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ABSTRACT

Given a formula in the language of fields we use Galois stratification to

establish an effective algorithm to estimate the number of points over finite

fields that satisfy the formula

Introduction

Chatzidakis, van den Dries and Macintyre [CDM] use model theoretic methods to
generalize the Lang–Weil estimates for the number of rational points of a variety
in a finite field:
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Theorem: Let ϕ(X,Y) = ϕ(X1, . . . , Xm, Y1, . . . , Yn) be a formula in the lan-

guage of rings. There exists a finite sequence ϕ1(X), . . . , ϕk(X) of formulas in

the language of rings, a positive constant C, positive rational numbers µ1, . . . , µk,

and numbers r1, . . . , rk ∈ {0, . . . , n}, with the following property. For every finite

field Fq and each a ∈ Fm
q there exists a unique i, 1 ≤ i ≤ k, such that Fq |= ϕi(a),

and the number Nq(a) = |{b ∈ Fn
q | Fq |= ϕ(a,b)}| is either zero or it satisfies

|Nq(a)− µiq
ri | ≤ Cqri− 1

2 .

This work gives an algebraic proof of their result, which provides this estimate
effectively. That is, it gives an algorithm to find the above formulas ϕi and the
constants µi, ri, and C explicitly.

The main tool we use is Galois Stratification [FJ]. This procedure eliminates
quantifiers from formulas over certain types of fields (e.g., Frobenius fields and
finite fields). Until now we have used this tool only to obtain results about sen-
tences (formulas with no free variables). However, this method is so transparent
that it immediately lends itself to a systematic treatment of results of the above
type, although the effective computation of bounds is rather technical.

Another important ingredient in this work is the Non-regular Analog of the
Chebotarev Density Theorem, which we prove in Section 5. This result general-
izes [FS, Proposition 4.1].

0. Felgner’s question

The following question of Ulrich Felgner at the Model Theory Conference in
Oberwolfach in January 1990 motivated the main Theorem.

Is there a formula Φ(X) in the language of rings L that defines the field Fq in

Fq2 for each prime power q?

Chatzidakis, van den Dries and Macintyre [CDM] observe that the Theorem
implies that

√
q can never be an asymptotic estimate for the number of points in

Fq that satisfies a given formula. So, they answer Felgner’s question negatively:

(*) No formula Φ(X) in L defines Fq in Fq2 for infinitely many prime powers
q.

Galois Stratification as developed in [FJ], combined with the Chebotarev
Density Theorem, is well suited to treat such questions. Here is a short proof of
(*) based on [FJ]. (The concepts involved are reviewed in Section 1 below.)
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Fix a formula Φ(X) in L. We need the following notation. Let t̄ be a tran-
scendental element over Fq, and let E = Fq(t̄).

(a) Identify the set P1 of prime divisors of E of degree 1 with Fq ∪· {∞}; the
prime divisor that corresponds to a ∈ Fq is given by t̄ 7→ a.

(b) For a polynomial g ∈ Fq[X] denote V (g) = {a ∈ Fq| g(a) = 0}.
(c) For a finite Galois extension F/E and a conjugacy class C of G(F/E) denote

C1(F/E, C) =
{
p ∈ P1|

(
F/E

p

)
= C} [FJ, p. 59].

Claim: There exist positive integers d, δ and q0 with the following properties.

For every q ≥ q0 there exists a Galois extension F/E of degree ≤ d, distinct

conjugacy classes C1, . . . , Ce of G(F/E), where e ≥ 0, and a polynomial 0 6= g ∈
Fq[X] of degree ≤ δ such that

(1) {a ∈ Fq| Fq |= Φ(a)} − V (g) =
e⋃

j=1

C1(F/E, Cj)− ({∞} ∪ V (g)).

Assume that the Claim has been proved. By [FJ, Proposition 5.16, with d =
k = 1] either C1(F/E, Cj) is empty or

(2) |C1(F/E, Cj)| ≥ |Cj |
m

q − 4|Cj | · (1 + gF + gE + 1)
√

q.

Here m is some integer ≤ [F : E] [FJ, p. 59]. By [FJ, Corollary 4.8], gE = 0 and
gF ≤ 1

2 (d− 1)(d− 2). Also, 1 ≤ |Cj | ≤ d. Hence, if (2) holds,

|C1(F/E, Cj)| ≥ 1
d
q − 4d(2 +

1
2
(d− 1)(d− 2))

√
q.

Let q ≥ q0 and let P (q) = {a ∈ Fq| Fq |= Φ(a)}. By (1) either |P (q)| ≤ δ or

|P (q)| ≥ q

d
− 4d(2 +

1
2
(d− 1)(d− 2))

√
q − (δ + 1).

If q is sufficiently large, then either |P (q)| ≤ δ or |P (q)| has more than q
d+1

elements. In particular P (q2) 6= Fq, for q large. Thus (*) follows from the Claim.

Proof of the Claim: We first prove the Claim for all q relatively prime to suitable
k ∈ Z. Then we show it for the powers of a fixed prime p. From these two cases
the Claim follows.

As mentioned in [FJ, p. 425], Φ(X) is equivalent to a “Galois formula” over
R0 = Z[k−1] for a suitable k ∈ Z (for all Fq with q prime to k). By [FJ,
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Proposition 26.8] we may assume that this formula is quantifier free, that is, it is
of the form Ar(X) ⊆ Con(B), where B = 〈A1, Ci/Ai, Con(Ai)| i ∈ I〉 is a Galois
stratification of the affine line over R0.

Since A1 =
⋃· i∈I Ai, exactly one of the Ai’s, say A1, is of dimension 1. Put

A = A1, C = C1, and R = R0[A]. Then A = A1 − V (g) for some g ∈ R0[X],
and hence R = R0[t, g(t)−1], where t is transcendental over Q. Furthermore,
C has the form R[z], where z is a primitive element for the cover C/A. Let
h(Z) = irr(z,Q(t)); then h(Z) ∈ R[Z].

Let q be prime to k and let E = Fq(t̄). Extend the canonical homomorphism
R0 → Fq to π: R → E by t 7→ t̄. Let z̄ be a root of π(h), put F = E(z̄),
and extend π to ρ: C → F by ρ(z) = z̄. Let ρ∗: G(F/E) → G(C/A) be the
homomorphism induced by ρ [FJ, p. 137]. The set {σ ∈ G(F/E)| 〈ρ∗(σ)〉 ∈
Con(A)} is a union of conjugacy classes of elements in G(F/E). Write this union
as C1 ∪ · · · ∪ Ce.

To verify (1), let a ∈ Fq such that g(a) 6= 0. Extend the canonical homomor-
phism R0 → Fq to a homomorphism ϕ: R → Fq by t 7→ a. Let ϕ̄: E → Fq ∪∞ be
the Fq-place defined by t̄ 7→ a. Then ϕ = ϕ̄ ◦ π. Extend ϕ̄ to a place ψ̄: F → F̃q,
and let ψ = ψ̄ ◦ ρ. Thus ψ extends ϕ. Now, a belongs to the left hand side of
(1) if and only if Ar(C/A,Fq, a) ⊆ Con(A). The latter condition is equivalent to
ψ∗(G(Fq)) ∈ Con(A). But ψ∗ = ρ∗ ◦ ψ̄∗ and G(Fq)) = 〈Frob(Fq)〉. Hence this
can be written as ψ̄∗(Frob(Fq)) ∈

⋃ Cj . This says that a belongs to the right
hand side of (1).

Now fix a prime p, and let q be a power of p. By [FJ, Remark 25.8], Φ(X) is
equivalent to a Galois formula over R0 = Fp. If q is large, [FJ, Proposition 26.8]
shows that this formula is quantifier free. From this point on repeat the preceding
arguments (replacing ‘Q’ by ‘Fp’, and ‘q prime to k’ by ‘q large enough’). Notice
that π and ρ are inclusions, and ρ∗ is the restriction to C.

1. Galois covers

The notion of a ring cover and the Artin symbol are the basic concepts of Galois
stratification. For the convenience of the reader we redefine these concepts and
state some of their basic properties.

Definition 1.1: Ring cover [FJ, Definition 5.4]. Let R ⊆ S be integral domains,
and let E ⊆ F be their quotient fields. The extension S/R is a ring cover if R

is integrally closed and there is z ∈ S integral over R such that S = R[z] and
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the discriminant dE(z) of z over E is a unit of R. We call such an element z a
primitive element for S/R.

If F/E is a Galois extension, we say that S/R is a Galois ring cover. We
sometimes write G(S/R) for the Galois group G(F/E).

If R0 ⊆ R and R0 has quotient field K, we say that the ring cover S/R is
finitely generated (resp., regular) over R0 if R/R0 is finitely generated (resp.,
E/K is regular).

Remark 1.2: (i) The condition “dE(z) is a unit of R” in Definition 1.1 is equiv-
alent to the following.

(1) There exists a monic polynomial g ∈ R[X] such that g(z) = 0 and g′(z) ∈
S×.

Indeed, let f = irr(z,E) ∈ R[X]. As dE(z) = NormF/Ef ′(z), we have dE(z) ∈
R× if and only if f ′(z) ∈ S×. Thus if dE(z) is a unit of R then (1) holds.
Conversely, (1) implies that g(X) = f(X)h(X) with h ∈ R[X], and hence g′(z) =
f ′(z)h(z). Thus if g′(z) ∈ S×, then also f ′(z) ∈ S×.

(ii) Let S/R be a ring cover with primitive element z. Then F = E(z) is
a finite separable extension of E, and S is the integral closure of R in F [FJ,
Lemma 5.3].

(iii) Let S/R be a (Galois) ring cover with primitive element z, and let R̄ be
an integrally closed integral domain. Any homomorphism ϕ: R → R̄ extends
to a homomorphism ψ from S into the algebraic closure of the quotient field of
R̄ [L, Proposition 16 on p. 250]. Let z̄ = ψ(z) and S̄ = R̄[z̄]. Then S̄/R̄ is
also a (Galois) cover, with primitive element z̄. Indeed, let E be the quotient
field of R, let f = irr(z, E), and set f̄ = ϕ(f) ∈ R̄[Z]. Then f̄(z̄) = 0 and
f̄ ′(z̄) = ψ(f ′(z)) ∈ ψ(S×) ⊆ S̄×. By (i), S̄/R̄ is a cover. If S/R is Galois, then
S̄/R̄ is Galois by Lemma 1.3(d) below.

Let S/R be a Galois cover with primitive element z, and let F/E be the corre-
sponding extension of the quotient fields. Let N/M be another Galois extension
of fields and suppose ψ: S → N is a homomorphism such that ψ(R) ⊆ M . Let
ϕ: R → M be the restriction of ψ to R.

Lemma 1.3:

(a) Let τ1, τ2 ∈ G(F/E). If τ1 6= τ2 then ψ(τ1(z)) 6= ψ(τ2(z)).
(b) There exists a unique map ψ∗: G(N/M) → G(F/E) such that

(2) ψ(ψ∗(σ)(s)) = σ(ψ(s)), for all σ ∈ G(N/M) and s ∈ S.
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(c) ψ∗ is a group homomorphism.

(d) M(ψ(z))/M is a Galois extension.

Proof of (a): We have
∏

τ 6=τ ′

(
ψ(τ(z))−ψ(τ ′(z))

)2 = ψ
( ∏

τ 6=τ ′
(τ(z)−τ ′(z))2

)
= ψ(dE(z)) ∈ ψ(R×) ⊆ M×.

In particular, none of the factors on the left hand side is zero.

Proof of (b): Let f(X) = irr(z, E). Then F = E(z), f(X) ∈ R[X] and f(X) =∏
τ∈G(F/E)(X − τ(z)). Hence

∏
τ (X − ψ(τ(z))) = ψ(f) ∈ M [X]. Let σ ∈

G(N/M). Then σ(ψ(z)) is a root of ψ(f) =
∏

τ (X − ψ(τ(z))). Hence, there
is τ ∈ G(F/E) such that ψ(τ(z)) = σ(ψ(z)). By (a) such a τ is unique; put
ψ∗(σ) = τ . As S = R[z], (2) follows.

Proof of (c): This follows from the uniqueness in (b2).

Proof of (d): The polynomial ψ(f) =
∏

τ (X − ψ(τ(z))) splits in ψ(S) =
ψ(R[z]) ⊆ M(ψ(z)).

We notice that ψ∗ depends not only on ψ and S but also on R and M as well.

Lemma 1.4: (a) If ψ is an inclusion of rings, then ψ∗ is the restriction to F .

(b) If N = M(ψ(z)), then ψ∗ is injective.

(c) Let S̄/R̄ be another Galois cover, and let ρ: S → S̄ and ψ̄: S̄ → N be

homomorphisms such that ρ(R) ⊆ R̄ and ψ̄(R̄) ⊆ M . If ψ = ψ̄ ◦ ρ, then

ψ∗ = ρ∗ ◦ ψ̄∗. In particular, if R ⊆ R̄ and S ⊆ S̄ and ψ̄ extends ψ then

ψ∗ = resF ψ̄∗.

(d) Let τ ∈ G(F/E). Then (ψ ◦ τ)∗(σ) = τ−1ψ∗(σ)τ for all σ ∈ G(N/M).
(e) The map τ 7→ ψ ◦ τ is a bijection between G(F/E) and the set of homo-

morphisms S → N that extend ϕ.

(f) Let σ ∈ G(N/M). Then {ψ′∗(σ)| ψ′: S → N extends ϕ} is the conjugacy

class of ψ∗(σ) in G(F/E).

Proof of (a), (b), (c) and (d): Immediate from the uniqueness of ψ∗ (Lemma
1.3(b)).

Proof of (e): The map is injective by Lemma 1.3(a). It is surjective by [L,
Corollary 1 on p. 247].

Proof of (f): Apply (d) to (e).
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Definition 1.5: In the above setup let M be a finite field, N = M̃ its algebraic
closure, and Frob ∈ G(M) = G(M̃/M) the Frobenius automorphism of M . The
conjugacy class

ar(S/R, ϕ) = ar(S/R, M, ϕ) = {ψ′∗(Frob)| ψ′: S → M̃ extends ϕ}

of elements in G(F/E) is called the Artin symbol of ϕ. The conjugacy class

Ar(S/R, ϕ) = Ar(S/R, M, ϕ) = {ψ′∗(G(M))| ψ′: S → M̃ extends ϕ}

of subgroups in G(F/E) is called the Artin symbol (of groups) of ϕ.

Notice that Ar(S/R, ϕ) = {〈τ〉| τ ∈ ar(S/R, ϕ)}.

A set of elements (resp., subgroups) of a group G is called a conjugacy

domain if it is closed under conjugation. Let ConG(Ω) denote the smallest
conjugacy domain of elements (resp., subgroups) of G generated by Ω. The
following property of the Artin symbol follows from Lemma 1.4(c).

Lemma 1.6: Let S/R and S̄/R̄ be Galois covers, and let ϕ̄: R̄ → M be a

homomorphism. Let π: R → R̄ be a homomorphism, and let ρ: S → S̄ be an

extension of π. Then ar(S/R, ϕ̄ ◦ π) = ConG(S/R)ρ
∗(ar(S̄/R̄, ϕ̄)) and Ar(S/R,

ϕ̄ ◦ π) = ConG(S/R)ρ
∗(Ar(S̄/R̄, ϕ̄)). In particular, if R ⊆ R̄ and S ⊆ S̄, and F is

the quotient field of S, then ar(S/R, ϕ̄ ◦ π) = ConG(S/R)resF ar(S̄/R̄, ϕ̄).

2. Algebraic geometry

In this section we recall some basic definitions and concepts from algebraic
geometry.

Let R0 be an integral domain and K its quotient field.

Definition 2.1: (i) An R0-algebraic set V = V (f1, . . . , fm) in An is the set of
common zeros of polynomials f1, . . . , fm ∈ R0[X1, . . . , Xn] in K̃n. We say that
V is given if f1, . . . , fm are explicitly given.

(ii) An R0-constructible set in An is a Boolean combination of R0-algebraic
sets. It is given if the latter sets are given.

(iii) An R0-basic set is an R0-constructible set of the form A = V − V (g),
where V = V (f1, . . . , fm) is an R0-algebraic set irreducible over K and g ∈
R0[X1, . . . , Xn] is a polynomial not vanishing on V .
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We identify a “given” R0-constructible set with the underlying polynomials
that define it. Below we define some notions for such sets, which may actually
depend on the underlying polynomials.

Definition 2.2: Let A = V (f1, . . . , fm)− V (g) be an R0-constructible set. Sup-
pose that ϕ0: R0 → R is a homomorphism into an integral domain R. Denote
the R-constructible set V (ϕ0(f1), . . . , ϕ0(fm)) − V (ϕ0(g)) by AR. (We abuse
notation in omitting reference to ϕ0.) If M is a field containing R, let

A(M) = {a ∈ Mn| ϕ0(f1)(a) = · · · = ϕ0(fm)(a) = 0, ϕ0(g)(a) 6= 0}.

Definition 2.3: Let A = V − V (g) ⊆ An be an R0-basic set. Then dim(A) =
dim(V ) and deg(A) = deg(V ). Call deg(g) the complementary degree of A.

Let x = (x1, . . . , xn) be a generic point of V over K. We associate to A

three rings derived from x: R0[A] = R0[x, g(x)−1], K[A] = K[x, g(x)−1], and
K(A) = K(x). Given a homomorphism ϕ0: R0 → M into a field M , there is an
obvious bijection between the set A(M) and

{ϕ ∈ Hom(R0[A],M)| ϕ extends ϕ0}.

We list some properties of A whose definitions involve these rings.
(i) A is R0-normal if R0[A] is integrally closed.
(ii) A is absolutely R0-normal if AR is R-normal for every integrally closed

integral domain R and every homomorphism ϕ0: R0 → R, whenever AR is
an R-basic set and dim(AR) = dim(A). (In this case AR will be absolutely
R-normal.)

(iii) A is absolutely irreducible if V is absolutely irreducible (in which case
V is called a variety).

Lemma 2.4: Assume that R0 is integrally closed. Let A = V − V (g) be an

R0-basic set.

(a) Suppose that R0[A] can be written as R0[z1, . . . , zm], where for each 1 ≤
i ≤ m one of the following three cases occurs: either

(i) zi = g(z1, . . . , zi−1)−1 for some g ∈ R0[Z1, . . . , Zi−1]; or

(ii) R0[z1, . . . , zi]/R0[z1, . . . , zi−1] is a ring cover [Definition 1.1]; or

(iii) zi is transcendental over the quotient field of R0[z1, . . . , zi−1].
Then A is absolutely R0-normal.
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(b) Assume that R0 is a given integrally closed integral domain, presented

in its quotient field K (see [FJ, p. 229]). Then we can compute h ∈
R0[X1, . . . , Xn] not vanishing on A such that A′ = A− V (h) = V − V (gh)
is an absolutely R0-normal basic set.

Proof of (a): First notice that R0[z1, . . . , zm] is integrally closed. Indeed, let
Ri = R0[z1, . . . , zi], and assume, by induction, that Ri−1 is integrally closed.
Then Ri = Ri−1[zi] is also integrally closed: in case (i) by [L, Proposition 8 on
p. 242], in case (ii) by [FJ, Lemma 5.3], and in case (iii) by [ZS, p. 85, Thm.
29(a)].

Next let ϕ0: R0 → R be a homomorphism into an integrally closed integral
domain R such that AR is an R-basic set and dim(AR) = dim(A). Then ϕ0

extends to a homomorphism ϕ: R0[A] → R[AR], and R[AR] = R[z̄1, . . . , z̄m],
where z̄i = ϕ(zi). Conditions (i), (ii), (iii) still hold if we replace zj by z̄j and
R0 by R. Thus R[AR] is again integrally closed.

Proof of (b): If R0 is a field, [FJ, Lemma 17.28] shows how to choose h so that
R0[A′] is integrally closed. The same arguments work if R0 is only an integrally
closed integral domain. Moreover, the h constructed is such that R0[A′] has the
structure given in (a), so A′ is absolutely R0-normal.

Remark 2.5: In the setup of Lemma 2.4, if the ring R0 is also regular [M, p. 140],
then so is R0[A]. In fact, as in the proof of Lemma 2.4(a), if Ri−1 is regular,
then so is Ri. In case (i) this is clear. In case (ii), Ri is an étale Ri−1-algebra [R,
Proposition 8 on p. 18], and therefore regular by [R, Exercice on p. 75]. In case
(iii) it follows from [M, (17.J)].

Definition 2.6: Ring/set cover. Let A be an R0-normal basic set. If S/R0[A] is
a (Galois) ring cover, then we say that S/A is a (Galois) ring/set cover.

Let S/A be a Galois ring/set cover, and let M be a finite field. A point
a ∈ A(M) corresponds to a homomorphism ϕ: R0[A] → M (Definition 2.3). The
Artin symbol ar(S/A,M, a) = ar(S/A,a) ⊆ G(S/R0[A]) is defined as the Artin
symbol ar(S/R0[A], ϕ) (Definition 1.5). Similarly, Ar(S/A,M,a) = Ar(S/A,a) =
Ar(S/R0[A], ϕ).

Remark 2.7: Degrees. Let V be a closed subset of the projective space Pn,
defined over an algebraically closed field K. Let H ⊆ Pn be a hypersurface
defined by a polynomial of total degree d.
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(a) deg(H) = d [H, Prop. I.7.6(d)].
(b) We say that V is of pure dimension r if all of its irreducible components

Z are of dimension r. For such V we have deg(V ) =
∑

Z deg(Z) [H,
Prop. I.7.6(b)].

(c) Let V be of pure dimension r. Assume that H contains no irreducible
component of V . Then V ∩H is of pure dimension r−1 and deg(V ∩H) ≤
d · deg(V ).
Indeed, let V =

⋃
i Vi and Vi ∩ H =

⋃
j Zij be the decompositions into

irreducible components. Then V ∩ H =
⋃

i

⋃
j Zij . By the dimension

theorem [H, Thm. 7.2], dim(Zij) = dim(Vi)− 1 = r − 1, hence V ∩H is of
pure dimension r− 1. Furthermore, by (b), deg(V ∩H) ≤ ∑

i

∑
j deg(Zij).

By (a) and by Bézout’s theorem [H, Thm. I.7.7],
∑

j deg(Zij) ≤ d ·deg(Vi),
for each i. Summing up these inequalities over i and using (b) we get∑

i

∑
j deg(Zij) ≤ d ·∑i deg(Vi) ≤ d · deg(V ).

The above facts remain true if we replace Pn by the affine space An. Indeed, we
may consider An as an open subset of Pn; replacing the ambient sets by their
Zariski closures in Pn changes neither degrees nor dimensions.

Section 4 uses the following technical result.

Lemma 2.8: Let K be an algebraically closed field. Let V ⊆ An and W ⊆
An+e be varieties over K with respective generic points x and (x, z), where

x = (x1, . . . , xn), z = (z1, . . . , ze). Suppose that zi is algebraic over K(x) and fix

hi ∈ K[X1, . . . , Xn, Zi] such that hi(x, Zi) 6= 0 and hi(x, zi) = 0, for 1 ≤ i ≤ e.

Then dim(W ) = dim(V ) and deg(W ) ≤ deg(V ) ·∏e
i=1 deg(hi).

Proof: The first assertion is clear.
To prove the second assertion let t1, . . . , te be algebraically independent over

K(x). For every 0 ≤ i ≤ e let Vi be the variety in An+e defined by the generic
point (x, z1, . . . , zi, ti+1, . . . , te) over K. Thus Vi is of dimension dim(V ) + e− i,
the variety V0 = V × Ae is of degree deg(V ), and Ve = W . It suffices to show
that deg(Vi+1) ≤ deg(Vi) deg(hi+1) for 1 ≤ i ≤ e.

Let U = Vi ∩ V (hi+1). We have Vi+1 ⊆ U ⊆ Vi, and dim(Vi+1) =
dim(Vi) − 1 = dim(U). Thus Vi+1 is one of the irreducible components of U .
By Remark 2.7(c), deg(U) ≤ deg(Vi) deg(hi+1), and U is of pure dimension.
Therefore, by Remark 2.7(b), deg(Vi+1) ≤ deg(U). Our claim follows from these
two inequalities.
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3. Counting rational points on basic sets

We begin with a crude upper bound on the number of points in sets of pure
dimension (Remark 2.7(b)). Cf. [LW, Lemma 1].

Lemma 3.1:

(a) Let A be a closed subset of An of pure dimension r and degree d defined

over Fq. Then |A(Fq)| ≤ dqr.

(b) Let A be a closed subset of Pn of pure dimension r and degree d defined

over Fq. Then |A(Fq)| ≤ d(q + 1)r ≤ 2rdqr.

Proof of (b): By induction on r. We may assume that no proper linear variety
L ⊂ Pn defined over Fq contains A. Otherwise choose a minimal L with this
property, and change the coordinates so that L becomes a projective space.

Assume first that A is irreducible over Fq. Then the absolutely irreducible
components of A are conjugate over Fq. For each a = (a0:a1) ∈ P1(Fq) let La

be the linear subvariety V (a0X1 − a1X0) of P1(Fq). Then A 6⊆ La, and as La is
defined over Fq, it contains no absolutely irreducible component of A. By Remark
2.7(c), A∩La is of pure dimension r− 1 and deg(A∩La) ≤ d. By the induction
hypothesis, |(A∩La)(Fq)| ≤ (q+1)r−1. We have A(Fq) =

⋃
a∈P1(Fq)(A∩La)(Fq).

Hence |A(Fq)| ≤ d(q + 1)r.

In the general case let V1, . . . , Vs be the irreducible components of A over
Fq. Then

∑
i deg(Vi) = d [H, Prop. I.7.6(b)]. By the preceding case |Vi(Fq)| ≤

deg(Vi)(q + 1)r. Hence |A(Fq)| ≤
∑

i deg(Vi)(q + 1)r = d(q + 1)r.

Proof of (a): Similar to the proof of (b).

Corollary 3.2: Let V ⊆ Pn be a projective variety of dimension r and degree

d, and let H be a hypersurface of degree d′ in Pn defined over Fq, not containing

V . Then |(V ∩H)(Fq)| ≤ dd′(q + 1)r−1 ≤ 2r−1dd′qr−1.

Proof: By Remark 2.7(c), V ∩H is of pure dimension r−1 and deg(V ∩H) ≤ dd′.

Let V be a variety in the projective space Pn of dimension r and degree
d defined over Fq. Let Nq = |V (Fq)|. The Lang-Weil [LW] estimate for Nq

produces a constant α0(n, r, d) such that

(1) |Nq − qr| ≤ (d− 1)(d− 2)qr− 1
2 + α0(n, r, d)qr−1.
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Their proof uses induction starting from r = 1. Wolfgang Litz [Li, p. 48] carefully
follows the reduction steps and computes a suitable value for α0(n, r, d):

α0(n, r, d) = 2r−1(d(d− 1)2 + 1)(2)

+ r
(
1 + (d− 1)(d− 2) + 22n+r−32mm2m

d2
)

,

with m =
(
n+d

n

)r
.

For the estimate of numbers of points on basic sets define

(3) α(n, r, d, δ) = α0(n, r, d) + 2r−1d(δ + 1).

Notice that α is a non-decreasing function in each of its variables.

Proposition 3.3: Let A ⊆ An be a basic set of dimension r, degree d and

complementary degree δ, defined over Fq. Let Nq = |A(Fq)|.
(a) If A is absolutely irreducible, then

(4) |Nq − qr| ≤ (d− 1)(d− 2)qr− 1
2 + α(n, r, d, δ)qr−1.

(b) If A is Fq-normal but not absolutely irreducible, then A(Fq) = ∅.

Proof of (a): Write A as A = V − V (g), where V is an absolutely irreducible
variety defined over Fq and g ∈ Fq[X1, . . . , Xn] is a polynomial not vanishing on
V . (When r = 0, then A = V , d = 1, and |V (Fq)| = 1.) View An as the open
subset of Pn defined by X0 6= 0. The Zariski closure of V in Pn is an absolutely
irreducible projective variety V̄ of degree d and dimension r defined over Fq. Let
N̄q = |V̄ (Fq)|. Consider the homogenization

g∗ = Xδ
0g(

X1

X0
, . . . ,

Xn

X0
) ∈ Fq[X0, . . . , Xn],

of g [H, p. 11]. Then A = V̄ − (V̄ ∩ H), where H = V (X0g
∗). Therefore

deg(H) = deg(X0g
∗) = δ + 1 (Remark 2.7(a)). Hence, by Corollary 3.2 and by

(1) and (3)

|Nq − qr| ≤ |N̄q − qr|+ |(V̄ ∩H)(Fq)|
≤ (d− 1)(d− 2)qr− 1

2 + α0(n, r, d)qr−1 + 2r−1d(δ + 1)qr−1

= (d− 1)(d− 2)qr− 1
2 + α(n, r, d, δ)qr−1.
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Proof of (b): Let L be the algebraic closure of Fq in the quotient field of Fq[A]
(=the function field of A); by assumption L 6= Fq. The elements of L are certainly
integral over Fq[A] and hence L ⊆ Fq[A]. If A(Fq) 6= ∅, there exists an Fq-
homomorphism Fq[A] → Fq. It restricts to an Fq-homomorphism L → Fq, a
contradiction.

4. The special nonregular analog of the Chebotarev density theorem

We state and give a full proof of a more explicit version of [FS], Proposition 4.1.
Let K be a fixed finite field, let K̃ be its algebraic closure, and let G(K) =

G(K̃/K) be the absolute Galois group of K. The Frobenius automorphism Frob
over K generates G(K).

Notation: Let S be an integrally closed domain containing K with quotient field
F . Let F0 denote the algebraic closure of K in F , that is, the integral closure of
K in S. Let A(S) be the set of F0-homomorphisms ϕ: S → F0.

Let S/R be a finitely generated regular Galois ring cover over K (Definition
1.1). Let E, F be the quotient fields of R, S, respectively, and let L = F0 be the
algebraic closure of K in F .

Observe that A(R) = HomK(R, K). In particular, if R is the coordinate
ring of an absolutely irreducible affine variety A defined over K, then we may
identify A(R) with A(K).

Lemma 4.1: Every ϕ ∈ A(R) extends to exactly [F : LE] distinct L-homomor-

phisms ψ: S → K̃.

Proof: First, ϕ extends to a unique L-homomorphism ϕ′: LR → L. Now, S/LR

is a cover, so S = RL[z], where p(X) = irr(z, LE) ∈ LR[X]. The extensions of
ϕ′ to an L-homomorphism S → K̃ correspond bijectively to the mappings of z

onto one of the [F : LE] distinct roots of ϕ′(p)(X) ∈ K̃[X] in K̃.

Consider an L-homomorphism ψ: S → K̃ that satisfies ψ(R) = K. By
Lemma 1.3 this induces a group homomorphism ψ∗: G(K) → G(S/R) = G(F/E)
with:

(1) ψ (ψ∗(σ)(s)) = σ(ψ(s)), for all s ∈ S

In particular, since ψ fixes L,

(2) resLψ∗(Frob) = resLFrob.
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Notation: For τ ∈ G(F/E) let

C(S/R, τ) = {ψ: S → K̃| ψ is an L-homomorphism,

ψ(R) = K and ψ∗(Frob) = τ}.

Lemma 4.2: Let C be a conjugacy class in G(F/E) and let τ ∈ C. Then

|{ϕ ∈ HomK(R, K)| ar(S/R, ϕ) = C}| = |C|
[F : LE]

|C(S/R, τ)| .

Proof: Put C = {ϕ ∈ HomK(R,K)| ar(S/R, ϕ) = C}. By Lemma 4.1, every
ϕ ∈ C extends to exactly [F : LE] L-homomorphisms S → K̃. These extensions
are the elements of

⋃· σ∈C C(S/R, σ). By Lemma 1.4(d), for each ρ ∈ G(F/E),
ψ ∈ C(S/R, ρτρ−1) if and only if ψ ◦ ρ ∈ C(S/R, τ). Hence |C(S/R, σ)| =
|C(S/R, τ)| for each σ ∈ C. We conclude that

[F : LE] · |C| =
∣∣∣∣∣
⋃
·

σ∈C
C(S/R, σ)

∣∣∣∣∣ = |C| · |C(S/R, τ)| .

The following theorem combines the field crossing argument [FJ, Section
23.1] and descent [FJ, Section 9.9]. It enables us to reduce the counting of points
with a given Artin symbol to the counting of K-rational points in a basic set
(Proposition 3.3).

Proposition 4.3: Let τ ∈ G(F/E) such that resLτ = resLFrob. Let L′ = K(ω)
be a finite Galois extension of K of degree e that contains L. Put S′ = L′S and

F ′ = L′F . Then the following hold.

(a) L′ is the algebraic closure of K in S′.

(b) There exists a unique τ ′ ∈ G(F ′/E) such that resF τ ′ = τ and resL′τ
′ =

resL′Frob. Moreover, ord(τ ′) = lcm(ord(τ), e).
(c) S′ is the integral closure of R in F ′.

Now, assume that ord(τ) | e. Let E′ be the fixed field of τ ′ in F ′ and let R′ be

the integral closure of R in E′. Then, these further conditions hold.

(d) E′ ∩ K̃ = K and E′L′ = F ′.

(e) R′ = R[y1, . . . , ye], where (y1, . . . , ye) ∈ (F ′)e is the solution of the system

of linear equations

(3)
e∑

j=1

Frobi(ωj)yj = τ i(z), i = 1, . . . , e
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over L′.

(f) S′ = R′L′ and S′/R′ is a finitely generated regular Galois ring cover over

K.

(g) |C(S′/R′, τ ′)| = |C(S/R, τ)|.
(h) |C(S′/R′, τ ′)| = |A(R′)|.

E′ F ′

½
½

F

½
½

E EL EL′

K L L′

R′ S′

½
½

S

½
½

R RL RL′

K L L′

Proof of (a): S is linearly disjoint from K̃ over L. Hence L′S is linearly disjoint
from K̃ over L′.

Proof of (b): From (a), L′ ∩ F = L. So L′E ∩ F = LE. Therefore,

(4) G(F ′/E) ∼= G(F/E)×G(LE/E) G(L′E/E) ∼= G(F/E)×G(L/K) G(L′/K).

There is a unique τ ′ ∈ G(F ′/E) mapped by this isomorphism onto (τ, resL′Frob).
The order of τ ′ is the least common multiple of ord(τ) and ord(resL′Frob).

Proof of (c): It suffices to show that S′ is the integral closure of S in F ′. As
ω is a primitive element for the ring cover S′/S (Definition 1.1), this follows by
Remark 1.2(ii).

Proof of (d): The restriction map G(F ′/E′) → G(L′/K) sends the generator τ ′

of G(F ′/E′) onto the generator resL′Frob of G(L′/K). Therefore it is surjective.
Moreover, it is an isomorphism: [F ′ : E′] = ord(τ ′) = lcm(ord(τ), e) = e =
[L′ : K] by (b). Hence, E′∩L′ = K and E′L′ = F ′. Thus E′∩K̃ = E′∩F ′∩K̃ =
E′ ∩ L′ = K.

Proof of (e): As
(
Frobi(ωj)

)
is an invertible e× e matrix over L′ [L, p. 212], we

have y1, . . . , ye ∈ L′S = S′. Apply τ ′ to (3). By (b)
e∑

j=1

Frobi+1(ωj)τ ′(yj) = τ i+1(z), i = 1, . . . , e.
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Thus (τ ′(y1), . . . , τ ′(ye)) also solves (3). Hence τ ′(yj) = yj for each 1 ≤ j ≤ e. It
follows that y1, . . . , ye ∈ E′. As S′ is integral over R, it is also integral over R′.
So y1, . . . , ye ∈ S′ ∩ E′ ⊆ R′.

Denote R[y1, . . . , ye] by R′′. We have R′′ ⊆ R′. By (3), z ∈ R′′L′. Hence
R′′L′ = S′, and therefore R′L′ = S′. Since by (d) L′ is linearly disjoint from E′

over K, we have R′′ = R′.

Proof of (f): We have shown above that R′[ω] = R′L′ = S′. Thus, R′[ω]/R′

is a Galois cover (and ω its primitive element). Regularity follows from (d) and
finite generation from (e).

Proof of (g): We show that the restriction map resF : C(S′/R′, τ ′) → C(S/R, τ)
is bijective. Applying Lemma 4.1 to the cover S′/S over L′, we conclude that
every ψ ∈ C(S/R, τ) extends to a unique L′-homomorphism ψ′: S′ → K̃ = L̃.
We must show that ψ′ ∈ C(S′/R′, τ ′).

Let us first verify that ψ′(R′) = K. There exists σ ∈ G(F ′/E) such that

(5) ψ′ ◦ σ = Frob ◦ ψ′.

[L, Corollary 1, p. 247]. In particular, ψ(resF σ(x)) = Frob(ψ(x)) for each x ∈ S.
By (1), resF σ = ψ∗(Frob) = τ . Furthermore, resL′σ = resL′Frob. Thus (b)
implies σ = τ ′. We conclude from (5) that ψ′(x) = Frob(ψ′(x)) for each x ∈ R′,
and thus ψ′(R′) = K.

By (5), ψ′∗(Frob) = σ = τ ′. Thus, ψ′ ∈ C(S′/R′, τ ′).

Proof of (h): By Lemma 4.1, every ψ ∈ A(R′) extends to a unique L′-homomor-
phism ψ′: S′ → K̃ = L̃. By (2), resL′ψ

′∗(Frob) = resL′Frob. From (d) we
have determined the restriction of τ ′ to the field of constants of L′. Therefore
(b) shows that τ ′ is the unique element of G(F ′/E′) that restricts to resL′Frob.
Thus ψ′∗(Frob) = τ ′, and ψ′ ∈ C(S′/R′, τ ′).

To formulate the main result of this section, we fix the following data.
(6a) A = V − V (g) is an Fq-normal absolutely irreducible basic subset of An

with dim(V ) = r, deg(V ) = d, deg(g) = δ, and x is a generic point of V

over Fq.
(6b) S/A is a regular Galois ring/set cover over Fq and F/E is the corresponding

Galois extension of fields.
(6c) L is the algebraic closure of Fq in F .
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(6d) R = Fq[A] = Fq[x, g(x)−1] and S = R[z].
(6e) h(X, Z) ∈ L[X1, . . . , Xn, Z] satisfies h(x, Z) 6= 0 and h(x, z) = 0.

Theorem 4.4 ((): Special nonregular analog of the Chebotarev density theo-

rem) Let C be a conjugacy class of exponent e in G(F/E). Set

N = |{a ∈ A(Fq)| ar(S/A,a) = C}| = |{ϕ ∈ HomFq
(R,Fq)| ar(S/R, ϕ) = C}|.

(a) If resLC 6= {resLFrob}, then N = 0.

(b) If resLC = {resLFrob}, then

(7) |N − cqr| ≤ c(d′ − 1)(d′ − 2)qr− 1
2 + cα(n′, r, d′, δ)qr−1.

Here c = |C|
[F :LE] , n′ = n + e, d′ = d · deg(h)e, and α is defined by (3) of

Section 3.

Proof: Choose τ ∈ C. By Lemma 4.2, N = c|C(S/R, τ)|.
In case (a), resLτ 6= resLFrob. Hence C(S/R, τ) = ∅ by (2). Thus, N = 0.
In case (b), resLτ = resLFrob. Let K = Fq. As

[L : K] = ord(resLFrob) = ord(resLτ) | ord(τ) = e,

the unique extension L′ of K of order e contains L. Thus, we may use the no-
tation and the results of Proposition 4.3. By (g) and (h), |C(S/R, τ)| = |A(R′)|.
Therefore N = c|A(R′)|. Let V ′ ⊆ An+e be the absolutely irreducible vari-
ety defined over K that has (x,y) as generic point, and let A′ = V ′ − V (g).
Then K[A′] ∼=K R′. We conclude that |A(R′)| = |A′(K)|. Below we show that
deg(V ′) ≤ d′. This gives (7) by Proposition 3.3(a).

Finally we estimate deg(V ′). Denote zi = τ i(z) for each 1 ≤ i ≤ e, and let
z = (z1, . . . , ze). Let V ′′ ⊆ An+e be the variety defined over K̃ that has (x, z)
as generic point. Equations (3) define a K̃-linear automorphism of An+e that
maps V ′ onto V ′′. Hence deg(V ′) = deg(V ′′). So, by Lemma 2.8, deg(V ′) ≤
d · deg(h)e = d′.

5. The absolute nonregular analog of the Chebotarev density theorem

The absolute nonregular analog of the Chebotarev density theorem (Theorem 5.3)
considers a situation similar to the special nonregular analog of the Chebotarev
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density theorem (Theorem 4.4). Both theorems deal with a Galois ring/set cover
S/A and a conjugacy domain C of G(S/A). The differences are as follows.

In Theorem 4.4, S/A is defined over a finite field Fq. In Theorem 5.3,
S/A is defined over an integrally closed integral domain R0, which may have
characteristic 0. Theorem 4.4 estimates the number of points a ∈ A(Fq) for
which ar(S/A,a) = C for the particular base field Fq. Theorem 5.3 estimates this
number for each field Fq such that there exists a homomorphism ϕ0: R0 → Fq.

Lemma 5.1: Let R ⊆ R′ ⊆ S be rings such that both S/R and S/R′ are Galois

covers. Let ϕ: R → Fq be a homomorphism. Let G = G(S/R), G′ = G(S/R′)
and C = ar(S/R, ϕ). Then

∣∣{ϕ′: R′ → Fq| resRϕ′ = ϕ}
∣∣ =

|G|
|C|

|G′ ∩ C|
|G′| .

Proof: Consider the set

A = {ψ: S → F̃q| resRψ = ϕ, ψ∗(Frob) ∈ G′}.

(By Lemma 1.4(c), ψ∗ is the same, whether defined with respect to the cover
S/R or S/R′.) Each ϕ′: R′ → Fq that satisfies resRϕ′ = ϕ extends to exactly
|G′| elements of A (Lemma 1.4(e)), and each element of A is obtained this way.
Thus we have to show that |A| = (|G| / |C|) · |G′ ∩ C|.

If G′∩C = ∅, then A = ∅. Otherwise we can choose an extension ψ: S → Fq

of ϕ such that τ = ψ∗(Frob) ∈ G′. Then, apply Lemma 1.4(e) and (d) to get

A = {ψ ◦ σ| σ ∈ G, (ψ ◦ σ)∗(Frob) ∈ G′} = {ψ ◦ σ| σ ∈ G, τσ ∈ G′}.

This last set corresponds bijectively with the set {σ ∈ G| τσ ∈ G′}, which has

∣∣CG(τ)
∣∣ ·

∣∣{τσ ∈ G′| σ ∈ G}
∣∣ = (|G| / |C|) · |G′ ∩ C|

elements.

Lemma 5.2: Let κ: G → G0 be a homomorphism of finite groups and let C be

a conjugacy class in G. For each τ ∈ κ(C) let Cτ = {σ ∈ C| κ(σ) = τ}. Then Cτ

is a conjugacy domain (i.e., a union of conjugacy classes) of Hτ = κ−1(〈τ〉), and

|Cτ | = |C|/|κ(C)|.
Proof: Indeed, Cτ ⊆ κ−1({τ}) ⊆ Hτ . If σ ∈ Cτ and h ∈ Hτ , then κ(σh) =
τκ(h) = τ (because κ(h) ∈ 〈τ〉). Hence Cτ is a conjugacy domain in Hτ .
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If τ ′ ∈ κ(C), then Cτ ′ and Cτ are conjugate in G. Therefore |Cτ ′ | = |Cτ |.
Furthermore, C =

⋃· τ ′∈κ(C) Cτ ′ . Thus |C| = |κ(C)| · |Cτ |.

To formulate the main result of this section, we fix the following data:

(1) R0 is an integral domain with quotient field K.

(2a) A = V − V (g) is an absolutely normal (Definition 2.3(ii)) R0-basic subset
of An with dim(V ) = r and deg(V ) = d, and x is a generic point of V over
K.

(2b) S/A is a Galois ring/set cover, and F/E is the corresponding Galois exten-
sion of fields.

(2c) L is the algebraic closure of K in F , and S0 is the integral closure of R0 in
L (hence S0 ⊆ S).

(2d) L1 is the maximal purely inseparable extension of L and S1 is the integral
closure of S0 in L1.

(2e) R = R0[A] = R0[x, g(x)−1] and S = R[z].

(2f) h(X, Z) ∈ S0[X1, . . . , Xn, Z] is a polynomial that satisfies h(x, z) = 0.

(3a) S0/R0 is a Galois cover, L/K the corresponding Galois cover of fields, and
G0 = G(L/K).

(3b) K ′ = E∩L is the algebraic closure of K in E, and R′0 is the integral closure
of R0 in K ′, and G′0 = G(L/K ′). As R is integrally closed, R′0 ⊆ R.

(3c) The absolutely irreducible component V0 of V containing x is defined by
polynomials whose coefficients generate a ring R′′0 integral over R0.

(3d) x1, . . . , xr is a transcendence base of E/K (renumerate x1, . . . , xn, if nec-
essary), y is a primitive element for L1F/L1(x1, . . . , xr), and f is an abso-
lutely irreducible polynomial in S1[X1, . . . , Xr, Y ] with f(x1, . . . , xr, y) = 0.

Theorem 5.3: Let C be a conjugacy class of exponent e in G(F/E). Let

C′0 = resLC and C0 = ConG0(C′0). (These are conjugacy classes in G′0 and
G0, respectively.) Let ϕ0: R0 → Fq be a homomorphism. Denote the reduction

of objects via ϕ0 by a bar. Assume further the following:

(4a) dim(Ā) = r and deg(Ā) = d;

(4b) each extension of ϕ0 to a homomorphism R′′0 → F̃q maps V0 onto an abso-

lutely irreducible variety V̄0 of dimension r such that ḡ does not vanish on

all V̄0;

(4c) each extension of ϕ0 to a homomorphism S1 → F̃q maps f onto an abso-

lutely irreducible polynomial f̄ ∈ F̃q[X1, . . . , Xn, Y ] such that degY (f) =
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degY (f̄).
Let A = {a ∈ A(Fq)| ar(S/R,a) = C}, and let N = |A|. Then

(5) |N − βγqr| ≤ βγ(d′ − 1)(d′ − 2)qr− 1
2 + βγ · α(n′, r, d′, δ)qr−1,

where

β =
|G0|
|G′0|

|G′0 ∩ C0|
|C0| = [K ′ : K]

|G′0 ∩ C0|
|C0| ,

γ =
{ |C|

[F :LE]
1

|resLC| if C0 = ar(S0/R0, ϕ0) ⇐⇒ resLC ⊆ ar(S0/R0, ϕ0),
0 otherwise,

n′ = n + e, and d′ = d · deg(h)e.

Proof: We may identify A with

{ϕ ∈ Hom(R,Fq)| resR0ϕ = ϕ0 and ar(S/R,ϕ) = C}

(Definition 2.6). Let K̂ be the purely inseparable closure of K, and let R̂0 be the
integral closure of R0 in K̂. Replacing R0, R′0, S0, R, S and K, K ′, L, E, F by R̂0,
R′0[R̂0], S0[R̂0], R[R̂0], S[R̂0] and K̂, K ′K̂, LK̂, EK̂, FK̂, respectively, does not
change β, γ, and |A| because each ϕ: R → Fq uniquely extends to ϕ̂: R[R̂0] → Fq,
etc. Thus we may assume that K is perfect, L1 = L and S1 = S0 (We also have
to replace V by its irreducible component V̂ over K̂, but dim(V̂ ) = dim(V ) and
deg(V̂ ) ≤ deg(V ), by [H, Proposition 7.6(b) on p. 52].) In this case E/K ′ is a
regular extension, R′′0 ⊆ R′0, and C0 = resLC.

By Lemma 5.1, ϕ0 has β extensions to homomorphisms ϕ′0: R′0 → Fq.
Suppose we fix one such ϕ′0 and prove (5) with β = 1 and with

A = {ϕ ∈ Hom(R,Fq)| resR′0ϕ = ϕ′0 and ar(S/R, ϕ) = C}.

Then (5) will hold for the original β and A. So, we assume without loss of
generality that K = K ′, R0 = R′0. Thus K is algebraically closed in E, and
V = V0 is absolutely irreducible. By (4b), V̄ is an absolutely irreducible variety
defined over Fq.

If C0 6= ar(S0/R0, ϕ0), then γ = 0. We must show that A = ∅. But if ϕ ∈ A,
then Lemma 1.6 implies ar(S0/R0, ϕ0) = ConG0resLar(S/R,ϕ) = ConG0resLC =
C0, This is a contradiction.
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Assume that C0 = ar(S0/R0, ϕ0). Let x̄ = (x̄1, . . . , x̄n) be a generic point
of V̄ over Fq. Clearly δ̄ = deg(ḡ) ≤ deg(g) = δ. By (4b), ḡ(x̄) 6= 0. Let
Ā = V̄ − V (ḡ) and R̄ = Fq[Ā] = Fq[x̄, ḡ(x̄)−1]. Then x → x̄ extends to a
homomorphism π: R → R̄ which extends ϕ0. By (2a) and (4a), Ā is normal: R̄ is
integrally closed. Extend π to a homomorphism ρ of S into the algebraic closure
of Fq(x̄). Then z̄ = ρ(z) is a primitive element for the Galois ring cover S̄ = R̄[z̄]
of R̄ (Remark 1.2(iii)). Denote the quotient field of R̄ by Ē and that of S̄ by F̄ .
Then F̄ /Ē is a Galois extension.

Now let L̄ = Fq[ρ(S0)] and ρ̄ = ρ(f). Put M = L(x1, . . . , xr), let M̄ =
L̄(x̄1, . . . , x̄r), and let F̄ ′ = L̄(x̄1, . . . , x̄r, ȳ). Then x̄1, . . . , x̄r are algebraically
independent over L̄. By (4c), f̄ is an absolutely irreducible polynomial with
coefficients in L̄ and with the same degree in Y as f and f̄(x̄1, . . . , x̄r, y) = 0.
Hence L̄ is the algebraic closure of F in F̄ ′ and [F̄ ′ : L̄Ē] · [L̄Ē : M̄ ] = [F̄ ′ : M̄ ] =
degY f̄ = degY f = [F : M ] = [F : LE] · [LE : M ]. But [F : LE] ≥ [F̄ : L̄Ē] ≥
[F̄ ′ : L̄Ē] and [LE : M ] ≥ [L̄Ē : M̄ ]. Hence F̄ ′ = F̄ and [F : LE] = [F̄ : L̄Ē].
Let h̄ = ρ(h).

With this we have defined data as in (6) of Section 4 with a bar on each
object (except r, d and γ). The barred data satisfies all the requirements imposed
there.

Denote the restriction of ρ to S0 by ρ0. This gives a commutative diagram
of short exact sequences

(6)

1 - G(F/LE) - G(F/E) -κ=resL G(L/K) - 1

6ρ∗ 6ρ∗ 6ρ∗0

1 - G(F̄ /L̄ Ē) - G(F̄ /Ē) - G(L̄/Fq) - 1.

The vertical arrows are injective by Lemma 1.4(b). The left one is bijective,
because [F̄ : L̄ Ē] = [F : LE]. Chase diagram (6) to get

(7) ρ∗(G(F̄ /Ē)) = κ−1(ρ∗0(G(L̄/Fq))) = κ−1(〈τ〉),

where τ = ρ∗0(resL̄Frob). Notice that τ ∈ ar(S0/R0, ϕ0) = C0 = κ(C). Let

C̄ = {σ ∈ G(F̄ /Ē)| ρ∗(σ) ∈ C and resL̄σ = resL̄Frob}.

It follows from the commutativity of (6) and from (7) that ρ∗(C̄) = {σ ∈ C| κ(σ) =
τ}. So, ρ∗(C̄) = Cτ , in the notation of Lemma 5.2. Hence, by that lemma, ρ∗(C̄)
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is a conjugacy domain of ρ∗(G(F̄ /Ē)). Therefore C̄ is a conjugacy domain of
G(F̄ /Ē), and

(8) |C̄| = |ρ∗(C̄)| = |C|/|resLC| = γ[F : LE] .

Furthermore, every element of C̄ is of order e.
Observe that if ϕ̄ ∈ HomFq

(R̄,Fq), then ϕ = ϕ̄ ◦ π is a homomorphism
from R to Fq whose restriction to R0 is ϕ0. Extend ϕ̄ to a homomorphism
ψ̄: S̄ → F̃q and let ψ = ψ̄ ◦ρ. Then ψ: S → F̃q extends ϕ, and, by Lemma 1.4(c),
ψ∗(Frob) = ρ∗(ψ̄∗(Frob)). If we show that the map ϕ̄ 7→ ϕ̄ ◦ π is a bijection
between

A = {ϕ̄ ∈ HomFq (R̄,Fq)| ar(S̄/R̄, ϕ̄) ⊆ C̄}
and A, then N = |A|.

Indeed, if ϕ̄ ∈ A, then

ψ∗(Frob) = ρ∗(ψ̄∗(Frob)) ∈ ρ∗(ar(S̄/R̄, ϕ̄)) ⊆ ρ∗(C̄).
From the definition of C̄ above, ψ∗(Frob) ∈ C. Hence, ϕ ∈ A. Conversely, if
ϕ ∈ A, let a = ϕ(x). Then a ∈ A(Fq), and x̄ → a uniquely extends to an
Fq-homomorphism ϕ̄: R̄ → Fq such that ϕ = ϕ̄ ◦ π. Now,

ρ∗(ψ̄∗(Frob)) = ψ∗(Frob) ∈ ar(S/R,ϕ) = C.
Since resL̄ψ∗(Frob) = resL̄Frob (by (2) of Section 4), ψ̄∗(Frob) ∈ C̄. Thus ϕ̄ ∈ A.

The restriction of each element of C̄ to L̄ is resL̄Frob. So, Theorem 4.4
gives the estimate

(9) |N − c̄qr| ≤ c̄(d̄ ′ − 1)(d̄ ′ − 2)qr− 1
2 + c̄ · α(n′, r, d̄ ′, δ̄)qr−1,

where c̄ = |C̄|
[F̄ :L̄ Ē]

, n′ = n + e and d̄ ′ = d · deg(h)e ≤ d · deg(h)e = d′. As α is
nondecreasing, this together (8) gives the desired estimate.

Remark 5.4: Good reduction. Let (S0/R0, S/A) satisfy (1), (2), and (3). If
it also satisfies condition (4), we say that (S0/R0, S/A) has good reduction

with respect to ϕ0. Notice that (4) is an elementary statement about the pa-
rameters that define V , V0, h, and g. So, if (R0, S0, A, S) satisfies (1), (2),
and (3), constructive elimination of quantifiers for the theory of algebraically
closed fields [FJ, Theorem 8.39] gives a nonzero element r0 ∈ R0 such that
(S0[r−1

0 ]/R0[r−1
0 ], S[r−1

0 ]/A′) , where A′ = A − V (r0), has good reduction with
respect to each homomorphism ϕ: R0 → Fq.
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6. Galois stratification

There are several slightly different definitions of the concept of Galois stratifi-
cation ([FJ], [FS], [FHJ], [HJ], [J1], and elsewhere). All of them keep track of
some objects attached to the Galois groups of Galois ring/set covers. In [FS]
and [J1] these objects are conjugacy classes of elements, whereas in [FJ] they are
conjugacy classes of subgroups of these groups. We use here the version of [FJ,
Chapter 26] (over both a finite field and a localization of Z). This may be the
most accessible version. We recall the definition below.

To apply the preceding results about conjugacy classes of elements, we
introduce the following notation. For a conjugacy class C of a group G, let
C̃ = {〈τ〉| τ ∈ C}. Observe that C̃ is a conjugacy class of subgroups of G;
moreover, every conjugacy class of cyclic subgroups of G is of this form. A
conjugacy domain D of subgroups of G is a union of conjugacy classes of
subgroups of G. We say that D is full if D contains all subgroups of each group
in D.

Let Λ0 denote either a localization Z[k−1
0 ] of Z or a finite field Fq0 . Let

F(Λ0) be the set of finite fields Fq for which there exists a homomorphism Λ0 →
Fq. In the first case F(Λ0) = {Fq| q is relatively prime to k0}; in the second case
F(Λ0) = {Fq| q is a power of q0}.

A Galois stratification of the affine space An over Λ0

(1) B = 〈An, Dj/Bj , Con(Bj)| j ∈ J〉

is a partition An =
⋃· j∈J Bj of An as a finite union of disjoint absolutely normal

Λ0-basic sets Bj , each equipped with a Galois ring/set cover Dj/Bj and with
a conjugacy domain Con(Bj) of cyclic subgroups of G(Dj/Bj). Here ‘disjoint’
means that for each Fq ∈ F(Λ0) and for every b ∈ Fn

q there is a unique j =
j(b) ∈ J such that b ∈ Bj(Fq).

A quantifier free Galois formula associated with B is an expression of the
form Ar(X) ⊆ Con(B). This formula interpretes as follows. Let Fq ∈ F(Λ0),
and let b ∈ Fn

q . Let j = j(b). Then Fq |= Ar(b) ⊆ Con(B) if and only if
Ar(b) ⊆ Con(Bj).

The general Galois formulas are formed from quantifier free Galois formulas
by quantification with the obvious interpretation.

Proposition 6.1: For each Galois formula θ(X,Y) = θ(X1, . . . , Xm, Y1, . . . , Yn)
in m + n free variables over Λ0 we can effectively compute the following:
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(a) positive integers k and q1, such that k 6= 0 in Λ0;

(b) a Galois stratification (1) of An over Λ = Λ0[k−1]; and

(c) for each j ∈ J and for each conjugacy class D of cyclic subgroups of

G(Dj/Bj), an integer 0 ≤ r = r(j,D) ≤ m, and rational numbers ε =
ε(j,D) ≥ 0, µ = µ(j,D),

such that if Fq ∈ F(Λ) with q ≥ q1, b ∈ Bj(Fq) and Ar(Dj/Bj ,Fq,b) = D
(Definition 2.6), then Nq(b) = |{a ∈ Fm

q | Fq |= θ(a,b)}| satisfies

(2) |Nq(b)− µqr| ≤ µεqr− 1
2 .

Moreover, µ = 0 if and only if D 6⊆ Con(Bj).

Proof: Apply [FJ, Prop. 26.7 and Prop. 26.8] to compute k and q1 in N, and a
quantifier free Galois formula θ′, which is equivalent to θ for all Fq ∈ F(Λ0[k−1])
with q ≥ q1. Thus we may assume that θ is quantifier free. Let

(3) A = 〈Am+n, Ci/Ai, Con(Ai)| i ∈ I〉

be the Galois stratification of Am+n over Λ that corresponds to θ. The conju-
gacy domains Con(Ai) consist of cyclic groups. Take π: Am+n → An to be the
projection on the first n coordinates.

Use the Stratification Lemma [FJ, Lemma 17.26], as in the proof of [FJ,
Lemma 25.6], to replace A by an appropriate refinement (possibly multiplying k

by another factor) and to construct a Galois stratification (1) of An over Λ with
the following properties.

For each j ∈ J the set Bj is absolutely Λ-normal (see Lemma 2.4(b)),
each absolutely irreducible component of Bj is defined by polynomials with
coefficients integral over Λ,
π−1(Bj) =

⋃
i∈I(j) Ai, and π(Ai) = Bj for each i ∈ I(j).

We may also assume that Dj ⊆ Ci for each i ∈ I(j); otherwise replace Ci by C ′i =
CiDj (use the Stratification Lemma once more to make C ′i/Ai a Galois cover), and
Con(Ai) by the collection of all cyclic subgroups of G(C ′i/Ai) whose restrictions to
Ci are in Con(Ai). Moreover, (Dj/Λ[Bj ], Ci/Ai) has good reduction with respect
to each homomorphism Λ → Fq (Remark 5.4), for each i ∈ I(j). Furthermore,
set

(4) Con(Bj) =
⋃

i∈I(j)

ConG(Lj/Kj)(resLj Con(Ai)),
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where Lj/Kj is the Galois extension of the quotient fields corresponding to the
cover Dj/Bj . Then Con(Bj) also consists of cyclic groups. For later use we
observe that if Con(Ai) is full, for each i ∈ I(j), then Con(Bj) is also full.

Let now j ∈ J and let D be a conjugacy class of cyclic subgroups of
G(Dj/Bj). Let Fq ∈ F(Λ) with q ≥ q1 and b ∈ Bj(Fq) such that Ar(Dj/Bj ,b) =
D. For i ∈ I(j) and for a conjugacy class C ⊆ G(Ci/Ai) denote

P (C,b) = {(a,b) ∈ Ai(Fq)| ar(Ci/Ai, (a,b)) = C} and Nq,i,C = |P (C,b)|.

By the choice of A, for each i ∈ I and for each (a,b) ∈ Ai(Fq) we have Fq |=
θ(a,b) if and only if Ar(Ci/Ai, (a,b)) ⊆ Con(Ai). By definition (Section 1),
ar(Ci/Ai, (a,b)) = C implies Ar(Ci/Ai, (a,b)) = C̃. Hence,

{(a,b) ∈ Fm+n
q | Fq |= θ(a,b)} =

⋃
·

i∈I(j)

⋃
·
C

C̃⊆Con(Ai)

P (C,b),

and therefore

(5) Nq(b) =
∑

i∈I(j)

∑
C

C̃⊆Con(Ai)

Nq,i,C .

However, if resLjC 6⊆ ar(Dj/Bj ,b), then Nq,i,C = 0 by Theorem 5.3. This hap-
pens, in particular, if resLj

C̃ 6⊆ D. Hence,

(5′) Nq(b) =
∑

(i,C)∈Ω

Nq,i,C ,

where
Ω = {(i, C)| i ∈ I(j), C̃ ⊆ Con(Ai), resLj

C̃ ⊆ D}.

Thus Ω = ∅ if and only if D 6⊆ Con(Bj). In this case Nq(b) = 0, and we set
µ = ε = 0 in (2). Assume therefore that Ω 6= ∅. Let

r = max{dimKj (Ai)| (i, C) ∈ Ω}.

It suffices for each (i, C) ∈ Ω to find rational numbers µi,C ≥ 0, εi,C ≥ 0, inde-
pendent of q and b, such that

(6) |Nq,i,C − µi,Cqr| ≤ εi,Cqr− 1
2 ,
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and µi,C > 0 for at least one (i, C) ∈ Ω. Once this has been done, then from (5′),

|Nq(b)−
∑

(i,C)∈Ω

µi,Cqr| ≤
∑

(i,C)∈Ω

εi,Cqr− 1
2 .

Set µ =
∑

µi,C and ε = (1/µ)
∑

εi,C in (2). These are independent of q and b.
Fix (i, C) ∈ Ω. Theorem 5.3 applies to the pair (Ci/Ai, Dj/Bj) and the

class C. More precisely, let (F/E, L/K) be the pair of Galois extensions of
the corresponding quotient fields, and let K ′ be the algebraic closure of K in
E. Let ri = dim(Ai), d = deg(Ai), and let δ be the complementary degree of
Ai. Put G0 = G(Dj/Bj) = G(L/K) and G′0 = G(L/K ′). Let C′0 = resLC and
C0 = ConG0C′0. Let e be the exponent of C, and d′ = d · [F : LE]e. Then let

β = [K ′ : K]
|G′0 ∩ C0|
|C0| and γ =

|C|
[F : LE]

1
|C′0|

.

There are two cases to consider:
(7a) ri = r. Then by Theorem 5.3

|Nq,i,C − βγqr| ≤βγ(d′ − 1)(d′ − 2)qr− 1
2 + βγ · α(m + n + e, r, d′, δ)qr−1

≤ βγ
(
(d′ − 1)(d′ − 2) + α(m + n + e, r, d′, δ)

)
qr− 1

2 .

Notice that β > 0, γ > 0. By the definition of r, this case occurs for at
least one (i, C) ∈ Ω.

(7b) ri < r. Clearly Nq,i,C ≤ |Āi(Fq)|, where Āi is the Zariski closure of Ai.
By Lemma 3.1(a), |Āi(Fq)| ≤ dqri ≤ dqr−1. Thus

|Nq,i,C − 0 · qr| ≤ dqr− 1
2 .

Remarks 6.2: (a) Proposition 6.1 is also true, if θ = θ(X,Y) is a formula in the
language of rings. Indeed, by [FJ, p. 425] we can compute k1 ∈ Z and a Galois
formula θ′(X,Y) over Z[k−1

1 ], which is equivalent to θ over each Fq with q prime
to k1. Thus if Λ0 = Z[k−1

0 ], apply Proposition 6.1 to θ′ over Λ0[k−1
1 ]. If Λ0 is a

field, then by [FJ, Remark 25.8] we can compute a Galois formula θ′′(X,Y) over
Λ0, which is equivalent to θ over each extension Fq of Λ0. Now apply Proposition
6.1 to θ′′.

Both θ′ and θ′′ have the same quantifier prefix as θ. The groups of the
Galois stratifications associated with θ′ and θ′′ are of order 1.



Vol. 85, 1994 COUNTING POINTS 129

(b) Assume that θ(X,Y) is a quantifier free Galois formula. Proposition
6.1 says that (for suitable k and q1) we have Nq(b) > 0 if and only if b satis-
fies the quantifier free Galois formula θ′(Y) associated with B. In other words,
(∃X)θ(X,Y) is equivalent to θ′(Y). In this way we get an eliminaton procedure
for the theory of finite fields in the language of Galois formulas. This algorithm
eliminates a block of quantifiers at each step, as in the original procedure of [FS],
rather than only one quantifier at a time as in [FJ].

Lemma 6.3: Let D/B be a Galois cover over Λ0. Assume that

B = V (f1, . . . , fm)− V (g) ⊆ An,

where f1, . . . , fm, g ∈ Z[Y]. For each conjugacy domain D of cyclic subgroups of

G(D/B) there is a formula θD(Y) in the language of rings, such that for every

Fq ∈ F(Λ0)

(8) {b ∈ B(Fq)| Ar(D/B,Fq,b) ⊆ D} = {b ∈ Fn
q | Fq |= θD(b)}.

Moreover, if D is full, there is h(Y, Z) ∈ Z[Y, Z] such that θD(Y) can be taken

to be

(9)
m∧

i=1

fi(Y) = 0 ∧ g(Y) 6= 0 ∧ (∃Z)h(Y, Z) = 0.

Proof: It suffices to prove the assertion for D full. Indeed, if D is a single
conjugacy class of groups, then D = D′ −D′′, where D′ is the conjugacy domain
of all subgroups of the groups in D, and D′′ is the conjugacy domain of all proper
subgroups of the groups in D. Then put θD = θD′ ∧ ¬θD′′ . In the general case
write D as a union of conjugacy classes

⋃ C, and put θD =
∨

θC .
So assume that D is full. Let y be a generic point of V (f1, . . . , fm) over

the quotient field of Λ0. Thus Λ0[B] = Λ0[y, g(y)−1]. Let F/E be the extension
of quotient fields corresponding to D/B. For each subgroup H of G(D/B) fix
ζH ∈ D, such that E(ζH) is the fixed field of H in F , and such that ζHσ = (ζH)σ,
for all σ ∈ G(D/B). We may take ζH integral over Λ0[y] and, if Λ0 is a localization
of Z, even integral over Z[y]. For each conjugacy class C of subgroups of G(D/B)
let hC(Y, Z) ∈ Z[Y, Z] such that hC(y, Z) = irr(ζH , E) for each H ∈ C. Then let
hC(y, Z) =

∏
H∈C(Z − ζH). Finally let h =

∏
C hC(Y, Z), where C runs through

the conjugacy classes of maximal subgroups in D.
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We show that h has the required property. Let Fq ∈ F(Λ0), and let b ∈
B(Fq). The specialization y 7→ b gives rise to a homomorphism ψ: D → F̃q

such that ψ(Λ0[B]) ⊆ Fq. We have to show that ψ(h)(b, Z) has a root in Fq

if and only if ψ∗(G(Fq)) ∈ D. The first of these two conditions says that there
is a maximal H ∈ D such that ψ(ζH) ∈ Fq. As D is full, the second condition
says that there is a maximal H ∈ D such that ψ∗(G(Fq)) ≤ H. But for every
H ≤ G(D/B) we have ψ(ζH) ∈ Fq if and only if ψ∗(G(Fq)) fixes ζH , that is,
ψ∗(G(Fq)) ≤ H. Thus the two conditions are equivalent.

Theorem 6.4: For each formula θ(X,Y) = θ(X1, . . . , Xm, Y1, . . . , Yn) in m + n

free variables in the first order language of rings we can effectively compute a

finite set {(θi, µi, εi, ri)| i ∈ I} with the following properties.

(a) θi(Y) is a formula in the language of rings, µi > 0 and εi ≥ 0 are rational

numbers, and ri ∈ {0, . . . , n}, for each i ∈ I.

(b) For each finite field Fq and each b ∈ Fn
q there exists a unique i ∈ I such

that Fq |= θi(b).
(c) The number Nq(b) = |{a ∈ Fm

q | Fq |= θ(a,b)}| satisfies

(10) |Nq(b)− µiq
ri | ≤ µiεiq

ri− 1
2

Proof: By Proposition 6.1 and Remark 6.2(a) we can compute k ∈ Z, a Galois
stratification (1) over Z[k−1], and numbers ri, µi, and εi for each i in the set

Ik = {(j,D)| j ∈ J, D is a conjugacy class of subgroups of G(Dj/Bj)},

with the following property. Given i = (j,D) ∈ Ik, q prime to k, and b ∈ Bj(Fq)
such that Ar(Dj/Bj ,Fq,b) = D, we have |Nq(b) − µiq

ri | ≤ µiεiq
ri− 1

2 . By
Lemma 6.3 we find a formula θi = θD, for each i ∈ Ik, such that (8) holds for q,
b as above. Then (a), (b), and (c) hold for every q prime to k. Without loss of
generality, each θi holds only for such q’s, (replace θi by θi ∧ k 6=0).

Observe that if D is full, then θi has the form (9). Replacing g(Y) 6= 0 by
(∃Z)Z ·g(Y) = 1, we can write θi as

∧
s∈S(i)(∃Z)his(Y, Z) = 0, with his(Y, Z) ∈

Z[Y, Z].
Let p be a prime. Put Λ0 = Fp. By Proposition 6.1, Remark 6.2(a), and

Lemma 6.3 we can compute an integer ν(p) ≥ 1 and a finite set {(θi, µi, εi, ri)| i ∈
I ′p}, such that (a), (b), and (c) hold for every q = pν with ν ≥ ν(p). With-
out loss of generality, each θi holds only for such q’s; otherwise replace θi by
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θi∧p=0∧ (∃Z)f(Z)=0, where f(Z) = Zν(p)−Z
Zν(p)−1−Z

∈ Z[Z]. Again, if D is full, then
θi is

∧
s∈S(i)(∃Z)his(Y, Z) = 0, with his(Y, Z) ∈ Z[Y, Z].

Let q be a power of a prime p, say q = pν . Find a finite set {(θi, µi, εi, ri)| i ∈
I ′p,ν}, such that (a), (b), (c) hold for this q. Without loss of generality, each θi

holds only for this q, otherwise replace θi by θi ∧ λq, where λq says that the field
has exactly q elements.

Let I = Ik ∪·
⋃· p|k I ′p ∪·

⋃· p|k
⋃· ν<ν(p) I ′p,ν . The set {(θi, µi, εi, ri)| i ∈ I}

clearly satisfies the requirements of the theorem.

If θ is quantifier free, we can say more about the θi’s. Let us follow the
above proof more carefully in this case.

First, use Remark 6.2(a) to replace θ by a Galois formula. The groups of the
corresponding Galois stratification A are trivial. Apply the proof of Proposition
6.1. There we have first to replace A by a refinement. Thus for each Galois
cover C/A in A either Con(A) is empty or consists of all cyclic subgroups of
G(C/A); in particular, Con(A) is full. By (4) the conjugacy domains Con(Bj)
of B are full. Therefore for i ∈ Ik and for i ∈ I ′p we can write the formula θi as∧

s∈S(i)(∃Z)his(Y, Z) = 0, with his(Y, Z) ∈ Z[Y, Z]. with his(Y, Z) ∈ Z[Y, Z].
Put I ′ = {i ∈ Ik ∪·

⋃· p|k I ′p| µi > 0}. Then for almost all finite fields Fq,
and all b ∈ Fn

q we have Nq(b) ≥ 1 if an only if Fq |=
∨

i∈I′ θi(b). Therefore
the existential formula (∃X)θ(X,Y) is equivalent to

∨
i∈I′ θi(Y), for almost all

finite fields. The latter formula can be written as
∧

f (∃Z)
∏

i∈I′ hif(i)(Y, Z) = 0,
where f ranges over the set

∏
i∈I′ S(i).

This gives the following result of van den Dries:

Theorem 6.5 ([D], (3.4)): Let θ(X,Y) be a quantifier free formula in the lan-

guage of rings. There exist g1, . . . , gr ∈ Z[Y, Z] (here Z is a single variable) such

that (∃X)θ(X,Y)} is equivalent to
∧r

i (∃Z)gi(Y, Z) = 0 for all sufficiently large

finite fields.

Remark 6.6: There exists a stronger variant of Galois stratification, in which
conjugacy domains of elements are used instead of conjugacy domains of sub-
groups (see [FS], [J1] or [HJ]). Everywhere replace ‘Ar’ by ‘ar’ and ‘C̃’ by ‘C’,
and let D be a conjugacy class of G(Dj/Bj). Then the assertion and the proof
of Proposition 6.1 go through. This variant of Proposition 6.1 is strictly stronger
than Theorem 6.3. This is because there are Galois formulas in this stronger lan-
guage that are not equivalent to formulas in the language of rings [HJ, Corollary
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1.12].

As an application consider the following result (cf. [W, Theorem 1.3]).

Theorem 6.7: Let θ(X) = θ(X1, . . . , Xm) be a formula in m free variables in the

language of rings augmented by elements of a finite field Fq (or a Galois formula

over Fq). Let N (k) = |{a ∈ Fm
qk | Fqk |= θ(a)}|. Then there is an a periodic

sequence of numbers (rk, µk), where 0 ≤ rk ≤ m are integers and 0 ≤ µk ∈ Q,

such that

N (k) = µkqkrk + O(qk(rk− 1
2 )).

Proof: By [FJ, Remark 25.8] we may assume that θ is a Galois formula. By
Proposition 6.1 (with n = 0), there exist q1 ≥ 1, a finite (cyclic) Galois extension
L/Fq, a set of subgroups Con of G(L/Fq), and for each H ≤ G(L/Fq) an integer
0 ≤ rH ≤ m and rational numbers µH , εH ≥ 0, such that if qk ≥ q1 and
G(L/(L ∩ Fqk)) = H, then

(11) |N (k) − µHqrH | ≤ µHεHqrH− 1
2 .

Let τ be the Frobenius automorphism of Fq. Then G(Fqk) = 〈τk〉, and
hence G(L/(L ∩ Fqk)) = 〈resLτk〉. In particular, (11) holds, if 〈(resLτ)k〉 = H.
This condition is periodic modulo [L : Fq].
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