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Abstract. We solve an open problem of Herfort and Ribes: Profinite
Frobenius groups of certain type do occur as closed subgroups of free
profinite products of two profinite groups. This also solves a question of
Pop about prosolvable subgroups of free profinite products.

1. Introduction

Herfort and Ribes show in [10, Theorem 3.2] that a closed solvable sub-
group of the free product of a family of profinite groups {Ax}x∈X must be
one of the following:

(1) a conjugate of a subgroup of one of the free factors Ax;

(2) isomorphic to Ẑσ ⋊ Ẑσ′ , where σ and σ′ are disjoint sets of prime
numbers;

(3) free pro-C product of two copies of the group of order 2, for some
full class C of finite groups;

(4) a profinite Frobenius group of the form Ẑσ ⋊C with Frobenius kernel

Ẑσ, where C is a finite cyclic group.

In [10, Section 4] they show that each group of one of the first three types
does occur as a closed subgroup of a free profinite product, namely, of two fi-
nite groups. As for the Frobenius groups, Herfort and Ribes state in [10] and
show in [11] that they occur as closed subgroups of free prosolvable products
of two finite groups. They (implicitly) leave open the question whether the
above Frobenius groups occur as closed subgroups of free profinite products
of, say, two finite groups.

This problem has been explicitly posed in [14] (see [14, Open Ques-
tion 9.5.5]).

The main result of this paper is an affirmative answer to this question.
The proof uses the classification of finite simple groups (by analyzing

automorphisms of simple groups and subgroups stabilized by them). If C
has prime power order, the proof is much simpler and does not require the
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classification (Sylow’s theorem is the main tool in that case). This had been
essentially done by the authors several years ago in an unpublished work.
See Remark 4.7. A. Zalesski and P. Zalesskii also found an independent
proof in this case.

We thank P. Zalesskii for reminding us that our result also answers a
question of Pop [12]. That paper characterizes closed prosolvable groups
of free profinite products of profinite groups and the question is the follow-
ing. Is there a free profinite product G =

∐
i∈I Gi and a closed prosolvable

subgroup H of G such that

(1) there is no prime ℓ such that H ∩ Gσ
i is a pro-ℓ group for all i ∈ I

and all σ ∈ G;
(2) H ≤ Gσ

i for no i ∈ I and no σ ∈ G?

A Frobenius subgroup of a free product of certain two finite groups provides
such an example (Example 5.3).

We are grateful to W. Herfort for useful remarks to an earlier version of
this paper.

2. Finite and profinite Frobenius Subgroups

Recall that the notions of order and index extend from finite groups to
profinite groups; instead of natural numbers these are supernatural numbers
([14, Section 2.3] or [4, Section 22.8]). In particular, a profinite group has
Sylow p-subgroups for each prime p ([14, Corollary 2.3.6] or [4, Section 22.9]).

A profinite group F is a Frobenius group if it is a semidirect product
F = C ⋉ K of nontrivial profinite groups C,K of co-prime orders, where C
acts on K so that [c, k] 6= 1 for every 1 6= c ∈ C, 1 6= k ∈ K. One then calls
K the Frobenius kernel and C a Frobenius complement of F .

Since we deal only with a special type of Frobenius groups, we adopt the
following notation. Let C be a finite cyclic group. A C-group is a profi-
nite group with a distinguished subgroup isomorphic to C; we identify this
subgroup with C. A C-homomorphism of C-groups G→ H is a continuous
homomorphism G → H that maps the copy of C in G identically onto the
copy of C in H. If A⊳G then G/A is a C-group if and only if A ∩ C = 1
(we identify C with CA/A); in this case G→ G/A is a C-epimorphism.

We call a profinite C-group F a C-Frobenius group if F is a Frobenius
group with complement C and procyclic kernel. The following properties
are easy to verify:

Lemma 2.1. Let C 6= 1 be a finite cyclic group acting on a procyclic group
K 6= 1. Then F = C ⋉ K is a C-Frobenius group if and only if for each
prime p dividing the order of K, the order of C divides p − 1 and C acts
faithfully on the p-primary part of K. If F is a C-Frobenius group then:

(a) Every prime divisor of |C| is strictly smaller than any prime divisor
of |K|.

(b) K is of odd order.
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(c) Any quotient group F of F is either a quotient of C or a C-Frobenius
group, where C is the image of C in F .

(d) Let K̂ → K be an epimorphism of procyclic groups of orders divisible

by the same primes. Suppose that C acts on K̂ such that K̂ → K is
C-equivariant. Then C ⋉ K̂ is also a C-Frobenius group.

(e) Every subgroup of F is a conjugate of C1K1, where C1 ≤ C and
K1 ≤ K.

(f) A subgroup of F is normal if and only if it is either a subgroup of
K or of the form C1K, where C1 ≤ C. In particular, a minimal
normal subgroup of F is a minimal subgroup of K.

(g) Let C1 ≤ C, K1 ≤ K, and f ∈ F . Then

Cf
1 K1 ∩K = K1 and Cf

1 K1 ∩ C =

{
C1 if f ∈ CK1

1 if f /∈ CK1.

Lemma 2.2. Let F = CK be a finite C-Frobenius group (with Frobenius
kernel K). Suppose F acts transitively on a set ∆. Then

(a) There is L ∈ ∆ such that its F -stabilizer is C1K1 with C1 ≤ C and
K1 ≤ K. Fix such L. Then

(b) C1 is the C-stabilizer of L, and hence also of every Lc, with c ∈ C.
(c) Every point of ∆ r {Lc|c ∈ C} has a trivial C-stabilizer.

Proof. (a) Let L ∈ ∆. Its F -stabilizer F1 is, by Lemma 2.1(e), a conjugate
of C1K1 for some C1 ≤ C and K1 ≤ K. Replacing L by a conjugate we may
assume that F1 = C1K1.

(b),(c) By Lemma 2.1(g)

(Lf )c = Lf ⇐⇒ c ∈ (C1K1)
f ⇐⇒ c ∈ Cf

1 K1 ∩C =

{
C1 if f ∈ CK1

1 if f /∈ CK1

and LCK1 = LK1C = LC . �

3. Intravariant Subgroups

Definition 3.1. Let H ≤ G be groups and let A be a group acting on G from
the right. We say that H is A-intravariant in G if for every x ∈ A there is
g ∈ G such that Hx = Hg. We say that H is an intravariant subgroup of G
if it is Aut(G)-intravariant in G.

We point out that Sylow subgroups and their normalizers are intravari-
ant subgroups. In the rest of this section we exhibit further families of
intravariant subgroups of finite simple groups.

Recall that an almost simple group is a group G with a unique minimal
normal subgroup S which is a nonabelian simple group. Thus, S⊳G ≤
Aut(S). We refer the reader to [1, 3, 6, 7] for the basic facts about auto-
morphisms of finite simple groups.
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We recall some facts about automorphisms of the finite simple groups and
most especially about Chevalley groups. The most complicated cases to deal
with are PSL and PSU.

Our first result is [9, 3.22].

Lemma 3.2. Let S be a finite nonsolvable group. Let x ∈ Aut(S). Then
CS(x) 6= 1.

The next result is the Borel-Tits Theorem [7, Theorem 3.1.3].

Lemma 3.3. Let S be a simple Chevalley group and U a nontrivial unipotent
subgroup. Let A = Aut(S). Then there exists a proper parabolic subgroup P
of S such that U is contained in the unipotent radical of P and NA(P ) ≥
NA(U).

We remark that P is proper, since the unipotent radical of P is normal
in P , while S is simple.

We also require:

Lemma 3.4. Let S⊳G be finite groups. Let R be an r-subgroup of G for
some prime r.

(1) If r divides |S|, then R normalizes some Sylow r-subgroup of S.
(2) If r does not divide |S| but another prime p does divide |S|, then R

normalizes a Sylow p-subgroup of S.

Proof. Let Q be a Sylow r-subgroup of G containing R. Then R normalizes
Q ∩ S, which gives (1).

To prove (2), let P be a Sylow p-subgroup of S. By Sylow’s theorem,
G = SNG(P ). Since r does not divide |S|, NG(P ) contains a Sylow r-

subgroup of G, say, Qg, with g ∈ G. Then R ≤ Q ≤ NG(P g−1

), that is, R

normalizes P g−1

. �

We now examine PSL and PSU more closely. Let S = PSL(d, pe), where
p is a prime and S is simple. Let σ be the Frobenius automorphism and τ
the graph automorphism (which we may view as the inverse transpose map)
of S. Then

Ω = PGL(d, pe) ∪ {σ, τ}

generates A = Aut(S). Moreover, PGL(d, pe)〈σ〉 is of index 2 in A.
We will use the following elementary result from linear algebra.

Lemma 3.5. Let F be a finite field. Let B ∈ Md(F ) be semisimple. Let
a ∈ F . Then there is B′ ∈ Md(F ) such that BB′ = B′B and det(B′) = a.

Proof. First assume that the minimal polynomial g of B is of degree d and
irreducible. Then K := F [B] ∼= F [X]/(g) is a finite field extension of F .
Hence the norm NK

F : K → F is surjective. Let B′ ∈ K such that NK
F (B′) =

a. View B′ as a matrix (since F [B] ⊆ Md(F )). Then B′ commutes with B
and a = NK

F (B′) = det(B′) [2, Chapter III, §9.4, Proposition 6].
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In the general case we may assume that B is in rational canonical form.
Thus B = diag(B1, . . . , Br), where each Bi ∈ Mdi

(F ) has minimal polyno-
mial irreducible of degree di. By the previous case there is B′

i ∈ Mdi
(F )

that commutes with Bi and det(B′
1) = a and det(B′

i) = 1 for i > 1. Then
B = diag(B′

1, . . . , B
′
r) commutes with B and det(B′) = a. �

Lemma 3.6. Let S = PSL(d, pe) and H = PGL(d, pe). Put A = Aut(S).

(1) Any parabolic subgroup P of S whose normalizer contains an element
outside of H〈σ〉 is intravariant.

(2) If h ∈ H is a semisimple element (i.e. has order prime to p), then
〈h〉 is A-intravariant in H.

(3) If h ∈ H is semisimple, then CS(h) and NS(〈h〉) are intravariant
subgroups of S.

Proof. (1) We may conjugate P in S and thus assume that P contains the
standard Borel subgroup of S that consists of upper triangular matrices of
determinant 1. Clearly, diagonal matrices and σ normalize P . Hence P is an
intravariant subgroup of S if and only if NA(P ) contains an element outside
of H〈σ〉.

(2) Let x ∈ A. We have to show that there is s ∈ H such that 〈h〉x = 〈h〉s.
We may assume that x ∈ Ω. If x ∈ H, the assertion is trivial. So assume
that either x = σ or x = τ . Put F = Fpe . Lift h to a semisimple element
of GL(d, F ). It suffices to show that there is m ∈ Z such that hx, hm are
conjugate in GL(d, F ), i.e., similar over F .

Since every square matrix is similar over F to its transpose, hτ is similar
to h−1. On the other hand, hσ is similar over F to hp. Indeed, consider
GL(d, F ) as a subgroup of GL(d, F ) and extend σ to the Frobenius automor-
phism of GL(d, F ). There is z ∈ GL(d, F ) such that hz ∈ GL(d, F ) is diago-
nal. Then clearly (hz)σ = (hz)p. Therefore (hσ)z

σ

= (hz)σ = (hz)p = (hp)z.
Hence hσ, hp are similar over F . Therefore they are similar over F .

(3) Let x ∈ A. By (2) there is s ∈ H such that 〈h〉x = 〈h〉s. By Lemma 3.5
there is z ∈ H such that zh = hz and det(z) ≡ det(s) (mod (F×)d). Replace
s by z−1s to get that s ∈ S. As CS(h) = S ∩ CH(h), NS(h) = S ∩NH(h),
and Sx = S = Ss, we get CS(h)x = CS(h)s and NS(h)x = NS(h)s. �

Proposition 3.7. Let S = PSL(n, pe) be simple. Then every x ∈ Aut(S)
normalizes a nontrivial proper intravariant subgroup of S.

Proof. Let H = PGL(n, pe). If CH(x) is not a p-group, we may choose
1 6= h ∈ CH(x) of order prime to p. Thus, h is semisimple and CS(h)x =
CS(hx) = CS(h). By Lemma 3.6(3), CS(h) is an intravariant subgroup of
S. By Lemma 3.2, CS(h) 6= 1; clearly CS(h) 6= S. So we may assume
that CH(x) is a p-group (i.e. consists of unipotent elements). In particular,
CH(x) ≤ S, whence CS(x) = CH(x).

If x ∈ Aut(S) r H〈σ〉, then, by Lemma 3.3, x normalizes some proper
parabolic subgroup of S which is intravariant by Lemma 3.6(1).
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If x is in H, then x ∈ CH(x) ≤ S, so x is contained in some Sylow
p-subgroup of S, which is intravariant.

So we may assume that x ∈ H〈σ〉rH. Write x = yz = zy, where y ∈ 〈x〉
has order prime to p and z ∈ 〈x〉 has order a power of p. The restriction to
〈y〉 of the projection H〈σ〉 → 〈σ〉 is injective, because its kernel H ∩ 〈y〉 is
contained in the p-group CH(x). Thus, writing y as σjh, with some h ∈ H,
we see that y and σj have the same order. By Shintani descent [6, p. 81]
they are conjugate by an element of H. Since CH(σj) contains the Jordan
matrix Jn(1), it follows that CH(y) contains a regular unipotent element (a
conjugate of Jn(1)).

As z commutes with y, it normalizes CH(y). Its order is a power of p, and
so z normalizes some Sylow p-subgroup T of CH(y). But y centralizes T
and so x = yz normalizes T . Since T contains a regular unipotent element,
T is contained in a unique Sylow p-subgroup P of H. As T = T x ≤ P x, we
have P x = P . Thus x normalizes this intravariant subgroup. �

The same result holds for S = PSU(d, pe).

Lemma 3.8. Let S = PSU(d, pe) be simple. If x ∈ Aut(S), then x normal-
izes a nontrivial proper intravariant subgroup of S.

Proof. In this case Aut(S) = H〈σ〉, where H = PGU(d, pe) and σ is the
Frobenius automorphism of order 2e. Let x ∈ Aut(S). If CH(x) contains
a nontrivial semisimple element h, then CS(h) is an intravariant subgroup
normalized by x. Otherwise, CH(x) is unipotent and by Lemma 3.3, x nor-
malizes some (proper) parabolic subgroup of S. In this case, all parabolics
are intravariant, whence the result. �

The analogous result is true for almost all of the families of simple groups.
However, it is not true for S = Ω+(8, q). Take x ∈ S of order (q4 −
1)/ gcd(2, q − 1). It is not difficult to see that x is contained in no max-
imal subgroup of Aut(S) not containing S, whence it cannot normalize any
nontrivial intravariant subgroup of S. If we only consider cyclic groups of
automorphisms of simple groups which do not contain any inner automor-
phisms, then the result is true. We will revisit this topic in a future paper.
It is not required for the results of this paper.

The outer automorphism groups of the other simple groups are less com-
plicated. It is convenient to use the notation PSLǫ(d, q) with ǫ = ±—here
PSL+ means PSL and PSL− means PSU.

Lemma 3.9. Let G be an almost simple finite group with socle S. Suppose
that G/S is a Frobenius group with a cyclic Frobenius kernel K and a cyclic
Frobenius complement C. If |C| > 3, then S ∼= PSLǫ(d, q) and the Frobenius
kernel is contained in the subgroup of diagonal automorphisms of Out(S).
Moreover, d ≥ 5 and q > 5.

Proof. We have G/S ≤ Out(S). If S is an alternating or sporadic group,
then Out(S) and hence also G/S has exponent 2, a contradiction to G/S
being Frobenius. So S is a Chevalley group.
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Let r be a prime dividing |K|. By Lemma 2.1, |C| divides r − 1. As
|C| > 3, we have r ≥ 5. As K is cyclic, C normalizes its Sylow r-subgroup.
If S is not PSLǫ(d, q), then the Sylow r-subgroup of K consists of field au-
tomorphisms. However, the normalizer in Out(S) of a field automorphism
is its centralizer. Thus, C centralizes a nontrivial subgroup of K, a contra-
diction to G/S = C ⋉ K being Frobenius. This proves that S ∼= PSLǫ(d, q).
Arguing similarly, it follows that K consists of diagonal automorphisms and
so r| gcd(d, q − ǫ1), whence d ≥ 5 and q > 5. �

We can now show:

Corollary 3.10. Let G be an almost simple finite group with socle S. Sup-
pose that G/S is a Frobenius group with cyclic Frobenius kernel K and
cyclic Frobenius complement C. Let D be any cyclic subgroup of G with
DS/S = C. If C has prime power order, assume the same is true of D.
Then D normalizes a proper nontrivial intravariant subgroup H of S.

Proof. If |C|, and hence also |D|, is a prime power, then D normalizes a
nontrivial Sylow subgroup of S by Lemma 3.4. Otherwise, |C| > 3, and
hence by Lemma 3.9, S is either PSL or PSU. Now apply Proposition 3.7
and Lemma 3.8. �

4. Lifting Frobenius Groups

To show our main result we need some preparations.

Lemma 4.1. Let ρ1 : F1 → F3 and ρ2 : F2 → F3 be C-epimorphisms of
C-Frobenius groups. Then F1 ×F3

F2 contains a C-Frobenius group mapped
onto F1.

Proof. Let Ki be the Frobenius kernel of Fi, and K
(p)
i its Sylow p-subgroup,

respectively, for i = 1, 2, 3 and for each prime p. Put F = F1 ×F3
F2.

We identify C with C ×F3
C and thus F is a C-group and the coordinate

projections F → F1, F → F2 are C-epimorphisms. Clearly every 1 6= c ∈ C
acts fixed-point-freely on the abelian subgroup K = K1 ×F3

K2 of F . For
each prime p we find below a cyclic p-subgroup 〈kp〉 of K normalized by

C and mapped by F → F1 onto K
(p)
1 . Then C

(∏
p〈kp〉

)
is a C-Frobenius

group mapped onto F1.

Fix a generator k1 of K
(p)
1 and put k3 = ρ1(k1). By Sylow’s theorem,

ρ1(K
(p)
1 ) = K

(p)
3 = ρ2(K

(p)
2 ). So there is k2 ∈ K

(p)
2 such that k3 = ρ2(k2). If

k3 = 1, take k2 = 1; otherwise k2 generates K
(p)
2 . Then k = (k1, k2) ∈ F and

〈k〉 ≤ F is normalized by C, that is, (kc
1, k

c
2) ∈ 〈k〉, where c is a generator of

C.
Indeed, if k2 = 1, the assertion is clear. So assume that k2 6= 1 and hence

k3 6= 1.

Let i = 1, 2, 3. Writing K
(p)
i additively, it is a quotient of Zp so that ki

is the class of the generator 1 of Zp and ρ1 : K
(p)
1 → K

(p)
3 , ρ2 : K

(p)
2 → K

(p)
3
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are the quotient maps. As the order of c is prime to p, there is a unique

mi ∈ (Zp)
× such that c acts on K

(p)
i by multiplication by the image of

mi. But ρ1, ρ2 are C-equivariant, hence m1 = m3 = m2. Thus (kc
1, k

c
2) =

(m1k1,m2k2) = m1k ∈ 〈k〉, �

We show that in one case we can lift arbitrary finite Frobenius groups.

Lemma 4.2. Let G be a finite group and A a minimal normal subgroup of
G. Assume that A is an elementary abelian p-group and G/A is a Frobenius
group. Let C be a subgroup of G such that G→ G/A maps C isomorphically
onto a Frobenius complement of G/A. Assume that the Frobenius kernel of
G/A does not centralize A. Then G = HA with C ≤ H and A ∩H = 1.

Proof. We write every subgroup of G/A as N/A, where A ≤ N ≤ G. Let
M/A be the Frobenius kernel of G/A.

We first claim that if L ≤ M acts nontrivially on A and LA ⊳ G then
CA(L) = CA(LA) = 1. Indeed, CA(L) ≤ CA(LA) ⊳ G and CA(LA) � A. So
the claim follows by the minimality of A.

Since M acts nontrivially on A, so does some Sylow r-subgroup R of
M . By Thompson’s theorem M/A is nilpotent, hence its Sylow r-subgroup
RA/A is normal in G/A. By the above claim, CA(R) = 1. Also, A∩Z(RA) =
CA(RA) = 1, whence r 6= p. By Sylow’s theorem, G = NG(R)RA =
NG(R)A. Note that NA(R) = CA(R), hence NG(R) ∩ A = NA(R) = 1.
Thus H := NG(R) is a complement of A in G (an alternative way to see
that A has a complement is to observe that H i(G/A,A) = 0 for all i ≥ 0),
whence H ∼= G/A.

Let D be the preimage of C/A in H. Then AC = AD. So it suffices
to show that H1(D,A) = 0, whence C and D are conjugate and the result
follows by replacing H with a conjugate that contains C.

Let R0 = CR(A). By the choice of R, the r-group R/R0 is not trivial.
Let R1/R0 be its center. Then R1/R0 6= 1. Let B = A ⊗Fp k where k is
the algebraic closure of Fp. Then R1 acts as an abelian group on B. Write
B = ⊕Bi, where Bi are the eigenspaces of R1 on B, corresponding to linear
characters of R1/R0. Note that R1A ⊳ G and R1 acts nontrivially on A.
Hence by the claim above CA(R1) = 1, whence R1 has no fixed points on B.
Thus each Bi has a nontrivial character. Since (R1/R0)D is also a Frobenius
group, D freely permutes the nontrivial linear characters of R1, whence D
freely permutes the Bi. Thus, B (and so also A) is a free D-module (see
also [8, Lemma 2.1(3)]). In particular, H1(D,A) = 0 as required. �

In the general case, we cannot always lift a Frobenius group: E.g., consider
G = SL(2, 3) with |A| = 2). However, in the case we need, we have:

Lemma 4.3. Let G be a finite C-group and A a minimal normal subgroup
of G. Assume that A is an elementary abelian p-group and G/A is a C-
Frobenius group. Then G contains a C-Frobenius group H such that G =
HA.
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Proof. We have A∩C = 1. Put F = G/A and let K be the Frobenius kernel
of F . Let A ≤M ⊳ G such that K = M/A. So G = C ⋉ M . For each prime
r let Kr be the Sylow r-subgroup of K and let Mr be a Sylow r-subgroup
of M such that MrA/A = Kr. As A acts trivially on itself, F acts on A,
and A is an irreducible F -module.

If K acts nontrivially on A, the result follows by the previous lemma. So
assume that K does act trivially on A. As K is cyclic, M is abelian. It
suffices to find, for each prime r dividing |K|, a cyclic r-subgroup Lr of M ,
normalized by C, such that LrA/A = Kr. Indeed, then H = (

∏
r Lr)C is a

C-Frobenius group mapped onto F .
Since M is abelian, Mr is normalized by C. So if Mr is cyclic, take

Lr = Mr. This is certainly the case if r 6= p, since then Mr
∼= Kr. So let

r = p with Mp not cyclic and Kp 6= 1. Thus, |C| divides p− 1. Hence every
vector space over Z/pZ on which C acts is the direct sum of 1-dimensional
C-modules. Since C acts irreducibly on A, this implies that |A| = p.

As Kp and A are cyclic and Mp is not, Mp is of rank 2, whence its Frattini

quotient Mp is of dimension 2. In particular, the image A of A in Mp is of

dimension 1. Thus, by complete reducibility, Mp = A ⊕ B for some 1-

dimensional C-module B. Choose a cyclic subgroup Lp of Mp such that its

image in Mp is B. Then, Lp is normalized by C and Mp = LpA, whence
LpA/A = Kp. �

Lemma 4.4. Let G be a finite group and let A⊳G. Assume that A =
∏t

i=1 Qi

and the conjugation in G transitively permutes the Qi. Let G1 = NG(Q1)

and for each right coset Z of G1 in G let Ẑ ∈ Z. Let U1 be a G1-intravariant

subgroup in Q1. Then U :=
∏

Z U
bZ
1 ≤ A is G-intravariant in A. Moreover,

if U1 is not normal in Q1 then U is not normal in A.

Proof. We have {Qi}
t
i=1 = {Q

bZ
1 }Z∈G/G1

. Thus A =
∏

Z∈G/G1
Q

bZ
1 and hence

U ≤ A.
To show the intravariance, let g ∈ G. For each Z ∈ G/G1 we have

Q
bZg cZg

−1

1 = Q1, hence ẐgẐg
−1
∈ G1. Thus there is bZ ∈ Q1 such that

U
bZg cZg

−1

1 = U bZ

1 . Put aZ = Ẑg
−1

bZẐg, then aZ ∈ Q
cZg
1 and U

bZg
1 = (U

cZg
1 )aZ .

Thus a :=
∏

Z∈G/G1
aZ ∈ A and Ug = Ua.

The last assertion is clear. �

Lemma 4.5. Assume, in the situation of the preceding lemma, that G is a
C-group such that G/A is a C-Frobenius group. Let C1 = NC(Q1) = C ∩G1

and assume that G1/A = C1K1 for some subgroup K1 of the Frobenius kernel

of G/A. Assume that U1 is C1-invariant. Then we may choose the Ẑ ∈ Z
so that U is C-invariant.

Proof. It suffices to choose the representatives Ẑ so that

(1) U
cZc
1 = U

bZc
1 for every c ∈ C.
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But to achieve (1), it suffices to achieve it only for a representative Z of
each C-orbit in G/G1 (when G and C ≤ G act on G/G1 by multiplication
from the right). Let CZ be the C-stabilizer of Z and let RZ be a set of

representatives of C/CZ in C. Suppose we have found Ẑ ∈ Z such that CZ

normalizes U
bZ
1 . Then put Ẑcr = Ẑr for all c ∈ CZ and r ∈ RZ to get (1).

As G acts transitively on G/G1 with A acting trivially, this induces a
transitive action of F = G/A on G/G1 and the F -stabilizer of G1 is C1K1.
By Lemma 2.2 either Z = G1c for some c ∈ C and CZ = C1 or CZ = 1. In

the former case we may take Ẑ = c to make CZ normalize U
bZ
1 . In the latter

case we may choose Ẑ arbitrarily. �

We now prove the main step:

Theorem 4.6. Let G be a finite group with a normal subgroup A and a
cyclic subgroup C such that C ∩ A = 1 and G/A is a C-Frobenius group.
Then G contains a C-Frobenius group H such that G = HA.

Proof. Put F = G/A and let K be its Frobenius kernel. We identify CA/A
with C.

We prove the result by induction on the order of A. We may assume that
A 6= 1. We divide the proof into several parts.

Part A We may assume that A is a minimal normal subgroup of G. Let
B be a minimal normal subgroup G contained in A. By induction, G/B
satisfies the theorem with A/B ⊳ G/B. Thus there is a subgroup H0 of G
containing B and C such that H0A = G and H0/B is a C-Frobenius group.
If B 6= A, apply the induction to H0 with B ⊳ H0 to get a C-Frobenius
subgroup H of H0 such that H0 = HB. Then HA = H0A = G. So we may
assume that B = A.

Part B Thus A is the direct product of copies of a finite simple group. If A is
an elementary abelian p-group with p prime, then we are done by Lemma 4.3.
So we may assume that A = Q1 × . . . × Qt where Qi = Q is a nonabelian
simple group.

Part C We may assume that G acts faithfully on A, that is, G → Aut(A)
is an embedding. Indeed, otherwise let B be a minimal normal subgroup of
G contained in the kernel of this map. Then A ∩ B = 1, and hence B is
isomorphic to a subgroup of G/A. In particular, B is solvable. Moreover,
the image of B in G/A is a minimal normal subgroup, and hence is contained
in K by Lemma 2.1(f). Thus, AB ∩ C = 1. This allows us to identify C
with CAB/AB.

The quotient G/AB of G/A either equals to C (that is, G = ABC) or is a
C-Frobenius group with |G/AB| < |G/A|. In both cases there is a solvable
subgroup G0 of G containing C and B, such that G0A/B = G/B: In the
first case take G0 = CB. In the second case proceed by subinduction on
|G/A|; by the hypothesis, there is a subgroup G0 of G containing C and
B, such that G0A/B = G/B and G0/B is CB/B-Frobenius. In particular,
G0/B is solvable, hence so is G0. In both cases, as G0A = G, we may replace
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G by G0 and A by A ∩G0. As G0 is solvable but A not, |A ∩G0| < |A|. So
the existence of H follows by induction.

Part D Reduction to intravariance. Our aim is to construct a subgroup U
of A such that U is A-intravariant in G, C normalizes U , and A does not
normalize U . Then NG(U)A = G and NG(U)∩A is a proper subgroup of A.
Hence by induction hypothesis NG(U) contains a C-Frobenius subgroup H
with HA = G.

Part E Division into three cases. So let G1 = NG(Q1). Then A ≤ G1;
put F1 = G1/A ≤ F . Note that F = G/A acts transitively on the set
∆ := {Q1, . . . , Qt}, and F1 is the stabilizer of Q1. By Lemma 2.1(e) we may
replace Q1 by some conjugate Qi to assume that F1 = C1K1, where C1 ≤ C
and K1 ≤ K. We divide the rest of the proof into three cases.

Case I: C1 centralizes Q1. In this case let U1 6= 1 be a Sylow subgroup of
Q1. Then U1 is C1-invariant, intravariant in Q1, and not normal in Q1. By
Lemma 4.4 and Lemma 4.5 there is a C-invariant G-intravariant subgroup
U of A which is not normal in A. (Notice that case C1 = 1 is included here.)

Case II: C1,K1 6= 1. In this case F1 is a C1-Frobenius group. Let φ : G1 →
Aut(Q1) be the map induced by the action of G1 on Q1 and let G1 = φ(G1).
Then φ(A) = φ(Q1) = Q1, hence φ induces a surjection φ : F1 = G1/A →
G1/Q1 ≤ Out(Q1). We first claim that φ is an isomorphism, that is, F1 →
Out(Q1) is injective.

It suffices to show that K1 → Out(Q1) is injective, since the kernel of
F1 → Out(Q1) is a normal subgroup of the Frobenius group F1, which does
not intersect its Frobenius kernel K1 and hence is trivial by Lemma 2.1(f).

So let g ∈ G with image in K1 act on Q1 as an inner automorphism. As
F = G/A is a Frobenius group, for every σ ∈ G we have σgσ−1 = gma for
some m ∈ N and a ∈ A. It follows that g acts as an inner automorphism,
namely (gσ)maσ, on Qσ

1 . Thus g acts as an inner automorphism on A. As
G acts faithfully on A, this means that g ∈ A. Therefore the image of g in
K1 is trivial. This proves the claim.

Thus G1/Q1
∼= F1 is a C1-Frobenius group. By Corollary 3.10, C1 nor-

malizes some nontrivial intravariant proper subgroup U1 of Q1. So again we
are done by Lemma 4.4 and Lemma 4.5.

Case III: K1 = 1 and C1 does not centralize Q1. In particular, C does
not centralize Q1. Notice that G1 = C1A ≤ CA. For each g ∈ G let
∆g = {Qσg

1 |σ ∈ CA} ⊆ ∆. Then ∆g1
∩∆g2

6= ∅ =⇒ CAg1 = CAg2 =⇒
∆g1

= ∆g2
. Thus ∆ is the disjoint union of the distinct ∆g. Therefore if

we define Q̃g = 〈Qσg
1 |σ ∈ CA〉, then A is the direct product of the distinct

Q̃g. The conjugation in G permutes the ∆g and hence also the Q̃g. Put

G̃1 = NG(Q̃1); then G̃1 = CA. Thus C̃1 = C ∩ G̃1 = C.

We define U1 = CQ̃1
(C̃1); thus U1 is a C̃1-invariant subgroup of Q̃1. By

our assumption, U1 6= Q̃1. By Lemma 3.2, U1 6= 1. As G̃1 = C̃1A =
C̃1(Q̃1 ×

∏
Q̃g 6=Q̃1

Q̃g) and U1 is C̃1-invariant, U1 is G̃1-intravariant in Q̃1.
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Now apply again Lemma 4.4 and Lemma 4.5 with {Q̃g|g ∈ G} instead of ∆

and with Q̃1, G̃1, C̃1 instead of Q1, G1, C1.

�

Remark 4.7. If C is an r-group for some prime r, we may considerably
simplify the proof of Theorem 4.6, leaving out the classification of finite
simple groups. Mainly, omit Part C and replace Part E by the following:

Let M be the normal subgroup of G such that M/A = K. By Lemma 3.4,
C normalizes some nontrivial Sylow subgroup U of M . By Frattini argu-
ment, U is intravariant in G.

5. Profinite Groups

Theorem 5.1. Let G be a C-group and let G → F be a C-epimorphism
onto a C-Frobenius group F . Then G contains a C-Frobenius subgroup H
that maps onto F . Moreover, we may assume that F and H have precisely
the same prime divisors.

Proof. The last assertion of the theorem follows immediately from the rest,
because we may drop from the Frobenius kernel of H its p-primary compo-
nents for those primes p that do not divide the order of the Frobenius kernel
of F .

If necessary, replace G by a closed subgroup to assume that G is finitely
generated. Then there is a sequence N0 ≥ N1 ≥ N2 ≥ . . . of open normal
subgroups of G such that

⋂
i Ni = {1}. Let A = ker(G → F ). Since⋂

i NiA = A, without loss of generality C ∩NiA = {1} for every i.
Put Mi = Ni ∩ A for every i. Then F = G/M0 and G = lim

←−
i

G/Mi. For

each i we have the following cartesian diagram of epimorphisms of C-groups

G/Mi+1
//

��

G/Ni+1

��

G/Mi
// G/MiNi+1

in which the groups on the right handed side are finite. By induction hy-
pothesis G/Mi contains a C-Frobenius subgroup Fi that maps onto F . Its
image in G/MiNi+1 is a C-Frobenius subgroup. By Theorem 4.6 it lifts
to a C-Frobenius subgroup of G/Ni+1. Hence by Lemma 4.1 Fi lifts to a
C-Frobenius subgroup Fi+1 of G/Ni+1. Thus H = lim

←−
i

Fi is a C-Frobenius

subgroup of G that maps onto F . �

Corollary 5.2. Let β : B → C be an epimorphism of a finite group B
onto a finite nontrivial cyclic group C and let F be a C-Frobenius group
with Frobenius kernel K ∼= Ẑπ for some set π of primes. Then there is a
C-embedding F → B

∐
C.
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Proof. By Theorem 5.1 it suffices to construct a C-epimorphism B
∐

C →
F . Let k be a generator of K. The epimorphism B → C given by b 7→ β(b)k

together with the identity map C → C define a C-homomorphism B
∐

C →
F . Its image 〈C,Ck〉 contains C and (ck)−1c = k−1kc ∈ K, where c is a
generator of C. Since F = CK, it suffices to show that k−1kc generates K.

If this assertion holds for each Sylow subgroup of K (and its generator
instead of k) then it holds for K. Thus we may assume that K ∼= Zp for some

prime p. Finally, we may replace K by its Frattini quotient. K ∼= Z/pZ.
As c 6= 1, we have k−1kc 6= 1 and hence k−1kc generates K. �

Example 5.3. Let K = Z7. Then C = Z/6Z acts fixed-point freely on K
and hence the semidirect product F = CK is a C-Frobenius group. By the
corollary there is an embedding λ : F → G1

∐
G2, where G1 = G2 = C,

such that λ(C) = G2. Let H = λ(F ). Then H is prosolvable, but

(1) H ∩ G2 = G2 is of order 6, and hence is not an ℓ-group for some
prime ℓ;

(2) H is infinite, and hence H ≤ Gσ
i for no i ∈ I and no σ ∈ G.

This answers the question of Pop mentioned in the introduction.
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