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IntroductionSeparably closed �elds, Henselian �elds, PAC �elds, PRC �elds, and PpC �elds enjoy acommon feature: each of them is existentially closed in the corresponding �eld of formalpower series. We have called a �eld K with this property ample�. Alternatively, a �eldK is ample, if each absolutely irreducible curve C overK with a simple K-rational pointhas in�nitely many K-rational points. The main result of [HaJ] reveals a remarkableproperty of K: Each �nite constant split embedding problem over K(x) has a rationalsolution. More precisely, [HaJ] gives an alternative proof to a result of Pop [Po1, MainTheorem A]:Theorem A: Let K be an ample �eld and let L be a �nite Galois extension of K.Suppose that G(L=K) acts on a �nite group G. Then, there is a �eld F with thefollowing properties:(a) F is a Galois extension of K(x) which contains L.(b) There is an isomorphism �: G�jG(L=K)! G(F=K(x)) such that resL �� = pr.(c) F has an L-rational place ': F ! L [ f1g.Among others, this result settled Problem 24.41 of [FrJ]: Every PAC Hilbertian�eld is !-free.Previous proofs of this result used analytical methods (complex analytical methodsin characteristic 0 [FrV] and rigid analytical methods in the general case [Po1]). Incontrast, our approach in [HaJ] was elementary, algebraic, and together with [HaV], self-contained. Indeed, we took an axiomatic approach: Let F=E be a Galois extension ofarbitrary �elds. Suppose that G(F=E) acts on a �nite groupG. Suppose that this actionextends to a \proper action" on an appropriate \patching data" (E;Fi; Qi; Q;Gi; G)i2I .Then, the split embedding problem G�jG(F=E)! G(F=E) has a solution.In this note we use our approach via algebraic patching to give an elementaryproof of a generalization of Theorem A, due to Pop [Po2, Theorem 2.7]:* Pop, who introduces this type of �elds in [Po1], calls them `large'. Since this name has beenused earlier with a di�erent meaning, we have modi�ed it to `ample' [HaJ, De�nition 6.3and the attached footenote]. 1



Theorem B: Let E be a function �eld of one variable over an ample �eld K. Supposethat E=K is separable. Let F be a �nite Galois extension of E. Denote the algebraicclosure of K in F by L. Suppose that G(F=E) acts on a �nite group G. Then thereexists a �nite �eld F̂ with the following properties:(a) F̂ is a Galois extension of E which contains F ;(b) There is an isomorphism �: G�jG(F=E)! G(F̂ =E) such that resF �� = pr.(c) F̂ is a regular extension of L.Group theoretic and Galois theoretic manipulations reduce the proof of TheoremBto the case whereE = K(x) and x is, as always, transcendental overK (Proposition 1.4).Moreover, we may extend L if necessary, so that F has an L-rational place ': F !L [ f1g and '(x) 2 K. As usual, we replace K at this point by K((t)), if necessary,to assume that K is complete under an ultra-metric absolute value, its residue �eld isin�nite, and L=K is an unrami�ed extension. Let � = G(L(x)=E) and G1 = G(F=L(x)).The existence of ' implies that the extension G(F=E) ! � splits. As in [HaJ], wethen construct a patching data (L(x); Fi; Qi; Q;Gi; G�jG1)i2I , on which � acts properlysuch that 1 2 I and F1 = F . The \compound" F̂ of this patching data is a Galoisextension of E, and there exists an isomorphism �: (G�jG1)�j� ! G(F̂ =E) such thatresF̂ =L(x) �� = pr�. Moreover, let �0 be the restriction of � to G�jG1. Based onan observation of [HaV], we �nd that F̂ contains F , �0(G�jG1) = G(F̂ =L(x)), andresF̂ =F ��0 = prG1 . As (G�jG1)�j� = G�j(G1�j�) = G�jG(F=E), the �eld F̂ is asolution to the original embedding problem pr : G�jG(F=E)! G(F=E).
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1. Generalities on split embedding problemsLet K0 be a �eld. Let x be a transcendental element overK0, let E0 be a �nite extensionof K0(x), and let E be a �nite Galois extension of E0. Assume that G(E=E0) acts on a�nite group G; let G�jG(E=E0) be the semidirect product and let pr : G�jG(E=E0) !G(E=E0) be the corresponding projection. We call(1) G�jG(E=E0) -pr G(E=E0):a split K0-embedding problem. A solution �eld to problem (1) is a �nite Galoisextension F of E0 containing E for which there exists an isomorphism�: G�jG(E=E0)!G(F=E0) such that resE �� = pr.Let K be the algebraic closure of K0 in E. We say that (1) is regular if E=Kis regular, that is, E=K is separable. For instance, if E0=K0 is separable, then (1) isregular. We say that the solution is regular if F is regular over K.Clearly, only a regular embedding problem may have a regular solution.Lemma 1.1: In the above notation let (1) be a split K0-embedding problem. Let E0 bea �nite Galois extension of E0 that contains E, let res : G(E0=E0) ! G(E=E0) be therestriction map, and let h: G0 ! G be an epimorphism of �nite groups. Assume thatG(E0=E0) acts on G0 such that(2) h(�) = h(�)res() for each  2 G(E0=E0) and � 2 G0:Consider the corresponding split K0-embedding problem(10) G0�jG(E0=E0) -pr0 G(E0=E0):(a) If (10) has a solution, then (1) has a solution;(b) if (10) has a regular solution and E0=K0 is separable, then (1) has a regularsolution.Proof: Let F 0 be a solution of (10) and let �0: G0�jG(E0=E0) ! G(F 0=E0) be anisomorphism such that resE0 ��0 = pr0. 3



By (2), there is a commutative diagram of group epimorphisms(3) G0�jG(E0=E0) -pr0 G(E0=E0)?(h;res) ?resG�jG(E=E0) -pr G(E=E0):Let C be the kernel of the map (h; res): G0�jG(E0=E0)! G�jG(E=E0) and let F be the�xed �eld of �0(C) in F 0, that is, �0(C) = G(F 0=F ). As C/G0�jG(E0=E0), the extensionF=E0 is Galois. We haveresE G(F 0=F ) = resE0=E � resE0 ��0(C) = resE0=E �pr0(C):Hence by (3), resE G(F 0=F ) = 1. Therefore, E � F . The isomorphism �0 induces anisomorphism �: G�jG(E=E0) ! G(F=E0) such that resE �� = pr.
(4) 1 1 1? ? ?F F 0 C -�0 G(F 0=F ) -res G(E0=E)? ? ?E0 E E0 G0�jG(E0=E0) -�0 G(F 0=E0) -res G(E0=E0)?(h;res) ?res ?resK0 K K 0 G�jG(E=E0) -� G(F=E0) -res G(E=E0)? ? ?1 1 1This proves (a).Let K be the algebraic closure of K0 in E and let K 0 be the algebraic closure ofK0 in E0. Assume that E0=K0 is separable. Then so is F=K0, and hence also F=K.By diagram (4), resE0 G(F 0=F ) = G(E0=E). Hence F \ E0 = E. It follows thatF \K 0 = F \E0 \K 0 = E \K 0 = K. Thus, if F 0=K 0 is regular, so is F=K.4



Lemma 1.2: Let F be a (regular) solution of a split K0-embedding problemG�jG(E=E0) -pr G(E=E0):Let E00 be an intermediate �eld of E=E0, and let K 00 be the algebraic closure of K0 inE00. Then, the subgroup G(E=E00) of G(E=E0) de�nes a split K 00-embedding problemG�jG(E=E00) -pr0 G(E=E00)and F is its (regular) solution.Proof: If �: G�jG(E=E0) ! G(F=E0) is an isomorphism such that resE �� = pr, then�(G�jG(E=E00)) = G(F=E00).Lemma 1.3: Let � be a subgroup of a �nite group �. Suppose that � acts on a �nitegroup G. Then there exist a �nite group G0 and an epimorphism h: G0 ! G such that� acts on G0 and h(�) = h(�) for each  2 � and � 2 G0.Proof:Part A: A free group. We �rst omit the requirement that G0 be �nite; in fact, wenow require that it be a �nitely generated free group. Choose a set X of generators ofG. Let Y = X �� and let Ĝ be the free group on Y . The group � acts on the set Yby multiplication from the right on the second factor. This action extends to an actionof � on the group Ĝ. Choose a system of representatives �0 for the left cosets of � in�, that is, � = S� �2�0 ��. De�ne a map ĥ: Y ! G byĥ(x; �) = x for x 2 X; � 2 �0; and  2 �:This map extends to an epimorphism ĥ: Ĝ! G. For all ; 0 2 � we have ĥ((x; �0)) =ĥ(x; �0) = x0 = ĥ(x; �0) . Hence ĥ(�̂) = ĥ(�̂ ) for each �̂ 2 Ĝ and each  2 �, asrequired.Part B: A �nite group. As Ĝ if �nitely generated, the collection F of all epimor-phisms of Ĝ onto G is �nite. Therefore N = Tf2F Ker f is a normal subgroup of Ĝ of5



�nite index. As ĥ 2 F , we have N � Ker ĥ. Hence G0 = Ĝ=N is a �nite group and ĥinduces an epimorphism h: G0 ! G.If � 2 Aut(Ĝ), then ff � �j f 2 Fg = F , and hence �(N) = N . Therefore each� 2 � induces a unique automorphism � of G0 such that (�N)� = ��N for each � 2 Ĝ.It follows that � acts on the group G0. Moreover, for each  2 �h((�N) ) = h(�N) = ĥ(�) = ĥ(�) = h(�N) :Hence h(�) = h(�) for each  2 � and each � 2 G0.Proposition 1.4: Suppose that every (regular) split K0-embedding problem(50) G0�jG(E0=K0(x)) -pr0 G(E0=K0(x))has a (regular) solution. Then every (regular) split K0-embedding problem(5) G�jG(E=E0) -pr G(E=E0)has a (regular) solution.Proof: There are two cases to consider:Case A: E0=K0 is separable. Replace x by another transcendental element (separat-ing transcendence basis) of E0=K0 to assume that E0=K0(x) is separable. Let E0 bethe Galois closure of E over K0(x). Then G(E0=E0) acts on G via the restriction mapG(E0=E0)! G(E=E0). Lemma 1.3 gives a �nite group G0, an epimorphism h: G0 ! G,and an action of G(E0=K0(x)) on G0 such that h(�) = h(�) for each  2 G(E0=E0) and� 2 G0. This action de�nes a split K0-embedding problem (50). As E0=K0 is separable,(50) is regular. By assumption, it has a regular solution. By Lemma 1.2, this solutionis also a regular solution of G0�jG(E0=E0) -pr0 G(E0=E0):By Lemma 1.1, (5) has a regular solution. 6



Case B: E0=K0 is not separable. In this case char(K) = p > 0. Let K 00 = K1=q0 ,where q is a power of p, and put E00 = EK 00 and E0 = EK 00. If q is su�ciently large,then E00=K 00 is a separable extension; assume this is the case.As E00=E0 is purely inseparable, E0=E00 is a Galois extension and the restrictionres : G(E0=E00) ! G(E=E0) is an isomorphism. Thus (5) induces a split K 00-embeddingproblem(6) G�jG(E0=E00) - G(E0=E00):The map y 7! yq gives an isomorphism of K 00 ontoK0, and hence the assumptions of ourproposition are satis�ed with K 00 instead of K0. Therefore, by Case A, (6) has a regularsolution F 0. Again, as E00=E0 is linearly disjoint from the separable closure of E0 overE0, there exists a unique Galois extension F=E0 such that F 0 = FE00. In particular, therestriction G(F 0=E00) ! G(F=E0) is an isomorphism, and hence F is a solution of (5).Suppose now that (5) is regular, that is, E is regular over K = E \ fK0. LetK 0 = KK 00. Then K 0=K is a purely inseparable extension and EK 0 = EK 00 = E0.Hence E0=K 0 is regular, that is, (6) is regular. By our construction F 0=K 0 is regular.As both F=E and E=K are separable, so is F=K. Therefore the algebraic closureM of K in F is separable over K and F=M is separable. But F � F 0, and K 0 isalgebraically closed in F 0, hence M � K 0. As K 0=K is a purely inseparable, we haveM = K. Conclude that F is a regular extension of K.
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2. Embedding problems under existentially closed extensionsConsider a �eld extension K̂0=K0 such that K0 is existentially closed in K̂0. Thatis, each algebraic subset A of A n that has a K̂0-rational point also has a K0-rationalpoint.In particular, K̂0=K0 is regular. Furthermore, if K is a �nite extension of K0 andK̂ = KK̂0, then K is existentially closed in K̂. Indeed, let !1; : : : ; !d be a linear basisof K=K0. So if f 2 K[X1; : : : ;Xn], there are unique f1; : : : ; fd 2 K0[X1; : : : ;Xn] suchthat f =Pdi=1 !ifi. As K̂0=K0 is regular, !1; : : : ; !d is also a basis of K̂=K̂0. It followsthat the equation f(X1; : : : ;Xn) = 0 has a solution in Kn (resp., K̂n) if and only ifdXi=1 !ifi( dXi=1 !iX1i; : : : ; dXi=1 !iXni) = 0has a solution in Knd (resp., K̂nd). The latter equation can be written as a system ofequations over K0 (resp., over K̂0). Thus f(X1; : : : ;Xn) = 0 has a solution in Kn ifand only if it has a solution in K̂n.Consider a regular split K0-embedding problem(1) H�jG(E=K0(x)) -pr G(E=K0(x)):Assume that x is transcendental over K̂0 and put Ê = EK̂0. Then E is linearly disjointfrom K̂0 over K0 [FrJ, Lemma 9.9] and therefore resÊ=E : G(Ê=K̂0(x)) ! G(E=K0(x))is an isomorphism. Thus G(Ê=K̂0(x)) acts on H via resÊ=E . This gives rise to a regularsplit K̂0-embedding problem(2) H�jG(Ê=K̂0(x)) -pr G(Ê=K̂0(x)):Let K be the algebraic closure of K0 in E. Then K̂ = KK̂0 is the algebraic closureof K̂0(x) in Ê [FrJ, Lemma 9.3]. Furthermore, let ': E ! K [ f1g be a K-placeunrami�ed over K(x). As K̂ and E are linearly disjoint over K, the place ' extends toa K̂-rational place '̂ of Ê, unrami�ed over K̂(x).In this setup we prove: 8



Lemma 2.1: Assume that (2) has a solution �eld F̂ such that '̂ extends to a K̂-rationalplace of F̂ unrami�ed over K̂(x). Then (1) has a solution �eld F such that ' extendsto a K-rational place of F unrami�ed over K(x).Proof: We may assume that '(x) = 1, otherwise replace x by another generator ofK(x) over K.By assumption, there exists an isomorphism �: H�jG(Ê=K̂0(x)) ! G(F̂ =K̂0(x))such that resÊ �� = pr.So, there exist polynomials f 2 K̂0[X;Z], g 2 K̂[X;Y ], and elements z; y 2 F̂such that the following conditions hold:(3a) F̂ = K̂0(x; z), f(x;Z) = irr(z; K̂0(x)); we may therefore identify G(f(x;Z); K̂0(x))with G(F̂ =K̂0(x));(3b) F̂ = K̂(x; y), g(x; Y ) = irr(y; K̂(x)); therefore g(X;Y ) is absolutely irreducible;by Lemma 2.2 below we may assume that g(X;Y ) = Y d+a1(X)Y d�1+� � �+ad(X)with ai 2 K̂[X] and deg ai(X) � deg a1(X) � 1, for i = 1; : : : ; d.All of these objects depend on only �nitely many parameters from K̂0. So, letu1; : : : ; un be elements of K̂0 such that the following conditions hold:(4a) F = K0(u; x; z) is a Galois extension of K0(u; x), the coe�cients of f(X;Z) lie inK0[u], f(x;Z) = irr(z;K0(u; x)), and G(f(x;Z);K0(u; x)) = G(f(x;Z); K̂0(x));(4b) F = K(u; x; y) and the coe�cients of g lie inK[u]; hence g(x; Y ) = irr(y;K(u; x));As K̂0=K0 is regular over K0, so is K0(u). Thus, u generates an absolutely irre-ducible variety U = Spec(K0[u]) over K0. The variety U has a nonempty Zariski opensubset U 0 such that for each u0 2 U 0 the K0-specialization (u; x) ! (u0; x) extends toan E-homomorphism 0: E[u; x; z;y]! E[u0; x; z0;y0] such that the following conditionshold:(5a) f 0(x; z0) = 0, the discriminant of f 0(x;Z) is not zero, and F 0 = K0(u0; x; z0) is thesplitting �eld of f 0(x;Z) over K0(u0; x); in particular F 0=K0(u0; x) is Galois;(5b) g0(X;Y ) is absolutely irreducible and g0(x; y0) = 0; so g0(x; Y ) = irr(y0;K(u0; x));furthermore, g0(X;Y ) = Y d + a01(X)Y d�1 + � � � + a0d(X) with a0i 2 K[X] anddeg a0i(X) � deg a01(X) � 1, for i = 1; : : : ; d.9



To achieve the absolute irreducibility of g0 we have used the Bertini-Noether the-orem [FrJ, Prop. 8.8]. Since K0 is existentially closed in K̂0 and since u 2 U 0(K̂0), wecan choose u0 2 U 0(K0). By (5a), the homomorphism 0 induces an embedding'�: G(f 0(x;Z);K0(x)) ! G(f(x;Z);K0(u; x))which commutes with the restriction to G(K(x)=K0(x)) [La, p. 248]. Observe that K(x)is linearly disjoint from K0(u) over K0.F 0 F F̂E E(u) ÊK(x) K(u; x) K̂(x)K0(x) K0(u; x) K̂0(x)K0 K0(u) K̂0Hence, by (5b),jG(f 0(x;Z);K0(x))j = [F 0 : K0(x)] = deg(g0(x;Z))[K(x) : K0(x)]= deg(g(x;Z))[K(u; x) : K0(u; x)]= [F : K0(u; x)] = jG(f(x;Z);K0(u; x))j:It follows that '� is an isomorphism. Hence ('�)�1 � � solves embedding problem (1).Extend ' to a place '0 of F 0. Then '0 extends the specialization x ! 1. ByLemma 2.2 below and (5b), '0 totally decomposes in F 0=K(x), that is, '0 is unrami�edand K-rational. 10



Lemma 2.2 ([GeJ, Lemma 9.2 and Lemma 9.3]): Let K be an arbitrary �eld andconsider a Galois extension F of K(x) of degree d which is regular over K. Then theK-place x!1 of K(x) totally decomposes in F if and only if there exists y 2 F suchthat irr(y;K(x)) = Y d+ a1(x)Y d�1+ � � �+ ad(x) with ai 2 K[x] such that deg ai(X) �deg a1(X) � 1, for i = 1; : : : ; d.
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3. Split embedding problems and patching dataIn this section we �x a �nite Galois extension E=E0 with Galois group �. Assume that� properly acts on a patching data(1) E = (E;Fi; Qi; Q;Gi; G)i2I :We explain these notions [HJ, De�nition 1.1 and De�nition 1.4]:De�nition 3.1: Patching data with a proper action. Let I be a �nite set with jIj � 2.A patching data (1) consists of �elds E � Fi, Qi � Q and �nite groups Gi � G,i 2 I, such that(2a) Fi=E is a Galois extension with group Gi, i 2 I;(2b) Fi � Q0i, where Q0i = Tj 6=iQj , i 2 I;(2c) Ti2I Qi = E;(2d) G = hGij i 2 Ii;(2e) Let n = jGj. For all B 2 GLn(Q) and i 2 I there exist Bi 2 GLn(Qi) andB0i 2 GLn(Q0i) such that B = BiB0i.A proper action of � on E is a triple that consists of an action of � on the group G,an action of � on the �eld Q, and an action of � on the set I such that the followingconditions hold:(3a) The action of � on Q extends the action of � on E;(3b) F i = Fi , Qi = Qi , and Gi = Gi , for all i 2 I and  2 �;(3c) (a� ) = (a )� for all a 2 Fi, � 2 Gi, i 2 I, and  2 �.The action of � on G de�nes a semidirect product G�j� such that � = �1� for all� 2 G and  2 �.For each i 2 I let Pi = FiQi be the compositum of Fi and Qi in Q.Remark 3.2: Identi�cations. (a) Identify � with a subgroup of Aut(Q=E0) by (3a).Furthermore, if L=E0 is a Galois extension such that E � L � Q, then the restrictionresQ=L : Aut(Q=E0) ! G(L=E0) maps � onto a subgroup �� of G(L=E0). Moreover,resL=E : G(L=E0)! G(E=E0) maps �� onto �. Hence �� is isomorphic to �. Again, iden-tify �� with �. Thus both restrictions resL=E : G(L=E0) ! G(E=E0) and resQ=L : � !G(L=E) map � identically onto itself. In particular, G(L=E0) = G(L=E)�j�.12



(b) Conditions (2b) and (2c) imply that Fi \ Qi = E. Hence Pi=Qi is a Galoisextension with Galois group isomorphic (via the restriction of automorphisms) to Gi =G(Fi=E). Identify G(Pi=Qi) with Gi via this isomorphism. If L=E is a Galois extensionsuch that LQi = Pi, then the restriction of Gi to L is isomorphic to Gi; again, identifythis group with Gi.Consider the Q-algebraN = IndG1 Q = nX�2G a��j a� 2 Qo;where addition and multiplication are de�ned componentwise. Thus Q embeds diago-nally in N . For each i 2 I, consider the Q-subalgebraNi = IndGGi Pi = nX�2G a�� 2 N j a� 2 Pi; a�� = a�� for all � 2 G; � 2 Gio:Let F = Ti2I Ni.We know [HJ, Proposition 1.5] that F=E0 is a Galois extension of �elds and thereis an isomorphism  : G�j� ! G(F=E0). In fact, the proof of [HJ, Proposition 1.5]explicitly describes this isomorphism, or, equivalently, the action of G�j� on F . Indeed,G acts on N by(4) �X�2G a���� =X�2G a���1� =X�2G a���; � 2 G;and � acts on N by(5) �X�2G a��� = X�2G a� � a� 2 Q;  2 �;these two actions combine to an action of G�j� on N . The restriction of this action toF is the required action.The homomorphism �: N ! Q given by �P�2G a���� = a1 �xes E and hencealso E0. Therefore F 0 = F � (the compound of E) is a Galois extension of E0 withG(F 0=E0) �= G(F=E0) �= G�j� and and � de�nes an action of G�j� on F 0 by(a�)g = (ag)� ; a 2 F; g 2 G�j�:13



Let us describe this action, using (4) and (5). Let a =P�2G a�� 2 F . For each  2 �we have a� = �X�2G a� ��� = a1 = a� :Furthermore, for each i 2 I and each � 2 Gi = G(Pi=Qi) we have F 0 � Pi anda�� = �X�2G a����� = a� = a�1 = a��:This gives the following result (in which F stands for F 0; the original F will not be usedhenceforth):Proposition 3.3: Let F be the compound of E. Then F=E0 is Galois and there is anisomorphism  : G�j� ! G(F=E0) that maps � and the Gi identically onto themselves(under the identi�cation of Remark 3.2).Corollary 3.4: Assume that 1 2 I and the following condition holds:(6a) 1 = 1 for all  2 �; and(6b) G = H�jG1, where H = hGij i 2 I; i 6= 1i � G; let �: G ! G1 be the canonicalprojection.Then(a) F1, Q1, and G1 are �-invariant; put � = G1�j�;(b) F1=E0 is a Galois extension;(c) G(F1=E0) = �, that is, the action of � on G1 = G(F1=E) by conjugation inG(F1=E0) coincides with the action induced from the given action of � on G;(d) F1 � F and resF=F1 : G(F=E)! G(F1=E) is �: G! G1;(e) The following diagram is commutativeG�j� - G(F=E0)?��jid� ?res� = G1�j� ===== G(F1=E0):Proof: (a) This follows from (3b) by (6a).14



(b) By assumption, F1=E is Galois. By (a), F1 is �-invariant, that is, every element ofG(E=E0) extends to an automorphism of F1. Hence each E0-isomorphism of F1 into fE0maps F1 onto itself.(c) Remark 3.2 asserts that G(F1=E0) is a semidirect product of G1 with �. By (3c),a�1� = a� for all a 2 F1 and  2 �.(d) We have F1 � Ti2I Pi, because P1 = F1Q1 and, by (2b), F1 � Qi � Pi, foreach 1 6= i 2 I. Hence, if � 2 Gi and 1 6= i 2 I, then, since F1 � Qi, we have�(�) = 1 = resPi=F1(�). If � 2 G1 = G(P1=Q1) then �(�) = � = resP1=F1 (�), by ouridenti�cations. Hence by [HV, Lemma 3.6(c)] we have F1 � F and resF=F1 = �.(e) It su�ces to verify the commutativity on the elements of � and the Gi's, since theygenerate G�j�. Therefore the result follows from (d) and Proposition 3.3.
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4. Split embedding problems over functions �elds of one variable over ample�eldsIn this section we present the main result. We �rst consider the special case of complete�eld and then deduce the general case from it.Proposition 4.1: Let K=K0 be a �nite unrami�ed Galois extension of complete �eldsunder a nontrivial ultra-metric absolute value such that the residue �eld �K0 is in�nite.Let(1) H�jG(F1=K0(x)) -pr G(F1=K0(x))be a split K0-embedding problem. Suppose that K � F1. Let ' be a K-rational K-place of F1, unrami�ed over K(x), such that '(x) 2 K0 [f1g. Then (1) has a solution�eld F such that ' extends to a K-rational place of F unrami�ed over K(x).Proof: Put E0 = K0(x), E = K(x), and let � = G(K=K0) = G(E=E0). We mayassume that H 6= 1.We break up the proof into several parts. The idea of the proof is to extend(E;F1) to a patching data E = (E;Fi; Qi; Q;Gi; G)i2I with 1 2 I on which � properlyacts; its compound F will be the required solution �eld.Part A: Completion of (E; j j). Extend j j to an absolute value on E by the formulaPni=1 aixi = maxfja0j; : : : ; janjg. Then, the residue �x of x is transcendental over �Kand the residue �elds satisfy �E0 = �K0(x) and �E = �K(�x) [HJ, Remark 3.2(b)]. SinceK=K0 is unrami�ed, [K : K0] = [ �K : �K0] = [ �E : �E0]. Let (Ê0; j j) be the completionof (E0; j j). Then Ê = Ê0K is the completion of E with respect to j j. Moreover,[K : K0] = [ �E : �E0] � [Ê : Ê0] � [K : K0]. Hence, [Ê : Ê0] = [K : K0] and thereforeÊ0 \K = K0. So, we may identify G(Ê=Ê0) with � via restrictions to E and K. Sincethe extension of j j from Ê0 to Ê is unique, each  2 � preserves the absolute value onÊ. In particular, each  2 � is a continuous automorphism of Ê.Part B: Construction of the Qi's. Write H as(2) H = f�j j j 2 Jg16



with the index set J of the same cardinality as that of H. Put I2 = J �� and let � acton I2 by (j; 0) = (j; 0). Identify (j; 1) 2 I2 with j, for each j 2 J . Then(3) every i 2 I2 can be uniquely written as i = j with j 2 J and  2 �.Let I = f1g [� I2 and extend the action of � on I2 to an action on I by 1 = 1 for each 2 �.By Claim A of the proof of [HJ, Proposition 5.2], K has a subset fcij i 2 I2g suchthat(4) ci = ci and jcij = jci � cjj = 1 for i 6= j and  2 �.As �K0 is in�nite, we may choose c1 2 K0 such that �c1 6= 0;1 and �c1 =2 f�cij i 2 I2g. Itfollows that (4) holds for all i; j 2 I.For each i 2 I let wi = 1x�ci . Let R = Kfwij i 2 Ig be the closure of K[wij i 2 I]in Ê and let Q = Quot(R). For each i 2 I letQi = QIrfig = Quot(Kfwj j j 6= ig) and Q0i = Qfig = Quot(Kfwig):By [HJ, Proposition 3.10], Q0i = Tj 6=iQj and E = K(x) = Ti2I Qi. By (4), each 2 � satis�es wi = wi and therefore maps K[wij i 2 I] onto itself. Since the actionof  on Ê is continuous,  leaves R, and hence also Q, invariant. We identify � with itsimage in Aut(Q). In addition, Qi = Qi and (Q0i) = Q0i for each i 2 I.Part C: Without loss of generality F1 � Q01 and '(w1) = 0. To show this it su�cesto construct a K-embedding �: F1 ! Q01 such that �(E0) = E0, �(E) = E, and' � ��1(w1) = 0. Indeed, the isomorphism �: F1 ! �(F1) ensures that the assumptionsand the conclusions of our proposition hold for (F1; ') if and only if they hold for(�(F1); ' � ��1).We construct � as above in two steps.As ' maps w1 into K0[f1g, there is a K0-automorphism ! of E0 = K0(w1) suchthat '�!�1(w1) = 0. Extend ! to a K-automorphism of E and then to an isomorphismof �elds F1 ! F 01. Apply it to assume that '(w1) = 0.Let F �1 be the completion of F1 at ', and let E� � F �1 be the correspondingcompletion of E. Then [F �1 : E�] = e(F1=E) f(F1=E) = 1. But E� = K((w1)). HenceF1 � F �1 = K((w1)). 17



Let z 2 K((w1)) be a primitive element for F1=E. For c 6= 0 in K0 let �c be theautomorphism of K((w1)) mapping f(w1) = P1i=m aiwi1 to f(cw1) = P1i=m(aici)wi1.Note that �c leaves E = K(w1) and E0 = K0(w1) invariant, and ' � ��1c (w1) ='(c�1w1) = 0. By [Ar, Theorem 2.14]� there is c 2 K� such that z as a Laurent seriesin w1 converges at c. Thus �c(z) 2 Q01 and hence �c(F1) � Q01.Part D: Groups. As F1 � Q is a Galois extension of E0, it is �-invariant. LetG1 = G(F1=E). Identify � � Aut(Q=E0) with its image in G(F1=E0). Then G(F1=E0) =G1�j�, where � acts on G1 by conjugation in G(F1=E0). Thus(5) (a� ) = (a )� for all  2 �, a 2 F1 and � 2 G1.The given action of G(F1=E0) on H induces an action of its subgroups G1 and �on H. Let G = H�jG1 with respect to this action. ThenH�jG(F1=E0) = H�j(G1�j�) = (H�jG1)�j� = G�j�:Let i 2 I2. Use (3) to write i = j0 with unique j 2 J and 0 2 �. Then de�ne�i = �0j and observe that(6a) �i = �i for all i 2 I2 and  2 �.By (2),(6b) H = h�ij i 2 I2i.For each i 2 I2 let Gi = h�ii � H. Thus(6c) G = hGij i 2 Ii and H = hGij i 2 I2i;(6d) Gi = Gi for all i 2 I and  2 �;(6e) jIj � 2.Part E: Patching data. For each j 2 J , [HJ, Proposition 5.1] gives a cyclic extensionFj=E with Galois group Gj = h�ji such that Fj � Q0j . For an arbitrary i 2 I2 thereexist unique j 2 J and  2 � such that i = j (by (3)). Let Fi = F j . As  acts on Qand leaves E invariant, Fi is a Galois extension of E and Fi � Q0i.The isomorphism : Fj ! Fi gives an isomorphism G(Fj=E) �= G(Fi=E) whichmaps each � 2 G(Fj=E) onto �1 � � �  2 G(Fi=E). We can therefore identify Gi with* Although Artin uses analysis to prove that an algebraic power series converges, one cangive an algebraic proof of this result, in the style of the proof of Hensel's Lemma.18



G(Fi=E) such that �i coincides with �1 � �j � . This means that (a� ) = (a )� forall a 2 Fj and � 2 Gj .It follows that for all i 2 I and  2 � we have F i = Fi . Moreover, (a� ) = (a )�for all a 2 Fi and � 2 Gi; this extends (5).By [HJ, Corollary 4.5], GLn(Q) = GLn(Qi)GLn(Q0i) for each n 2 N and eachi 2 I. Thus E = (E;Fi; Qi;Gi; G)i2I is a patching data on which � properly acts(De�nition 3.1). By Corollary 3.4(e) the compound F of E is a solution of (1).Part F: Extension of '. Let b 2 K0 such that jbj > 1 and put z = bx . Let Kfzg bethe ring of convergent power series in z over K with respect to the absolute value j jzgiven by jP1n=0 anznjz = max(janj). Let R0 = K[wij i 2 I]. Observe thatwi = 1x � ci = zb � ciz = zb � 11� cib z = zb 1Xn=1(cib )nzn 2 Kfzg; for each i 2 I:Thus R0 � Kfzg. Moreover, jwijz = 1jbj < 1 = jwij. By [HJ, Lemma 3.3] every f 2 R0is of the form f = a0 +Pi2IP1n=1 ainwni , where ain 2 K and almost all of them are0. Hence jf jz � jf j and therefore jf jz � jf j. Therefore the inclusion R0 � Kfzg is acontinuous R0-homomorphism. As R is the completion of R0 with respect to j jz [HJ,Lemma 3.3], this inclusion induces a continuous R0-homomorphism �: R! Kfzg. By[HJ, Proposition 3.9] there is p 2 R0 such that Ker� = (p). It follows that p = 0 andhence � is injective.Identify R with its image under � to assume that R � Kfzg � K[[z]]. Thespecialization z ! 0 extends to a K-rational place of K((z)) unrami�ed over E = K(z).Its restriction to F is a K-rational place  of F unrami�ed over E = K(z).As  (w1) = 0 = '(w1), we have resE0  = resE0 '. Replace  by  � � for asuitable � 2 G(F=E0), if necessary, to assume that resF1  = '.Proposition 4.2: Let K0 be an ample �eld. Consider a (regular) split K0-embeddingproblem(7) H�jG(E=K0(x)) -pr G(E=K0(x)):Let K be the algebraic closure of K0 in E. Then19



(a) (7) has a (regular) solution F .(b) Suppose that E has a K-rational K-place ' unrami�ed over K(x) such that'(x) 2 K0 [ f1g. Then F has a K-rational K-place ' unrami�ed over K0(x).Proof: We �rst prove (b) and then deduce (a) from (b).Proof of (b): Let t be transcendental over E. Let K̂0 = K0((t)), K̂ = K((t)) andÊ = EK̂. Then K̂=K̂0 is a �nite Galois extension of complete �elds under the t-adicabsolute value and the corresponding extension of residue �elds is K=K0 (these arein�nite �elds). In particular, K̂=K̂0 is an unrami�ed extension. Since the extensionK̂=K is regular and free from E=K, the �elds K̂ and E are linearly disjoint over K.Hence ' extends to a K̂-rational place '̂ of Ê, and therefore K̂ is the algebraic closureof K̂0 in Ê. Furthermore, '̂ is unrami�ed over K̂(x). Finally, G(Ê=K̂0(x)) is isomorphicto G(E=K0(x)) and acts on H via the restriction map. Thus(8) H�jG(Ê=K̂0(x)) -pr G(Ê=K̂0(x))is a split K̂0-embedding problem.By Proposition 4.1, (8) has a solution �eld F̂ such that '̂ extends to a K̂-rationalplace of F̂ unrami�ed over Ê. Since K0 is ample, it is existentially closed in K̂0.Lemma 2.1 therefore asserts the existence of a solution �eld F of (7) and of a K-rationalK-place of F unrami�ed over K(x).Proof of (a): Only �nitely many K0-places of E are rami�ed over K0(x). Thus, thereis a K0-place ' of E unrami�ed over K0(x) such that '(x) 2 K0. Composing ' withan automorphism of E over K0(x), we may assume that the restriction of ' to K(x)is a K-place. However, ' need not be K-rational. Nevertheless, the residue �eld K 0of ' is a �nite Galois extension of K0 that contains K. Let E0 = EK 0. Then 'extends to a K 0-rational place '0 of E0, unrami�ed over K 0(x). Furthermore, E0=K0(x)is a Galois extension and its Galois group G(E0=K0(x)) acts on H via the restriction20



G(E0=K0(x)) ! G(E=K0(x)). E E0K0(x) K(x) K 0(x)The existence of '0 implies that E0=K 0 is regular.By (b), the split embedding problem(70) H�jG(E0=K0(x)) -pr G(E0=K0(x))has a regular solution. Conclude from Lemma 1.1 that (7) has a solution which isregular, if (7) is regular.Combine Proposition 4.2 with Proposition 1.4 to get:Theorem 4.3: Let K0 be an ample �eld. Then every (regular) split K0-embeddingproblem H�jG(E=E0) -pr G(E=E0)has a (regular) solution.
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