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1. Introduction

It is well-known that the Schreier theorem does not hold for free
profinite groups, i.e., a subgroup of a free profinite group need not be
free. Subgroups of free profinite groups are groups of cohomological di-
mension 1; they are called projective, as they satisfy the same universal
property as projective modules.

Similarly, the Kurosh Subgroup Theorem does not hold for free prod-
ucts of profinite groups. This led the first author to introduce in [2] the
notion of a profinite group projective relative to a family G of its sub-
groups, closed under conjugation (see Definition 3.2; these groups are
also discussed in [4], cf. Remark 3.3). Then [2, Corollary 5.4] has shown
that a subgroup G of a free profinite product H =

∐
x∈X Hx is projec-

tive relative to the family of subgroups G = {Hh
x ∩G | h ∈ H, x ∈ X}.

An analogous result holds for subgroups of free pro-p products.
However, the converse, that is, whether a profinite group G, projec-

tive relative to a continuous family G of its subgroups, is a subgroup
of a free product in the above manner, has been treated only partially.

Assuming that G is a continuous family closed under conjugation,
we have G = {Gt | t ∈ T}, where T is a profinite space on which G acts
continuously so that the map t 7→ Gt is G-equivariant and injective
on {t ∈ T | Gt 6= 1} ([2, Lemma 3.5]). Then the answer to the above
question is positive, if T has a closed subset T0 of representatives of the
G orbits ([2, Theorem 9.5]). In particular, this is the case if G is second
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countable ([2, Theorem 8.5]). Moreover, if G is a second countable pro-
p group, then G is even a free pro-p product G = (

∐
t∈T0 Gt)qF , where

F is a free pro-p group ([2, Corollary 9.6]).
On the other hand, the second author has produced an example of a

pro-p group G, projective relative to a family G = {Gt | t ∈ T}, where
the action of G on T has no closed subset of representatives of the
G-orbits. Nevertheless, G is a subgroup of a free pro-p product in the
above manner ([7, Proposition 4.6]).

The objective of this paper is to give a positive answer to the above
question for pro-p groups.

First we note (Lemma 5.12) that if G is a subgroup of a free profinite
(or pro-p) product H =

∐
x∈X Hx, then, denoting G = {Hh

x ∩ G | h ∈
H, x ∈ X},

(a) there is a profinite space T on which G acts continuously so that
the family of the stabilizers {Gt | t ∈ T} of this action satisfies
(a1) the map t 7→ Gt is injective on T ′ = {t ∈ T | Gt 6= 1};
(a2) G r {1} = {Gt | t ∈ T ′};

and, as remarked,

(b) G is projective relative to G.

Conversely:

Theorem 1.1. Let G be a pro-p group and G ⊆ Subgr(G). Assume
(a), (b). Then there exists an embedding ζ : G → Ḡ = L q F into a
free pro-p product of a copy L of G and a free pro-p group F such that
{ζ(Gt) | t ∈ T ′} = {Lσ ∩ ζ(G) | σ ∈ Ḡ}r {1}.

Theorem 1.1 shows that relatively projective pro-p groups can be
characterized as subgroups of free pro-p products. However, the factors
of the free product in Theorem 1.1 are as complicated as the original
group. Our methods however show that one can find a simpler free
product, provided the map t 7→ Gt does not vary too much, in a sense:

Theorem 1.2. Under the assumptions of Theorem 1.1 let ρ : G→ L be
a homomorphism into a pro-p group such that ρ|Gt is a monomorphism
for each t ∈ T . Then there exists an embedding ζ : G→ Ḡ = LqF into
a free pro-p product of L and a free pro-p group F such that {ζ(Gt) | t ∈
T ′} = {Lσ ∩ ζ(G) | σ ∈ Ḡ}r {1}.

Using Theorem 1.2 one can try to index the family of subgroups
G = {Gt | t ∈ T} of a relatively projective pro-p group G such that G
embeds into the free pro-p product of the new family according to the
following
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Theorem 1.3. Let G be a pro-p group projective relative to a continu-
ous family G = {Gt | t ∈ T} of its subgroups closed under conjugation.
Let ρ : G→ L =

∐
x∈X Lx be a homomorphism into a free pro-p product

such that ρ|Gt is a monomorphism into some conjugate of Lx. Then
there exist a free pro-p group F and a monomorphism ζ : G → L q F
such that ζ(Gt) is conjugate to a subgroup of some Lx, for every t ∈ T .

Using the notion of pile (Definition 4.1) we have another characteri-
zation of relatively projective groups:

Theorem 1.4. Let a pro-p group G act continuously on a profinite
space T and let G = {Gt | t ∈ T}. Then the following statements are
equivalent:

(i) G is projective relative to G and (a1), (a2) above hold;
(ii) (G, T ) is a projective pile;

(iii) there exists a profinite space T̂ that also satisfies (a1), (a2)

and (G, T̂ ) = lim←−i(Gi, Ti), where Gi = (
∐

x∈Xi(Gi)x) q Fi, is
a second countable free pro-p product with Xi a closed set of
representatives of the Gi-orbits in Ti and Fi a free pro-p group;
in particular, if i ≤ j, then the map πij of the inverse system
maps every (Gj)x into a conjugate of (Gi)πij(x) in Gi;

(iv) G acts on a pro-p tree with Gr{1} being the family of nontrivial
stabilizers of vertices and with trivial edge stabilizers.

To illustrate Theorem 1.2 consider the following

Example 1.5. Let G be a pro-p group and let G ⊆ Subgr(G). Assume
(a), (b) above and assume that the point stabilizers Gt are abelian.
By Theorem 1.4, G is an inverse limit of free pro-p products Gi of
abelian groups; here we use the fact that a free pro-p group Fi is a free
pro-p product of copies of the abelian group Zp. Each Gi is an inverse
limit of free pro-p products Gij of finitely many abelian factors. As
[Gij, Gij] intersects factors trivially (say, because the projection on a
factor is injective on that factor and maps the commutator into 1) one
deduces that [G,G] ∩Gt = 1 for each t ∈ T . Let L = G/[G,G] be the
abelianization of G. Then the quotient map ρ : G → L is injective on
Gt, for every t ∈ T .

Thus, by Theorem 1.2, there exists an embedding ζ : G → L q F ,
where L is abelian and F is pro-p, such that ζ(Gt) is conjugate to a
subgroup of L for every t ∈ T .
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Let C be a family of finite groups closed under quotients, subgroups,
and extensions. In most of our application C will be the family of p-
groups, for a fixed prime p, but sometimes a more general treatment
seems to be more appropriate.

Given a subset X of a profinite group H, we denote by 〈X〉H the
smallest closed normal subgroup of H containing X.
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2. Profinite spaces and action

Remark 2.1. Let T be a profinite space. A partition of T is a finite
family X = {Ti}ni=1 of nonempty clopen subsets of T such that T =⋃
· ni=1 Ti (a disjoint union). It induces a continuous map ϕ : T → X,

by mapping every t ∈ Ti onto Ti ∈ X. Conversely, a continuous map
ϕ : T → X into a finite discrete space X defines a partition, namely,
{ϕ−1({x}) | x ∈ ϕ(T ) ⊆ X}.

A partition Y is finer than (or a refinement of) the partition X of
a space T , if every T ′′ ∈ Y is a subset of some T ′ of X.

Remark 2.2. Let G be a profinite group acting continuously on a profi-
nite space T . If Z is a closed subset of T , then the stabilizer

GZ = {g ∈ G | Zg = Z}
of Z in G is a closed subgroup of G; if Z is clopen, then GZ is open.
For t ∈ T we write Gt instead of G{t}. Thus, Gt = {g ∈ G | tg = t}.

A partition X = {Ti}ni=1 of T is a G-partition if for every i and
every g ∈ G either T gi = Ti or Ti ∩ T gi = ∅. It defines an obvious
G-action on X. A partition X of T is a G-partition if and only if the
induced map ϕ : T → X is G-equivariant.

An element of a G-partition is called a G-block.

Lemma 2.3. Let G be a profinite group acting continuously on a profi-
nite space T . Let t ∈ T and let B(t) = {U | U is a G-block, t ∈ U}.

(a) Every partition of T can be refined by a G-partition.
(b) T is the inverse limit of its G-partitions.
(c) B(t) is a basis of neighborhoods of t.
(d) {t} =

⋂
U∈B(t) U .

(e) If U ⊆ T is a G-block and Z ⊆ T is a non-empty closed subset,
then GZ ≤ GU ; in particular, Gt ≤ GU for every t ∈ U ;

(f) Gt =
⋂
U∈B(t) GU .
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Proof. (a) [4, Lemma 7.1.1], Claim B.
(b) [4, Lemma 7.1.1].
(c) Follows from (a).
(d) Follows from (c).
(e) Let g ∈ GZ . Then ∅ 6= Z = Zg ⊆ U ∩ U g, so U ∩ U g 6= ∅, and

hence U = U g; thus g ∈ GU .
(f) By (e), Gt ≤

⋂
U∈B(t) GU . Conversely, if g ∈

⋂
U∈B(t) GU , then

tg ∈
⋂
U∈B(t) U

g =
⋂
U∈B(t) U = {t}, by (d), so g ∈ Gt. �

The next lemma is an analogue of [4, Lemma 2.1.3].

Lemma 2.4. Let a finite group G act continuously on a profinite space
T and let X be a partition of T . Then there is a G-partition Y of T ,
finer than X, such that for every V ∈ Y there is t ∈ V with GV = Gt.

Proof. By induction on the size of G = {Gt | t ∈ T}.
For every maximal Γ ∈ G let C(Γ) = {t ∈ T | Gt = Γ}. This is a

closed subset of T , because it is the complement of the open subset⋃
Γ′∈G,Γ′ 6=Γ{t ∈ T | Gt ≤ Γ′} of T . If g ∈ G, then Γg is also maximal in

G, and C(Γ)g = C(Γg) = {t ∈ T | Gt = Γg}.
The union C =

⋃
g∈GC(Γ)g is also closed; it is G-invariant. Clearly,

C =
⋃
· g∈R C(Γ)g, where S = NG(Γ) is the stabilizer of C(Γ) in G and

R is a set of left coset representatives of G modulo S. Thus this is a
G-partition of C. Deduce that if C ′ ⊆ C(Γ), then GC′ = SC′ .

By Lemma 2.3(a) we may assume that X is a G-partition.
By Lemma 2.3(d),(f), every t ∈ C(Γ) is contained in an S-block Ct

of C(Γ) with SCt = St = Gt = Γ. As C(Γ) is compact, finitely many
of these Ct cover C(Γ). Their intersections constitute a partition X ′

of C(Γ). By Lemma 2.3(a), C(Γ) has an S-partition C(Γ) =
⋃
· mi=1Ci,

finer than X ′ and finer than the partition induced by X on C(Γ).
Choose t′ ∈ Ci and t ∈ C(Γ) such that Ci ⊆ Ct. By Lemma 2.3(e),

Γ = St′ ≤ SCi and SCi ≤ SCt = Γ. Thus SCi = Γ = Gt for every t ∈ Ci.
Now C =

⋃
· g∈R

⋃
· iC

g
i is a G-partition of C and GCgi

= Sg
Cgi

= Gt for

every t ∈ Cg
i . We write this partition as {Ci}ni=1.

There are disjoint open subsets T1, . . . , Tn of T such that Ci ⊆ Ti for
every i. Let 1 ≤ i ≤ n. Every t ∈ Ci has a clopen neighborhood in Ti
such that Gt′ ≤ Γ for every t′ in that neighborhood. As Ci is compact,
we may replace Ti by a union of finitely many such neighborhoods, so
that Ti is clopen in T and Gt′ ≤ Γ, for every t′ ∈ Ti.

If 1 ≤ i, k ≤ n, and Cg
i = Ck, for some g ∈ G, then, without loss of

generality, T gi = Tk, otherwise replace Ti by its subset Vi =
⋂

(j,h) T
h−1

j ,

where (j, h) runs through all pairs of 1 ≤ j ≤ n and h ∈ G such that
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Ch
i = Cj. Indeed, if Cg

i = Ck, then

V g
i =

( ⋂
(j,h)

Ch
i
=Cj

T h
−1

j

)g
=

⋂
(j,h)

C
g−1h
k

=Cj

T
(g−1h)−1

j =
⋂
(j,σ)

Cσ
k
=Ck

T σ
−1

j = Vk.

Thus U =
⋃
· ni=1 Ti is is a G-invariant clopen subset of T , and {Ti}ni=1 is

its G-partition, such that GTi = GCi for every i. Choose ti ∈ Ci ⊆ Ti,
then GTi = Gti for every i.

Also T ′ = T rU is a clopen G-invariant subset. As the set {Gt | t ∈
T ′} does not contain Γ, its size is strictly smaller than |G|. Therefore,
by induction on |G|, there is a partition of T ′, which, together with the
partition {Ti}ni=1 of U , gives the required G-partition of T . �

Let F (T ), resp. F (T, ∗), denote the free pro-C group on a profinite
space T , resp. pointed profinite space (T, ∗) ([9, Section 3.3]).

Lemma 2.5. Let G be a pro-C group acting on a profinite space T and
let G̃ = F (T )oG be the induced semidirect product. Then CF (T )(G) =
〈TG〉 = F (TG), where TG is the subspace of points of T fixed by G.

Proof. As CF (T )(G) =
⋂
σ∈GCF (T )(〈σ〉) and by [8, Proposition 5.5.3],⋂

σ∈G F (T 〈σ〉) = F (
⋂
σ∈G T

〈σ〉), it suffices to prove the assertion for G
procyclic. Since the centralizer is contained in the normalizer, it suffices
to prove in this case a stronger assertion, namely, that NF (T )(G) =
F (TG); equivalently, NG̃(G) = F (TG)×G.

First assume that T is finite.
Suppose G acts on T transitively. If G acts trivially on T , then

NF (T )(G) = F (T ). Thus it suffices to show that if G acts nontrivially
on T , then NF (T )(G) = 1; equivalently, NG̃(G) = G. Replacing G by
its image in Sym(T ) we may assume that G is finite and acts faithfully
on T . In particular, since G is cyclic, it acts freely on T , and so, by [4,
Lemma 4.7.4], G̃ = 〈t〉 qG. Hence, by a theorem of Herfort and Ribes
([5, Theorem A]), NG̃(G) = G.

Now write T as the disjoint union T =
⋃
· ni=1 Ti of its G-orbits.

Then F (T ) =
∐n

i=1 F (Ti), hence G̃ =
∐

G,i G̃i is a free product amal-

gamating G, where G̃i = F (Ti) o G for each i. By [1, Proposi-
tion 2.8] NG̃(G) =

∐
G,iNG̃i

(G) and so NG̃(G)/G =
∐

i(NG̃i
(G)/G).

Since NG̃(G) = NF (T )(G) × G and NG̃i
(G) = NF (Ti)(G) × G, one has

NF (T )(G) ∼= NG̃(G)/G ∼=
∐

i(NG̃i
(G)/G) =

∐
iNF (Ti)(G). By the pre-

ceding paragraph NF (Ti)(G) = F (TGi ) for each i and so the lemma is
proved if T is finite.
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In the general case T is an inverse limit of finite G-spaces, T = lim←−Tk.
Then TG = lim←−T

G
k , and F (T ) = lim←−F (Tk) and G̃ = lim←−(F (Tk) o G).

Hence NF (T )(G) = lim←−NF (Tk)(G) = lim←−F (TGk ) = F (TG). �

Lemma 2.6. Let F = F (T, ∗) be a free pro-C group on a pointed
profinite space (T, ∗). Then there is a profinite space Y such that F is
F (Y ), the free pro-C group on Y .

Proof. If T is finite, then Y = T r {∗} satisfies F = F (Y ). So assume
that T is infinite. By [9, 3.5.12], F (T, ∗) and F (T ) are free pro-C groups
of the same rank, and hence F (T, ∗) ∼= F (T ). �

3. Relatively projective groups

Let G be a profinite group and (G, T ) = {Gt | t ∈ T} be a family of
subgroups indexed by a profinite space T . For a group A, we shall find
it convenient to indicate by A ∈ G the existence of t ∈ T with A = Gt.
Following [8, Section 5.2] we say that (G, T ) is continuous if for any
open subgroup U of G the subset {t ∈ T | Gt ≤ U} is open.

For instance, (G, T ) is continuous if it is locally constant, i.e., if T
is the disjoint union of finitely many clopen subsets Ti and for each i
there is a subgroup Ai of G such that Gt = Ai for every t ∈ Ti.
Lemma 3.1 ([8, Lemma 5.2.1]). Let G be a profinite group and let
{Gt | t ∈ T} be a collection of subgroups indexed by a profinite space
T . Then the following conditions are equivalent:

(a) {Gt | t ∈ T} is continuous;

(b) The set Ĝ = {(g, t) ∈ G×T | t ∈ T, g ∈ Gt} is closed in G×T ;
(c) The map ϕ : T → Subgr(G), given by ϕ(t) = Gt, is continuous,

where Subgr(G) is endowed with the étale topology;
(d)

⋃
t∈T Gt is closed in G.

The set Ĝ in (b), together with the projection π : Ĝ → T on the
second coordinate, is a sheaf of profinite groups. Given a profinite
group H, a sheaf morphism α : Ĝ → H is a continuous map such
that the restriction of α to Ĝ(t) = π−1(t) is a group homomorphism,

for every t ∈ T . For instance, the map Ĝ → G, given by (g, t) 7→ g, is
a sheaf morphism. These notions are instrumental in the construction
of free profinite products ([8, Section 5.1]).

By abuse of notation we write simply G instead of (G, T ) and also

instead of Ĝ.
For a family G of subgroups of a profinite group G we denote by

Env(G) its envelope, the family of all closed subgroups of the groups
in G.
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Definition 3.2. Consider the category of profinite pairs (G,G),
where G is a profinite group and G is a continuous family of closed
subgroups of G, closed under the conjugation in G. We denote by
GG the set of all G-conjugates of the groups in G, that is, GG =
{g−1Γg | Γ ∈ G, g ∈ G}. A morphism ϕ : (G,G) → (A,A) in this
category is a homomorphism ϕ : G → A of profinite groups such that
ϕ(Env(G)) ⊆ Env(A), that is, for every Γ ∈ G there is ∆ ∈ A such
that ϕ(Γ) ≤ ∆; it is an epimorphism, if ϕ(Env(G)) = Env(A).

An embedding problem for (G,G) (cf. [4, Definition 5.1.1] or [2,
Definition 4.1]) is a pair of morphisms

(G,G)

ϕ

��
(B,B)

α // (A,A)

(3.1)

such that α is an epimorphism and for every Γ ∈ G there exists ∆ ∈ B
and a homomorphism γΓ : Γ→ ∆ such that α ◦ γΓ = ϕ|Γ.

We say that (3.1) is finite, if B is finite. We say that (3.1) is rigid,
if α is rigid, i.e., α|∆ is injective for every ∆ ∈ B.

A solution of (3.1) is a morphism γ : (G,G) → (B,B) such that
α ◦ γ = ϕ.

We say that G is projective relative to G or G-projective, if every
finite embedding problem (3.1) for (G,G) has a solution. Equivalently
([4, Corollary 5.1.5]), every finite rigid embedding problem (3.1) for
(G,G) has a solution. Moreover, replacing A by the subset A0 of
maximal groups in A, and B by {∆ ∈ B | α(∆) ∈ A0}, we may assume
that α maps every ∆ ∈ B isomorphically onto some group in A.

Remark 3.3. We remark that [4] uses the term strongly G-projective
instead of G-projective and both [4] and [2] do not assume that G is
a continuous family, only that it is étale compact. We do not know
whether this is the same ([4, Problem 2.1.11 and Proposition 2.1.8]).

However, since we do assume here that G is indexed by a profinite
space, it would be desirable to take this space into account in the above
definition. This is the purpose of the following two sections.

4. Piles

Definition 4.1. A pile G = (G, T ) consists of a profinite group G, a
profinite space T , and a continuous action of G on T (from the right).
Denoting by Gt the G-stabilizer of t, for every t ∈ T , we note that
G = {Gt | t ∈ T} is a continuous family of closed subgroups of G ([8,
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Lemma 5.2.2]) closed under the conjugation in G, such that Gtg = Gg
t

for all t ∈ T and g ∈ G.
A pile G = (G, T ) is finite if both G and T are finite.
A morphism of group piles α : B = (B, Y )→ A = (A,X) consists

of a group homomorphism α : B → A and a continuous map α : Y → X
such that α(yb) = α(y)α(b) for all y ∈ Y and b ∈ B. This implies
α(By) ≤ Aα(y) for every y ∈ Y ; in particular, denoting A = {Ax | x ∈
X} and B = {By | y ∈ Y }, we have α(Env(B)) ⊆ Env(A).

The kernel Kerα of α is the kernel of the group homomorphism
α : B → A.

The above morphism α is an epimorphism if α(B) = A, α(Y ) = X,
and for every x ∈ X there is y ∈ Y such that α(y) = x and α(By) = Ax.
(Then α(Env(B)) = Env(A).) It is rigid, if α maps By isomorphically
onto Aα(y), for all y ∈ Y , and the induced map of the orbit spaces
Y/B → X/A is a homeomorphism.

Remark 4.2. Let α : B = (B, Y )→ A = (A,X) be a morphism and let
K be its kernel. The quotient map π : B → B/K := (B/K, Y/K) is
an epimorphism of piles and there is a unique morphism ᾱ : B/K → A
such that α = ᾱ ◦ π.

Moreover, α is a rigid epimorphism if and only if ᾱ is an isomorphism
and K ∩By = 1 for every y ∈ Y .

Construction 4.3. Let G be a profinite group and {Gt | t ∈ T0} a con-
tinuous family of subgroups of G. We construct the standard G-
extension T of T0 such that (G, T ) is a pile, T0 is a set of represen-
tatives of the G-orbits in T , and Gt is the G-stabilizer of t, for every
t ∈ T0.

Let T = {(t, Gtg) | t ∈ T0, Gtg ∈ G/Gt} and let G act on T by
(t, Gtg)σ = (t, Gtgσ). Then the G-stabilizer of (t, Gtg) ∈ T is {σ ∈
G | Gtgσ = Gtg)} = Gg

t .
Identifying t ∈ T0 with (t, Gs1) ∈ T we may view T0 as a subset of

T such that T0 is a set of representatives of the G-orbits in T . Then
Gt is the G-stabilizer of t, for every t ∈ T0.

If G and T0 are finite, and we regard T as a discrete space, then the
above map and the action are continuous, and hence (G, T ) is a finite
pile.

In the general case we view T as the quotient space of the profinite
space T0 × G via the map π : T0 × G → T given by (t, g) 7→ (t, Gtg).
By [8, Proposition 5.2.3] this is a profinite space. The G-action on T is
induced via π from the continuous G-action on T0 ×G by multiplying
the second coordinate from the right, and therefore is continuous.
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Hence (G, T ) is a pile. The embedding T0 → T is also continuous,
and hence, as every continuous map of profinite spaces is closed, T0 is
a closed subset of T .

Moreover, the above construction is functorial in the following sense.
Let H be another profinite group, with a continuous family of sub-
groups H = {Hs | s ∈ S0}, and let ϕ : G → H be a homomorphism
and ϕ′ : T0 → S0 a continuous map, such that ϕ(Gt) ≤ Hϕ′(t) for every
t ∈ T0. Let S be the standard H-extension of S0. Then ϕ, ϕ′ induce a
continuous map T → S, namely, (t, Gtg) 7→ (ϕ′(t), Hϕ′(t)ϕ(g)), which,
together with ϕ, form a morphism of piles (G, T )→ (H,S).

Later we shall need the following, easily verified, lemma:

Lemma 4.4. Let G = (G, T ) be a pile and A = (A,X), B = (B, Y )
finite piles. Let ϕ : G→ A be a morphism and ψ : G→ B an epimor-
phism. Assume that Ker(ψ) ≤ Ker(ϕ) and the partition {ψ−1(y) | y ∈
Y } is finer than {ϕ−1(x) | x ∈ X}. Then there is a morphism α : B→
A such that α ◦ ψ = ϕ.

Lemma 4.5. Let G = (G, T ) be a pile and let N0 be an open normal
subgroup of G.

(a) Let X be a partition of T . Then there is a finite pile B = (B, Y )
and an epimorphism ψ : G → B such that Ker(ψ) ≤ N0 and
the partition {ψ−1(y) | y ∈ Y } is finer than X.

(b) Let ϕ : G → A be a morphism into a finite pile. Then there is
a finite pile B, an epimorphism ψ : G→ B such that Ker(ψ) ≤
N0, and a morphism α : B→ A such that α ◦ ψ = ϕ.

Proof. (a) If N is an open normal subgroup of G, then (G/N, T/N) is
a pile and the pair of quotient maps (G → G/N, T → T/N) is a rigid
epimorphism G→ (G/N, T/N).

As T is the inverse limit of T/N , where N runs through the open
normal subgroups of G, there is an open N / G such that N ≤ N0

and the map T → X factors through T/N ([4, Lemma 1.1.16(b)]).
Thus, replacing G by (G/N, T/N), we may assume that G is finite and
N0 = 1.

Put B = G and let ψ : G→ B be the identity. By Lemma 2.4 there
is a G-partition Y = {T1, . . . , Tn} of T finer than X, and for every i
there is ti ∈ Ti such that GTi = Gti .

Then B = (G, Y ) is a finite pile and the identity of G together with
the map T → Y define an epimorphism ψ : G → B with the required
properties.

(b) Write A = (A,X). By (a) there is a finite pile B = (B, Y ) and
an epimorphism ψ : G → B such that Ker(ψ) ≤ N0 and the partition
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{ψ−1(y) | y ∈ Y } is finer than the partition {ϕ−1(x) | x ∈ X}. By
Lemma 4.4 there is a morphism α : B → A such that α ◦ ψ = ϕ. �

Lemma 4.6. Let G = (G, T ) and A = (A,X) be piles, A finite. Let
ϕ : G→ A be a morphism. Assume that Gt1 ∩Gt2 = 1 for all distinct

t1, t2 ∈ T . Then there is a finite pile Â = (Â, X̂) and a factorization of

ϕ into an epimorphism ϕ̂ : G → Â and a morphism ϕ0 : Â → A such
that if x̂1, x̂2 ∈ X̂ satisfy ϕ0(x̂1) 6= ϕ0(x̂2), then Âx̂1 ∩ Âx̂2 ≤ Kerϕ0.

Proof. Let R = {(t1, t2) | ϕ(t1) 6= ϕ(t2)}. This is a clopen subset of
T × T , since X is finite. If (t1, t2) ∈ R, then t1 6= t2, and hence
Gt1 ∩Gt2 = 1. Therefore there is an open N / G such that

Gt1N ∩Gt2N ≤ Kerϕ. (4.1)

If (t′1, t
′
2) ∈ T ×T is sufficiently close to (t1, t2), then Gt′i

N ≤ GtiN , for
i = 1, 2, hence Gt′1

N ∩Gt′2
N ≤ Kerϕ as well.

As R is compact, there is an open N /G such that (4.1) holds simul-
taneously for all (t1, t2) ∈ R.

By Lemma 4.5(b) there is a finite pile Â = (Â, X̂), an epimorphism

ϕ̂ : G → Â, and a morphism ϕ0 : Â → A such that ϕ0 ◦ ϕ̂ = ϕ and
Ker ϕ̂ ≤ N .

Let x̂1, x̂2 ∈ X̂ such that ϕ0(x̂1) 6= ϕ0(x̂2). Then there are t1, t2 ∈ T
such that ϕ̂(ti) = x̂i and ϕ̂(Gti) = Âx̂i , for i = 1, 2. Then (t1, t2) ∈ R,
hence (4.1) holds. Since Ker ϕ̂ ≤ N , we have Ker ϕ̂ ≤ GtiN,GtiN , for
i = 1, 2, and hence

Âx̂1 ∩ Âx̂2 = ϕ̂(Gt1) ∩ ϕ̂(Gt2) ≤ ϕ̂(Gt1N) ∩ ϕ̂(Gt2N) =

ϕ̂(Gt1N ∩Gt2N) ≤ ϕ̂(Kerϕ) = Kerϕ0.

�

Definition 4.7. A commutative diagram of piles

B̂
α̂ //

p

��

Â

ϕ0

��
B

α // A

B̂ = (B̂, Ŷ ), Â = (Â, X̂),

B = (B, Y ), A = (A,X)

(4.2)

is called a cartesian square if, up to an isomorphism, B̂ = B×A Â,
that is, B̂ = B ×A Â, Ŷ = Y ×X X̂, and p, α̂ are the coordinate
projections.

Lemma 4.8. Let (4.2) be a cartesian diagram. If α is a rigid epimor-
phism, then so is α̂.
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Proof. Let (y, x̂) ∈ Y ×X X̂. Then

B̂(y,x̂) = {(b, â) ∈ B̂ | (yb, x̂â) = (y, x̂)} =

{(b, â) ∈ B̂ | b ∈ By, â ∈ Âx̂} = By ×Ax Âx̂,
where x = α(y) = ϕ0(x̂). As α maps By isomorphically onto Ax, α̂

maps By ×Ax Âx̂ isomorphically onto Âx̂.

As α : Y → X is surjective, so is α̂ : Ŷ → X̂, and therefore also the
induced map Ŷ /B̂ → X̂/Â. We have to show that it is injective, i.e.,

that (y, x̂), (y′, x̂′) ∈ Y ×X X̂, such that x̂′ = x̂â for some â ∈ Â, are in

the same B̂-orbit.
Replacing (y′, x̂′) by (y′, x̂′)b̂

−1
, where α̂(b̂) = â, we may assume that

x̂′ = x̂. Put x = ϕ0(x̂), then α(y) = α(y′) = x. As Y/B → X/A
is a bijection, there is b ∈ B such that y′ = yb. Apply α to get that
x = xα(b). Therefore α(b) ∈ Ax = α(By), whence b = βκ, where β ∈ By

and κ ∈ Ker(α).
It follows that (y′, x̂′) = (yβκ, x̂) = (yκ, x̂) = (y, x̂)(κ,1). �

5. Projective piles

Definition 5.1. An embedding problem for a pile G is a pair

(ϕ : G→ A, α : B→ A) (5.1)

of morphisms of group piles such that α is a rigid epimorphism. It is
finite, if B is finite.

A solution of (5.1) is a morphism γ : G→ B such that α ◦ γ = ϕ.
A pile G is projective, if every finite embedding problem for G has

a solution.

Example 5.2. Let C be a family of finite groups closed under quotients,
subgroups, and extensions. Let {Gt | t ∈ T0} be a finite family of C-
groups and F a finitely generated free pro-C group. Form the free pro-C
product G = F q (

∐
t∈T0 Gt) and let T be the standard G-extension of

T0 (Construction 4.3). It is easy to see that G = (G, T ) is a projective
pile.

We call a pile of this type a basic pro-C pile.

Lemma 5.3. Let α̂ : B̂ → Â be a rigid epimorphism. Assume that
Ker α̂ is a finite group. Then there is a cartesian square (4.2) in which
α : B→ A is a rigid epimorphism of finite piles.

Proof. Write B̂ = (B̂, Ŷ ) and let K = Ker α̂. By Remark 4.2 we have

(
⋃
ŷ∈Ŷ B̂ŷ)∩ (K r {1}) = ∅ and we may assume that Â = B̂/K and α̂

is the quotient map. By [8, Lemma 5.2.1],
⋃
ŷ∈Ŷ B̂ŷ is a closed subset
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of B̂. As K is finite and (
⋃
ŷ∈Ŷ B̂ŷ) ∩ (K r {1}) = ∅, there is an open

N / B̂ such that K ∩N = 1 and (
⋃
ŷ∈Ŷ B̂ŷ)∩ (K r {1})N = ∅, whence

B̂ŷN ∩KN = N , for every ŷ ∈ Ŷ . For every such N the diagram

B̂
α̂ //

��

B̂/K= Â

��

B̂/N // B̂/α̂(N)

is cartesian and by Remark 4.2 the bottom map is a rigid epimorphism.
Since a composition of cartesian diagrams is again a cartesian diagram,
we may replace B̂ by B̂/N to assume that B̂ is a finite group.

As α̂ is rigid, Kŷ = 1 for every ŷ ∈ Ŷ . Thus, by Lemma 2.4, applied

to the pile (K, Ŷ ), there is a partition Y = {Ŷi}ni=1 of Ŷ such that
KŶi

= 1 for every i. Replacing Y by a refinement we may assume that

Y is a B̂-partition. Thus Ŷ → Y , together with the identity of B̂,
induces a morphism of piles p : B̂→ B := (B̂, Y ). Then

B̂
α̂ //

p

��

B̂/K

��
B // B/K

is a cartesian square, because KŶi
= 1 implies that Ŷi∩Ŷ κ

i = ∅ for every

1 6= κ ∈ K, hence Ŷi contains at most one element of every K-orbit
in Ŷ . Moreover, K ∩ B̂Ŷi

= KŶi
= 1, hence the bottom map is a rigid

epimorphism. �

Proposition 5.4. Let G be a projective pile. Then every embedding
problem (not necessarily finite) for G has a solution.

Proof. Let (ϕ̂ : G → Â, α̂ : B̂ → Â) be an embedding problem for

G = (G, T ). We may assume that α̂ is the quotient map B̂ → B̂/K
for some K / G.

If K is finite, then by Lemma 5.3 we have a commutative diagram

G

ϕ̂
��

ϕ

��

B̂
α̂ //

p

��

Â

ϕ0

��
B

α // A

(5.2)
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with a cartesian square, in which α is a rigid epimorphism of finite
piles. By assumption there is a morphism γ : G→ B such that α◦γ =
ϕ = ϕ0 ◦ ϕ̂. By the universal property of fiber products there is a
unique morphism γ̂ : G→ B̂ such that α̂◦ γ̂ = ϕ̂ (and p◦ γ̂ = γ). Thus
γ̂ is a solution of the given embedding problem.

The general case is verbally identical with Part II in the proof of [3,
Lemma 7.3]. �

Lemma 5.5. Let ϕ : G → A and α : B → A be morphisms of piles,
B = (B, Y ) and A = (A,X) finite, and G = (G, T ). Let ψ : G→ B be
a group homomorphism such that α ◦ψ = ϕ. Then ψ can be completed
to a morphism ψ : G→ B such that α ◦ ψ = ϕ if and only if for every
t ∈ T there is y ∈ Y such that

α(y) = ϕ(t) and ψ(Gt) ≤ By. (5.3)

Proof. If ψ extends to G→ A, then (5.3) holds with y = ψ(t).
Conversely, assume that the condition holds. Let t ∈ T and fix y ∈ Y

that satisfies (5.3). As ϕ : T → X is continuous and X is finite, there
is a clopen neighborhood Ut of t in T such that ϕ(Ut) = {α(y)}. As
ψ(Gt) ≤ By, by Lemma 2.3(c),(f) we may assume that ψ(GUt) ≤ By.

As T is compact, {Ut | t ∈ T} has a finite subcovering. Therefore
there is a partition T =

⋃
· ni=1 Ti and there are y1, . . . , yn ∈ Y such that

ϕ(Ti) = {α(yi)} and ψ(GTi) ≤ Byi , for every i.
If we now define ψ : T → Y by mapping Ti onto yi, then ψ is contin-

uous and α ◦ ψ = ϕ on T .
By Lemma 2.3(a) we may assume that {Ti}ni=1 is a G-partition.

Without loss of generality, if Tj = T gi , with g ∈ G, then yj = y
ψ(g)
i . In-

deed, we fix a representative Ti of a G-orbit in {Ti}ni=1 and for Tj = T gi
redefine yj to be yj = y

ψ(g)
i . This definition is good: If T gi = T hi ,

then hg−1 ∈ GTi , hence ψ(h)ψ(g)−1 = ψ(hg−1) ∈ Byi = Byi , whence

y
ψ(g)
i = y

ψ(h)
i .

It then follows that ψ(tg) = ψ(t)ψ(g) for every g ∈ G. �

Corollary 5.6. Let G = (G, T ) be a pile, B = (B, Y ) a finite pile,
and ψ : G → B a group homomorphism. Assume that for every t ∈ T
there is y ∈ Y such that ψ(Gt) ≤ By. Then ψ can be completed to a
morphism ψ : G→ B.

Moreover, let X be a partition of T , and put B = {By | y ∈ Y }.
Then there is N ∈ N such that if

|{y ∈ Y | By = B′}| ≥ N for all B′ ∈ B, (5.4)

then ψ can be completed so that the partition {ψ−1({y}) | y ∈ Y } is
finer than X.
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Proof. Let A = (1, {∗}) be the trivial pile and let ϕ : G → A and
α : B → A be the unique morphisms of piles. Then the group homo-
morphisms satisfy α ◦ ψ = ϕ, and α(y) = ∗ = ϕ(t) for all t ∈ T and
y ∈ Y . By Lemma 5.5, ψ can be completed to a morphism of piles.

Moreover, given a partition X of T , by Lemma 2.3 we may replace
{Ti}ni=1, in the proof of Lemma 5.5 for this particular case, by a parti-
tion finer than X. Then, if (5.4) holds for a sufficiently large N , we can
choose y1, . . . , yn above from distinct B-orbits in Y . Then y1, . . . , yn
remain distinct even after we replace them by their conjugates, and
hence {ψ−1({y}) | y ∈ Y } = {ψ−1({yi})}ni=1 = {Ti}ni=1. �

Proposition 5.7. A pile G = (G, T ) is projective if and only if

(a) G is {Gt | t ∈ T}-projective; and
(b) if t, t′ ∈ T are distinct, then Gt ∩Gt′ = 1.

Proof. Assume that G is projective. Thus every finite embedding prob-
lem (5.1) for piles has a solution. Put G = {Gt | t ∈ T}.

(a) We have to show that every finite rigid embedding problem(
ϕ : (G,G)→ (A,A), α : (B,B)→ (A,A)

)
(3.1)

for the pair (G,G) has a solution.
Write B as {By | y ∈ Y0} and for every y ∈ Y0 let Ay = α(By). Then
A = {Ay | y ∈ Y0}, and A = AA, B = BB. Let Y be the standard
B-extension of Y0 with respect to B, and let X be the standard A-
extension of Y0 with respect to A (Construction 4.3). Then B = (B, Y )
and A = (A,X) are piles and the identity map Y0 → Y0 extends α to
a rigid epimorphism α : B→ A.

As ϕ is a morphism of pairs, for every t ∈ T there is x ∈ X such
that ϕ(Gt) ≤ Ax. Hence by Corollary 5.6, ϕ can be completed to a
morphism ϕ : G→ A.

As G is projective, there is a morphism ψ : G→ B such that α ◦ ψ =
ϕ. In particular, the group homomorphism ψ : G→ B satisfies α◦ψ =
ϕ and ψ(Gt) ≤ Bψ(t), for every t ∈ T , that is, ψ(G) ⊆ Env(B). Thus ψ
solves (3.1).

(b) Let t, t′ ∈ T be distinct. It suffices to show that Gt ∩ Gt′ is
contained in every open normal subgroup N of G.

By Lemma 4.5(a) there is an epimorphism ϕ : G → A onto a finite
pile A = (A,X) such that Ker(ϕ) ≤ N and ϕ(t), ϕ(t′) ∈ X are distinct.

Let Y0 be a set of representatives of the A-orbits of X. Let B =
Aq (qy∈Y0Ay) and let α : B → A be the epimorphism that maps A,Ay
identically to the corresponding subgroups of A. Put B = {Aby | y ∈
Y0, b ∈ B}. Let Y be the standard B-extension of Y0 with respect
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to B, so that B = (B, Y ) is a pile. Using the functoriality in Con-
struction 4.3, α together with the identity of Y0 extend to a morphism
α : B→ A. It is easy to see that α is a rigid epimorphism.

By Proposition 5.4 there is a morphism ψ : G→ B such that α◦ψ =
ϕ. Then ψ(t) 6= ψ(t′), because α◦ψ(t) = ϕ(t) 6= ϕ(t′) = α◦ψ(t′). By [4,
Lemma 3.1.10], Bψ(t)∩Bψ(t′) = 1. Thus ϕ(Gt∩Gt′) = α(ψ(Gt∩Gt′)) ≤
α(ψ(Gt)∩ψ(Gt′)) ≤ α(Bψ(t)∩Bψ(t′)) = 1, whence Gt∩Gt′ ≤ Ker(ϕ) ≤
N .

Conversely, assume that (a) and (b) hold. Let (5.1) be a finite em-
bedding problem (ϕ, α) for G, with A = (A,X) and B = (B, Y ).

Let Â = (Â, X̂) and ϕ̂, ϕ0 be as in Lemma 4.6. Then there is a
commutative diagram with a cartesian square

G

ϕ̂
��

ϕ

��

B̂
α̂ //

p

��

Â

ϕ0

��
B

α // A

(5.2)

By Lemma 4.8, (ϕ̂, α̂) is also a finite embedding problem for G.

As G is G-projective, there is a group homomorphism ψ̂ : G → B̂
such that α̂ ◦ ψ̂ = ϕ̂ and for every t ∈ T there is ŷ ∈ Ŷ such that

ψ̂(Gt) ≤ B̂ŷ. (5.5)

Put ψ = p ◦ ψ̂ and y = p(ŷ) ∈ Y . Then α ◦ ψ = ϕ and ψ(Gt) ≤ By.
If ϕ(Gt) = 1, use α(Y ) = X to choose y′ ∈ Y such that α(y) = ϕ(y′).

We have α(ψ(Gt)) = ϕ(Gt) = 1, and α is injective on By, hence also on
ψ(Gt), so ψ(Gt) = 1 ≤ By′ . Thus condition (5.3) of Lemma 5.5 holds
with y′ instead of y.

If ϕ(Gt) 6= 1, then ϕ̂(Gt) 6≤ Ker(ϕ0). But, by (5.5),

ϕ̂(Gt) = α̂ ◦ ψ̂(Gt) ≤ α̂(B̂ŷ) = Aα̂(ŷ)

and ϕ̂(Gt) ≤ Âϕ̂(t), hence Âα̂(ŷ) ∩ Âϕ̂(t) 6≤ Ker(ϕ0). By Lemma 4.6,
ϕ0(α̂(ŷ)) = ϕ0(ϕ̂(t)), that is, α(y) = ϕ(t). Thus condition (5.3) of
Lemma 5.5 holds.

By Lemma 5.5, ψ can be completed to a solution of (5.1). �

Remark 5.8. If G is a G-projective group, then Γ ∩ Γ′ = 1 for all
distinct Γ,Γ′ ∈ G ([4, Proposition 5.5.3(b)]). Hence we can replace (b)
in Proposition 5.7 by

(b’) the map t 7→ Gt is injective on T ′ = {t ∈ T | Gt 6= 1}.
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Lemma 5.9. Let G = (G, T ) be a projective pile. Let N be a normal
subgroup of G and Ñ = 〈N ∩ Gt | t ∈ T 〉. Then the quotient pile
G/Ñ := (G/Ñ, T/Ñ) is projective.

Proof. Let π : G → G/N be the quotient map. We have to find a
solution γN of a finite embedding problem (ϕN , α) as depicted in the
lower part of the following diagram

G

π
��

γ

��

G/Ñ

ϕN

��γN
}}

B
α // A .

(5.6)

Then (ϕN ◦ π, α) is a finite embedding problem for G. Since G is
projective, this embedding problem has a solution γ.

Note that N ∩ Gt ≤ Ker(γ|Gt) ≤ Ker(γ) (as (ϕN ◦ π)(N ∩ Gt) = 1

and α|γ(N∩Gt) is injective), for every t ∈ T . Hence γ(Ñ) = 1, whence γ
factors via π, and so we obtain a solution of (ϕN , α). �

Since projective pro-p groups are free pro-p ([9, Theorem 7.7.4]), we
get:

Corollary 5.10. In the above setting N/Ñ is a projective profinite
group. If G is pro-p, then N/Ñ is free pro-p.

Corollary 5.11. In the above setting G/〈Gt | t ∈ T 〉 is a projective
profinite group. If G is pro-p, then it is free pro-p.

Proof. Let N = 〈Gt | t ∈ T 〉. Then Ñ = 〈N ∩ Gt | t ∈ T 〉 = N . By
Lemma 5.9, G/N is projective. By Proposition 5.7, G is {1}-projective,
i.e., projective. �

Lemma 5.12. Let H be a free pro-C product of a continuous family
H of its subgroups and let G be a closed subgroup of H. Put G =
{G ∩∆h | ∆ ∈ H, h ∈ H}. Then there is a profinite G-space T such
that

(a) G = {Gt := Gt | t ∈ T};
(b) if t, t′ ∈ T are distinct, then Gt ∩Gt′ = 1;
(c) the map t 7→ Gt is injective on {t ∈ T | Gt 6= 1};
(d) G is G-projective.

Thus, G = (G, T ) is a projective pile.
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Proof. (a) Write H = {Ht | t ∈ T0} and let T be the standard H-
extension of T0. Then HH = {Ht | t ∈ T}. For t ∈ T put Gt = G∩Ht.
Then G = {Gt | t ∈ T}. Furthermore, G, as a subgroup of H, acts on
T . By Construction 4.3(a), Gt = G ∩Ht = G ∩Ht = Gt.

(b) By [8, Corollary 7.1.5(a)], Ht ∩Ht′ = 1. As Gt ≤ Ht and Gt′ ≤
Ht′ , also Gt ∩Gt′ = 1.

(c) Follows from (b).
(d) By [4, Proposition 5.2.2], H is HH-projective. (This result is

stated in [4] only for a free profinite product H, but the proof goes
through, mutatis mutandis, also for a free pro-C product.) Now apply
[4, Proposition 5.4.2].

It follows from (b) and (d) by Proposition 5.7 that G is projective.
�

Lemma 5.13. Let G be a G-projective pro-p group. Let ρ : G → L be
an epimorphism, injective on every Γ ∈ G. Extend ρ to an epimorphism
ρL : GqL→ L by the identity of L. Then Ker ρL is a free pro-p group.

Proof. Let H = G q L and K = Ker(ρL). Put H = G ∪ {L} ⊆
Subgr(H).

Clearly, L is {L}-projective. By [4, Lemma 5.2.1], H is H-projective,
and hence also HH-projective ([4, Lemma 5.2.4]). As ρL is injective on
every Γ ∈ H, and hence on every Γ ∈ HH , we have K ∩ Γ = 1 for
every Γ ∈ HH . By [4, Proposition 5.4.2], K is {1}-projective, that is,
projective. Therefore K is free pro-p. �

6. HNN-extensions

Let G be a pro-C group, let G = {Gt | t ∈ T} be a continuous family
of its subgroups, and let φ : G → G be a sheaf morphism such that
φt := φ|Gt : Gt → G is injective, for every t ∈ T .

A pro-C HNN-extension G̃ := HNN(G, T,G, φ) is a special case of
the fundamental pro-C group of a profinite graph of pro-C groups (G,Γ)
(see [8, Example 6.2.3(e)]). Namely, G̃ can be thought of as ΠC1(G,Γ),
where

(a) Γ is a bouquet of loops (i.e., a profinite graph having just one
vertex v) with T as the space of edges, such that T is closed in
Γ = {v} ∪ T ;

(b) G turns into a sheaf over Γ by putting Gv = G;
(c) the boundary maps ∂0, ∂1 : G → G are the inclusion and φ,

respectively.

Thus an HNN-extension can be explicitly defined as follows. Let
F (T ) denote the free pro-C group on T (see [9, Section 3.3]).
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Definition 6.1. The HNN-extension G̃ := HNN(G, T,G, φ) is the
quotient of the free pro-C product Gq F (T ) modulo the relations

φt(gt) = gtt, gt ∈ Gt, t ∈ T. (6.1)

We call G the base group, T the set of stable letters, and the
subgroups Gt and φ(Gt) associated. The inclusion G → G q F (T )
induces a homomorphism ξ : G→ G̃, the base map.

Obviously, G̃ has the following universal property: Given a pro-C
group L, a homomorphism β : G→ L, and a continuous map ζ : T → L,
such that β(φt(gt)) = β(gt)

ζ(t), for all gt ∈ Gt and all t ∈ T , then there

exists a unique homomorphism β̃ : G̃→ L such that β = β̃ ◦ ξ.
We call the HNN-extension special, if φ is the inclusion (so that

every t centralizes Gt) and G is locally constant, that is, there is a
partition T =

⋃
· ni=1 Ti of T and there are subgroups G1, . . . , Gn of G

such that G =
⋃
· ni=1 Ti×Gi. In particular, Gt = Gi for every t ∈ Ti. In

this case we usually write G̃ := HNN(G, T,G), omitting φ.

Remark 6.2. One could conceive a more general definition of a bouquet
Γ and an HNN-extension G̃. Namely, (a) Γ = {v} ∪· T is a profinite
graph having just one vertex v, with T as the space of edges, this
time not necessarily closed in Γ; (b) G is a sheaf over Γ such that
Gv = G; and (c) above holds. Let φ : Γ→ G be a morphism such that
φv = idG and φt : Gt → G is injective, for every t ∈ T . Then G̃ :=
HNN(G,Γ,G, φ) is the quotient of the free pro-C product G q F (Γ, v)
modulo the relations (6.1), where F (Γ, v) is the free pro-C group on
the pointed profinite space (Γ, v) (see [9, Section 3.3]). (We could also
add the relations φv(gv) = gvv for all gv ∈ Gv = G, but v, as an element
of F (Γ, v), is 1, and φv = idG, so these relations are redundant.)

In this more general setting the definition of a special HNN-extension
is the same as in Definition 6.1, except that the sets Ti in the parti-
tion T =

⋃
· ni=1 Ti are not only clopen in T , but also open in Γ (or,

equivalently, the sets Ti ∪ {v} are closed in Γ).
This definition of a special HNN-extension is the one adopted in [10]

(see [10, Definition 2.9, Remark 2.10]), from which we are going to
quote some results. However, it turns out that it is equivalent to a
special HNN-extension of our Definition 6.1.

Indeed, let T =
⋃
· ni=1 Ti with sets Ti ∪ {v} closed in Γ = {v} ∪· T . If

φ is the inclusion, then (6.1) is equivalent to

tgt = t, gt ∈ Gi, t ∈ Ti, 1 ≤ i ≤ n,

that is,

tgt = t, gt ∈ Gi, t ∈ F (Ti, v).



20 DAN HARAN AND PAVEL A. ZALESSKII

Then F (Ti∪{v}, v) ∼=
∐n

i=1 F (Ti∪{v}, v). By Lemma 2.6, there are
profinite spaces, T ′1, . . . , T

′
n such that F (Ti ∪ {v}, v) ∼= F (T ′i ) for each

i. Put T ′ =
⋃
· ni=1 T

′
i , then F (Γ, v) ∼= F (T ′).

Remark 6.3. Let G̃ := HNN(G, T,G) be a special HNN-extension. The
identity of G extends to an epimorphism ι : G̃ → G that maps T to
the trivial element of G. Then G̃ = G n Ker(ι). In particular, the
map G → G̃ is injective. On the other hand, the identity of F (T )
together with the map that maps G to the trivial element extend to
an epimorphism G̃ → F (T ) = G̃/〈G〉G, and so the map F (T ) → G̃ is
injective.

Moreover, if G̃ = Gn F̃ is another expression as semidirect product,
then we can choose the space of stable letters to be in F̃ . Indeed,
for every t ∈ T we have t = htt

′, for unique ht ∈ G, t′ ∈ F̃ , and so
T ′ = {t′ | t ∈ T} is the needed space of stable letters, homeomorphic to
T , with associated subgroups Ght

t . Thus F̃ becomes the normal closure

F̃ = 〈T 〉G̃ of T in G̃.

Theorem 6.4. [10, Corollary 5.2] Let G = L n F be a semidirect
product of a finite p-group L and a free pro-p group F . Suppose that
every torsion element of G is F -conjugate into L. Then G is a special
pro-p HNN-extension with base group L.

Lemma 6.5. Let L = {Ls | s ∈ S} be a continuous family of subgroups
of a finite group L, and let G̃ = HNN(L, S,L) be the pro-p special

HNN-extension. Put F̃ = 〈S〉G̃ and let

S ′ = {s ∈ S | Ls 6= 1}, S ′′ = S r S ′, R′ = 〈CF̃ (Ls)) | s ∈ S ′〉G̃.

Then

(a) For M ≤ L we have CF̃ (M) = 〈sl | s ∈ S, l ∈ L, M ≤ Lls〉.
(b) R′ = 〈S ′〉G̃.

(c) G̃/〈S ′〉G̃ = Lq F (S ′′).

Proof. (a) By [10, Proposition 2.11], F̃ is the free pro-p group on its
subspace S̃ = {sl | s ∈ S, l ∈ L}, and the L-stabilizer of sl ∈ S̃ is Lls.
Therefore by Lemma 2.5, CF̃ (M) = 〈sl ∈ S̃ | M ≤ Lls〉.

(b) Let M = Ls. Then M 6= 1, hence, by (a), CF̃ (M) is contained

in 〈(s′)l′ ∈ S̃ | s′ ∈ S, l′ ∈ L, Ls′ 6= 1〉 ≤ 〈S ′〉G̃. Thus R′ ≤ 〈S ′〉G̃. But

s ∈ CF̃ (Ls) for all s ∈ S ′, so 〈S ′〉G̃ ≤ R′.
(c) From the presentation (6.1) of a special HNN-extension

G̃/〈S ′〉G̃ = Lq F (S ′′)q F (S ′)/〈S ′〉G̃ = Lq F (S ′′). �
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Apart from special HNN-extensions we shall be using HNN-exten-
sions only of the following two kinds:

Definition 6.6. Let G = (G, T ) be a pile of pro-C groups, T0 a closed
subset of T , and ρ : G → L be a homomorphism of pro-C groups,
injective on Gt, for every t ∈ T0.

Put G = {Gt | t ∈ T0} and let GL = GqL be the free pro-C product
of G and L. Then G,L ⊆ GL. Hence G is also a continuous family of
subgroups of GL and ρ can be viewed as a sheaf morphism G → GL.
This point of view allows us to form the HNN’-extension

H̃NN(G, T0, ρ, L) := HNN(GL, T0,G, ρ). (6.2)

Thus, explicitly, H̃NN(G, T0, ρ, L) is the quotient of the free pro-C prod-
uct Gq Lq F (T0) modulo the relations

ρ(gt) = gtt, gt ∈ Gt, t ∈ T0. (6.3)

The inclusion G→ GqLqF (T0) induces the HNN-map ηG : G→
H̃NN(G, T0, ρ, L). Recall that the inclusion G q L → G q L q F (T0)

induces the base map ξ : Gq L→ H̃NN(G, T0, ρ, L).

By (6.3), ρ extends to a homomorphism ρ̃ : H̃NN(G, T0, ρ, L) → L,
the HNN-extension of ρ, that maps L identically onto itself and T
to 1.

Remark 6.7. Both T0 and G are subsets of the above mentioned group
G q L q F (T0). If T0 = T , then G also acts on T . In this case the
notation tg ∈ GqLqF (T ), for t ∈ T and g ∈ G, is ambiguous: It could
be either the outcome of the action of g on tT or the conjugate g−1tg
of t in GqLqF (T ).) To avoid this ambiguity we write henceforth t•g

for the former and reserve the notation tg for the latter.

If T0 = T and g ∈ G, then each relation ρ(gt) = gtt, for gt ∈ Gt,

produces the conjugate relation ρ(gt)
ρ(g) = g

tρ(g)
t , in addition to the

relation ρ(ggt ) = (ggt )
t•g , which follows from (6.3) observing that ggt ∈

Gt•g . This produces a lot of centralizers (gt•g)(tρ(g))−1 of Gt, which
makes it difficult to embed G into a free pro-p product in such a way
that Gt is embedded in one of the free factors, because in a free pro-
p product the centralizer of a factor is contained in this free factor
cf. [8, Corollary 7.1.6(b)]). Therefore we shall give a definition of an
HNN-extension of a pile, which is an HNN’-extension with set of stable
letters T0, the image of a continuous section T/G→ T , if such a section
exists.
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Definition 6.8. Let G = (G, T ) be a pile of pro-C groups, and ρ : G→
L be a homomorphism of pro-C groups, injective on Gt, for every t ∈ T .
The pile HNN-extension

Ḡ := HNN(G, T, ρ, L)

is the quotient of the free pro-C product G q L q F (T ) modulo the
relations:

g−1tρ(g) = t•g for all t ∈ T and g ∈ G. (6.4)

Here t•g ∈ T ⊆ F (T ) ≤ G q L q F (T ) is the outcome of the action
of g ∈ G on t ∈ T , which is a part of the definition of G; we reserve
the notation tg to denote the conjugate g−1tg of t in G q L q F (T ).
We call G q L the base group, T the set of stable letters, and the
subgroups Gt and ρ(Gt) associated. The inclusion G→ GqLqF (T )
induces the HNN-map ζG : G → Ḡ and ρ extends to ρ̄ : Ḡ → L, the
HNN-extension of ρ, that maps L identically onto itself and T to 1.

This construction has an obvious functorial property:

Lemma 6.9. Let G = (G, T ),G′ = (G′, T ′) be piles of pro-C groups
and let ρ : G→ L and ρ′ : G′ → L′ be homomorphisms of pro-C groups,
injective on every Gt, resp. every G′t. Put Ḡ := HNN(G, T, ρ, L) and
Ḡ′ := HNN(G′, T ′, ρ′, L′) and let ρ̄, ρ̄′ be the HNN-extensions of ρ, ρ′,
respectively. Let ψ = (ψG, ψT ) : G→ G′ be a pile morphism and let

G
ρ //

ψG
��

L

λ
��

G′
ρ′
// L′

(6.5)

be a commutative diagram of homomorphisms of profinite groups. Then
ψG, λ, ψT induce a homomorphism ψ̄ : Ḡ→ Ḡ′ such that

G
ζG //

ψG
��

Ḡ

ψ̄
��

ρ̄ // L

λ
��

G′
ζG′
// Ḡ′

ρ̄′
// L′

(6.6)

commutes.

Proof. The maps ψG : G→ G′, λ : L→ L′, and ψT : T → T ′ extend to
a homomorphism ψ̂ : Gq Lq F (T )→ G′ q L′ q F (T ′). Let t ∈ T and
g ∈ G. The commutativity of (6.5) gives

ψ̂(g−1tρ(g)) = ψG(g)−1ψT (t)λ(ρ(g)) = ψG(g)−1ψT (t)ρ′(ψG(g))
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and, as ψ is a morphism of piles, ψ̂(t•g) = ψT (t)•ψG(g). Therefore ψ̂
preserves relations (6.4) and hence induces a homomorphism ψ̄ : Ḡ →
Ḡ′. Diagram (6.6) commutes because ψ̂ is ψG on G, λ on L, and
ψT (T ) ⊆ T ′. �

In the situation of Lemma 6.9 we say that the homomorphisms ρ
and ρ′ are compatible, if diagram (6.5) commutes.

Using the left-exactness of the lim←−-functor we get:

Corollary 6.10. Let {Gi = (Gi, Ti)}i∈I be an inverse system of piles
and G = (G, T ) = lim←−i Gi. Let {ρi : Gi → L}i∈I be a compatible
system of homomorphisms, and let ρ : G → L = lim←−i ρi. Assume that

for every i ∈ I and every ti ∈ Ti the restriction of ρi to (Gi)ti is
injective. Then the restriction of ρ to Gt is injective for every t ∈ T
and HNN(G, T, ρ, L) = lim←−i HNN(Gi, Ti, ρi, L).

Remark 6.11. In (6.4), if g ∈ Gt, then t•g = t, so (6.4) reads g−1tρ(g) =
t, that is, ρ(g) = gt, relation (6.1). Thus for a closed subset T0 of
T the identity maps of G, L and T0 → T induce a homomorphism

θ : H̃NN(G, T0, ρ|T0 , L)→ HNN(G, T, ρ, L). If T = {tġ | t ∈ T0, g ∈ G},
then θ is an epimorphism. By (6.4), Ker θ is the normal closure of
{(t•g)−1g−1tρ(g) | t ∈ T0, g ∈ G}.
Lemma 6.12. Let G = (G, T ) be a pile of pro-C groups. Suppose
that there is a closed set T0 of representatives of the G-orbits of T . Let

Ḡ = HNN(G, T, ρ, L) and G̃ = H̃NN(G, T0, ρ|T0 , L). Then the identities
of G, L, and T0 induce an isomorphism G̃→ Ḡ.

Proof. By Remark 6.11, these identities induce an epimorphism θ : G̃→
Ḡ.

Conversely, define a continuous map T → G̃ by t•g 7→ g−1tρ(g), for
t ∈ T0 and g ∈ G. It is well defined: If t•g = t, then g ∈ Gt, hence
ρ(g) = gt in G̃, that is, g−1tρ(g) = t; it follows that if t•g = t•h, then
g−1tρ(g) = h−1tρ(h) in G̃. Thus this map, together with the identities
of G and L, defines a homomorphism λ : Ḡ→ G̃. Notice that λ is the
identity on T0 and we have Ḡ = 〈G,L, T0〉, by (6.4). Therefore λ is the
inverse of θ. �

We shall later need the following simple observation:

Lemma 6.13. Let G be a pro-p group and L a subgroup of G. Suppose
G = lim←−i∈I Gi, where Gi = Fi q Li is the free pro-p product of a free

pro-p group Fi and the image Li of L in Gi. Then there is a free pro-p
subgroup F of G such that G is the free pro-p product G = F qL of F
and L.
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Proof. Put K = LG. Then K / G. Note that G/K = lim←−i∈I Gi/L
Gi
i
∼=

lim←−i∈I Fi is a free pro-p group. Therefore the quotient map G→ G/LG

splits. We denote by F the image of this splitting. Then G is the
semidirect product of F and K. The natural embeddings of F and L
into G induce the homomorphisms of cohomology groups

H1(G,Fp)→ H1(F,Fp)⊕H1(L,Fp), (6.7)

H2(G,Fp)→ H2(L,Fp)⊕H2(L,Fp). (6.8)

We first claim that the map in (6.7) is an isomorphism.
To show that it is injective, let ρ : G→ Fp be a homomorphism such

that ρ|F = 0 and ρ|L = 0. Then, for all x ∈ L and σ ∈ G, we have
ρ(xσ) = −ρ(σ) + ρ(x) + ρ(σ) = ρ(x) = 0, hence ρ|K = 0. Since also
ρ|F = 0 and G = FK, we have ρ = 0.

To show that the map in (6.7) is surjective, let ϕ : F → Fp and
ψ : L→ Fp be two homomorphisms. We have to show that ϕ, ψ extend
to a homomorphism ρ : G→ Fp.

Since Fp is finite, there is i ∈ I such that ψ factors as ψ = ψ̄ ◦ πi,L,
where πi,L : L → Li is the restriction to L of the map πi : G → Gi

of the inverse system and ψ̄ : Li → Fp is a homomorphism. Since
Gi = FiqLi, we can extend ψ̄ to a homomorphism ψ̄′ : G→ Fp. Then
ψ′ = ψ̄′ ◦ πi : G→ Fp is a homomorphism that extends ψ.

For all x ∈ L and σ ∈ G we have ψ(xσ) = ψ(x)ψ(σ) = ψ(x). There-
fore, ψ(xσ) = ψ(x), for all x ∈ K and σ ∈ G. Finally, we extend ψ|K
and ϕ to a homomorphism ρ : G = FK → Fp by ρ(yx) = ϕ(y)ψ(x),
for y ∈ F and x ∈ K.

Now, the map in (6.8) is an isomorphism as well. Indeed, since
G = lim←−i∈I Gi, L = lim←−i∈I Li, H

2(F,Fp) = 0, and H2(Fi,Fp) = 0 for

every i ∈ I, the map in (6.8) is the direct limit of the homomorphisms

H2(Gi,Fp)→ H2(Li,Fp)⊕H2(Fi,Fp),

that are isomorphisms by [9, Theorem 9.3.10]. Hence by [9, Theorem
9.3.10] again, G = F q L. �

7. HNN-extensions of relatively projective pro-p groups

In this section we fix a prime p. Unless otherwise stated, all groups
and free constructions will be carried out in the category of pro-p
groups. Thus, for any profinite space T , let F (T ) denote the free pro-p
group on T .

For the rest of this section we fix the following setup:
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Setup 7.1. We fix a projective pile G = (G, T ) (Definition 5.1) of pro-p
groups. Denote the action of G on T by t•g, for t ∈ T and g ∈ G.
Let ρ : G → L be a homomorphism of pro-p groups, injective when
restricted to the point stabilizers Gt, for every t ∈ T .

According to Definitions 6.6 and 6.8 we form two variants of HNN-
extensions

G̃ = H̃NN(G, T, ρ, L) and Ḡ = HNN(G, T, ρ, L), (7.1)

the corresponding HNN-maps ηG : G → G̃ and ζG : G → Ḡ, as well as
the base map ξ : G q L → G̃, and the HNN-extensions ρ̃ : G̃ → L and
ρ̄ : Ḡ→ L of ρ. Let F = Ker ρ, F̃ = Ker ρ̃, and F̄ = Ker ρ̄. Then

G̃ = F̃ o L and Ḡ = F̄ o L. (7.2)

By [6, Lemma 10], F̃ is a free pro-p group.

Lemma 7.2. Ḡ/LḠ ∼= G/〈Gt | t ∈ T 〉 q F (T/G).

Proof. Let K = 〈Gt | t ∈ T 〉. This is a normal subgroup of G. Using
the presentation (6.4) we see that Ḡ/LḠ = (GqF (T ))/N , where N =
〈t•gt−1g | t ∈ T, g ∈ G〉GqF (T ).

If g ∈ Gt, then t = t•g, so g ∈ N , and hence K ≤ N . If g, h ∈ G
satisfy g ≡ h (mod K), then g ≡ h (mod N), hence t•g ≡ g−1t ≡
h−1t = t•h (mod N). Thus Ḡ/LḠ = (G/K q F (T/K))/(N/K).

As K contains the stabilizers of all t ∈ T , the action of G/K on
T/K is with trivial stabilizers, and hence T/K has a closed set T̄0 of
representatives of the G/K-orbits (see [9, Lemma 5.6.5]).

Now note that the homomorphism

G/K q F (T̄0)→ (G/K q F (T/K))/(N/K)

has an inverse, induced from the homomorphism (G/K qF (T/K))→
G/K q F (T̄0) given by the identity of G/K and mapping t•g 7→ g−1t,
for t ∈ T̄0 and g ∈ G/K. So Ḡ/LḠ = G/K q F (T̄0).

The quotient map T/K → (T/K)/(G/K) = T/G maps T̄0 homeo-
morphically onto T/G. Hence we may write Ḡ/LḠ ∼= G/K q F (T/G).

�

Lemma 7.3. Assume that there exists a closed set of representatives
T0 of the G-orbits in T . Then Ḡ = E q L q F (T0), where E ≤ G is a
free pro-p group isomorphic to G/〈Gt | t ∈ T 〉.

Proof. By [2, Theorem 9.5], G = (
∐

t∈T0 Gt) q E for some free pro-

p group E. By Lemma 6.12, Ḡ = H̃NN(G, T0, φ|T0 , L). From the
presentation of this group (see (6.3)) it follows that Ḡ = EqLqF (T0).
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As 〈Gt | t ∈ T 〉 is the kernel of the projection (
∐

t∈T0 Gt) q E → E,
we have E ∼= G/〈Gt | t ∈ T 〉. �

Lemma 7.4. Assume that L is finite and let X ′ be a partition of T .
Let A be a finite p-group and let ϕ : G→ A be an epimorphism. Then

(a) there exists a commutative diagram of piles

G = (G, T )

ϕ

��

ψ

��
(B, Y ) = B

α // A = (A,X)

(7.3)

in which A = (A,X) is a finite pile, B = (B, Y ) is a basic pro-p
pile (see Example 5.2), and α : B→ A is a rigid epimorphism.
Moreover, ϕ(T ) = X, and the partition {ϕ−1

T (x) | x ∈ X} is
finer than X ′.

(b) Let ρA : A → L be an epimorphism such that ρ = ρA ◦ ϕ
and put ρB = ρA ◦ α. Let Ā = HNN(A,X, ρA, L) and B̄ =
HNN(B, Y, ρB, L). Then there is a commutative diagram

G
ζG��

ϕ

��

ψ

��

Ḡ

ϕ̄

��
ρ̄



ψ̄

��
B

ζB ��

α // A
ζA ��

B̄ ᾱ
//

ρ̄B
11

Ā
ρ̄A ��

L

(7.4)

in which ρ̄, ρ̄A, ρ̄B are the HNN-extensions of ρ, ρA, ρB, respec-
tively.

Proof. Let G = {Gt | t ∈ T}. Thus, ϕ(G) ⊆ Subgr(A). Let X0 be a fi-
nite set and for every x ∈ X0 let Ax ∈ ϕ(G) such that ϕ(G) = {Aax | x ∈
X0, a ∈ A}. Let X be the standard A-extension (Construction 4.3) of
X0. Then A = (A,X) is a finite pile, with {Ax | x ∈ X} = ϕ(G).

Replacing X with the union of suitably many copies of X, if nec-
essary, we may assume that |{x ∈ X | Ax = A′}| is sufficiently large,
for every A′ ∈ ϕ(G). Thus, by Corollary 5.6, we can complete ϕ (by a
continuous map ϕT : T → X) to a morphism of piles ϕ : G → A such
that the partition {ϕ−1

T (x) | x ∈ X} is finer than X ′. Replace X by
ϕT (T ) to assume that ϕT is surjective.

Let PB be a free pro-p group with an epimorphism α′ : PB → A
and let Bx be a copy of Ax, for each x ∈ X0. Form the free pro-p
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product B = PB q (
∐

x∈X0
Ax), and let α : B → A be the epimorphism

that extends α′ and is identity on each Ax. Let Y be the standard
B-extension of X0. Then B = (B, Y ) is a pile and the identity of
X0 extends the homomorphism α : B → A to a rigid epimorphism
α : B→ A of piles.

Recall that G is a projective pile. By Proposition 5.4 there is a
morphism ψ : G→ B such that α ◦ ψ = ϕ.

(b) By assumption ρA = ρ ◦ ϕ and ρB = ρA ◦ α. Hence also

ρ = ρ̄ ◦ ζG = ρA ◦ ϕ = ρA ◦ α ◦ ψ = ρB ◦ ψ.
The existence of ϕ̄, ᾱ, and ψ̄ follows from this by Lemma 6.9, with the
pile morphism ϕ (resp. α, ψ) and the identity of L. The commutativity
of (7.3) ensures that (7.4) is commutative. �

Lemma 7.5. Assume that L is finite. Then the HNN-map ζG : G→ Ḡ
is injective.

Proof. First assume that G is basic (Example 5.2). By Lemma 6.12, Ḡ
is an HNN’-extension of G, that is, an HNN-extension of GqL. Extend
ρ : G → L by the identity of L to a homomorphism ρL : G q L → L.
Notice that G q L = Ker(ρL) o L. By Lemma 5.13, Ker(ρL) is a free
pro-p group. Thus, ζG is injective, by [10, Lemma A.1].

In the general case it suffices to show that Ker(ζG) is contained in
every open normal subgroup K of G.

Put A = G/K and let ϕ : G → A be the quotient map. Recall
that F = Ker(ρ) is an open normal subgroup of G, because L is finite.
Hence we may replace K with K∩F to assume that K ≤ F , and hence
there is an epimorphism π : A → L such that ρ = π ◦ ϕ. By Lemma
7.4 there are commutative diagrams (7.3) and (7.4).

By the first paragraph of this proof ζB is injective, hence by (7.4)

Ker ζG ≤ Ker ψ̄ ◦ ζG = Ker ζB ◦ ψ = Kerψ.

By (7.3), Kerψ ≤ Kerϕ = K. Thus Ker ζG ≤ K. �

Lemma 7.6. Assume that L is finite. Then

Ḡ = Lq E, (7.5)

where E ∼= G/〈Gt | t ∈ T 〉 q F (T/G).

Proof. If G is basic, this is Lemma 7.3.

Claim 1. G̃ is a special HNN-extension (Definition 6.1) with base group
L, say,

G̃ = HNN(L, S, {Ls | s ∈ S}) (7.6)

for some continuous family {Ls | s ∈ S} of subgroups of L.
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Proof of Claim 1. Claim 1 will follow from (7.2) by Theorem 6.4,
provided we show that every finite subgroup L0 of G̃ is conjugate to a
subgroup of L.

Let GL = GqL. By [10, Lemma A.1], the map GL → G̃ is injective,
hence, by [8, Theorem 7.1.2], L0 is contained in a conjugate of GL.
Hence, by [5, Theorem A], L0 is contained in a conjugate of either L
or G. In the latter case L0 is contained in a conjugate of Gt, for some
t ∈ T , by [4, Proposition 5.4.3], and thus, as Gt

t ≤ L, again contained
in a conjugate of L.

By Remark 6.3 we may assume that F̃ = 〈S〉G̃.

Throughout the rest of the proof we use the following notation:

T ′ = {t ∈ T | Gt 6= 1},
S ′ = {s ∈ S | Ls 6= 1}, S ′′ = S r S ′

R0 = 〈(t•g)−1g−1tρ(g) | t ∈ T ′, g ∈ G〉G̃,

R = 〈CF̃ (Gt) | t ∈ T ′〉G̃.

R′ = 〈CF̃ (Ls)) | s ∈ S ′〉G̃.

Claim 2. R0 = R = R′ = 〈S ′〉G̃.

Proof of Claim 2.
Let t ∈ T ′ and g ∈ G. Let gt ∈ Gt. Then ggt ∈ G

g
t = Gt•g . By (6.1),

ρ(gt) = gtt and ρ(ggt ) = (ggt )
t•g , hence

gg t
•g

t = ρ(ggt ) = ρ(gt)
ρ(g) = g

t ρ(g)
t ,

whence (t•g)−1g−1tρ(g) ∈ F̃ centralizes Gt, and therefore is in R. As
R / G̃, this proves R0 ≤ R.

By Lemma 6.5(c), there is an epimorphism G̃→ LqF (S ′′) with ker-

nel 〈S ′〉G̃, which is R′, by Lemma 6.5(b). This epimorphism is injective
on L, and hence on every Gt, since Gt is conjugate to a subgroup of L
in G̃. Thus the image of Gt is a non-trivial finite subgroup of L. The
centralizer in L q F (S ′′) of any non-trivial element of L is contained
in L, by [5, Theorem B], and hence trivially intersects 〈S ′′〉LqF (S′′), the

image of F̃ = 〈S〉G̃ in LqF (S ′′). Hence CF̃ (Gt) ≤ R′ for every t ∈ T ′,
whence R ≤ R′.

To show that R′ ≤ R0 – as R0 is, by Remark 6.11, the kernel of the
canonical epimorphism θG : G̃→ Ḡ – we have to prove that θG(R′) = 1,
that is, that θG(CF̃ (Ls)) = 1, for every s ∈ S ′. Since θG(F̃ ) = F̄ and
since θG is the identity on L, it suffices to show that CF̄ (Ls) = 1, for
every s ∈ S ′.
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Fix s ∈ S ′. We will only use that Ls is a finite nontrivial subgroup
of L.

If G is basic, then, by Lemma 7.3, Ḡ is the free pro-p product of L
with a free pro-p group. As Ls is finite, by [5, Theorem A] Ls ≤ Lḡ

for some ḡ ∈ Ḡ, and, as Ls 6= 1, by [5, Theorem B] CḠ(Ls) ≤ Lḡ. But
L ∩ F̄ = 1, hence Lḡ ∩ F̄ = 1, whence CF̄ (Ls) = 1, as contended.

In the general case we will show that CF̄ (Ls) is contained in every
open normal subgroup M̄ of Ḡ. Let λ̄ : Ḡ→ C := Ḡ/M̄ be the quotient
map; we show that λ̄(CF̄ (Ls)) = 1.

As F̄ is open in Ḡ, we may assume without loss of generality that
M̄ ≤ F̄ , that is, Ker λ̄ ≤ Ker ρ̄. Thus there is an epimorphism π : C →
L such that π ◦ λ̄ = ρ̄. Let ϕ : G→ A be the epimorphism ϕ = λ̄ ◦ ζG,
where A := ϕ(G) ≤ C.

Let ρA = π|A : A→ L and ρB = ρA ◦ α : B → L. Then

ρ = ρ̄ ◦ ζG = π ◦ λ̄ ◦ ζG = ρA ◦ ϕ = ρA ◦ α ◦ ψ = ρB ◦ ψ.

By Lemma 7.4 we can complete A to a finite pile A = (A,X) and
complete ϕ (by a continuous surjective map ϕT : T → X) to a mor-
phism of piles ϕ : G→ A and obtain commutative diagrams (7.3) and
(7.4) with a basic pile B. Moreover, the partition {ϕ−1

T (x) | x ∈ X} is
finer than the partition induced by λ̄ ◦ ζT : T → C, whence there is a
map µ : X → C such that µ ◦ ϕT = λ̄ ◦ ζT .

Since Ā satisfies the same defining relations as Ḡ, the homomorphism
µ̂ : Aq Lq F (X)→ C, which is the inclusion A→ C on A, λ̄|L on L,
and µ on X, induces a homomorphism µ̄ : Ā→ C, such that µ̄◦ ϕ̄ = λ̄.

Thus we have the following commutative diagram

Ḡ

ψ̄
��

Ḡ

ϕ̄
��

Ḡ

λ̄
��

ρ̄

��
B̄

ᾱ // Ā
µ̄ // C

π // L

In particular, λ̄ factors through ψ̄. So, to show λ̄(CF̄ (Ls)) = 1, it
suffices to show that ψ̄(CF̄ (Ls)) = 1. As λ̄ is injective on L, so is ψ̄,
hence D := ψ̄(Ls) is a finite nontrivial subgroup of B̄.

Let ρ̄B : B̄ → L be the HNN-extension of ρB = ρA ◦ α : B → L
and let F̄B = Ker(ρ̄B). Then ρ̄ = ρ̄B ◦ ψ̄, whence ψ̄(F̄ ) ≤ F̄B. Thus
ψ̄(CF̄ (Ls)) ≤ CF̄B(D). But CF̄B(D) = 1, as shown above in the case of
a basic pile. This finishes the proof of R′ ≤ R0.

Finally, by Lemma 6.5(b), R′ = 〈S ′〉G̃.

Claim 3. Ḡ = L
∐
F (S ′′).
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Indeed, by Remark 6.11, Ḡ = G̃/R0, so, by Claim 2, Ḡ = G̃/〈S ′〉G̃.
By Lemma 6.5(c), Ḡ = Lq F (S ′′).

Finally, by Claim 3, Ḡ/LḠ ∼= F (S ′′), so, by Lemma 7.2, F (S ′′) ∼=
G/K q F (T/G). �

Theorem 7.7.

(i) G̃ is proper, i.e., the base map ξ : GqL→ G̃ is injective. Hence
also ηG : G→ G̃ is injective.

(ii) ζG : G→ Ḡ is injective.
(iii) Ḡ = Lq E, where E ∼= G/〈Gt | t ∈ T 〉 q F (T/G).

Proof. Let U be the set of open normal subgroups of L. For every
U ∈ U let NU = ρ−1(U). Since T is closed under G-conjugation, the
subgroup ÑU = 〈NU ∩Gt | t ∈ T 〉 is normal in G.

Claim.
⋂
U∈U ÑU = {1}.

Indeed, let V be an open subgroup of G. As {Gt | t ∈ T} is a con-
tinuous family,

⋃
t∈T Gt is a closed subset of G (see Lemma 3.1(d)).

So is the kernel F of ρ. Since ρ|Gt is injective for every t ∈ T , we

have F ∩ (
⋃
t∈T Gt) = {1}. Also F =

⋂
U∈U NU , so

⋂
U∈U

(
NU ∩

(
⋃
t∈T Gt)

)
= {1} ⊆ V . By the compactness of G there is U such

that NU ∩ (
⋃
t∈T Gt) ⊆ V . In particular, NU ∩Gt ⊆ V for every t ∈ T .

Therefore ÑU = 〈Gt ∩ NU | t ∈ T 〉 ⊆ V . Since V is an arbitrary open
subgroup of G, this implies that

⋂
U∈U ÑU = {1}.

For every U ∈ U set LU = L/U , GU = G/ÑU , TU = T/ÑU , GU =
(GU , TU), and let ρU : GU → LU be the homomorphism induced from
ρ. Then the GU -stabilizer of tU is (GU)tU = GtÑU/ÑU , where t ∈ T is
a representative of tU ∈ TU .

It follows from the Claim that ρ = lim←−U∈U ρU . Clearly, Ker ρU =

NU/ÑU . Let t ∈ T and let tU be its image in TU . By the definition of
ÑU we have Gt ∩ ÑU = Gt ∩NU , hence NU ∩GtÑU = ÑU , whence ρU
is injective on (GU)tU . Thus we may define

G̃U = H̃NN(GU , TU , ρU , LU), (7.7)

ḠU = HNN(GU , TU , ρU , LU). (7.8)

By Lemma 5.9, GU is projective and by Corollary 5.10, NU/ÑU is
free pro-p. Therefore, by [10, Lemma A.1], (7.7) is a proper HNN-
extension, i.e., the map ξU : GU q L→ G̃U is injective.
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We have commutative diagrams

Gq L ξ //

��

G̃

��

GU q L
ξU // G̃U ,

G
ζG //

��

Ḡ

��
GU

ζGU // ḠU ,

(7.9)

where the vertical maps on the right are induced from the quotient
maps G→ GU and T → TU .

(i) Since ξ = lim←−U∈U ξU , we deduce from Corollary 6.10 that ξ is
injective.

(ii) By Lemma 7.5 the HNN-map ζGU : GU → ḠU is injective. Since
in the above diagram ζG = lim←−U∈U ζGU , we deduce that ζG is injective.

(iii) Put K = 〈Gt | t ∈ T 〉 and KU = 〈(GU)tU | tU ∈ TU〉, for every
U . By Lemma 7.6, ḠU = LU qEU , where EU ∼= GU/KU q F (TU/GU).
By Lemma 5.11, GU/KU , and hence also EU , is free pro-p. But G =
lim←−U GU , L = lim←−U LU , and Ḡ = lim←−U ḠU , hence by Lemma 6.13 there

is a free pro-p group E such that Ḡ = Lq E.
It follows that E ∼= Ḡ/LḠ, hence by Lemma 7.2, E ∼= G/K q

F (T/G). �

In the next lemma we identify G with its image in Ḡ via the embed-
ding ζG.

Lemma 7.8. Let σ ∈ Ḡ such that Lσ ∩G 6= 1. Then there is a unique
t ∈ T such that Lσ ∩G = Gt in Ḡ. It satisfies σt ∈ L. Moreover,

{Lσ ∩G | σ ∈ Ḡ}r {1} = {Gt | t ∈ T}r {1}. (7.10)

Proof.

Claim 1. Lt
−1 ∩G ≥ Gt in Ḡ.

Indeed, Gt
t = ρ(Gt) ≤ L ≤ Ḡ, so

Lt
−1 ∩G ≥ Lt

−1 ∩Gt = (L ∩ ρ(Gt))
t−1

= ρ(Gt)
t−1

= Gt.

Claim 2. If Lσ ∩G ≤ Gt, then σt ∈ L and Lσ ∩G = Gt.

Indeed, by the assumption, Lσ ∩G = Lσ ∩Gt, so

1 6= (Lσ ∩G)t = (Lσ ∩Gt)
t = Lσt ∩ ρ(Gt) = (Lσt ∩ L) ∩ ρ(Gt).

In particular, Lσt ∩ L 6= 1 in Ḡ = L q E (Theorem 7.7(iii)). By [9,

Theorem 9.1.12] this implies that σt ∈ L. Therefore Lσ = Lt
−1

, hence
Lσ ∩G = Gt, by Claim 1. Thus, Claim 2 is established.

We are now going to verify the hypothesis in Claim 2.
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If L is finite, then Lσ∩G is a finite subgroup of G. By [4, Proposition
5.4.3] there is t ∈ T such that Lσ ∩G ≤ Gt. So Lσ ∩G = Gt by Claim
2. By Proposition 5.7(b) such t is unique.

In the general case we haveG = lim←−U GU , T = lim←−U TU , L = lim←−U LU ,

and Ḡ = lim←−U ḠU , with finite LU , as in Theorem 7.7. Let πU : Ḡ→ ḠU

and πU,V : ḠV → ḠU , for V ≤ U , be the maps of the inverse system.
We may assume that πU(Lσ ∩G) 6= 1 for every U . Since πU(Lσ ∩G) ≤
L
πU (σ)
U ∩GU , we have L

πU (σ)
U ∩GU 6= 1. So by the preceding case there

is a unique tU ∈ TU such that L
πU (σ)
U ∩GU = (GU)tU for every U .

If V ≤ U and π = πU,V , then L
πV (σ)
V ∩GV = (GV )tV and π(L

πV (σ)
V ) =

L
πU (σ)
U , π(GV ) = GU , so (GU)π(tV ) = π((GV )tV ) ≤ (GU)tU . By Propo-

sition 5.7(b), π(tV ) = tU .
It follows that there is a unique t ∈ T such that πU(t) = tU for every

U . Therefore πU(Lσ ∩G) ≤ πU(Gt). Hence Lσ ∩G ≤ Gt. By Claim 2,
Lσ ∩G = Gt. As πU(σt) ∈ LU = πU(L) for every U , we have σt ∈ L.

The above proves that the left-handed side of (7.10) is contained in
the right-handed side. Conversely, let t ∈ T such that Gt 6= 1. By
Claim 1, Gt ≤ Lt

−1 ∩ G. In particular Lt
−1 ∩ G 6= 1. So there is a

unique s ∈ T such that Lt
−1∩G = Gs. Thus, Gt ≤ Gs. By Proposition

5.7(b), s = t. Hence Lt
−1 ∩G = Gt. �

Proof of Theorem 1.2. By Proposition 5.7 and Remark 5.8, G = (G, T )
is a projective pile. By Theorem 7.7, Ḡ = Lq F , where F is free, and
ζ = ζG : G→ Ḡ is injective. The rest is (7.10). �

Theorem 1.1 simply follows from Theorem 1.2 if one puts ρ to be the
identity map of G to its copy L.

Theorem 1.3 follows from Theorem 7.7 observing that ζG(Gt) in its
proof is conjugate to ρ(Gt) for every t ∈ T .

Proof of Theorem 1.4. (i) ⇔ (ii): By Proposition 5.7 and Remark 5.8.
(ii) ⇒ (iii): Let ζ : G → Ḡ := L q F be the embedding of Theorem

1.1. Put T̂ = {Lσ | σ ∈ Ḡ} and let Ḡ act on T̂ by conjugation. Then
ḠLσ = Lσ and if Lσ 6= Lτ , then Lσ ∩ Lτ = 1 ([4, Lemma 3.1.10]).

Hence the action of G on T̂ via ζ is such that GLσ = Lσ ∩ ζ(G) and,

by Theorem 1.1, it satisfies (a) for T̂ .
Write L = lim←−Li, F = lim←−Fi as inverse limits of finite quotient

groups of L and finitely generated free quotients of F , respectively.
Put Ḡi = Li q Fi and let Gi be the image of ζ(G) in Ḡi. Then Ḡi,
and hence also Gi, is countably generated. Put Ti = {Lσi | σ ∈ Ḡi}, for

every i, then (G, T̂ ) = lim←−i(Gi, Ti).
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By the pro-p version of the Kurosh Subgroup Theorem [2, Theorem
9.7] applied to the subgroup Gi of Ḡi = LiqFi, Gi is a free pro-p prod-
uct Gi =

∐
xi∈Xi(Gxi)qF ′i , for some closed set Xi of representatives of

the Gi-orbits in Ti and some free pro-p group F ′i .

(iii) ⇒ (i): Put G = (G, T̂ ) and Gi = (Gi, Ti), for every i. We
have to solve a finite embedding problem (5.1) for G. But ϕ factors
via some Gi. This means that there exist νi : G → Gi, ϕi : Gi → A,
such that ϕ = ϕi ◦ νi. By [4, Proposition 5.4.2], Gi is {(Gi)t | t ∈ Ti}-
projective, so, by Proposition 5.7, Gi is projective. Therefore there
exists a solution ψi of the embedding problem (α, ϕi). Then ψi ◦ νi is
a solution of (5.1).

(i) ⇒ (iv): Let again ζ : G → Ḡ := L q F be the embedding of
Theorem 1.1. Let X be a basis of F , that is, a profinite subspace of
F such that F = F (X). Then Ḡ can be viewed as the special HNN-
extension Ḡ = HNN(L,X,L), where L is a family of copies Lx of 1, for
every x ∈ X. Thus Ḡ is the fundamental group of a bouquet of groups
Γ, with L attached to the unique vertex and X the space of edges, with
1 attached to each of them ([8, Example 6.2.3(e)]).

Let S be the standard pro-p graph of Γ ([8, Section 6.3]). By [8,
Corollary 6.3.6], S is a pro-p tree. By [8, Lemma 6.3.2(b)] Ḡ acts on S,
with trivial edge stabilizers and vertex stabilizers being conjugates of
L. Then the restriction of this action to ζ(G) gives the required action.

(iv) ⇒ (i): Let G be a pro-p group that acts on a pro-p tree Γ
with trivial edge stabilizers. Let V be its set of vertices and let U
be an open normal subgroup of G. Then Ũ = 〈U ∩ Gv | v ∈ V 〉 is
a normal subgroup of G and GU = G/Ũ acts on ΓU = Γ/Ũ (with
vertex stabilizers of order bounded by the index (G : U)), hence by [8,
Proposition 4.1.1] ΓU is a pro-p tree. Moreover, U/Ũ acts freely on ΓU
and hence is free pro-p [8, Theorem 4.1.2]. So GU is virtually free pro-p
and every nontrivial torsion element g ∈ GU belongs to some vertex
stabilizer (GU)v by [8, Theorem 4.1.8].

In fact, even CGU (g) ≤ (GU)v, since for any c ∈ CGU (g), g(cv) = cv,
so 1 6= g ∈ (GU)v ∩ (GU)cv and since edge stabilizers are trivial, by [8,
Corollary 4.1.6] we have v = cv, that is, c ∈ (GU)v.

We can now apply [10, Corollary 6.3] to deduce the existence of an
embedding ζU : GU → H = G/UqF for some free pro-p group F . Then
by 5.12(d) GU is GU = {(GU)v | v ∈ V } = {G ∩ (G/U)h | h ∈ H}-
projective. Since (G,G) = lim←−U(GU ,GU), G is G-projective, because

every finite embedding problem factors via some (GU ,GU). �
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