) that generate C. We 

show by induction on [C[ that [r  a ) l  is  independent of (c; a). 

First notice that [gYc(e; a)[ is independent of (e; a). Indeed, 

I{gj �9 cI  p(gA = a }l = I kerrescp[, 

and if ~i ,~ 6 s then {6~ �9 C~(C)I p(6i) = ei} and {6i �9 Ei(C) I p(6~) = e~} 

are conjugate in C, and hence have the same number of elements. Since every 

(6; g) �9 k~c(~; a) generates an e-substructure B of C with p(B) = A, we have 

B<C 
p(B)=A 

By the induction hypothesis the I(I, Bie; a)l are independent of (~; a). Therefore 

so is Ir a)l. 

Let (5';g') 6 G (~;n) generate G. Then (p(6');pig')) generates A, and hence 

Ir a)l--ICG(p(g); P(g'))l >- 1. m 

C O R O L L A R Y  3.4~ 

(i) The free e-structure D~,n is superprojective. 

(ii) The free pro-2 e-structure I)~,n(2) is superprojective. 

Proof'. Consider an embedding problem (3.1) for G = De,n. Let (c; a) 6 G (~;'~) 

be a basis for G. As r (B)  = A, there is (5; g) 6 B (~;n) such that 7r(/~; g) = pie; a). 

The map (e; a) ~ (/5; g) extends to a solution A: G --- B of (3.1). 

Assume that (3.1) is proper and that B 6 Imlg,,n. Then p(e; a) generates 

A. By Lemma 3.3 we may assume that (5; g) generates B. Therefore A is an 

epimorphism. 

The superprojectivity of I~e,,~(2) is proved analogously. We only remark that 

in the embedding problem (3.1) for G = De,,~(2) we may replace A and B by 

their 2-Sylow subgroups to assume that A and B are pro-2 e-structures. | 

We conclude this section with some results on projective e-structures. 

LEMMA 3.5: Let G be an e-structure. 

(a) I f G  is projective, then s  is the set of all involutions in G, the s  

are disjoint (i.e., pairwise distinct), and there is an open subgroup G' of G 

of index <_ 2 that does not meet S(G). 
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(b) Let N be an open subgroup of G. Assume that every finite proper embed- 

ding problem (3.1) for G with ker(p) <_ N is solvable. Then G is projective. 

Proof'. (a) Let ~ E G be an involution. I fe  ~ $(G) ,  then there is an epimorphism 

p: G -* A onto a finite quotient of G such that  p(e) ~ s  By [HJ1, Corollary 

6.2 with I = C(A)] there is an epimorphism 7r: B --* A of finite e-structures 

that maps the involutions of B into {1} U C(A). Let A: G --* B be a solution to 

this embedding problem. Then 7r maps the involution A(e) onto p(e), and hence 

p(e) e s  Thus e �9 ~(G).  

Again, let p: G ~ A be an epimorphism onto a finite quotient of G. There 

is another finite e-structure B and another epimorphism lr: B ~ A such that 

the Sj(B) are disjoint and there is an open subgroup B ~ of B of index _< 2 that  

does not meet s  (E.g., let B be a sufficiently large quotient of I)~,~ with a 

homomorphism ~: B --~ Z /2Z that  maps $(B)  on the generator of Z /2Z and let 

B ~ ker(~).) The existence of a solution A: G ~ B to this embedding problem 

shows that the ~j (G)  are disjoint and A-I (B ') does not meet s  

(b) Let (3.1) be a finite proper embedding problem for G. Let Pl: G --* A1 be 

an epimorphism onto a finite-quotient A1 of G with ker(pl) < N N ker(p). Then 

p factors into Pl and a morphism P2:A1 ~ A. For each j choose ej �9 Sj(G)  

and 6j �9 C(B) such that  ~r(Sj) = p(Q). This yields a commutative diagram of 

epimorphisms 
G 

B 1  ~tl ~ .A 1 

B '~ . A  

in which B1 = B XA AI, and s is the conjugacy class of (Sj,ej). By 

assumption there is AI: G -~ B1 such that r l  o A = Pl. Clearly, p o A1 solves 

(3.1). n 

The e-structures are closely related to Artin-Schreier structures of [It J1]. To 

explain and use this, we first introduce a convenient link between them. 

A w e a k  s t r u c t u r e  is a system ~ = (G, G t, X),  where G is a profinite group, 

G ~ is a subgroup of index < 2 in G, and X C G \  G ~ is a closed set of invo- 

lutions, closed under conjugation in G. The canonical example is ~ ( L / K )  = 
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(G(L/K), G(L/K(vrL-1)), X(L/K)) ,  where L / K  is a Galois extension of fields 

with ~ E L, and X ( L / K )  the set of real involutions in G(L/K). We usually 

write the underlying group, the underlying subgroup, and the set of involutions 

of a weak structure 91 as A, A', and X(91). Analogously for ~ ,  @, iS, etc. A m o r -  

p h i s m  of weak structures ~: J5 -+ @ is a continuous homomorphism ~: H --* G 

with ~ - I ( G ' )  -- H '  that  maps X ( ~ )  into X(@). It  is an e p i m o r p h i s m  if 

~o(H) = G and ~(X(Y))) = X(r 

In the language of [HJ1, Definition 3.1] our weak structure is a 'weak Artin- 

Schreier structure in which the forgetful map is the inclusion'. In fact, r is an 

Artin-Schreier structure if and only if for each x E X the centralizer of x in G is 

{1, x}. Thus r = r is an Artin-Schreier structure [H J1, Remark b) 

on p. 470]. 

More precisely, an A r t i n - S c h r e i e r  s t r u c t u r e  is a system (G, G',  X, d}, where 

G and G ' are as above, X is a Boolean space on which G continuously acts from 

the right, and d: X --* G is a continuous map into the set of involutions in G \ G'  

such that  {a E G I x ~ = x} = {1, d(x)} for all x E X.  The standard example 

is (G(L/K),G(L/K(x/%---1)),X(L/K),d), where L / K  is a Galois extension of 

fields with ~ E L, and X ( L / K )  the space of maximal ordered subfields of 

L containing K;  each (L',  Q) E X ( L / K )  is the fixed field of an involution e E 

G(L/K), and d is the map (L',  Q) ~ e [H J1, Example 3.2]. 

A m o r p h i s m  of Artin-Schreier structures (H, H ' ,  Y, d) --+ (G, C' ,  X, d} consists 

of a group homomorphism ~o: H --+ G and a continuous map ~o: Y --+ X such that  

~o-l(G ') = H ' ,  d o ~o = ~o o d, and ~o(y ~) = ~o(y) s~ for all y E Y and a E H. It  

is an e p i m o r p h i s m  if ~ (H)  = G and ~(Y) = X.  

It  follows that  (G, G', X, d} ~ (G, G', d(X)) is a functor from the category 

of Artin-Schreier structures into the category of weak structures that  maps epi- 

morphisms onto epimorphisms. This functor translates the results about Artin- 

Schreier structures to results about the corresponding weak structures. 

[H J1, Lemma 7.5] states - and we may take it here as the definition - that  a 

p r o j e c t i v e  A r t i n - S c h r e i e r  s t r u c t u r e  is a weak (!) structure @ that  satisfies 

the following condition. Let 7r: ~ --* 91 be an epimorphism of finite weak struc- 

tures, and let p: r -~ 91 be a morphism. Then there exists a morphism A: r ~ 

such that  ~r o A = p. 

LEMMA 3.6: Let G be an e-structure, and let G ~ <_ G be an open subgroup of 

index <_ 2 that does not meet S(G) .  Then G is a projective e-structure if and 
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only if G = ( G, G', s  is a projective Artin-Schreier structure with the ,~j (G) 

disjoint. 

Proof: Assume that ~ is a projective Artin-Schreier structure with the s  

disjoint. We have to solve a finite proper embedding problem (3.1) for G. Put  

A' = p(G') and B'  = 7r-l(A'). We have s  = p(s By Lemma 3.5(b) we 

may assume that  ker(p) is so small that A', s  s are disjoint. Then 

also B', s  s are disjoint. 

Let 92 = tA, A', s  and ~ = (B, B', s  These are weak structures, and 

p and ~r induce in an obvious way a morphism p: ~ ~ 92 and an epimorphism 

7r: ~ ~ 92. By assumption there is a morphism A: r -* ~ such that Iro A = p. 

Thus the group homomorphism A: G ~ B maps s  into s  But A(Ej(G)) 

does not meet s for i ~ j ,  because 7r(A(Ej(G)) NCi(B)) _C s  NEi(A) = 0. 

Therefore A(Cj(G)) C_ s  and hence A solves (3.1). 

Conversely, let G be a projective e-structure. Let 7r: ~B --* 92 be an epimorphism 

of finite weak structures, and let p: ~ --~ 92 be a morphism. Extend the groups A 

of 92 and B of ~ to finite e-structures A and B by letting s (A) be the conjugacy 

class of p(s  in A and s  C_ X ( ~ )  be a conjugacy class in B mapped 

by lr onto s  Then there is A: G --* B such that  ~r o A = p. In particular, 

the group homomorphism A: G --* B satisfies A(s C_ s  for each j ,  and 

hence it maps X(r = s  into s  C X ( ~ ) .  Thus A is a morphism of weak 

structures. I 

4. Galo is  covers  and decomposition s t r u c t u r e s  

Let S/R be a Galois  r ing  cover  and let F / E  be the corresponding field cover. 

This means IF J, p. 57] that R C S are integrally closed domains with E C_ 

F their respective quotient fields, F / E  is a finite Galois extension, and S = 

R[z], where z, a p r i m i t i v e  e l e m e n t  for the cover, is integral over R and its 

discriminant over E is a unit of R. Thus S/R is 6tale (actually, "standard 6tale" 

[R]). 

Remark 4.1: [FHJ2, Section 1]. Let M be a field, and let ~0: R ~ M be a 

homomorphism. Then ~0 extends to a homomorphism ~: S --* M. Furthermore, 

M(~(S)) is a finite Galois extension of M. 

(a) Let N / M  be a Galois extension such that ~(S) C_ N. Then ~ induces a 
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homomorphism ~*: G(N/M) ~ G(F/E) implicitly defined by the formula 

~(~*(a)(s))  = a(~(s)) ,  for ~ E a(N/U) and s E S. 

(b) If N1/M is a Galois extension such that N C_ N1, and ~i: G(N1/M) 
G(F/E) is the induced homomorphism by ~1, then, by (a), ~* = ~i o resN. 

Therefore, unless stated otherwise, we will take N to be M. 

(c) If N = M(~(S)), then ~* is injective. 

(d) If ~ is an inclusion of rings, then ~* is the restriction to F.  

(e) Let S~/R t be another Galois cover and let F~/E ' be the corresponding 

extension of quotient fields. Let p: S --* S ~ and ~J: S ~ --* N be homomorphisms 

such that  p(R) C_ R' and ~ ' (R ~) _C M. Consider the induced homomorphisms 

qo*: G(M) --* G(F/E), qo'*: G(M) ~ G(F'/E'), and p*: G(F'/E') ~ G(F/E). 
If ~ = ~o ~ o p, then ~* = p* o ~'*. In particular, if R _C R ~ and S _C S ~ and ~ 

extends ~ then ~* = resFqo ~*. 

(f) Let T E G(F/E). Then ~OT: S --* N also extends ~0, and every extension of 

~o0 to S is of this form. Furthermore, (qOOT)*(a) = r-l~*(a)r for all a E ~(N/M). 

I 

Let K be a subfield of R and L the algebraic closure of K in F.  

Definition 4.2: (a) S/R is r e g u l a r  ove r  K,  if the extension E/K is regular. In 

that case L/K is a finite Galois extension. 

(b) S/R is f in i te ly  g e n e r a t e d  over K, if R and S are finitely generated rings 

over K. 

(c) S/R is r ea l  if R is a regular ring and F is not formally real. (In this case S 

and the integral closures of R in the intermediate fields of F/E are also regular 

rings [R, p. 75].) 

(d) F/E is a m p l y  rea l  over K if E/K is a regular extension, the algebraic 

closure L of K in F is not formally real, and the extension F(e)/L(e) is totally 

real for every real involution e E G(F/E). I 

Assume for the rest of this section that S/R is real. Add to the preceding 

discussion e-tuples Po and P of orderings on K and M, respectively, such that 

(K, Po) C_ (M, P).  Let ~*: G(M) -~ G(F/E) be the induced homomorphism. 

Definition 4.3: The e-structure qo*(G(M/M,P)) is called the decomposition 
s t r u c t u r e  of ~. We denote it by Ar(S/R, M, P,  ~), or, by abuse of notation, 

A r  ~. It satisfies A r  ~o E Sub[F/E, Po]- 1 
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We explain the last assertion. Fix ej �9 Cj(M/M,P) .  Then M(r is a real 

closure of (M, Pj). It follows from the formula of Remark 4.1(a) that ~ maps S n  

F(~*(cj)) into M(r Knebusch' Proposition 1.2, applied to the ring extension 

K C_ S N F(~*(ej)), asserts that Poj extends to a ~-compatible ordering on 

F(~*(r | 

The following lemma shows how to make field covers amply real. 

LEMMA 4.4: Let F /E  be real, regular, and tinitely generated over K. Assume 

that the algebraic closure L of K in F is not [ormally real. 

(a) For each real involution r �9 G(F/E)  there are tlnitely many ar �9 i (r  

such that resi(~)XF(~) = Ui (Nk H(a~ik)). 

(b) Let L' be a flnite Galois extension o[ K that contains L and all v ~ k .  

Put F = FL'. Then F ' / E  is amply real over K. Moreover, an involution 

r �9 G(F ' /E)  is real if and only ifresFr and resL,r are real and there is i 

such that 

(4.6) ~ �9 L ' (d)  for all k. 

Proof: (a) merely says that resL(e)XF(e) is clopen in XL(~) (Section 1). 

(b) Let e = r e s f# .  If d is real, there is an ordering on F ( # ) .  Its restriction P0 

to L(r is in resL(e)XF(e) and extends to L '(d) .  By (a) there is i such that ae~k E 

P0 for all k. Put  L~ = L(E)( av/-d-~ik I k). Then Po extends to Li, and therefore 

L~ C L'(r for some real involution r of G(L'/L(r which is conjugate to E' 

over L(e). As Li/L(e) is Galois, we have L~ C_ L'(d) .  This gives (4.6). 

Conversely, assume that r and resL,d are real and (4.6) holds with some 

i. Clearly L' is the algebraic closure of K in F .  It remains to show that 

F'(#) /L ' (e ' )  is totally real. Let P '  be an ordering on L ' (d) .  By (4.6), a~ik �9 P '  

for all k. By (a), resL(~)P' extends to an ordering of F(e),  say Q. As L ' n F  = L, 

the fields L'(e') and F(e)  are linearly disjoint over L(e), and F'(e') is their com- 

positum. Therefore P' and Q extend to an ordering of F'(d)  [J1, p. 241]. | 

5. e-fold o r d e r e d  F r o b e n i u s  fields 

We extend the definition of Frobenius field [FHJ1, w and F J, Definition 23.1] 

to the class of e-fold ordered fields. The results of this section generalize [FHJ1, 

Theorem 1.2 and F J, Propositions 23.2-3]. 
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Definition 5.1: An e-fold ordered field (M, P) = (M, P b - . - ,  Pe) is a P R C e  field 

if P1,- . - ,  Pe are distinct and every absolutely irreducible variety V over M has 

an M-rational point, provided that P1, .-- ,  P~ extend to the function field of V 

over M. 

For such a field condition C z of [P2, p.136] holds with Z = {Px, . . . ,  Pe}. 

By [P2, Proposition 1.6], P1 , . - . ,  P~ are all the orderings on M and they induce 

different topologies on M. Therefore (M, P) is PRCe if and only if (M, P)  is 

existentially closed (in the language of fields augmented by e predicates for the 

orderings) in an extension (F, Q) such that F / M  is regular [P2, Theorem 1.7]. 
| 

Example 5.2: (a) Let K be a countable Hilbertian field, and let K x , . . . ,  K~ be 

fixed real closures of K. For a C G(K) ~+~ let 

= n . . -  n n n . - .  n e o), 

where P,~ is the ordering induced by K~-J. Then, for almost all (in the sense of the 

Haar measure) a E G(K) ~+~ the field (Ko, P~) is PRCe and G(Ko,  P~) ~ I)e,~ 

[HJ1, Proposition 5.6]. For n = 0 these fields are called G e y e r  fields of corank 

e [J1, Theorem 6.7] and D~,o is denoted by I)~. 

(b) A maximal algebraic extension (M, P) of a Geyer field is a PRCe field, and 

G(M, P) ~ I)~(2) [J2, Lemma 2.3 and Proposition 4.1]. Such a field is called a 

v.d.  Dr ies  field of corank e. 

The absolute Galois structures of Geyer and v.d. Dries fields have the embed- 

ding property (Corollary 3.4). | 

Definition 5.3: An e-fold ordered field (M, P)  with P1 , . . . ,  P~ distinct is said to 

be F roben ius  if it satisfies the following condition. Let SIR be a real Galois 

ring cover, regular and finitely generated over M. Let the corresponding field 

cover FIE be amply real over M, and let N be the algebraic closure of M in F. 

Let H C Sub[F/E, P] such that H C ImG(M,  P), and resNH = G(N/M,  P). 

Then there exists an M-homomorphism ~: S ~ M with ~(R) C_ M such that  

A r ~  = H. | 

LEMMA 5.4: Let L / K  be a finite Galois extension, L not formally real, and let 

~r: G --* G(L/K)  be an epimorphism of finite groups. There exists a totally 

real finitely generated regular extension E of K, a Galois extension F / E  such 

that L is the algebraic closure of K in F and F(e)/L(r is totally real for every 
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involution ~ �9 G(F/E) with resLr real, and an isomorphism O: G ~ G(F/E) 

such that the following diagram commutes. 
a o . G(F/E) 

a(L/K) 
Proof: If ~ �9 L, this is shown in Parts I and II of the proof of [HJ1, Lemma 

9.4]. (In fact, the extension F/L constructed there is purely transcendental, and 

so is F(e)/L(e), for each involution e �9 G(F/E) with resLe real.) 

In the general ease let L' = L(vr2-f). Let G' = G xa  G(L'/K),  and let 

~r': G' ~ G(L' /K) and p: G' ~ G be the coordinate projections. Assume that we 

have constructed a Galois cover F~/E of fields, regular and finitely generated over 

K such that  L' is the algebraic closure of K in F '  and F'(g)/L'(e I) is totally real 

for every involution g �9 G(F'/E) with resL,g real, and an isomorphism 0': G' ~ 

G(F'/E)  such that resL, o 01 = 7r'. Let F be the fixed field of 0'(ker(p)) in F'. 

Then 0' induces an isomorphism O: G --+ G(F/E) that satisfies the requirements 

of the Lemma. 

Indeed, G(F1/E) = G(F/E)x  a(L/K)G(L/K),  and hence F and L ~ are linearly 

disjoint over L, and F + = FL ~, whence L' is the algebraic closure of K in F ~. 

If c �9 G(F/E) is an involution with resLr real, and P is an ordering on L(e), 

there is an involution g �9 G(U/K)  such that resLr = resLd and P extends to 

an ordering P '  on L ' (g) .  Let r = (e, r �9 G(F'/E).  By assumption P '  extends 

to an ordering Q' on F(gl), and so resg(~)Q' extends P.  | 

LEMMA 5.5: Let (M, P)  be an e-fold ordered Frobenius field. Then (M, P )  is 

PRCe and G = G(M,  P)  is superprojective. 

Proof." We first show that  (M, P)  is PRCe. Let V be an absolutely irreducible 

variety over M, and let E = M(V) be its function field. Then E / M  is a regular 

extension. Put  F = E(~/L--1). Assume that P extends to an e-tuple of orderings 

Q on E. Thus E l M  is totally real and therefore FIE  is amply real. Let R 

be a regular ring with quotient field E that  contains the coordinate ring M[V] 

(Remark 1.3), and let S = R[x/%-i-]. Apply Definition 5.3 to H = G(F/E ,  Q), 

and find an M-homomorphism ~: S ~ M such that  ~(R) C_ M. This gives an 

M-rational point on V. 

Secondly, we show that each finite proper embedding problem (3.1) for G 

is (properly) solvable. We may identify p: G ~ A with the restriction map 
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G --+ G(N/M), where N is a finite Galois extension of M. Then resNe ~ 1 for 

each ~ E s  and hence Pj does not extend to N. As ( M , P )  is a PRCe field, 

P1 , . . . ,  Pe are all its (distinct) orderings, and hence N is not formally real. Thus 

the Galois e-structure G(N/M, P)  is well defined, and p: G ~ A identifies with 

the restriction map G --+ G(N/M, P).  

By Lemma 5.4 we may identify the epimorphism ~: B ~ G(N/M) with the 

restriction map resN: G(F/E) --~ G(N/M), where F/E is a Galois extension 

such that  N is the algebraic closure of M in F and F(s)/N(s) is totally real for 

every involution ~ E G(F/E) with resy~ real. As resNB = ~(B) = G(N/M, P),  

the latter is in particular true for every ~ E Cj(B), and hence B E Sub[F/E, P]. 

Assume that B E I m  G. There is a real Galois ring cover S/R, finitely gener- 

ated over M, such that F/E is the corresponding field cover. As (M, P)  is Frobe- 

nius, there exists an M-map ~: S ~ M with ~(R) = M such that A r  ~ = B. 

Thus ~*: G(M) ~ B maps G ( M , P )  onto B. The restriction of ~ to N is an M- 

automorphism, so there is T E G(F/E) such that  resg~ = resgv -1. By Remark 

4.1(f), ~*(G(M, P))  = (~OT)*(G(M, P ) ) ,  and hence we may assume that resN~ 

is the identity. It follows from the equation of Remark 4.1(a) that  7r o ~* = p. 

It remains to show that G is projective. We have already remarked that  

P1 , - . . ,  Pe are all the distinct orderings on M. Therefore C(G) is the set of all 

involutions in G, and the Cj(G) are distinct. By [HJ1, Theorem 10.1(b)] the 

Artin-Schreier structure ~5(M) = (G(M), G(M(x/L~)), $(G))  is projective. By 

Lemma 3.6, G is projective. I 

PROPOSITION 5.6: Let (M, P)  be a PRCe field with G(M,  P)  superprojective. 
Then (M, P)  is Frobenius. 

Proof: Let S/R, F/E, N, and H be as in Definition 5.3. 

The superprojectivity of G(M,  P)  yields a Galois extension N r of M that  

contains N and an isomorphism h: G(N~/M, P)  --+ H such that 

G(N'/M,P) h " n 

G(N/M, P)  

commutes. Let F I = NrF. Then 

G(F'/E) = G(N'/M) • G(F/E). 
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Let A = {(6, h(5))] 5 E G(N'/M)}. The fixed field D of A in F '  is regular over 

M [FJ, p. 354]. Furthermore, P extends to D. Indeed, let e' E Ej(N'/M,P), 
and put r = (r h(r E G(F'/E). Then Pj extends to an ordering P; on 

N'(r Let r = resFr = h(e'). Since F/E is amply real over M, we may take 

a~jk = {1}) in Lemma 4.4. Furthermore, e E g j (H)  and H E Sub[F/E,P], 
and hence e is real. It follows that F~/E is amply real over M and e" is a real 

involution. Thus F'(s")/N'(r is totally real. In particular, P; extends to an 

ordering on F'(r Its restriction to D extends Pj. 
The integral closure U of R in D is finitely generated over M [FJ, p. 354], 

and hence U is the coordinate ring of an absolutely irreducible variety V defined 

over M. As (M, P)  is PRCe, there exists an M-homomorphism r U --- M. 

It extends to the integral closure of U in F t, and its restriction ~ to S satisfies 

~(R) C M. In fact, we may assume that ~* = h [FHJ1, Remark on p. 9]. Hence 

A r ~  = H .  I 

Example 5.7: Both Geyer fields and v.d. Dries fields (Example 5.2) are Frobe- 

nius fields. I 

6. T h e  A r t i n  s y m b o l  

Let (K, P0) be an e-fold ordered field. Recall [F J, p. 244] that  a basic  se t  ove r  

K is a set of the form A = V \ V(g), where V is a closed K-irreducible subset of 

an affine space A n and g E K[X1,..., Xn] does not vanish on V. Let x~ be the 

restriction to V of the projection on the i-th coordinate. Then x -- ( x l , . . . ,  x~) 

is a generic point of Y over g .  We put K[A] = g [ x , g ( x )  -1] and K(A) -- K(x) .  

The d i m e n s i o n  d imA of A is the transcendence degree of K(A) over K.  There 

is 0 r d E K[X] such that  A' = A \ V(d) is non-singular, that  is, K[A] is regular 

(Remark 1.3). 

A Galois ring cover C/K[A] is called a Galo is  ( r i n g / s e t )  cover ,  and is 

denoted by C/A. We write C/A for C/K[A], let K(C) be the quotient field 

of C, and write G(C/A) for G(K(C)/K(A)). Thus Sub[C/A, Po] stands for 

Sub[K(C)/K(A), P0] (Definition 2.3). 

Let C/A be a real Galois ring/set cover over K (Definition 4.2). 

Notice that G(C/A) acts by conjugation on Sub[C/A, Po]. A c o n j u g a c y  

d o m a i n  in Sub[C/A, P0] is a subset of Sub[C/A, P0] closed under conjugation. 

A c o n j u g a c y  class in Sub[C/A, P0] is a minimal nonempty conjugacy domain. 

It is necessarily of the form {H~ E G(C/A)}, where H E Sub[C/A, P0]. 
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Let (M, P) be an e-fold ordered extension of (K, P0). Each M-rational point 

a = (a l , . . . ,  a,~) �9 A defines a g-homomorphism ~o0: K[A] --* M (by xi H hi), 

which extends to ~: K[C] --* M. As ~ ranges over all possible extensions of ~0 

to K[C], by Remark 4.1(f) the structure Ar  ~ ranges over a conjugacy class in 

Sub[C/A, P0]. Denote this conjugacy class by Ar(C/A, M, P, a), or Ar(C/A, a), 

for short, and call it the Ar t in  symbol  of a. 

This symbol is an enrichment of the Artin symbol Ar(C/A, M, a) of [F J, Section 

25.1], and therefore it has properties similar to those proved there: 

Property 6.1: If D/A is another real Galois cover, with C c_C_ D, and a �9 
then, by Remark 4.1(e)), resg(c)Ar(D/A,  a) = Ar(C/A, a). Thus we usually 

omit the reference to the cover and write Ar(A, a). 

Furthermore, let Con(C/A) be a conjugacy domain in Sub[C/A, Po], and let 

S be a set of (isomorphism types of) e-structures. Define 

(6.2) Con(D/A) = {H �9 Sub[D/A, Po]I H �9 S, resK(c)H �9 Con(C/A)}. 

Assume that 

(*) Im G(M, P) N Sub[D/A, P0] = S. 

Then Ar(C/A, a) C_ Con(C/A) if and only if Ar(D/A, a) C_ Con(D/A). 
Indeed, if Ar(D/A, a) C Con(D/A), then definition (6.2) gives Ar(C/A, a) = 

resg(c) Ar(D/A,a) C_ Con(C/A). Conversely, let Ar(C/A,a) C Con(C/A). As 

Ar(D/A, a) C_ Im G(M, P), it follows from (*) that Ar(D/A, a) C_ S. Therefore 

Ar(D/A, a) C_ Con(D/A). | 

Property 6.3: Replacing A by an open subset A ~ does not affect the Artin sym- 

bol, that is, Ar(A', a) = Ar(A, a), for each a e A'(M). | 

Property 6.4: Let C~/A ~ be a real Galois cover induced by C/A. I.e., A' is 

a nonsingular basic set contained in A, and the homomorphism K[A] --* K[A'] 
induced from the inclusion A ~ C_ A extends to a homomorphism p: C ~ C ~ that 

maps a primitive element z of C/A onto a primitive element z ~ of C~/X. Thus 

C = g[A][z] and C' = K[A'][z']. 
By Remark 4.1(c), p induces an embedding p*: G(C'/A') ~ G(C/A). For each 

a E A'(M) we have, by Remark 4.1(e), p* Ar(A', a) C_ At(A, a). 

For a conjugacy domain Con(A) in Sub[C/A, P0] let 

Con(A') = {H e Sub[C'/A', Po]I p*(H) e Con(A)} 
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be the i n d u c e d  c o n j u g a c y  d o m a i n  in Sub[C'/A', Po]. For a e A'(M) we have 

Ar(A' ,  a) C_ Con(A') if and only if Ar(A,  a) C_ Con(A). 1 

7. P r o j e c t i o n s  o f  c o n j u g a c y  d o m a i n s  

For n > 0 let ~r: A n + l  ~ A n be the projection on the first n coordinates. Let 

A C_ A n+l and B C A n be two non-singular basic sets such that  7r(A) = B. Then 

K[B] c_ K[A]. Let x and (x, y) be generic points of B and A, respectively. Then 

K(A) = K(B)(y). Furthermore, let C/A and D/B be real Galois covers such 

that K(D) contains the algebraic closure of K(B) in K(C). 

Under these assumptions we define the projection of conjugacy domains asso- 

ciated with C/A. There are two cases: dimA = d i m B  + 1 (Lemma 7.2) and 

dim A = dim B (Lemma 7.4). 

Definition 7.1: Let M be an extension of K. An M-spec i a l i z a t i on  of the pair 

(C/A, D/B) is a K-homomorphism ~ from C into an overfield of M such that  

~(K[B]) _C M and, if y is transcendental over K(B) ,  then ~(y) is transcendental 

over M. 

For such a specialization put y' = ~(y), g = M[~(D)],  R = M[~(K[A])], 
E = M(y') (the quotient field of R), S = M[~(C)], and F = E[~(C)] (the 

quotient field of S), Then ~ induces an embedding ~*: G(F/E) --~ G(C/A) 
(Remark 4.1(c)). 

Assume that  d imA = d i m B  + 1. The pair (C/A, D/B) is said to be specia l -  

i za t ion  c o m p a t i b l e  if 

(i) K(D) is the algebraic closure of K(B) in K(C), 

and for every M and each M-specialization ~ as above 

(ii) [ g ( c )  : g(D)(y)] = [F :  g(y ' ) ] ,  

(iii) the cover K(C)/K(A) is amply real over K(B), and 

(iv) for each involution ~ E G(F/E) with ~*(e) real the extension F(e)/N(~) is 

totally real. 

Assume that dim A = dim B. The pair (C/A, D/B) is said to be specia l iza-  

t i on  c o m p a t i b l e  if K[A] is integral over K[B] and C = D. II 

LEMMA 7.2: Assume that dim A = dim B + 1 and that (C/A, D/B) is specializa- 

tion compatible. Let Con(A) be a conjugacy domain in Sub[C/A, Po], and let $ 
be a a set of (isomorphism types of) e-structures. Define Con(B) -- Con(B, S) = 
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reSK(D)(,hMCon(A)). Let (M, P) be a ~obenius field that contains (K, Po), and 

assume that 

(*) ImG (M ,  P)  M SuD[C/A, Po] = ,5. 

Then each b �9 B(M) satisfies: 

(7.3) Ar(B,  b) C_ Con(B) if and only if there exists a �9 AiM ) such that r (a)  = b 

and Ar(A, a) C Con(A). 

Proof Let b �9 B(M). Extend x ~ b to an M-specialization ~ of (C/A, D/B),  

and let ~o be its restriction to D. 

Assume that  A r ( B , b )  C_ Con(B). Then Ar~oo �9 Con(B), and hence there 

is H �9 ,5 M Con(A) such that reSg(D)H = Argo .  In particular, resg(D)H = 

~;(G(N/M)).  By (*), H �9 I m G ( M , P ) .  A diagram chasing on the following 

commutative diagram 

1 , G(K(C)/K(D)(y))  , G(C/A) , G(D/B) , 1 

1 �9 G(F/NE)  , G(F/E) , G iN/M ) , 1,  

in which the left vertical arrow is an isomorphism by (ii), shows that the subgroup 

Ho = {a �9 G(F/E)[ ~*(a) �9 H} of G(F/E) satisfies ~o*(Ho) = H and resNHo = 

G(N/M). 

Expand Ho to an e-structure Ho such that the isomorphism ~*: Ho --~ H 

of groups extends to an isomorphism ~*: Ho --* H of e-structures. As the 

embedding ~ maps resNHo onto reSg(D)H =- Ar~oo = ~ ( G ( N / M , P ) ) ,  we 

have res/vHo = G(N/M, P). Moreover, let e �9 Ej(Ho). As resNe �9 s  P), 

the ordering Pj extends to an ordering P~ on N(e). But ~o*(e) �9 Ej(H) and 

H �9 Sub[C/A, Po], hence ~*(c) is real. By (iv), P~ extends to F(e). This shows 

that  Ho �9 Sub[F/E, P]. 

Since (M, P)  is Frobenius, there exists an M-homomorphism r S ~ M such 

that  r  = M a n d A r r  = Ho. Let a = r  T h e n a  �9 A(M) and 

r (a)  = b. Furthermore, by Remark 4.1(e), 

A r ( r  ~) = ~*(Arr  = ~*(Ho) = H �9 Con(A). 

Therefore Ar(A, a) C_ Con(A). 

Conversely, let a �9 AiM ) such that r (a )  = b and Ar(A, a) C_ Con(A). By 

(*), Ar(A, a) C ,5. Let p: C --* M be an extension of ix, y) ---. a, and let ~o0 be 
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the restriction of p to D. By Remark 4.1(e), A r  ~o = reSK(D) A r  p, whence 

Ar ( B ,  b) = resa(D/B) Ar(A, a) C_ resa(D/B)(S N Con(A)) = Con(B). I 

LEMMA 7.4: Assume that dimA = d i m B  and that (C/A, D/B) is specialization 

compatible. Let Con(A) be be a conjugacy domain in Sub[C/A, Po]. Define 

Con(B) = {G~[ G E Con(A), a E G(C/B)} 

Let (M, P)  be an extension of (K, P0). Then each b E B(M) satisfies (7.3). 

Proo~ Assume that  Ar (B ,  b) C_ Con(B). Extend x -* b to a K-homomorphism 

~: C ~ M and put c = qo(y). Then Ar  qo E Con(B), so there are a E G(C/B) 

and G E Con(A) such that  A r ~  = G ~. Replacing ~ by ~ o g  -1 (Remark 4.1(f)) 

we may assume that a = 1. In particular, G _< G(C/A), and hence ~o maps K[A] 

into M. Thus a = (b, c) E A(M), and, by the above, G = A r  qo E Ar (A ,a ) ,  

whence Ar(A, a) C_ Con(A). 

Conversely, let a E A(M) such that 7r(a) -- b and Ar(A,  a) C_ Con(A). Extend 

x ~ a to a K-homomorphism ~: C -* M. It maps K[B] into M. As A r  qo E 

Con(A) C Con(B), we have Ar(A, b) C_ Con(B). ] 

Let us show how to make (C/A, D/B) specialization compatible. 

LEMMA 7.5 (cf. [F J, Lemma 25.1]): Let K1 be a finite extension of K(D). There 

are Zariski open subsets A r C_ A, B ~ c_ B and a specialization compatible pair 

(C'/A' , D'/B') such that K(C) c_C_ K(C') and g l  C_ K(D'). 

Proof." Assume first that  dim A = dim B + 1. Let K~ be a finite Galois extension 

of K(B) that contains both K1 and the algebraic closure of K(B) in K(C). Let 

h E K[X, Y] be a polynomial that does not vanish on A. Put  A' = A \ V(h), and 

let C' be the integral closure of K[A'] in K~. K(C). We may choose h so that  for 

each intermediate field L of K(C')/K(A') there is a generator ~L E C' of L over 

K(A') such that discrL/K(A,)~L E (K[A']) • �9 By IF J, Lemma 5.3], K[A'][vC1,  ~L] 

is the integral closure of K[A'][v/:-I] in K(C'), that is, K[A'][x/:-I, eL] = C'. 

Furthermore, C'/A ~ is a cover. 

Let g E K[X] be a polynomial that  does not vanish on B, but g(b) = 0 for all 

b E B with h(b, y) = 0. Put  B' = B \ V(g), and let D'  be the integral closure 

of K[B'] in K~. We may choose g so that D'/B' is a cover. Replacing h by gh 

we may assume that  ~r(A') = B'. Use IF J, Lemma 25.1] to achieve conditions (i) 
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and (ii) for (C'/A', D'/B'). By Lemma 4.4 we may choose the field K~ = K(D') 
so that (iii) holds. 

Let now ~ be a specialization of (C/A  I, D'/B'). Using the notation of Defini- 

tion 7.1, let ~ E G(F/E) be an involution such that 5 = ~*(~) is real, and let P 

be an ordering on N(r To show (iv), we have to verify that  P extends to F(c).  

We need some preparations. Let L = K(C')(6) and L0 = g(D')(6). As 6(~L) = 

~L and ~ = ~*(~), we have E(~((L)) C F(s), by Remark 4.1(a). But since 

[F: F(e)] = 2 and C'  = K[A'][vC1, ~L], we get F = E[~(C')] C E ( v / ~  -, ~(<L)), 

and hence F(r = E(~((L)). In particular, F(r = g(~)(y', ~((L)). Further- 

more, L = Lo(y, (n). By (ii), [L: n0(y)] = IF(e) : g(e)(y ' ) ] ,  and hence ~ maps 

irr(r Lo(y)) onto irr(~(r Y(e)(y')). 
Let R0 be the integral closure of K[B'] in Lo, and let f(Y, Z) E Ro[Y, Z] such 

that f (y ,Z)  ~- irr(r Then ~ maps R0 into N(e), the field L is the 

function field of V(f)  over Lo, and F(e)  is the function field of V(~(f)) over 

Lemma 1.6 gives 0 ~ p E Ro and a finite subset {qij[ i E I,  j E J( i)} of R0 

such that resLoXL = U~E! Njej(1) HLo (qij) and, if ~(p) ~ 0, then restz(~)Xr(~) = 

U~e~NjeJ(~) HN(~)(~(qij)). We may assume that  g has been chosen so that  

p E R~, and hence ~(p) r 0. 

By Knebnsch' Proposition 1.2 (applied to the ring Ro) there is an order- 

ing Q on Lo that is ~-compatible with P. By (iii) it extends to L, that  is, 

Q E NjeJ(i)HLo(qij)  for some i E I. Hence P E NjeJ(i)Hg(~)(q~ C 
resg(e)XF(e). This shows (iv). 

Now assume that dim A = dim B. Let K~ be a finite Galois extension of K(B) 
that contains both K1 and K(C). Let g E K[X] be a polynomial that does not 

vanish on B, Put  A' = A \ V(g), B '  = B \ V(g), and let D' be the integral 

closure of K[B'] in K~. We may choose g so that  K[A']/K[B'] is integral and 

D'/B ~ is a cover. Then DI/A ~ is also a Galois cover. I 

8. Real Galois stratification 

Definition 8.1: Let (K, P0) be an e-fold ordered field. A normal stratification 

,40 = (A'~, Ci/Ail i E I) of A n over g [FJ, p. 410] is r ea l  if the covers C~/Ai are 

real. It can be a u g m e n t e d  to a rea l  Galois  stratification 

(8.2) A = (A'~, CJA~, Con(A~)l i E I), 
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where each Con(Ai) is a conjugacy domain in Sub[CjAi ,  Po]. 

Put  Sub .4 = Sub .40 = Uiel  Sub[Ci/Ai, Po]. 

Let (M, P)  be an extension of (K, Po) and let a �9 M n. Write Ar(,4, a) C_ 

Con(AA) if Ar(Ai,  a) C_ Con(Ai) for the unique i such that a �9 Ai. II 

We have the following analogue of IF J, Lemma 25.5]. 

LEMMA 8.3: Let n >_ O. For each real normal stratification .40 of A n+l over 

K we can find a real normal stratification 13o of A n over K and a finite family 

7-/ _~ Sub /30 of (isomorphism types of) finite e-structures with the following 

property. Let .4 = (An+l,Ci/Ai ,  Con(Ai)[ i �9 I) be an augmentation of "4o to 

a real Galois stratification, and let S C_ 7-l. Then we can find an augmentation 

/3 ---- (A n, Dy/Bj,  Con(By)[ j �9 J) of /3o with Uj Con(By)  C_ S, that depends on 

,5, such that for each Frobenius field (M, P) that contains (K, Po) and satisfies 

I m G ( M , P )  A T-I -- S, and for each b �9 An(M) we have: Ar(/3, b) C_ Con(/3) if  

and only if 

(,) there exists a C A n+x (M) such that 7r(a) = b and Ar(,4, a) __ Con(AA). 

Proof." Use Remark 1.3, the stratification lemma [F J, Lemma 17.26], and Lemma 

7.5 to construct real normal stratifications 

"4~ = (An+l, Cjk/Ajk,  [ j �9 J, k �9 K(j) ) ,  and /30 = (A n, D j / B j ,  [ J �9 J) 

over K with the following properties (see [F J, Lemma 25.5]). 

(a) For each j E J and k E K ( j )  there is a unique i E I, denoted i(j, k), such 

that Ayk C Ai. 

(b) Let i = i ( j ,k) .  The Galois cover Cjk/Ajk induced from Ci/Ai satisfies 

K(Cjk ) C_ K ( C # ) ,  

(C) 7 r - l (B j )  -- UjeK(j ) Ayk and 7r(Ajk) = By, 

(d) (Cjk/Ajk,  D j / B j )  is specialization compatible. 

Choose 7-/so that 7-/2 Sub .40 U Sub "4~ U Sub /30, and let $ C_ 7-/. 

Let i = i(j, k). Then Con(di)  induces a conjugacy domain Con(Qk /d j k  , 8) in 

Sub[C}k/Ajk, Po] (Property 6.4). Use Property 6.1 to define a conjugacy domain 

Con(Ayk, S) in Sub[Cjk/Ayk, Po] that belongs to S. The two properties ensure 

that the real Galois stratification 

, 4 ' =  (A n+l, Cyk/Ajk, Con(Ayk,$)l j e J, k C K( j ) ) ,  
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satisfies for every extension (M, P) of (K, Po) and each a �9 M T M  

Ar('4, a) C Con(,4) if and only if Ar(,4', a) C_ Con(,4'). 

Thus we may assume that .4' = `4. Apply Lemmas 7.2 and 7.4 to augment B0 

to the desired real Galois stratification. | 

Remark 8.4: For B0, .4 and S as in Lemma 8.3 we can also find another aug- 

mentation /~ of B0, with Uj Con(Bj) c_ S, such that for each Frobenius field 

(M,P)  that contains (K, Po) and satisfies I m G ( M , P ) ~  7-I = $, and for each 

b �9 A n (M) we have: Ar(B, b) C_ Con(B) if and only if 

(*') Ar('4, a) C_ Con('4) for each a �9 &n+l(M) such that 7r(a) = b. 

This can be deduced using the complementary real Galois stratification, analo- 

gously to [F J, Lemma 25.7]. | 

9. Applications 

Let m,n >_ 0. Put X = (X1, . . . ,Xm),  Y = (Y1,..-,Y~), and let Q1,- . . ,Qm be 

quantifiers. The following expression 0(Y) 

( Q , X 1 )  . . . ( Q m X m ) [ A r ( X ,  Y )  C_ Con`4], 

where ,4 is a real Galois stratification of An+,,, is called a real Galois formula 

in the free variables Y. Its interpretation is clear from Definition 8.1. 

Let s be the first order predicate calculus language of e-fold ordered fields 

augmented by constant symbols for the elements of the field K. 

LEMMA 9.1: Every formula ~)(Y) = 0(Yx,...,Y,~) in the language f-.~(K) is 

equivalent to a Galois formula over (K, P0). 

Proof'. Write O(Y) in the prenex normal form. Without loss of generality it is 

quantifier free, i.e. of the form 

iEl  j = l  k = l  

where ~)~(Y) defines a K-constructible set A~ in A n, and hijk(Y) e K[Y]. We 

may assume that Ui Ai = An, otherwise add 00 that defines the complement of 

Ui A~, and put hojk = -1.  Replacing the A~ by appropriate constructible subsets 
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we may assume that they are disjoint. Finally, we may stratify each of the Ai 

into smaller sets, and thus assume that each Ai is a nonsingular basic sets over 

K, say, with generic point Yi over K, and Ci = g[Ai][x/-L-T, V/~-jk(y~)[ j, k] is a 

real Galois cover of K[Ai]. 

Augment the normal stratification (An,CJAi[ i E I) to a real Galois strati- 

fication A by letting Con(A~) be the collection of all H �9 Sub[CjA~, Po] with 

~(V/~k(yi))  -- V/~k(y~) for all c �9 Ej(H), j = 1 . . . .  ,e, k = 1 , . . . , r j .  

Let (M, P) be an e-ordered field that extends (K, Po), and let a �9 A~(M). Let 

~: K[Ci] -+ M be an extension ofyi  --~ a, let 5 �9 Cj(M/M,P)  and e = ~*(5). 

Then ~ ( a )  = ~ (v /~k (y i ) )  e ~f, and, from the equation of Remark 4.1(a), 

e fixes v / ~ ( y i )  if and only if $ fixes x/h~jk(a). Therefore 

hijk(a) C Pj r ~ j k ( a ) )  E /~(~)r e (~ jk(y i ) ) - - - -  ~ Y i ) .  

Thus Ar(A~,a) C Con~(Ai) if and only if Aj Ak h~jk(a) >_j 0. Therefore the 

Galois formula At(Y)  C_ Con A is equivalent to 0(Y) over (K, Po). I 

Let (K, Po) be an e-fold ordered field, and let II be a class of (isomorphism 

types of) superprojective e-structures. Denote by Frob(K, P0; H) the class of 

e-fold ordered Frobenius fields (M, P) with G(M, P) E H that contain (K, Po). 

THEOREM 9.2: Let (K, P0) be a presented e-fold ordered field with elimination 

theory, and let ~) be a sentence i12 f~e(K). 

(a) We can effectively find a finite Galois extension L / K with v ~  E L, a finite 

family T-I D_ Sub[L / K, Po] of (isomorphism types of)finite e-structures, and 

for each $ C 7-l a conjugacy domain Con(S) in Sub[L/K, Po] contained in 

S such that for every Frobenius field (M, P) that contains (K, Po) and 

satisfies I m G ( M , P )  N ?-/= S we have: (M,P)  ~ 0 i f  and only if 

(9.3) G(L/L  M M, resLnMP) e Con(S). 

(b) We have (M,P) ~ 9 for all (M,P) E Frob(K, Po;H) if and only if 

Sub[L/K, Po] M S = Con(S) for all S C_ TI that satisfy 

(9.4) there is G EII  such that Im G N 7-/= S. 

Proof: (a) By Lemma 9.1, 0 is equivalent to a real Galois sentence 0 ~. Induc- 

tively apply Lemma 8.3 and Remark 8.4 to assume that 0' is quantifier free. 

Then 0' is associated with a real Galois stratification A = (A ~ L/A ~ Con(S)/ 

of A ~ with Con(S) depending on S _C ~.  By Property 6.1 we may assume 
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that ~ �9 L. Let 0 be the unique point of &o. Then Ar (L /& ~ M , P ,  0) = 

G(L/L M M, resLnMP). Hence (9.3) is the interpretation of (M, P)  ~ •'. 

(b) Fix S C_ 7-/. Observe that  

(9.5) 
{G(L/L M M, resLnMP)] (M, P)  �9 Frob(K, P0; H), Im G(M, P)  M 7-/= S} 

S Sub[L/K, Po] M S, if S satisfies (9.4); 
0, otherwise. 

Indeed, if (M, P)  �9 Frob(K, Po; H), then 

G(L/L N M, resLnMP) = A r ( L / A  ~ M, P, 0) C_ Sub[L/K, Po] M Im G(M,  P) 

and G(M, P)  E H. This gives the inclusion "C_" in (9.5). 

Conversely, let G EI I  such that Im G M T-/= S, and let H C Sub[L/K, Po] MS. 

Then H E ImG,  so there is an epimorphism ~r: G ~ H. Put  H I = H 

G(L/K(v/-L-1)), let G' = ~r-l(H'),  and .~ = (H,H ' ,C(H)) .  By Lemma 3.6, 

t3 = (G, G', s  is a projective Artin-Schreier structure. Let 7r: ~5 --~ .~ be the 

epimorphism of weak structures induced by ~r: G ~ H .  

There exists a PRC field M containing K and an isomorphism ~: ~3 --* qb(M) 

such that resL o 0 -~ ~r: ~5 -+ .~ C ~3(L/K) [H J1, Theorem 10.2]. Then 

induces an isomorphism 0: G --* G ( M , P ) ,  where the ordering Pj is induced 

by the real closure M(r for c �9 0(Cj(G)). Moreover, resL o ~ = 7r: G --~ H. 

Thus H = ~r(G) = resLG(M, P) = G(L/L ~ M, resLnMP). By Lemma 3.5(a) 

the orderings P1 , . . . ,  Pc are distinct and they are all the orderings on M. So 

(M, P)  is PRCe. As G(M, P)  ---- G �9 II is superprojective, (M, P) is Frobenius 

(Proposition 5.6), whence (M, P)  �9 Frob(K, Po; H). 

Assertion (b) follows immediately from (a) and (9.5). I 

Condition Sub[L/K, P0] M S C_ Con(S) can be effectively checked for each 

subfamily S of ~ .  The only difficulty is to decide which S satisfy (9.4). We list 

a few interesting cases in which this is possible: 

COROLLARY 9.6: The theory ofFrob(K, P0;H) in s162 K) is primitive recursive 

(a) for H = {H}, where H is superprojective and I m H  is a primitive recursive 
family of finite e-structures, 

(b) for  n = {Ibm,n}, 

(c) for  II = 
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(d) for II = the class of all superprojective e-structures. 

Proof." (a) Condition (9.4) is Im H N 7-/= 8. It can be effectively checked. 

(b) and (c) are special cases of (a). 

(d) Let 7-I = { A 1 , . . . , A , ~ , B 1 , . . . , B n }  and S = { B 1 , . . . , B n }  C__ 7-/be given 

families of finite e-structures. By (9.4) it suffices to decide, whether there exists 

a superprojective e-structure G such that the Ai are quotients of G and the Bj  

are not. This is done by a straightforward translation of the notion of embedding 

covers to the category of e-structures [F J, w We refer the reader to [La, w 

for the details. | 

It follows that the elementary theory of Geyer and v.d. Dries fields is primitive 

recursive. 

LEMMA 9.7: The expression "the e-structure B is realizable over (M, P)"  is an 

elementary statement. 

Proof." This expression is equivalent to "there exists a Galois extension N of M 

such that G ( N / M ,  P)  ~ B ' .  

Let B be given as a subgroup of $2,~ by its action on {1, 2 , . . . ,  2n}. For a 

polynomial f ( Z )  of degree 2n, the statement " f  is irreducible, normal and there 

exists an isomorphism of permutation groups/3: G(f ,  M)  --* B" is elementary [F J, 

p. 256]. In particular, it asserts that there are polynomials Pl = Z, p2, . . .  ,P2n of 

degree < 2n such that pi(z) is the ith root of f ,  and hence po(i)(z) = pi(zo(~)), 

for each i. 

Let z be a root of f ,  and let N = M ( z )  be the splitting field of f over M. 

Condition ~ E N is equivalent to the statement "there exists a polynomial q 

of degree < 2n such that  q(z) 2 + 1 = 0". Finally, fix 1 _< j _< e and e C s 

and let ~ = /3-1@). The condition "Pj extends to N($)" can be expressed as 

follows. There is an irreducible polynomial h of degree n and a polynomial g of 

degree < 2n, such that  h(g(z)) = 0 and g(pe(1)(z)) = g(z), and h changes sign in 

the real closure of (M, Py). Use Tarski's Principle 1.4 to express this in s  
| 

PROPOSITION 9.8: Let (M1, P1) and (/1//2, P2) be two c-fold ordered Frobenius 

extensions of (K, P0). Then (M1, P1) = (M2, P2) in E~(K) if  and only if 

(9.9) / ( n  (M1,P1)--- - / in  (M2, P2) and I m G ( M I , P 1 ) =  ImG(M2,  P2). 
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Proof: Assume (9.9). Theorem 9.2(a) implies that (M1, P1) and (M2, P2) satisfy 

the same sentences in L:e(K). Conversely, let (M1, P1) - (M2, P2). The first part 

of (9.9) follows from [J1, Lemma 5.1] and the second part from Lemma 9.7. | 

Let (K, Po) be a fixed e-fold ordered field with K a countable Hiibertian field. 

For a sentence ~ �9 L:e(g) denote A(O) : {a �9 G(K)~I /C~ ~ ~}, where /Ca is 

the field defined in Example 5.2. Then A(0) is a measurable set and the measure 

#(A(0)) is a rational number [J1, Theorem 8.1]. 

THEOREM 9.10: The function that assigns to a sentence 0 �9 s  the rational 

number #(A(0)) is primitive recursive. 

Proof: Put  7/ -- ImDr and let L and Con be as in Theorem 9.2. For each 

1 _< j _< e let ej be the generator of G ( L / L  N K j ) .  Then #(A(O)) is equal to 
a j  

the number of e-tuples a �9 G ( L / K )  ~ such that ( e ~ l , . . . , e e )  �9 G ( L / K ,  Po) 

generates an e-structure in Con divided by [L : K] ~. | 
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