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IntroductionA �eld K is said to be Hilbertian if for every irreducible polynomial f 2 K[X] thereexist in�nitely many a 2 K such that f(a;X) is irreducible in K[X]. The name derivesfrom the classical Hilbert Irreducibility Theorem [Hi] which states that Q possesses thisproperty.Hilbertian �elds are essential in the investigation of the Inverse Galois Problem.It is therefore mostly desirable to know of an ambient �eld whether it is Hilbertian.The question, when a separable algebraic extension M of a given Hilbertian �eldK is Hilbertian, has been addressed by Kuyk [Ku], Uchida [U], Weissauer [W], Jarden-Lubotzky [JL], and in [HJ] and [J1]. The hitherto accumulated knowledge has beensummarized as follows in [JL]. In the following cases an extension M of a Hilbertian�eld K is Hilbertian:(F1) M=K is a �nite separable extension.(F2) M=K is Galois and G(M=K) is �nitely generated.(F3) M is a proper �nite separable extension of a Galois extension of K.(F4) M=K is abelian.(F5) M is the compositum of two Galois extensions of K, neither of which contains theother.(F6) M is contained in a pronilpotent extension of K and [M : K] is divisible by atleast two primes.(F7) M=K is separable and [M : K] =Qp �(p), with all �(p) �nite.In the present paper we exhibit a quite general su�cient condition for an algebraicseparable extension M of a Hilbertian �eld K to be Hilbertian. The precise criterion(Theorem 3.2) is somewhat technical; it roughly states that certain embedding problemsover K should have no solution contained in some Galois extension of K containing M .The criterion is general in the sense that it can be used to prove all the above men-tioned cases (F1) { (F7). But, furthermore, it provides a new large class of extensionsthat are Hilbertian. Our main result is:Theorem 4.1: Let K be a Hilbertian �eld and let M1;M2 be two Galois extensionsof K. Let M be an intermediate �eld of M1M2=K such that M 6� M1 and M 6� M2.1



Then M is Hilbertian.The method also provides some insight into the Twinning principle of [JL], butthis will be dealt with elsewhere.The starting point of this investigation was M. Fried's proof of Weissauer's The-orem [FJ, Lemma 12.13 and Proposition 12.14], that looked like a disguised grouptheoretical method, similar to that of [HJ]. It took some time, however, to realize thatthe group theoretical construction behind it was not the usual wreath product, but theso-called twisted wreath product discussed in Section 1.Acknowledgement: The author thanks M. Jarden for helpful discussions and sug-gestions concerning the presentation of the paper.
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1. Twisted wreath productsLet G and A be �nite groups and let G0 be a subgroup of G. Assume that G0 actson A (from the right). Let(1) IndGG0(A) = ff : G! Aj f(��) = f(�)�; for all � 2 G; � 2 G0gwith the standard multiplication rule (fg)(�) = f(�)g(�). (We do not require that Abe commutative.) Then G acts on IndGG0(A) by the formula(2) (f� )(�) = f(��) �; � 2 G:De�nition 1.1: Let AwrG0 G be the semidirect product Gn IndGG0(A). Explicitly, eachelement of AwrG0 G is a pair (�; f) with � 2 G and f 2 IndGG0(A), and the product andthe inverse in AwrG0 G are given by(3) (�; f)(�; g) = (��; f� g) and (�; f)�1 = (��1; f���1 ):Let pr : AwrG0 G! G be the projection (�; f) 7! �.We call both pr : AwrG0 G ! G and AwrG0 G the (twisted) wreath productof A and G with respect to G0 (see [Hp, p. 99]).Embed A in IndGG0(A) by identifying each a 2 A with the function fa: G ! Agiven by fa(�) = � a� � 2 G01 � 2 GrG0 . Then A = ff 2 IndGG0(A)j f(GrG0) = 1g. If� 2 G, then A� = ff 2 IndGG0(A)j f(Gr ��1G0) = 1g. In particular, if G0� = G0� , thenA� = A� . Let � be a set of representatives of the right cosets of G0 in G. It follows thatIndGG0(A) (as a group) is the direct product IndGG0(A) =Q�2�A� , which is isomorphicto the product of (G : G0) copies of A.In another words, IndGG0(A) =Q�2� IndGG0(A)=N� , where(4) N� = ff 2 IndGG0(A)j f(��1) = 1g = Y�2�G0� 6=G0� A�HereN� is the kernel of the epimorphism IndGG0(A) ! A given by f 7! f(��1). (Observethat N = N1 is G0-invariant.) 3



Remark 1.2: Interpretation of generalized wreath products in Galois theory.First a piece of notation: Let K 0=K be a separable algebraic extension and letF=K 0 be a Galois extension. Fix a separable closureKs of K that contains F . For anK-embedding �: K 0 ! Ks we denote by F � the �eld F �̂, where �̂ 2 G(K) = Aut(Ks=K)extends �. This is well de�ned. Furthermore, let E(K 0=K) be the collection of K-embeddings K 0 ! Ks.(i) Let AwrG0 G = G n IndGG0(A) and let N be as in (4).Let F̂=K be a �nite Galois extension such that G(F̂ =K) �= AwrG0 G. Let L, K 0,F , K̂, be the �xed �elds of the subgroups IndGG0(A), G0 IndGG0(A), N , G, respectively. Itthen follows from Galois theory that(a) K � K 0 � L � F � F̂ ,(b) L=K, F=K 0 and F̂ =K are �nite Galois extensions,(c) fF �g, for � 2 E(K 0=K), are linearly disjoint over L and F̂ =Q�2E(K0=K) F �.(d) There is a �eld K̂ such that K̂ \ L = K and LK̂ = F̂ .(e) There is a �eld F 0 such that L \ F 0 = K 0 and F = LF 0.Notice that condition (e) follows from conditions (a){(d) with F 0 = F \ (K 0K̂), the�xed �eld of G0 in F . F ������ HHHHHHL A F N F̂G0 G0 G0K 0 A F 0 K 0K̂K K̂(ii) Conversely, consider a tower (a) of �elds that satis�es conditions (b), (c), (d), forsome �eld K̂. Put F 0 = F \ (K 0K̂), G = G(F̂ =K̂) �= G(L=K), G0 = G(F̂ =K 0K̂)) �=G(F=F 0) �= G(L=K 0), and A = G(F=L) �= G(F 0=K 0). Then G0 � G(F=K 0) acts onA / G(F=K 0) by conjugation in G(F=K 0). We claim that there exists an isomorphism4



': AwrG0 G ! G(F̂ =K) which is identity on G and maps IndGG0(A) onto G(F̂ =L). Wesay in this setup that the �elds K;K 0; L; F; F̂ realize the wreath product AwrG0 G.Proof: By (c), F̂ =L is a Galois extension of degree jAj(G:G0). It follows from (d) thatG(F̂ =K) = G(F̂ =K̂) n G(F̂ =L) = Gn G(F̂ =L).Extend each � 2 E(K 0=K) to an element of G = G(L=K). This gives a system �of representatives of the right cosets of G0 in G. Let � 2 �. The group IndGG0(A) actson F � by(5) zf = �(z��1 )f(��1)��; z 2 F �:This does not depend on �: If � 2 G0, then F �� = F �, since F=K 0 is Galois, and��1f(��1��1)� = f(��1��1)� = f(��1��1�) = f(��1)from which it follows that �(z(��)�1)f((��)�1)��� = �(z��1 )f(��1)��.Observe that action (5) �xes L, since f(��1) 2 A �xes L. Thus (5) de�nes ahomomorphism '�: IndGG0(A) ! G(F �=L) �= A. Clearly, Ker'� = N�.Using (c), the '�'s de�ne a homomorphism'0: IndGG0(A) ! Y�2�G(F �=L) = G(F̂ =L):As Ker'0 = T�2� = 1, and j IndGG0(A)j = jAjj�j = jG(F̂ =L)j, we get that '0 is anisomorphism.Now, let z 2 F � and � 2 G. Then z��1 2 F (���1) and so�(z��1 )f �� = ���(z��1 )(���1)�f(���1)�(���1)�� = �(z��1 )f(���1)��= �(z��1 )f� (��1)�� = zf� ;and hence ��1'0(f)� = '0(f� ). Thus '0 together with the identity map of G = G(L=K)gives an isomorphism AwrG0 G! G(F̂=K).Remark 1.3: Let K;K 0; L; F; F̂ realize AwrG0 G. Let K̂ be a �eld that satis�es con-dition (d) of Remark 1.2. If F0 is a Galois extension of K 0 such that L � F0 � F , let5



A0 = G(F0=L) and F̂0 =Q�2� F �0 . Then F̂0 is a Galois extension of K contained in F̂ .Furthermore, let K̂0 = F̂0 \ K̂. Then L \ K̂0 = K and LK̂0 = F̂0. By Remark 1.2(ii),K;K 0; L; F0; F̂0 realize A0 wrG0 G, as above.Our central application requires the following property of twisted wreath products:Lemma 1.4: Let �: AwrG0 G ! G be a twisted wreath product, where A 6= 1. LetB = IndGG0(A) = Ker�. Let H1 / AwrG0 G and h2 2 AwrG0 G. Let G1 = �(H1).(a) If �(h2) =2 G0 and (G1G0 : G0) > 2, then there is f 2 B \H1 such that fh2 =2 hfi.(b) If G1 6� G0 and �(h2) =2 G1G0, there is f 2 B \H1 such that fh2 =2 hfih0 for eachh0 2 ��1(G1G0).In particular, in both cases [f; h2] 6= 1.Proof: Let �2 = �(h2). Consider �1 2 G1 and g 2 B. There is f1 2 B such that(�1; f1) 2 H1. Let f = g(�1;f1)g�1. Then f 2 [H1; B] � H1 \B. We havef(� ) = �(g�1)f1�(� )g(� )�1 = g(�1� )f1(�)g(� )�1; for every � 2 G:There is f2 2 B such that h2 = (�2; f2). Let � 2 G and f 0 2 B. Then(6) fh2 (1) = (f�2 )f2 (1) = f(�2)f2(1) = g(�1�2)f1(�2)f2(1)g(�2)�f2(1);f (�;f 0)(1) = f(� )f 0(1) = g(�1� )f1(�)f 0(1)g(� )�f 0(1);f(1) = g(�1)f1(�)g(1)�1:We now use these general formulae in special cases (a) and (b), with a particularchoice of �1 and g.(a) Since (G1G0 : G0) > 2, there are �1; �2 2 G1 such that G0; ��11 G0; ��12 G0 aredistinct. Let �1 be �1 if �2 2 ��12 G0, and �2 otherwise. Then �1 2 G1rG0 and�2 =2 ��11 G0.So none of the cosets �1G0; �2G0; �1�2G0 is G0. Therefore we may choose g 2 Bsuch that g(1) = a�1, where 1 6= a 2 A, and g(�1G0) = g(�2G0) = g(�1�2G0) = 1.By (6), fh2 (1) = 1, while f(1) = a 6= 1. It follows that f =2 hfh2 i, which implies thatfh2 =2 hfi. 6



(b) As G�21 = G1 6� G0, we have G1 6� (G0)��12 . Thus G1 \ G0 and G1 \ (G0)��12are two proper subgroups of G1. Since no group is the union of two proper subgroups,there is �1 2 G1 such that �1 =2 G0 and �1 =2 (G0)��12 . Then �2 =2 �1�2G0. Recall that�2 =2 G1G0. Therefore we may choose g 2 B such thatg(G1G0) = 1; g(�1�2) = 1; g(�2) = a�1;where 1 6= a 2 A. Let � 2 G1G0 and f 0 2 B. By (6), fh2 (1) = af2(1) 6= 1, whilef (�;f 0)(1) = 1. It follows that fh2 =2 hfi(�;f 0). Thus fh2 =2 hfih0 for each h0 2 ��1(G1G0).
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2. A Hilbertianity criterionObserve that if E=K is a separable extension of �elds such that E has aK-rationalplace, then E=K is regular. Indeed, a K-place ': E ! K [ f1g maps the algebraicclosure L of K in E into K. But the restriction of ' to L is an embedding of �elds,whence L = K.Let K be a �eld and let t be transcendental over K.De�nition 2.1: We say that a Galois extension F=K(t) is K-rationally split, if thereare �eld extensions L=K and E=K(t) such that F = EL and E has a K-rational place,unrami�ed over K(t). In particular, E=K is regular and L=K is Galois.Lemma 2.2: Let K be an in�nite �eld and let F=K(t) be a �nite Galois extension. Thenthere exists a �nite K-rationally split Galois extension F 0=K(t) such that F � F 0.Proof: As K is in�nite, there is a K-rational place K(t) ! K [ f1g that extends toa place ': F ! Ks [ f1g, unrami�ed over K(t). Let L be the residue �eld of '; this isa Galois extension of K. Let F 0 = FL. Extend ' to a place '0: F 0 ! Ks [ f1g. Then'0 is unrami�ed over K(t) and L is its residue �eld [FJ, Proposition 2.14].Let E be the decomposition �eld of '0. Then resE '0 is a K-rational place, un-rami�ed over K(t). This implies that E=K is regular. Hence [EL : E] = [L : K]. But[L : K] = [F 0 : E], since the decomposition group of '0 is isomorphic to the Galoisgroup of the residue �eld extension. Thus F 0 = EL, and so F 0 is K-rationally split.Let L be a �eld. An irreducible polynomial f 2 L[X] is said to be Galois overL if a root of f generates a Galois extension of L, that is, the �eld L[X]=(f) is Galoisover L.Remark 2.3: Let L=K be a Galois extension of �elds, and let f 2 K[X]. Assumethat f is irreducible and Galois over L. Let x = x1; x2; : : : ; xn be the roots of f (inan algebraic closure of L). Then L(x)=K is Galois. Indeed, L(x) is the compositum oftwo Galois extensions of K, namely, L and K(x1; : : : ; xn). Furthermore, K(x) and Lare linearly disjoint over K. Hence G(L(x)=K) = G(L=K)n G(L(x)=L). In particular,G(L=K) acts on G(L(x)=L). 8



Lemma 2.4: LetM be a �eld and let t be transcendental overM . ThenM is separablyHilbertian if and only if the following condition holds:(*) Given an absolutely irreducible polynomial f 2 M [T;X], monic in X, and a�nite Galois extension M 0 of M such that f(t;X) is Galois over M 0(t), there arein�nitely many a 2M such that f(a;X) 2M [X] is irreducible over M 0.Proof: The condition is necessary, by [FJ, Corollary 11.7].To show that it is su�cient, let g(T;Z) 2 M [T;Z] be monic and separable in Zand irreducible overM(T ). Let z be a root of g(t; Z) in some algebraic closure ofM(t).Each a 2M de�nes a specialization t! a that extends to anM-place ':M(t; z) !Ms.There is 0 6= h(T ) 2M [T ] such thatM [t; z; h(t)�1] is the integral closure ofM [t; h(t)�1]in M(t; z) [FJ, Lemma 5.3]. Thus for all a's, except for the �nitely many zeros of h,the residue �eld extension of M(t; z)=M(t) with respect to ' is M('(z))=M . We havedegZ g(t; Z) = [M(t; z) :M(t)] and '(z) is a root of g(a;Z). It therefore su�ces to �ndin�nitely many a 2 M for which the extension M(t; z)=M(t) is inert, i.e., the residue�eld degree is the degree of the extension.By Lemma 2.2 there is a a �nite M-rationally split Galois extension F=M(t) suchthat z 2 F . Thus there is a Galois extension M 0=M and a regular extension E=M suchthat M(t) � E and F = EM 0. Let f(t;X) be the irreducible polynomial of a primitiveelement x for E=M(t). Then f is absolutely irreducible and f(t;X) is Galois overM 0(t).By (*) there exist �nitely many a 2 M such that f(a;X) 2 M [X] is irreducibleover M 0. For each such a let ': F ! Ms [ f1g extend t ! a; then '(x) is of degree[F : M 0(t)] � [M 0 : M ] = [F : M(t)] over M . Hence F=M(t) is inert with respect to '.Therefore so is the subextension M(t; z)=M(t).
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3. Twisted wreath products over �elds of rational functions and specializa-tionsWe now realize the twisted wreath products of Section 1 over �elds of rational functionsin several variables.Lemma 3.1: Let L=K be a �nite Galois extension, let K 0 be an intermediate �eld ofL=K, and let c1; : : : ; cn be a basis of K 0 over K. Let f 2 K 0[T;X] be an absolutelyirreducible polynomial, monic in X and Galois over L(T ), and let A = G(f; L(T )).Let t = (t1; : : : ; tn) be an n-tuple of algebraically independent elements over K 0. PutG = G(L=K) = G(L(t)=K(t)) and G0 = G(L=K 0) = G(L(t)=K 0(t)). Then G0 acts on Aand there exist �elds F , F̂ such that(a) K(t), K 0(t); L(t); F; F̂ realize AwrG0 G and F̂ is regular over L.(b) F = L(t)(z), where irr(z; L(t)) = f(Pni=1 citi; Z) 2 K 0[t; Z].Proof: Fix a root x of f(T;X) 2 K 0[T ][X] in an algebraic closure of L(T ). Identify G0with G(L(T; x)=K 0(T; x)) to de�ne the action on A = G(L(T; x)=L(T )) (Remark 2.3).Let � be the family of cosets G0� of G0 in G. For C 2 � and a 2 K 0 let aC denotea�, where � 2 C; also, let fC denote f� , where � 2 C.L(uC0 ; zC0 j C 0 6= C) L(u)(zC0 j C 0 6= C) A L(uC0 ; zC0 j C 0 2 �)= F̂L(uC0j C 0 6= C) L(t) = L(u) = Q A L(u; zC)= FCL L(uC) A L(uC ; zC)K 0C K 0C(uC) K 0C(uC; zC)10



Choose a set fuCj C 2 �g of algebraically independent elements over K andput Q = L(uCj C 2 �). For each C 2 � let zC be a root of fC(uC; Z) in a �xedalgebraic closure of Q and let FC = Q(zC ). As fC is absolutely irreducible, the �eldK 0C(uC; zC) is a regular extension of K 0C . Hence L(uC; zC) is a regular extension ofL. As (L(uC ; zC)j C 2 �) are free over L, they are linearly disjoint over L, and theircompositum F̂ = L(uC; zC j C 2 �) = Q(zC j C 2 �) is a regular extension of L [FJ,p. 112]. It follows [FJ, Lemma 9.3] that any two �elds in the above diagram are linearlydisjoint over the �eld that lies in the lower left corner of the rectangle determined bythem. In particular, FC=Q is a Galois extension with Galois group isomorphic to A,the set of all FC is linearly disjoint over Q, and F̂ is their compositum. Therefore F̂=Qis Galois.Let t01; : : : ; t0n be the unique solution of the following system of linear equations:(1) T1cC1 + � � � + TncCn = uC; C 2 �:As the matrix (cCi ) 2 Mn(L) is invertible [L, p. 212], L(t01; : : : ; t0n) = L(uCj C 2 �) = Q.Since n is the transcendence degree of Q over L, the elements t01; : : : ; t0n are algebraicallyindependent over L and hence also over K. So we may assume that t0i = ti, for i =1; : : : ; n. Hence Q = L(t).Extend the action of G on L to an action on F̂ in a natural way: (uC)� = uC� and(zC)� = zC� . In particular, � permutes the equations of the system (1). As (t�1 ; : : : ; t�n)is also a solution of (1), it coincides with (t1; : : : ; tn). Thus � �xes t1; : : : ; tn. It followsthat the action of G on Q = L(t) is the unique extension of the given action on L that�xes t1; : : : ; tn. In particular, K(t) is the �xed �eld of G in Q.Let F = FG01. Then FC = F � for each � 2 C. Therefore F̂ = Q� F �, where �runs through a system of representatives of �.As F̂ =L(t) and L(t)=K(t) are Galois, and every � 2 G = G(L(t)=K(t)) liftsto an automorphism of F̂ , we obtain that F̂ =K(t) is Galois. Similarly, F=L(t) andL(t)=K 0(t) are Galois, and every � 2 G0 = G(L(t)=K 0(t)) lifts to an automorphism ofF , so F=K 0(t) is Galois.Let K̂ be the �xed �eld of G in F̂ . Then K̂ \L(t) = K(t), the �xed �eld of G in11



L(t), and K̂L(t) = F̂ . By Remark 1.2, K(t); K 0(t); L(t); F; F̂ realize AwrG0 G.Put u = uG01 and z = zG01. By (1), u =Pni=1 citi 2 K 0(t). Now, f(u; z) = 0 andf(u;Z) is irreducible over K 0(u). As Q = L(u) and K 0(u; z) are linearly disjoint overK 0(u), we get that f(u;Z) is irreducible over Q = L(t). This shows (b).We now apply the above construction to prove that certain separable extensionsof separably Hilbertian �elds are separably Hilbertian. Recall [FJ, Proposition 11.13and Proposition 11.16] that a �eld is Hilbertian if and only if it is separably Hilbertianand either imperfect or of characteristic 0. Therefore in the rest of this section we couldreplace `separably Hilbertian' by `Hilbertian'.Theorem 3.2: LetM be a separable algebraic extension of a separably Hilbertian �eldK. Suppose that for every � 2M and every � 2Ms there exist:(i) a �nite Galois extension L of K that contains �; let G = G(L=K);(ii) a �eld K 0 such that K � K 0 �M \ L and K 0 contains �; let G0 = G(L=K 0);(iii) a Galois extension N of K that contains both M and L,such that for every �nite nontrivial group A0 and every action of G0 on A0 there is norealization K;K 0; L; F0; F̂0 of A0 wrG0 G with F̂0 � N .Then M is separably Hilbertian.Proof:Part A: Preliminaries. We will apply the criterion of Lemma 2.4. So let f 2M [T;X]be an absolutely irreducible polynomial, monic in X, and let M 0=M be a �nite Galoisextension such that f(T;X) is Galois over M 0(T ), We have to show that there arein�nitely many a 2 M such that f(a;X) 2 M [X] is irreducible over M 0. Let A =G(f;M 0(T )) = G(f;Ms(T )).There is � 2 M such that f 2 K(�)[T;X] and there is � 2 Ms such that M 0 �M(�) and f(T;X) is Galois over K(�)(T ). For these �; � let K 0, L, and N be as in (i)- (iii). Then f 2 K 0[T;X] and f(T;X) is Galois over L(T ).As K 0 � M and M 0 � N , it su�ces to �nd in�nitely many a 2 K 0 such thatf(a;X) is irreducible over N . 12



Part B: Specialization of the wreath product. Let c1; : : : ; cn be a basis of K 0 over K.By Lemma 3.1 there are �elds P and P̂ such that(a) K(t);K 0(t); L(t); P; P̂ realize AwrG0 G (with respect to some action of G0 on A).(b) P = L(t)(x), where irr(x;L(t)) = f(Pni=1 citi;X).As K is separably Hilbertian, for in�nitely many n-tuples b = (b1; : : : ; bn) 2 Knthe specialization t 7! b gives an L-place of P̂ onto a Galois extension F̂ of K withgroup isomorphic to G(P̂ =K(t)), that is, there are �elds F and F̂ such that(a0) K;K 0; L; F; F̂ realize AwrG0 G (with respect to some action of G0 on A).(b0) F = L(y), where irr(y; L) = f(Pni=1 cibi;X).For simplicity, �x such b and let a =Pni=1 cibi. Then a 2 K 0, so f(a;X) 2 K 0[X].Part C: L = N \ F . Indeed, let F0 = N \ F . This is a Galois extension of K 0. LetA0 = G(F0=L). By Remark 1.3 there is a Galois extension F̂0 of K such that(a00) K;K 0; L; F0; F̂0 realize A0 wrG0 G (with respect to some action of G0 on A0).In particular, F̂0 is the Galois closure of F0 over K. As F0 � N , and N=K is Galois,we have F̂0 � N . By assumption, this is possible only if A0 = 1, that is, if L = N \ F .Part D: Conclusion. By Part B, f(a; y) = 0. By Part C, [N(y) : N ] = [NF : N ] =[F : L] = [L(y) : L]. Thus f(a;X) = irr(y;N). In particular, f(a;X) is irreducible overN .
13



4. ApplicationsOur main result is the following theorem, that could be considered a generalization ofWeissauer's Theorem [W, Satz 9.7] on one hand and [HJ, Theorem 2.4] on the otherhand. It answers [J1, Problem 2.3(a)].Theorem 4.1: Let K be a Hilbertian �eld and let M1;M2 be two Galois extensionsof K. Let M be an intermediate �eld of M1M2=K such that M 6� M1 and M 6� M2.Then M is Hilbertian.Proof: By [FJ, Corollary 11.7] we may assume that [M : K] =1.Part A: We may assume that(a) either M1 \M2 = K or [M : (M1 \M)] > 2.Indeed, we cannot have [M : (M1 \ M)] = 1, since M 6� M1. Suppose that[M : (M1 \M)] = 2. Then there is d 2 M1 \M such that M = (M1 \M)(�), whereeither �2� � = d (in characteristic 2) or �2 = d (otherwise). Observe that M1 and K(�)are Galois extensions of K(d), their intersection is K(d), and K(d) � M � M1K(�).Furthermore, M 6� K(�), since M=K is in�nite. Replace K by K(d) and M2 by K(�)to achieve (a).Part B: Construction of N and L. We apply the criterion of Theorem 3.2. Let � 2Mand � 2 Ms. Let L0 be the Galois closure of K(�; �) over K, and let N = L0M1M2.Then N=K is Galois, and G(N=M1);G(N=M2) / G(N=K).Choose a �nite Galois extension L=K such that L0 � L � N , let G = G(L=K),and let ': G(N=K) ! G be the restriction map. Let G1, G2, and G0 be the images inG of G(N=M1), G(N=M2), and G(N=M), respectively, under '. Put K 0 =M \ L; then� 2 K 0 and G0 = G(L=K 0). Then(b) G1; G2 / G.Condition M 6� Mi means that G(N=Mi) 6� G(N=M), for i = 1; 2. Thus if L is su�-ciently large (that is, if G is a su�ciently large �nite quotient of G(N=K)) then(c) G1; G2 6� G0.Similarly, [M : K] =1 implies, with L su�ciently large, that(d) (G : G0) > 2. 14



Finally, (a) implies, with L su�ciently large, that(e) either G1G2 = G or (G1G0 : G0) > 2.In particular,(e0) either G2 6� G1G0 or (G1G0 : G0) > 2.Indeed, otherwise G2 � G1G0 and (G1G0 : G0) � 2. By (e), G1G2 = G, and thereforeG = G1G0. Hence, by (d), (G1G0 : G0) > 2, a contradiction.Part C: A realization. Let A 6= 1 be a �nite group on which G0 acts, and let H =AwrG0 G. By Theorem 3.2 it su�ces to show that there is no realization K;K 0; L; F; F̂of H with F̂ � N .Suppose there is such a realization. Identify H with G(F̂ =K) so that the restrictionmap G(F̂ =K)! G(L=K) coincides with the projection �: H ! G. Then ��resF̂ = resL,where resL : G(N=K)! G and resF̂ : G(N=K)! H are the restriction maps.For i = 1; 2 let Hi = resF̂ (G(N=Mi)). Then Hi /H and �(Hi) = resL(G(N=Mi)) =Gi. We claim that there are h1 2 H1\Ker� and h2 2 H2 such that [h1; h2] 6= 1. Indeed,if the �rst statement of (e0) holds, then there exists h2 2 H2 such that �(h2) =2 G1G0.The claim then follows from (c) and Lemma 1.4(b) with h1 = f . If the second statmentof (e0) holds, then by (c) there exists h2 2 H2 such that �(h2) =2 G0. The claim thenfollows from Lemma 1.4(a) with h1 = f .For i = 1; 2 choose i 2 G(N=Mi) such that resF̂ (i) = hi. Then resL 1 = �(h1) =1 and(1) [1; 2] 6= 1:However, as G(M1M2=M1 \M2) = G(M1M2=M1)�G(M1M2=M2), the subgroupsG(M1M2=M1) and G(M1M2=M2) of G(M1M2=k) commute. ThereforeresM1M2 [1; 2] = [resM1M2 1; resM1M2 2] = 1:Furthermore, resL[1; 2] = [resL 1; resL 2] = [1; resL 2] = 1:As N = (M1M2)L, it follows that [1; 2] = 1, a contradiction to (1).15



Put M̂ = M1M2 in the preceding theorem. The main ingredient in the proof isthe fact that there are two normal subgroups G(M̂=M1) and G(M̂=M2) of G(M̂=K) thatcommute. That is, for every 1 2 G(M̂=M1) and every 2 2 G(M̂=K) we have 21 = 1.However, we can considerably weaken this condition:An automorphism � of a pro�nite group G is said to be families preserving if,for all g 2 G, the closed subgroup hg�i generated by g� is conjugate in G to hgi [JR].In particular, every inner automorphism is families preserving.Theorem 4.2: Let K be a Hilbertian �eld and let M1 � M̂ be two Galois extensionsof K. Assume that there is 2 2 G(M̂=K)rG(M̂=M1) such that conjugation by 2induces a families preserving automorphism of G(M̂=M1). Let M be an intermediate�eld of M̂=K such that M 6� M1 and M1 \M 6� M1(2), the �xed �eld of 2 in M1.Then M is Hilbertian. In particular, M̂ is Hilbertian.M1(2) M1 M̂K M1 \M MProof: We apply the criterion of Theorem 2.2. Let � 2 M and � 2 Ms. Let L0be the Galois closure of K(�; �) over K, and let N = L0M̂ . Then N=K is Galois,G(N=M1) / G(N=K), and G(N=M1) 6� G(N=M). Extend 2 to �2 2 G(N=K). Then�2 =2 G(N=M1 \M) = G(N=M1)G(N=M).Let L be a �nite Galois extension L=K such that L0 � L � N , let G = G(L=K),and let ': G(N=K) ! G be the restriction map. Let G1, �2, and G0 be the images inG of G(N=M1), �2, and G(N=M), respectively, under '. Put K 0 =M \ L; then � 2 K 0and G0 = G(L=K 0). If L is su�ciently large then G1 6� G0 and �2 =2 G1G0.Claim: For each �1 2 G(N=M1) such that resL �1 = 1 there is � 2 G(N=M1) suchthat ��21 2 h��1i. Indeed, by assumption there is � 2 G(N=M1) such that resM̂ ��21 2hresM̂ ��1i. Clearly resL ��21 = 1 = resL ��1. As N = LM̂ , the claim follows.Let A 6= 1 be a �nite group on which G0 acts, let H = AwrG0 G, and supposethere is a realization K;K 0; L; F; F̂ of H with F̂ � N . As in the preceding theorem16



identify H with G(F̂=K) and the restriction G(F̂=K) ! G(L=K) with the projection�: H ! G.Let H1 = resF̂ (G(N=M1)) and h2 = resF̂ (�2). Then H1 / H, �(H1) = G1, and�(h2) = �2. By the above Claim, for each f 2 H1 \ Ker� there is h0 2 H1 such thatfh2 2 hfh0 i. This contradicts Lemma 1.4(b).Corollary 4.3: Let M1 be a proper Galois extension of a Hilbertian �eld K. Thenits absolute Galois group G(M1) has outer automorphisms.Proof: Put M = M̂ = Ks in Theorem 4.2 and let 2 2 G(K)rG(M1). Then 2induces an outer automorphism of G(M1). Otherwise, by Theorem 4.2, M = Ks isHilbertian, a contradiction.Remark 4.4: Examples of �elds with whose absolute Galois group has no outer auto-morphisms. The famous theorem of Ikeda, Iwasawa, Uchida [J2, Section 8.5] statesthat each automorphism of G(Q) is inner.More generally, let L be a number �eld that is Galois over no proper sub�eld(e.g., L = Q( 3p2)). Let � be an automorphism of G(L). By a theorem of Uchida andIwasawa [J2, Section 8.5] � is of the form � 7! ��1��, where � 2 G(Q). In particular,G(L)� = G(L), and hence L� = L. As L is Galois over the �xed �eld L(�) of � in L,we have L(�) = L. Thus � 2 G(L), whence � is inner.Thus by Corollary 4.3, G(L) 6�= G(M1) for each proper Galois extension M1 of Q.We now show how cases (F1){F(6) from the Introduction can be deduced fromTheorems 3.2 and 3.3. First, we slightly generalize (F2):Proposition 4.5 (cf. [FJ, Proposition 15.5]): Let M be a separable extension of aHilbertian �eld K. Let M̂ be its Galois closure over K and assume that G(M̂=K) is�nitely generated. Then M is Hilbertian.Proof: Apply the criterion of Theorem 3.2. Let � 2 M and � 2 Ms. Let L0 be theGalois closure of K(�; �) over K, and let N = L0M̂ . Then N=K is Galois and G(N=K)17



is �nitely generated. Let K 0 = K(�) and let A0 be a non-trivial �nite group. Putn = [K 0 : K] and m = jA0j > 1.As G(N=K) is �nitely generated (and hence small), there are only �nitely manyextensions of K of degree at most [K 0 : K] � jA0j contained in N . Their compositum Lis a �nite Galois extension of K and K � K 0 � L � N .Let G = G(L=K) and G0 = G(L=K 0), and let G0 act on A0. Suppose that there are�elds F 0; F; F̂ � N such that K;K 0; L; F; F̂ realize A0 wrG0 G overK. By Remark 1.2(e)there is a �eld F 0 such that L \ F 0 = K 0 and F = LF 0. Then [F 0 : K 0] = jA0j, andhence [F 0 : K] = [K 0 : K] � jA0j, whence F 0 � L. A contradiction to L\F 0 = K 0.Proposition 4.5 also implies case (F1). Cases (F3) and (F5) follow from Theo-rem 4.1. So does (F6): For each prime p let Kp be the maximal pro-p-extension of K.If p1; p2j[M : K], then M � QpKp = M1M2, where M1 = Kp1 and M = Qp6=p1Kp,but M 6�M1;M2.Case (F4) can be deduced from (F2) and (F3) [FJ, Proposition 15.6], but alsodirectly from Theorem 3.2 (in the spirit of the original proof of Kuyk [Ku] that useswreath products). The essential point is that A0 wrG0 G is not commutative, if (G :G0) > 2. This follows, e.g., from Lemma 1.4(a) with G1 = G.Finally, we remark that the peculiar case (F7) could be deduced from a slightgeneralization of Theorem 3.3. However, the original proof [JL, Proposition 5.2] is morestraightforward.
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