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Introduction

If G is a free product of a family {A;};.; of discrete groups then a subgroup H of
G is the free product of a free group F and (A7 N H), where o € 3(i), i € I, and
(i) is a set of representatives of A;\G/H. This is the content of the Kurosh
subgroup theorem (KST). Is a similar result true for closed subgroups of free
(profinite) products of profinite groups? (Say, with F projective instead of free.)
An answer to this question requires an appropriate definition of a free product
over an infinite family of groups. Such a definition has been proposed, by
Gildenhuys and Ribes in [3], for groups indexed by compact topological spaces so
that the factors are locally equal to each other, except for neighbourhoods of one
distinguished point. In spite of the fact that the KST holds for open subgroups of
such free products, this definition seems to be too restrictive: if H is a closed
subgroup of the free product then the groups A7 N H, with 0 € G, i € I, need not
be ‘locally equal’ to each other (cf. Example 2.4).
We propose a very natural generalization of the free product with finitely many
factors: an inverse limit of such free products (over an inverse system with
mappings that send respective factors again into factors of a free product). This,
essentially, also includes the definition of [3].
We do not know whether the analogue of the KST holds for open subgroups of
these free products. Nevertheless, if we restrict ourselves to separable groups, we
give a satisfactory account of the closed subgroups of the free products.
1. The analogue of the KST does not hold, in general, for closed subgroups of
free products (Example 5.5).
2. We define for a profinite group G the notion of projectivity relative to a
given family X of its subgroups (Definition 4.2). We show:
2a. if G is a free product of the groups in X, and H is a closed subgroup of G,
then H is projective relative to {T°N H| Te X, 0 € G};

2b. conversely, if H is separable and projective relative to ¥) then H is a closed
subgroup of a free product G of a family X of subgroups such that
P={I°NH| TeX, oceG}.

3. Separable relative projective pro-p-groups are in fact free products
(Corollary 9.6).

Hence we can answer a question of Lubotzky [13, 2.10]:

4, The KST holds for separable closed subgroups of free pro-p-products.
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The desired extension of these results to inseparable groups remains an open
question.

The main tool to obtain the above theorems is the notion of étale structure
(Definition 6.1). It is a (not immediate) generalization of the Artin—Schreier
structures of [6] and the I'-structures of [7] on one hand and of the étale spaces of
[3] on the other hand.

Notation. Unless said to be otherwise, groups are profinite groups, subgroups
are closed, and maps are continuous. We write resp @ for a restriction of a map ¢
to a subset I' of the domain of ®; A U B is the disjoint union of A and B, and
A * B is the free profinite product of the groups A and B.

Acknowledgement. T am indebted to W.-D. Geyer for many discussions on the
subject of this paper and for his helpful suggestions.

1. Etale spaces

Let E be a Boolean topological space, i.e. an inverse limit of finite discrete
spaces. The family of closed subsets of E is usually denoted by exp(E). If
E = lim, E; with the E; finite, then exp(E) is equal, as a set, to liﬂ,- exp (E;). This

-—

induces a Boolean space topology on exp(E). Explicitly, the clopen subsets are of
the form

{Seexp(E)| {i| SNU,#D} e},

where E =)L, U, is a partition of E (that is, Uy, ..., U, are non-empty clopen
subsets of E), and U is a family of subsets of {1, ..., n}.

ExamprLE 1.1. Let G be a profinite group. Then the family Subg(G) of all
closed subgroups of G is closed in exp(G), since Subg(G) = liESubg(G /N), as N

runs through the open normal subgroups of G. For the same reason the family of
closed subsets of G that (topologically) generate G is also closed in exp(G).

Lemma 1.2, Let X c exp(E) be closed. Then F ={_Js.x S is closed in E.

Proof. Write E as lim, E; with E;, finite. Then X = lim, X, where X; is the image
«— —

of X in exp(E;). Obviously F = liEiE’ where F, = xS c E;, and hence it is
closed.

We note that a continuous map of Boolean spaces ¢: E—F is closed and
therefore induces a map @: exp(E)— exp(F) defined by S+~ @(S), which is
continuous.

A profinite group I' may be considered as a 4-tuple (T, M, [, ¢), where T is a
Boolean space, M is a closed subset of I' X I' X I that represents the multiplica-
tion relation on I', I < I' X I represents the inverse relation, and e € I’ is the unit
element of I, such that certain obvious conditions are satisfied (for example, M
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represents a function I' X I'— T, the multiplication is associative, etc.). More
generally, we make the following definition:

DeriniTioN 1.3. Let E be a Boolean space and write
G(E)=exp(E) Xexp(E X E X E) X exp(E X E) X E.

A group in Eis a 4-tuple (I, M, I, e) e G(E) such that M c T XI'XT, IcT XT,
eel, and (T, M, I, ¢) is a profinite group.

For two groups in E we write (I''M,Le)s(I",M', I',e") if TcI’,
M=M'NIXTXT), I=I'0N([XT), and ¢’ =e.

Of course, we shall abbreviate (I', M, [, e) by I', and it should be clear from the
context whether we mean I'e G(E) or I'c E. For instance, if H is a profinite
group then Subg(H) is a closed subset of G(H).

Note that a continuous map of Boolean spaces ¢: E— F induces, in an
obvious way, a continuous map ¢: G(E)— G(F) which has the following
property: if I' e G(E) is a group in E and @(T) is a group in F then the restriction
resr@: I'— @(I') of @ to T is an epimorphism of profinite groups. (Moreover, if
@: E— Fis injective and I' e G(E) is a group, then @(T) is a fortiori a group in
F)

We are now ready to define the object of this section. Let us agree that
whenever X (Y, ...) is a family of groups in a Boolean space then X' (Y’,...)
denotes the family of subgroups of the groups in X (Y, ...).

DerNITION 1.4. An Etale space is a pair (E, X), where E is a Boolean space
and X is a family of groups in E such that

(a) E =UJrxT (disjoint union),

(b) X' =Urex {I" € G(E)| I'" <T} is closed in G(E).

We associate with every étale space (E, X) two surjective functions y: X' — X
and m: E— X defined by

pYy=T ifI'sT and =n@)=T ifael.

LEMMA 1.5. The maps p and m define the same quotient topology on the set X,
and X is a Boolean space in this topology.

Proof. The map «: X'—E given by I'' =1 (the unit element of ') is
continuous: it is the restriction of the projection G(E)— E to X'. By Definition
1.4(b), its image E;={1r| Te X} = {1 | " € X'} is closed in E. By Definition
1.4(a), the restriction =,;: E;— X of & to E, is bijective. There exists a
commutative diagram

SN

El '*—)X

Now 1 is closed, and hence is a quotient map. If u is also a quotient map then
7t; must be a homeomorphism. Therefore X is Boolean in the quotient topology
induced from X' by pu. On the other hand, & is continuous, and hence is closed
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and a quotient map. Indeed, let V = X be closed, that is, u~'(V)c G(E) is
closed; by Lemma 1.2,
a(Vy=UJr= U r
rev Cep (V)
is closed.

From now on we mean by ‘the topology on X’ the above quotient topology,
forgetting the topology induced from G(E) (which need not be the same); the
latter will be the topology of X'.

Let us also agree that & and p will always denote the above defined maps, for
ambient étale spaces.

Before turning to examples and applications we complete the definition of the
category of étale spaces.

DEFINITION 1.6. A morphism of étale spaces ¢: (E, X)— (F, Y) is a continuous
map @: E— Fsuch that @(X') c Y'. Equivalently, for every e X thereis Ae Y
such that @(I') c A and resp ¢: T'— A is a homomorphism.

A morphism @ is an epimorphism if (X’)=Y’, that is, for every A € Y there
exists I' € X such that @(I') = A (but not necessarily ¢(I') e Y for all T € X!); in
particular @(E)=F.

A morphism @: (E, X)— A of an étale space (E, X) into a profinite group A is
a continuous map ¢: E— A such that resp ¢: - A is a homomorphism for
every I'e X.

Note that a morphism @: (E, X)— (F, Y) induces a continuous map ¢: X—Y
such that the following diagram commutes:

E-2, F

n’l l.n

XT*Y

1.7. Examples of étale spaces

A. Let X be a Boolean space and G a profinite group. Put E =X X G and for
every x € X define an embedding 6,: G— E by g—(x, g). The set of groups
{6.(G)| x € X} may be identified with X, and (E, X) is an étale space. Note that
m: E— X (cf. Lemma 1.5) is open.

A slight generalization may be obtained if we take E to be a disjoint union of
finitely many étale spaces of the above type.

B. (Gildenhuys and Ribes [3]) Let (X, *) be a pointed Boolean space and
{U;| i eI} a family of disjoint open subsets of X\ {*} that covers X\{*}. For
every i €l, let A, be a profinite group. Let E = (U;.; U; X A;,) U { *} be given the
following topology: the sets U; X A; (with the product topology) are open in E,
and for every open neighbourhood U c X of * let

{(x,a)eE| xeUNU,aecA;,iel}U{x}

be an open neighbourhood of * in E. One can show that £ is a Boolean space.
The set X may be identified with a set of groups in E: if x € U, for i €I, then
{x} X A, is a group in U, X A; as in Example A; the group { *} is trivial.
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(In fact, the étale space of [3] is the quotient space D of E obtained by
identification of the unit elements of I' e X with *. However, the map D— X
induced from m: E— X is then in general not continuous, contrary to [3, p.
311].)

C. Let (E=X X G, X) be as in Example A and let p: G— H be a continuous
homomorphism. Let X, be a closed subset of X. We define an equivalence
relation on E: (x,, g;) ~ (2, ) if and only if x; = x, € X; and p(g,) = p(g,). Let
F=F/~ and let p: E—F be the corresponding quotient map. Now F is a
Boolean space. Indeed, F has a basis consisting of the clopen subsets p(V X gN),
where V is clopen in X and N is an open normal subgroup of G such that
Ker p < N if V N X, #J; moreover, F is compact, since p is continuous and E is
compact. We may identify every x € X with the image of the group {x} X G in F.
Thus (F, X) is an étale space and p is a morphism of étale spaces.

D. Let (E, X) be an étale space and let I € X. Suppose that I is a subgroup of
a profinite group A. Write E; = E U A (identify I in E with its image in A) and let
X, ={A}U(X\{I'}). Then (E,, X,) is an étale space and the embedding £ — E,
gives rise to a morphism (E, X)— (E;, X;). The map n: E,— X, is in general not
open in this case.

Etale space (E, X) represents the notion of a ‘continuous’ family X of profinite
groups. Part (a) of Lemma 1.9 elucidates this feature. For its proof we need two
lemmas; the first one is a consequence of an easy compactness argument:

LemMA 1.8. Let ¢: E—F be a continuous map of Boolean spaces, and let
U c E be open and S < F closed such that ¢ ~'(S) < U. Then there exists a clopen
subset V of F such that Sc 'V and ¢~ (V) c U.

Lemma 1.9. Let E be a Boolean space and F a closed subset in E. Let
@o: F— A be a continuous map into a finite (discrete) space A. Then @ can be
extended to a continuous map ¢: E— A.

Proof. For every a € A the fibre F(a) = ¢, '(a) is clopen in F, and hence there
is a clopen E(a) in E such that E(a) N F = F(a). (Indeed, the clopen subsets of E
are a basis for its topology; hence their intersections with F are a basis for F. By
the compactness of F(a) there are clopen U, ..., U, in E such that

F(a) = (UyNF)U - U (U, N F).

Put E(a)=U,U---UU,.) Without loss of generality, we may assume that
E(a) N E(b) = for a # b; otherwise replace E(a) by E(a)\U,, E(b). Now fix
ay€ A and define ¢ as follows:

@(E(a))=a forallaeA and (p(E\ J E(a)) = qay.
aeA
Clearly, ¢ is continuous.

LemMma 1.10. Let (E, X) be an étale space. Let Toe X and let @y Ty— A be a
continuous homomorphism into a finite group A. Then

(a) @q can be extended to a morphism @: (E, X)— A,

(b) if @, ¢’ E—> A are two continuous extensions of @, then there exists a
clopen neighbourhood V < X of Ty such that resy ¢ =res;- @' for every Te V.
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Proof. (a) First extend @, to a continuous map ¢: E— A (Lemma 1.9). Let
X' = {I'eGE)| T'sT)
TeX

and let y: X'— G(A) denote the restriction to X’ of the map G(E)— G(A)
induced by @. The set u~'(I'y) is closed in X', and v maps it into a discrete space
G(A), whence V' =y~ (¢ (u~'(Ty))) is open in X'. As u~'(Ty) c V', by Lemma
1.8 there exists a clopen V < X such that [ye V and u (V)< V'. If T eV then
e V'; that is, there is I'" <T, such that y(I') = y(I") in G(A). But y(I") is a
group, since @, is a homomorphism, so resy ¢: I'— A is a homomorphism. Now
without loss of generality we may assume that ¢ has the value 1 on the clopen set
a Y (X\V), thatis, resr ¢ =1 for all e X\ V.
(b) The set

U=Ule ' @N g @)

is clopen in E, and 77 '(T))=T,cU. By Lemma 1.8, there is an open
neighbourhood V ¢ X of Iy such that #7'(V) c U. If T'e V then T ¢ U; obviously
resy @ =resy @', and hence our claim follows.

It is quite straightforward to show that an inverse limit of étale spaces is an
étale space. Conversely, we have:

Prorosition 1.11. Ar étale space is a limit of an inverse system of finite étale
spaces with epimorphisms.

Proof. Let (E, X) be an étale space and let F = {U,, ..., U,,} be a partition of
E. Define @p: E—F by @g(a)=U, if ae U, Call the partition F étale if the
induced map G(E)— G(F) maps X' onto a set Y’ of groups in F and
F=Jaever A, where Y(F) is the set of maximal elements of Y’. In this case
(F, Y(F)) is an étale space and ¢;: (E, X)— (F, Y(F)) is an epimorphism.

If G is an étale partition of E finer than F then there exists an obvious
epimorphism @g r (G, Y(G))— (F, Y(F)) such that @z=@g;r° @c. In this
manner the set of étale partitions {F} is an inverse system of finite étale spaces
with epimorphisms. The maps @, induce an epimorphism onto its inverse limit.
We now have to show that it is an isomorphism, that is:

Claim. For every partition {U,, ..., U,,} of E there is a finer étale one.

LetI' € X and let ¢r: I'>A = A(T') be a continuous epimorphism onto a finite
group A, such that the partition I'/Ker grof l'isfiner than (TN U, # | 1<i<m).
By Lemma 1.10(a) there exists a clopen V = V(I') = X such that Te V and ¢r
extends to a continuous surjection

or: U=a (V)= A

such that resp gt I'— A is a homomorphism for all ' € V. By Lemma 1.10(b)
we may assume that the partition of U into the fibres of ¢ is finer than
{UNU;| 1<si<m).

The covering {V(I')| I € X} has a finite subcovering. The intersections of its
elements constitute a partition {V, ..., V,} of X, and for every 1=<j=<n there
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exists a continuous map @;: 7 '(V))—A; into a finite group A, such that
resy ¢;: I'— A; i1s a homomorphism for every I' e V,, and the partition

F={g;'(a)| 1<sj<n,aeA}

is finer than {U,, ..., U,}.

If for every 1 <j=<n there is I" € V; such that ¢;(T") = A;, then we have finished:
we identify F with the set UJ\_1 4; and let Y =Y(F)={A,, ..., A,}. The maps
@1, .., @, define an epimorphism ¢: (E, X)— (F, Y), that is, F is étale.

If, however, say, @,(T') # A, for all T € V; then we proceed by induction on |4,]
in the following way. Without loss of generality V(') c V; for every I'e V}, and
@r=resy ¢, with A(T') <A;. The covering {V(I)| TeV,} of V; has a finite
subcovering. This gives rise to a partition {Vyy, ..., Vy;} of V; with maps
Qu: T (V)= Ay <A, for k=1,...,1. We replace {Vy,...,V,} by
{Vi1, <., Vi, V3, ..., V,,} and construct F as above. Repeating this process finitely
many times we arrive at an €tale partition F.

2. Free products of profinite groups

We use the notion of étale space (Definitions 1.4 and 1.6) to define free
products.

DeriniTion 2.1 (cf. Gildenhuys and Ribes [3, §1]). Let (E, X) be an étale
space. The free product over (E, X) is a profinite group G with a morphism
®: (E, X)— G such that for every profinite group A and every morphism
Y. (E, X)— A there exists a unique continuous homomorphism «: G — A such
that

E—*d)G

) N
A

commutes.
Note that the definition does not change if we require that A be a finite group
(a standard limit argument).
The uniqueness of a free product is obvious. To construct it, let G? be the
discrete free product of the groups in X, and define f: E— G such that f(T)=T
and resr f is the identity map of I, for every I' € X. Let

N={N<G?| (G?:N)<x, f"(gN) is open in E, for every g € G%}
and write G = liﬂw G?/N. Put ®=icf, where i: G'— G is the canonical

completion map. It can be easily verified that ®: (E, X)— G is the free product.
We note that ®(E) (topologically) generates G.

Let (E, X) be the inverse limit of an inverse system of étale spaces (E,, X;),
where i € I, and let

(pi: (E) X)—)(E,, ‘Xt)) (p/'i: (E)) X;)_)(En Xx)’ for l,]EIJ 12])

be the corresponding maps. For every iel let ®;: (E, X;)— G; be the free
product over (E;, X;). By its universal property there exists for every j=i a
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unique homomorphism ¢;: G;— G, such that
.

E —4

(pjl

\
&

Dji

—

FE ——

@;

Q

commutes. Moreover, (G, ;) is an inverse system. Let G be its limit with the
maps @;;: G— G;. Then there is a unique ®: (E, X)— G such that @; o ® =
@, o qp; foreveryiel

It is not difficult to see that ®: (E, X)— G is a free product. To this end just
note that every morphism vy: (E, X)— A into a finite group A necessarily factors
through some ¢;: (E, X)— (E;, X;). Furthermore, ®(E) generates (topologi-
cally) G, since ®;(E;) generates G, for each i € 1.

We formulate this as follows:

Lemma 2.2. Inverse limits of free products are free products. Conversely, every
free product is an inverse limit of free products over finite étale spaces, such that
the corresponding morphisms of étale spaces and the group-homomorphisms are
epimorphisms.

The second assertion follows from the first one by Proposition 1.11 and the
uniqueness of the free product.

LemMma 2.3. Let ®: (E, X)— G be a free product. Then
(a) resy ®: T'— G is @ monomorphism for every I' € X,
(b) if Ty, I, € X and o € G satisfy ®(I')° N ®(T,) # 1 then

I'h=r#1 and oe®(I)),

whence
®(I,)° = o(T,) = ().

Proof. By Lemma 2.2 and standard limit arguments we may assume that
(E, X) is finite.

(a) Let ' e X. An isomorphism 1y: I'- A of groups extends by Lemma 1.10 to
a morphism y: (E, X)— A. Thus there exists a homomorphism & which makes
(1) commute, whence resp @ is injective.

(b) If T}#T,, let A=T; XTI, and definc a morphism vy: (E, X)—>A by
resy,  =id(I;), for i=1, 2, and y(I')=1 for other TeX. Let a: G—A
complete (1). Then, since I';<|A,

o ° (I)(rl)a = Fil(a) =T, and a-° (I)(Fz) — r2-
But vy is injective on I,, hence o is injective on @(I;), whence

a(®(I,)° N ®(I',)) # 1, a contradiction.
If I, =T,, we can apply Theorem 2(iii) of Herfort and Ribes [10] to get

o e ®((Ty).

ExawmrLE 2.4. Our free products are more general than those of Gildenhuys
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and Ribes [3]. Consider a free product ®: (E, X)— G such that (some restriction
is necessary as every group is a free product of ‘itself’) all I' € X are finite. Write

V={TeX|I'=27/2Z) and U=JTIcE.

eV

Then by [10, Theorem 2] (which clearly holds in our case too)
P(U)°\{1} = U ®U)°\{1}
oeG

is the set of elements of order 2 in G not contained in a finite subgroup of G of
order greater than 2.

In the definition of [3, Example 1.7.C], V U {*} is closed in X, and hence
UU {*}is closed in E. Thus ®(U)= ®(U U {*}) is closed in G, whence ®(U)°
is closed in G.

On the other hand, let X =NU {x} be the one-point-compactification of N,
and let

E = (N X 2Z/4Z) U ({=} X Z/47)

be the subspace of the product space E; = X x Z/4Z. Write Z/47 as {0, 1,2, 3}.
Then ®(n, 2)— $(x, 2) as n— =, but O(x, 2) ¢ P(V)°. So ®(U)° is not closed.
Furthermore, the free product ®;: (E;, X)— G, over (E;, X) is a free product
in the sense of [3]. The embedding E — E, gives rise to an embedding G — G, (cf.
[9, Proposition 4]). So our free product is a subgroup of the free product in [3].

3. Inner free products

In the preceding section free products have been constructed for given families
of groups. We now wish to state when a given profinite group is a free product of
a given family of its subgroups. But, to be quite honest, we use this section as a
convenient setting to introduce certain constructions that are essential in the
sequel. For this reason our discussion will be slightly more general than is actually
necessary at this point.

DEeriNTION 3.1, A family X of closed subgroups of a profinite group G is said to
be separated if, for all distinct I';, I, e X,
(a) I),NI=1, and
(b) there exist subfamilies X,, ¥, X such that X=X, UX,, T;eX, and
Urex, I is closed in G, for i =1,2.
Note that (b) implies that D =_Jr.x [ is closed in G.

DerntrioN 3.2. Let X be a separated family of subgroups of G. We say that G
is a free product of the groups in X (briefly, free X-product) if the following
condition is satisfied.

Let y: Urex I—>A be a continuous map into a profinite group A such that
resp y: I'—> A is a homomorphism for every I' e X. Then y extends to a unique
continuous homomorphism y: G — A.

We shall see that this is essentially the definition of the free product from § 2.
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PropositioN 3.3. Let ®: (E, X)— G be a free product. Then G is a free
product of the groups in X = ®(X).

Proof. We first check that X is separated. Property 3.1(a) follows from Lemma
2.3. Furthermore, if I';, I'; € X are not equal, there are clopen V;, V, c X such
that X =V, UV, and T, eV, T, e V,. Put

X, =®(V)={®I)| TeV}, fori=1.2

By Lemma 1.2, E; = Ury, T is closed in E, whence (Uxcx, A = ®(E;) is closed in
G, for i = 1,2. This shows that part (b) of Definition 3.1 is satisfied.

The universal property of Definition 3.2 follows easily from the universal
property of the free product (Definition 2.1).

For the converse we have to work harder.

Let X be a separated family of subgroups of a profinite group G. Assume 1 ¢ X
(G is a free X-product if and only if G is a free (X\{1})-product).

As remarked, D =_r.z I is a Boolean space. Denote D' = D\{1} and define
amap p: D'—X by p(g)=T if and only if geI. The definition is good by
Definition 3.1(a). Put the quotient topology on X. A subset ¥) c X is clopen if and
only if p~'(9) is clopen in D', that is, both .y T and U g T are closed in D.
Therefore by Definition 3.1(b), X is a Hausdorff space possessing a basis
consisting of clopen sets. If G is separable then so is D’ and therefore also X.

LEMMA 3.4. Assume that X is closed under the conjugation in G (of course, this
is not the case if G is a free X-product).

(a) If ) is clopen in X and N is a closed subgroup of G then 9 =Jpen V¥ is
also clopen in X.

(b) The clopen subfamilies ¥) of X with open stabilizer (that is, those for which
there exists an open N<IG such that Y~ = 9)) form a basis of X.

Proof. (a) Let Dy =UrepT, Do =UrcxngT. Then UpgvT'= DY is closed in G
(it is the image of the compact D; X N under the conjugation action (g, ) —g° of
G on itself) and Urexpgry T = gen D4 is also closed in G.

(b) Let Te X and let X, c X be its clopen neighbourhood. Write ¥, =¥\%,.
Then D, =Urez, I is closed in G and T' ¢ D,, by Definition 3.1(a). Therefore if
N is a sufficiently small open normal subgroup of G then I' ¢ DY ={rcxy T, that
is, 'e X\ X This set is clopen by (a) and it is clearly contained in X,.

LemMA 3.5. The space X can be embedded as a dense subset of a Boolean space
X such that:
(a) if X is closed under the conjugation in G then the action of G on X extends
to a continuous action of G on X;
(b) if X is separable then so is X.

Proof. Fix a basis Z of X consisting of clopen subfamilies of X such that

(a) the elements of = have open stabilizers if X is closed under the conjugation
in G, and

(b) X is countable if X is a separable space.



276 DAN HARAN

Without loss of generality Z is a Boolean algebra (that is, if X,, X, ¢ X then
X,NX,, X\X, €Z) and, in Case (a), Z is closed under the conjugation in G.

A Z-partition of X is a finite collection of disjoint non-empty elements of =
whose union is X. The Z-partitions of X form an inverse system of finite quotient
spaces {X;};; of X in an obvious way (cf. [6, §1]). Let X=£i_rn_)(i. This is a

Boolean space and the quotient maps X — X; define a continuous map X— X, It
is an embedding, since Z is a basis of X, and the image of X is dense in X, by [15,
p. 19].

If £ is countable then [ is countable, whence X is separable. If X is closed
under the conjugation in G then X is closed under the action of G. Since £ is a
Boolean algebra and every element of 2 has only finitely many conjugates, one
easily sees that there is a cofinite set J </ of Z-partitions that are also
G-partitions (i.e. if jeJ and V € X; then V¥ € X, for all g € G). The conjugation
on X compatibly induces actions of G on X, for j €J, and these give rise to an
action of G on X, which extends the conjugation on X.

Lemma 3.6. Let X be as in Lemma 3.5. There exist an étale space (E, X) and a
morphism ®: (E, X)— G such that [T| =1 for every T € X\X, and the induced
map ®: X — Subg(G) maps X identicaily onto itself.

Proof. Let E = (Urex T) U (X\X) as a set. Define two maps
m: E»X and ®: E—>G
by
a(e)=T ifeeTeX and #a(e)=e ifeec X\ZX,

d(e) =eif e €T € X (that is, we identify the subset I" of E with the subgroup
T of Gvia®) and Ple)=1if e e X\X.

Endow E with the weakest topology in which both & and ® are continuous.
We claim that E is a Boolean space. Indeed, the maps &, ® define a unique
map ¢: E— X X G such that the following diagram commutes

E

b3 111’ o
XxXG

L/prl p%

X G

and the topology on E is precisely the weakest topology in which 1 is continuous.
So it is enough to show that y is injective and y(E) is closed in X X G. The
injectiveness follows as @ is injective on every e X. If (T, g) € X X G then
(T,g) e w(E) if and only if either geI' and T'e X or g=1 and I'¢ X. Assume
(T',g) ¢ Y(E); then g+1. If g ¢ D =|_r4 I then also for every g’ near to g we
have g’ ¢ D, since D is closed. In this case (I, g') ¢ w(E) forallT" e X. If ge D,
there is a unique I'; € X such that g eI';. As T, #T, there is a clopen V c X such
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that I'; € Vand I' ¢ V. The family X N V is clopen in X, whence U =, xnv A is
closed in G. Now g ¢ U, and hence if g’ is near to g then g'e U and g’ #1.
Therefore (I, g') ¢ w(E) for all I'" € V. This proves that y(E) is closed in X X G.

We may identify X (as a set) with a set of groups in E, by the definition of E.
(Of course, the topology of X need not be induced from that of G(E).) To show
that (E, X) is an étale space we have to verify that

X' ={I"eG(E)|3TeX, T'<I)

is closed in G(E). To this end let Z < G(X) denote the family of trivial subgroups
in the space X (that is, the family of points in X). Obviously, Z is closed in G(X).
But

X' ={T"e G(E)| =n(I") e Z and ®(I"') € Subg(G)},

whence X' is closed in G(E).

Prorosition 3.7. Let G be a free X-product. Then there exists a free product
®: (E, X)— G such that (X)U {1} =X U {1}.

Proof. Without loss of generality 1¢ X. Let ®: (E, X)— G be as in Lemma
3.6. Then ®(E)=D =r.xT', and ®: E— D is a quotient map, since it is
closed. Let y: (E, X)— A be a morphism into a profinite group A. Then there
exists a unique continuous map y': D—A such that p=®-y’. As
resp @: I'>®(I) is an isomorphism for every I'eX, we know that
resqny . ®(I)— A is a homomorphism. So by the universal property of G, y’
extends to a unique homomorphism ¥ G—A. Thus ®: (E, X)—G is a
free product.

As a by-product of the proof of Lemmas 3.5 and 3.6 we get:

COROLLARY 3.8. Let X be a separated family of subgroups of a profinite group
G. Then X' =Urcz {I" € Subg(G) | T" <T} is closed in Subg(G).

Proof. Without loss of generality we may assume that 1¢ X. If : (E, X)— G
is as in Lemma 3.6 then the induced continuous map ®: G(E)— G(G) maps
X' =Urex{T'€G(E)| T"<T} onto X'. Thus X' is closzd.

4. Relative projective groups

Let X be a family of subgroups of a profinite group G.

DeriNiTion 4.1. A finite  X-embedding problem (@: G— A, a: B— A,
Con(B)) for G consists of

(i) an epimorphism of finite groups a: B— A,
(ii) a continuous homomorphism ¢: G— A, and

(iii) a family Con(B) of subgroups of B closed under the inclusion and the
conjugation in B such that
(iv) for every T € X there is a continuous homomorphism yr: I'— B that
satisfies
acyr=respp and yYr(T)e Con(B).
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A solution of this problem is a continuous homomorphism ¥: G — B such that
acypy=¢ and Y(X)< Con(B).

DeriNiTioN 4.2, Let G be a profinite group and X a separated family
(Definition 3.1) of its subgroups closed under the conjugation in G. We say that
G is projective relative to X if every finite X-embedding problem for G has a
solution.

Obvious examples of relative projective groups are the free products:

ProrosiTioN 4.3. Let G be a free product of the groups in a family X of its
subgroups. Then G is projective relative to X° ={I'* | Te X, g€ G} and

1) Inr,#1 = TIy=TI, and oely,
forallT,, T'ye X and every 0 € G.

Proof. By Proposition 3.7 there exists a free product ®: (E, X)— G such that
®(X) U {1} =X U {1}. Therefore (1) follows from Lemma 2.3.

We check that X¢ is separated. Let T', I, e X and 0,, 0,€ G be such that
IT*# I35 By (1), I'T"NI3?=1, which verifies Definition 3.1(a). If I'; # T, then
there are X, X, < X such that X=X, UX,, I e X,, and D, =(px T is closed in
G, for i=1,2. By (1), X =X{ U X¢, and clearly Ur.x¢ = Df is closed in G,
for i=1,2. If Ty =T, then I';0, #T,0, (since I'!*#I5?). Hence there is an open
H <G such that T’y <H and Ho, # Ho,. A compactness argument shows that
there is a clopen neighbourhood 2} of I'y in X such that UryTcH. Let

=PH X, =9 X, =(X\?)C. Then ¥¢ =X, 0%, UX%;, by (1), T e ¥,
I'?e X,, and Ulres, I'is closed in G, for i = 1,2,3. This proves that X is separated.

Now let (¢: G—A, a: B— A, Con(B)) be a finite X“-embedding problem
for G. To solve it, it suffices to construct a morphism y: (E, X)— B such that
aoy=®c @ and y(T)e Con(B) for every I' e X, since then we can use the
universal property of the free product ®: (E, X)— G.

Let I'e X. By assumption there exist A eCon(B) and a homomorphism
Yr: T'— A such that o © = @ o res; ®. By Lemma 1.10 there exists a clopen
neighbourhood V of I' in X and a continuous extension y: UrevI"— A of Yr
such that res ¢: I'— A is a homomorphism and « ° resp- 9 = @ © resy @ for all
I e V. Using the compactness of X we may assume that V =X, that is, Y is
defined on E. Now v induces the required morphism vy: (E, X)— B.

The significance of relative projective groups will be apparent from the next
section. We conclude this section by a technical result, preceded by a lemma.

Lemma 4.5. Let G be projective relative to X. Let Te X and o€ G be such
that T°=T. If ¢: G— A is an epimorphism onto a finite group A such that
@(T) # 1 then there is I'' € X such that @(T') < @(I"’') and ¢(0) € p(I'').

Proof. Let {Ay, ..., A,} =Subg(A) be the set of maximal elements in
{p@)| TeX}. Itis closed under the conjugation in A and does not contain 1.
Denote B=A # A, #---% A, and let & B—> A be the epimorphism which is the
identity on A, A, ..., A,,.
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If teB\A; then ATNA;=1 (Herfort and Ribes [10, Theorem 2(iii)]).
Therefore there is an open N <18 such that AINNAN =1. By the compactness
of B\UJ; A; Ker & there exists an open N<!B such that, for every 1<i<n and
every T€ B,

&) ¢A; > ANNAN=1.

Put B=B/N, let a: B—>A be the map induced from &, and define
Con(B) ={(A;N/N)®| 1<i<n, b e B). Then, for all AeCon(B) and all b € B,

() A°NA#1 > a(b)ea(A).

Furthermore, if Con’(B) denotes the closure of Con(B) under the inclusion, then
(@, @, Con’(B)) is an X-embedding problem.

By assumption there exists a homomorphism y: G— B such that ¢ oy = ¢
and y(X) < Con'(B). Let A e Con(B) be such that y(I')<A. Then y(I')#1,
since @(I') = a(y (")) #1, whence

AYO N A (DY N (D) =yp@)#1.

By (2), ¢(0)=a° y(o)e a(A). On the other hand, ¢(I)=a° y(I') < a(A).
Since by our construction there is I'" € X such that a(A) = ¢(T"’), the lemma has
been proved.

LemMA 4.6. Let G be projective relative to X. Let T € X and 0 € G such that
IM=T. IfT#1 then o eT.

Proof. Since X is separated, it suffices to show the following: if ¥ =%, U %,
such that Te X, and D, = (Urex, I'" are closed in G, fori =1, 2, then o e D,. To
this end it is enough to show that o € D, N for all sufficiently small open N<|G.

Since I' ¢ D,, we may assume I' ¢ D,N. Let ¢: G— G/N be the quotient map.
If I'" € X, then I'"N < D, N, whence ¢(I) ¢ @(I""). It follows from Lemma 4.5 that
@(0) € (I'"), where I'' € X;. Therefore o € D,N.

5. The subgroup theorem

THEOREM 5.1. Let G be a profinite group, projective relative to a family X of
its subgroups, and let H be a closed subgroup of G. Then H is projective relative to
9P={TNH| IeX).

Proof. Clearly 2} is separated since X is separated. So we are left with finding a
solution to a finite ¥-embedding problem

(§)) (p: H—> A, a: B— A, Con(B))

Part A. Reduction to H open. As Ker ¢ is open in H, there exists an open
normal subgroup K, of G such that K,N H < Ker ¢. Extend ¢ to a homomorph-
ism @: HKy,— A with @(Ky) = 1.

Write X' =Urcx {I’ € Subg(G) | I’ <T} and let T € X’. By assumption there
exists y: I'N H— B such that ¢ (I' N H) € Con(B) and a ° 3 = resyny @. Choose
an open subgroup K of K, normal in G such that KN (I'N H)<Ker vy, and
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extend y to y: (TN H)K— B by letting w(K)=1. Then
ae Y =resermx® and y(I'NH)K)=y( NH)e Con(B).
There exists an open subgroup Hy of G such that
HsHr=HK and TNH-<(T'NH)X.
Let yr=resrny, ¥; then
a° Yr=respny, @ and Y(I'N Hp) e Con(B)

(since (I N Hy) < yw(T' N H)).
Now let I € X' be near to I' in Subg(G), that is, I'N =TN, where N is an
open normal subgroup of G contained in H-N K. Then

I'NHA<INNH=(TNH)N<(TNH)X
and Y =respny, Y satisfies
@ Yp =rt1espng. @ and Y (I" N H) e Con(B).

By the compaciness of X' (Corollary 3.8) there are open subgroups Hy, ..., H,
of G such that H< H,<HK,, fori=1, ..., n, and for every I' € X’ there exist i
with 1 <i<n and a homomorphism y: I'N H;— B such that

a° Yr=respny @ and Y (I'NH)e Con(B).

Let H'=()_,H. Then (resy ¢: H - A, a: B— A, Con(B)) is a finite
{TNH'| I e X}-embedding problem for H'. Clearly, a restriction of its solution
y': H'— B 10 H solves (1). So we may assume that H is open.

Part B. Wreath products. We follow the pattern of [1, §5]. Let Sy be the
symmetric group on the set  of the right cosets of H in G, and let g— g denote
the obvious homomorphism G — S5; let G be its image. To fix the notation, let C
be a profinite group, and C* the direct product of |Z| copies of C. As G acts on
C* by

fX(Hg)=f(Hgx™"), where feC% xgeG,
we raay form the semidirect product
GwC=G%C® (=G x C® as a topological space).

Letp: T— C_E be a continuous map from a subgroup I' of G into C*. It induces
amap p: T->GwCbyx—(x, p(x)). f xeI and Hg € Z, let py,(x) denote the
value of p(x): Z— C at Hg. The following characterization is trivial.

LemMA 5.2. The map p is a continuous homomorphism if and only if for all
HgeZand all x,z €T,

(2) pHg(xz) = png"(x)pHg(z)'

Fix t: Z— G such that r(Hg)e Hg for all HgeZX and #(H)=1. Define
A G— H* by
Ang(x) =t(Hgx )xt(Hg)™', where xe G, Hg e Z.

Then A induces by Lemma 5.2 a continuous homomorphism A: G- G w H (in
fact, it 1s an embedding).
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We may consider Gw — as a functor: a homomorphism of profinite groups
a: B— A induces a homomorphism Gwa: GwB— GwA defined in an ob-
vious way. Write HwC = {(%, f)e GwC| x € H}. This is a subgroup of GwC
and we note that

3 (Gwa) '(HwA)=HwB.
Finally, let m.: H w C— C be the epimorphism (%, f) — f(H).
From (1) we get a commutative diagram

,{(f resH/TIf\
GwH «—> HwH 7> H
4) G_W(pl res qual l‘P

GwA « HwA —» A

_GWV s G-w:%
GWBe——>SHWRB 7 B
Define
Con(H w B) = {S € Subg(H w B) | n5(S)e Con(B)},
Con(G w B)={S e Subg(GwB)| SN (Hw B) e Con(H w B), for all § € G}.

Both of these sets are closed under the inclusion and the conjugation in the

respective groups. )
Suppose we can find a continuous homomorphism y: G— G w B such that
(Gwa)oy=(Gweg)eAand y(X')c Con(G w B). Then

(Gwa)ey(H)=(Gwo) AH)<HWA,
and hence by (3),
y(H)<HwB.

Obviously y(¥)) < Con(H w B), whence 75 ° () c Con(B). We see that w5 © y
solves (1).

Thus we just have to show the following:

Part C. (Gw@)oA, Gwa, Con(Gw B)) is an X-embedding problem for G.
Clearly, G w « is surjective. For the balance of this proof, fix I'e X.

Lemma 5.3. Let Hg € Z. There exists a continuous map 0= 0y,: I'— B such
that

(5) O(xy) =0(x)68(y), forxel, ye TNHS,
(6) o B(x)=@oAy(x), forxeTl,
7 6(I"' N H®) € Con(B).

Assume that the lemma has been proved. Choose a system X, of repre-
sentatives of the T-orbits (that is, T-orbits) in £ and define y: T'— B by

(8) Vg (X) = Ope(xy)0,(y)™', where x,y e, HgeZ,.
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This is a good definition. Indeed, every element of = can be written as Hgy ™
with HgeZ, yel. If Hg,yi'=Hgy ' with Hg,eZ, y, €T, then Hg, =
Hg(y~'y)), and hence Hg, = Hg and y ™'y, e T N H%. By (5),

8(»)=6(y)0(y~'y)) and 6(xy)=6(xy)6(y~'y1),
whence

B(xy1)0(y) ™" = 6(xy)8(y)~".
As 8y, is continuous for every Hg € 3,, v is continuous. Let Hg eX, and
Xy, x5,y €. Then

eHg(xlxzy)eHg(y)_l = BHg(XIXZy)BHg(ny)‘IBHg(XZy) BHg(y)—l;

hence

ng)’_l(xlxz) = ngy' ‘x{’(xl)WHgy_l(xZ)'

By Lemma 5.2, v induces a homomorphism §: I'— G w B. It follows immedi-
ately from (6) that & © 9, (x) = @ © Ag,(x) for all x € T, and hence (G w a) o ¢ =
res(G w @) o A.

Finally, let Hg € %, and y € T. Put 6 = 6,;,. By (8) and (5),

Vigy-(TNH? ) = {8(xy)0(y)""| xeTNH® ™}
={6(y2)6(y)""| zeNH*}
= 6(T N H&)?») " € Con(B).

In other words, for every g € G,

Yr(l' N H®) € Con(B),
whence
mp($(TP¥ N HwB) = mp({(x*, (x)¥) | x €T, x* € H})
={Yue1(x)| x €T, x¥ e H}
= Y ue-(C'N HE) € Con(B).
This shows that ¢/(I') € Con(G w B).
Part D. Proof of Lemma 5.3. Without loss of generality, assume that
t(Hg) = g. Thus
9) Aug(y) =t(Hgy")yt(Hg)™' =gyg™" forall y e T N HE.
By assumption there exists a continuous homomorphism 6': I*'N H— B such
that & © 6’ =res @ and 6'(I*"'N H) € Con(B). Define 8: I'N H:— B by 6(y) =
6'(gyg™") for all y e ' N HE. Then by (9),
(10) a°0(y)=@o°Ay(y) forallyel'nHS,
and 8(T'N H&) = §'(I*"' N H) € Con(B).
Our task is to extend 6 to all of I'. To this end choose a closed system § of
representatives of the left cosets of TN H® in I (cf. [15, p. 31]). Everyx e has a

unique representation x = sy, where s € S, y € ' N H?; it is not difficult to see that
the maps x—s, x+—y are continuous. Fix, in addition, a section r;: A-— B of
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a: B— A. If x = sy as above, define

(11) 0(x) = (r ° @ © Ayye())6(y).

Then 6: I'— B is continuous. Furthermore (recall that Hgy™'=Hg for y e
' N H¥) by (10),

@ 0(x) = (@ ° Lug(SINP ° Arsg(¥)) = @ (Aazgy-1()Aug()) = @ © Apgglx).
Other requirements of Lemma 5.3 are obvious.

CoroLLARY 5.4. Let ®: (E, X)— G be a free product, and let H be a closed
subgroup of G. Then H is {®(T')¥* N H | T € X, g € G}-projective.

The following example shows that the subgroups of free products need not be
free products.

ExampLE 5.5. Let A and B be finitely generated profinite groups and assume
that they have open normal subgroups of index 2 and 3, respectively. Let
G = A * B and denote

# = {H € Subg(G) | A°,B*< H for some 0,7 € G}.

If H € % then the sets {0 e G| A°<H}, {re G| B*<H} are closed in G. We
deduce that # is closed under descending chains. By Zorn’s lemma it has a
minimal element, say H. Clearly H = (A° B*) for some 0,7 € G. We show that
H+#A=xB.

Indeed, if H=A + B then the isomorphisms A— A°, B— B” extend to an
isomorphism G— H [15, p. 68]. Thus, without loss of generality, assume that
H =G, that is, G is minimal in . But this is impossible: there exists an
epimorphism @: G— S, such that ¢(A) = ((12)), @(B)=((134)). Choose 1€ G
with @(7) = (1234). Then

@A, B7) = ((12), (134)"%9) = ((12), (241)) # Sy;

hence (A, B*) # G and (A, B®) € %, a contradiction.

If A=7Z/27Z and B=17/3Z then it is not difficult to strengthen the above
argument and show that H is a free product of no two non-trivial subgroups.

In particular, let p, g be two primes and let Q,, Q, be the p-adic and the g-adic
closures (i.e. henselizations) of Q with respect to the p-adic and the g-adic
valuation, respectively. Assume that G(Q, NQ,)=G(Q,) * G(Q,). Then, as
indicated above, there are o, v e G(Q) such that G(Qp N Q7) # G(Q,) * G(Q,).
This answers in the negative a conjecture of Ershov [2, p. 426]. (This is also
implicit in a theorem of Heinemann [11, Theorem 3.2]: if / is a prime and K; and
K; are the fixed fields of the /-Sylow subgroups of G(Q,), G(Q,), respectively,
then there are o, 7 € G(Q) such that G(K{ N K3) is a pro-I-group. In particular,
G(K{NK3) # G(Ky) * G(K;), whence G(QFNQ7) # G(Q,)* G(Q,), by [9,
Proposition 4]. I thank W.-D. Geyer for pointing out this fact to me.)

We note that the above argument does not work for free products in the
category of pro-p-groups.

ProBLEM 5.6. Let G be a free X-product and let H be a closed subgroup of G.
Write 9 ={I*NH| TeX, geG}.
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(a) Is there a projective subgroup P of H such that H is generated by ?) and P,
and H is projective relative to § U {P}#?

(b) If H is open, are there a subfamily ), of ¥) and a free subgroup F of H such
that H is a free 2)yU{F}-product?

6. Etale structures

Our next aim is to show that separable relative projective groups are subgroups
of free products. The main step is to define ‘infinite’ embedding problems which
should be solvable for relative projective groups. In search of an appropriate
definition we now introduce the category of étale structures. Though its definition
is somewhat complicated, the constructions within this category are quite
standard.

Let (E, X) be an étale space and G a profinite group. Suppose that G acts
continuously (on the right) on E. This induces a continuous action on G(E). If X
(or, equivalently, X') is invariant under this action, we say that G acts on

(E, X). This means that for every 0 € G and every I'e X the map r2 Ire
is an isomorphism of groups.
In what follows G acts on itself by conjugation: g°= 0" go.

DerNiTION 6.1. An éfale structure is a system
1) G=(G,E, X, ®;)

where G is a profinite group, (E, X) is an étale space on which G acts, and
@i (E, X)— G is a morphism such that

(a) ®g: E— G is equivariant, that is, ®;(a®) = b,(a)’, foraeE, 0eG,

(b) G acts regularly on E, that is, for every a € E,

2) {oeG| a’=a)=1.
Remark. Condition (b) implies that
2" {ceG| I"=T}=1, foreveryleX.

Indeed, if [ =T then 1r = Ir.= (I1r)° and hence o =1, by (2).

DEeFINITION 6.2. A morphism of étale structures
@: G=(G,E, X, ®;)—>H=(H,F, Y, ®,)

is a pair consisting of a morphism of étale spaces ¢: (E, X)—(F, Y) and a
continuous homomorphism ¢: G — H such that
(c) the following diagram commutes:

E-L F

d>Gl ltp,,
G —Tp_) H

and
(d) @(a’)=@@a)*'"”, whereackE, ceG.
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A morphism is said to be an epimorphism if both ¢: (E, X)— (F, Y) and
@: G— H are epimorphisms (that is, (G)=H and ¢(X)2Y).

An epimorphism is said to be a cover if, for all a, b € E,

(e) @(a)= @(b) implies that there is 0 € G such that b =4 (o is unique by (b)
and o € Ker @ by (b) and (d)).

The concept of étale structure may be simplified in the following way. Let
&°: (E°, X°)— G be a morphism of an étale space (E°, X°) into a profinite group
G. Then G acts regularly on the product space E° X G by (a, g)° = (4, go), where
aceE® and g, o0e€G. Define ®°xXG: E°XG—G by (a, g)— ©°(a)?; then
®° X G is equivariant. Identify the product space X°x G with the set of groups
{T?| TeX°, 0eG} in E°XG. Then (G, E°X G, X°xX G, ®° X G) is an étale
structure.

Conversely, let G= (G, E, X, ®;) be an étale structure. By [7, Lemma 2.4]
there exists a closed system X° of representatives of G-orbits in X. Obviously,
E°=a"Y(X°)=Urex-T is a closed system of representatives of G-orbits in E.
Furthermore, (E°, X°) is an étale space and the restriction ®° of @ tg E° is a
morphism ®°: (E°, X°)— G. We shall call it a representative of G, since clearly
(G,E°XG,X°X G, P°xG)=G.

Working with representatives has the following advantage.

Lemma 6.3. Let G,H be étale structures and ®°: (E°, X°)—> G be a
representative of G. Let ¢°: (E°, X°)— (E(H), X(H)) be a morphism of étale
spaces and @: G— H a continuous homomorphism such that Oy 0 ¢°= @ o ®°,
Then (¢°, @) extends to a unique morphism ¢: G— H.

Proof. This is clear.

CoroLLarY 6.4, Let @: G>H be a cover and @®°: (E°, X°)—G a
representative for G.

(a) If N is a closed normal subgroup of G then G— G/N is a cover.

b) G= PEG/N’ as N runs through open normal subgroups of G.

(c) There exists a unique isomorphism @: G/Ker ¢ — H such that the following
diagram commutes:

¢ L H

N

G/Ker ¢

(d) resg-®py: (@(E°), 9(X°))—>H is a representative for H and
resg- @: (E°, X°)— (p(E°), p(X°)) is an isomorphism of étale spaces.

(e) @: (E(G), X(G))— (E(H), X(H)) has a section, that is, there is a morph-
ism y: (E(H), X(H))— (E(G), X(G))} such that @ ¢ ¢ is the identity.

(f) For every T e X(G) we have @(I')e X(H) and resp: T @(I) is an
isomorphism.

Proof. This proof is also clear. (Cf. also [6, 4.1; 7, Lemma 2.4].)
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It can easily be checked that an inverse limit of étale structures is again an étale
structure. By way of a converse we have:

LemMa 6.5. Every étale structure is a limit of an inverse system of finite étale
structures with epimorphisms.

Proof. Let G= (G, E, X, ®5) be an étale structure. As G = li_rg_G/N, where

N runs through the open normal subgroups of G, we may assume that the group
G is finite.
Choose a representative ®°: (E°, X°)— G of G. By Proposition 1.11,

(E,X°)=£$(Fu Y),
where ((F, Y), @;: (E, Y)—(F, Y)| i,jel, i=j) is an inverse system of finite
étale spaces with epimorphisms. Let @;: (E°, X°)—(F, Y;), for iel, be the
corresponding epimorphisms. Without loss of generality, we may assume that the
partition of E° into the fibres of ¢;: E°— F, is finer than the partition into the
fibres of ®°: E°— G. Then there exists a unique morphism ®;: (F, Y;)— G such
that @, o @, =®°. Now G;=(G,E X G, Y;x G, ®; X G) is an étale structure.
Extend ¢; to an epimorphism ¢;: (E, X)=(E°X G, X°XG)—>(F X G, Y;xG)
by
(a, 0)—>(@i(a), 0), foraeE’, ogeG.

Similarly extend @; to an epimorphism @;: (X G, Y, X G)— (F X G, Y, XG)
by (a, 0)—(@;(a), 0), forae E, 0 € G. Then ¢, ¢;, respectively, together with
the identity map of G, give rise to epimorphisms of étale structures ¢;: G— G;,
;. G;— G;, respectively. Obviously G = liﬂ"’ G, via the isomorphism induced
by the @;.

We now introduce fibred products of étale structures. Let
G, =(G,E, X, ®;), fori=0,1,2,
be étale structures, and let ¢;: G;— Gy, @1 G;— G, be morphisms. We define
G =G X5,Gy, E=E XpFE,,
with the corresponding coordinate projections
pi: G—=G, p: E—>E, fori=1,2.

The actions of G; on E,, for i =1, 2, define componentwise an action of G on
E; the maps ®@,, ®, define a map ®: E— G (componentwise). Also put

X= {F=F1XEOI‘2| I'eX,, T,eX;, T#J}.
Then X is a collection of non-empty closed subsets of E, that is,
I Xgl={(a,, a;) e E, X E, l a, €y, a, €T, @y(ay) = @a(ay)}.

We can turn every I'=T' Xz I, € X into a group in E as follows. There are
unique A, A; € X, such that ¢;(I;) <A, for i=1,2. f T#J then A, N A, #I;
hence A, = A,. Thus I' =T'; X, T, which carries an obvious group structure.
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It is easy to see that E = r.x . Also
X' ={"eGE)| @ATeX)["<I}={I"e G(E)| pi(T") e X}, p,(T") € X3},

whence X' is closed in G(E). One can now directly verify:

Claim. G= (G, E, X, ®) is an étale structure.

The coordinate projections give rise to morphisms p;: G—G;, for i=1, 2,
such that the following diagram commutes

S
G] G2
‘PX /172

0

G

We denote G =G, Xg, G; and call it the fibred product of G, and G, over Gy.
A diagram isomorphic to (3) is called a cartesian square. It may be characterized
as follows.

€)

LEMMA 6.6. The following statements about a commutative diagram (3) of
étale structures are equivalent.
(a) (3) is a cartesian square.
(b) G with p,, p, is a pullback of the pair (@,, @,), that is, for every étale
structure H with morphisms t;: H— Gy, y,: H— G, such that ¢ oy, = @, ° 9,
there exists a unique morphism : H— G such that

P1eY =Y and py°oyp =1,

(c) The group G with p,, p, is the pullback of ¢;: G,— Gy, fori=1, 2, and
the étale space (E, X) with p,, p, is the pullback of ¢;: (E;, X;)— (Ey, Xp), for
i=1,2

(d) (1) If g1 € G\, g2 € G,, and @,(g.) = @,(g,) then there exists a unique g € G

such that p\(g) = g1, p2(g) = §>.
(2) If a, € E,, ay € E,, and @,(a,) = @,(a,) then there exists a unique a € E
such that p(a) = a,, p.(a) = a,.

Proof. This lemma is essentially an analogue of [8, Lemma 1.1].
We give a useful example of a cartesian square.

LEMMA 6.7. Let pi: G— G, be an epimorphism of étale structures, and let K be
a closed normal subgroup of G such that KNKerp,=1. Let p,: G— G/K and
@1: G1— G,/pi(K) be the quotient maps. Then there exists a unique epimorphism
.. G/K— G,/p(K) such that

G—p2—>G/K

pll 1%

qu,—l’ G,/p\(K)

commutes. Moreover, it is a cartesian square.
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Proof. The lemma follows from an application of Lemma 6.6(d). Cf. [6,
Lemma 4.7] for a similar proof.

LeMMA 6.8. Let (3) be a cartesian square. If @, is a cover then p, is a cover.

Proof. This is straightforward. Cf. [5, Lemma 1.4].

7. Projective étale structures

DeriniTiON 7.1, Let G be an étale structure. An embedding problem (for G) is
a diagram
G

o | |7

of étale structures in which « is a cover. It is finite if B (and hence also A) is
finite.

A solution to (1) is a morphism y: G— B such that o oy = ¢.

We call G projective if every embedding problem for G has a solution.

It is not difficult to see that if ®: (E, X)— G is a free product over (E, X) then
G=(G,EXG, X xG, ®xG) is a projective étale structure. The converse is in
general not true (this will follow from the results of this section by Example 5.5).
However, there is some immediate similarity:

LemMa 7.2. Let G be a projective étale structure and ®: (E, X)—G a
representative for G. Let A be a profinite group and v: (E, X)— A a morphism.
Then there exists a continuous homomorphism «: G— A such that a - ®(e) is
conjugate to y(e) in A, forall e € E.

Proof. Let A=(A,EXA, XxXA, yxA). This is an étale structure and
A/A=(l,E, X, 6), where 0 is the trivial map E— 1. Let 8: A— A/A be the
quotient map. The identity E— E and the map G—1 extend to a morphism
¢: G—A/A. By assumption there exists a morphism a: G— A such that
Bea=¢. If ecE then B°a(e)=¢@(e)=e, and hence a(e)= (e, b) for some
b e B. Apply ¥ X A to this identity to obtain

@ o ®(e) = (y X A) ° a(e) = (y X A)(e, b) = y(e)".

For étale structures H and G write H<G if H<G, E(H) < E(G), X(H) <
X(G), and @y =resg ) Po-

LemMma 7.3. Let G be a projective étale structure and let F be a free profinite
group such that rank F = rank G.
(a) resy g is injective for all T € X(G).
(b) If I';, T, € X(G) are not both trivial then
q)c;(rl) = ®G(r2) & (I)G(Fl) M q)G(rz) * 1
& there is v € Og(Ty) such that T, =TY.
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(c) There exists a free product ®: (E, X)— D such that G=<C, where C=
Dx*F and C= (C,EXC,XXC, ®xC). Moreover, let T € X(C) and denote
A=0 D). fA<G then Ae P;(X(G)); if AL Gthen ANG =1.

Proof. Let ®°: (E, X)— G be a representative of G and let @: (E, X)— D be
the free product over (E, X). Then ®° induces a (unique) homomorphism
a;: D— G such that a, c ® = ®°. Choose a homomorphism (e.g. an epimorph-
ism) a,: F— G such that G = (a,(D), x(F)). Then &, and a, define an
epimorphism a: C =D % F— G. This map together with the identity map E— E
induces (cf. Lemma 6.3) a cover o: C—G.

As G is projective, there exists a morphism y: G— C such that a ° y = id(H).
Clearly v maps G isomorphically onto its image y(G), and y(G)<C. This
proves the first assertion of (c). Therefore, to show (a) and (b), we may replace G
by C. The morphism (E U F, X U {F})— C that extends ®: (E, X)— C and the
identity #— F is clearly a free product. Thus (a) and (b), for C, easily follow
from Lemma 2.3.

Let TeX(C) and A=®(T). Denote T"=9y o a(l'); then A'=P (") =<
W(G). If A=A’ then A e O (y¥(G)). If A+A’ then ANA’=1, by what has
been said above. In particular, (A N y¥(G))N A’ =1. But @ maps A onto a(A’),
and it is injective on y(G). Therefore ANy(G)<A’', whence ANyP(G) =1.
This shows the last assertion of (c).

ReMARk. Let E'=E\{l1;| T'e X}. By our construction, D is generated by
®(E’). But (a) and (b) imply that ®° maps E’ injectively into G. Hence if G is
separable then so is D.

LEMMA 7.4. An étale structure G is projective if and only if every finite
embedding problem for G has a solution.

Proof (cf. Gruenberg [4, Proposition 1], and [6, Lemma 7.3]). Assume that the
condition holds and let (1) be an embedding problem for G. Suppose first that
K = Ker « is finite, so there is an open subgroup M in B such that M N K =1. By
Lemma 6.7 there exists a cartesian square of étale structures

B-%A

7| &

B, Ao

in which ay is a cover of finite étale structures. We have assumed that there is
Py: G— By such that ag° o= @y ° @. By Lemma 6.6 there exists a solution y to
(1) (for which also p = ¥ = ).

The general case is verbally identical with Part 1I in the proof of [6, Lemma
7.3].

In the remainder of this section we simplify the notion of projectivity.

Lemma 7.5. A finite embedding problem (1) has a solution if and only if there
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exists a continuous homomorphism y: G— B such that o ° y = @ and for every
I'e X(G) there exists Are X(B) with a continuous homomorphism yr: T— Ar
such that o ° Yr =resr @ and the following diagram commutes:

L4

G——B
o, e,
(2) E(G) E(B)

J o]

r — Ar
T
Proof. The necessity is obvious. Conversely, let ¥ and
{¢r: T—Ar| T'e X(G)}

be as above. By Lemma 1.10 there exists for every I'e X(G) a clopen
neighbourhood V(I') such that yr can be extended to a continuous map
Yr: 17 (V(T))— Ar and for every I € V(') the restriction resp- y: ['— Ay is
a homomorphism which satisfies

@ oresy Yr=r1esr @, DPpgoresy Pr=yoresy Dg.

The covering {V(I')| TeX(G)} of X(G) has a finite subcovering, say,
V({Ty, ..., V(T,). Put

4
U= n_l(V(Fk))\Jr'l(U V(I’,-)), fork=1,.., n
i=1
Then U,, ..., U, are disjoint clopen subsets of E(G) and E(G)=_J;{_, U,.

We may now define y°: E(G)— E(B) such that resy, ¥°=resy, yr,. Then
¥°: (E(G), X(G))— (E(B), X(B)) is a morphism of étale spaces and satisfies

ac’=g@ and @PzoY°=1y o Q.

Let ®%: (E°, X°)— G be a representative of G. We restrict y° to (E°, X°) and
extend it to a morphism y: (E(G), X(G))— (E(B), X(B)) by

Y(@a®) =y°(a@)¥?, forackE®, oeG.

Then acy =@, ®goyp =1 °®;, and y(a®) = y(a)¥ for all a € E(G) and
o € G. Thus we have a solution to (1).

Lemma 7.6. Let (1) be an embedding problem. Assume that Conditions (a) and
(b) of Lemma 7.3 are satisfied. Then there exists a commutative diagram

.G
7

__.)A
®

(*)¢4

—— A

>

p

w(——w>

with a cartesian square (*) of finite étale structures such that:
(c) the restriction of & to ®z(A) is injective for every A € X(B);
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(d) if A, A,e X(A) and A,, A; € X(A) such that @o(A) <A, fori=1,2, and
AZ# A, for all 6 € D 4(A,), then ®4(A) N @ 4(A,) <Ker ¢,.

Proof. By Lemma 6.5 there exists for every open normal subgroup N of G a
finite étale structure A and a commutative diagram

¢ LA

P\ Ao
A

such that ¢ is an epimorphism and Ker ¢ <N. We define B=B x, A and let p,
& be the coordinate projections. We claim that (2) satisfies (¢) and (d) provided
that N is sufficiently small.

(c) Fix a section B of a: (E(B), X(B))— (E(A), X(A)) (Corollary 6.4(e)).
The intersection of the family {®'(N)| N<IG is open} of clopen subsets in
E(G) is ®5'(1); hence by (a) it is contained in the clopen subset E'=
{a € E(G)| ®5° B> @(a) =1} of E(G). Therefore a compactness argument (cf.
Lemma 1.8) gives an open N<IG such that ®5'(N)c E’.

Let A, B, &, p be as indicated above. Then

3) @odslay=1 = DzgoBogla)=1, foraceE(G).

By Lemma 6.6(c) there is a (unique) morphism v: (E(G), X(G))— (E(B), X(B))
such that &oyp =@ and p o yy = f§ o . Let a € E(G) such that
4) dodpoy(a)=1.
Then

Po®s(a)=Da°@(a) =i boya)=acPpeyla)=1,
whence by (3),

pe®peypla)=Ppopoyla)=Ppofopla)=1

This together with (4) implies that @3 < y(a) =1. In particular, if I' € X(G) then
& is injective on @5 y(T). A

Now let A € X(B). Since & is a cover (Lemma 6.8), &(A) e X(A) (Corollary
6.4(f)); hence there is I' € X(G) such that ¢(I') = &(A). If y(I') = A then we have
finished. If not, let A’ e X(B) such that y(I')<<A’'. Then &(A')e X(A) and
&: A'—> &(A’) is an isomorphism (Corollary 6.4(d)). But &(A)= @)=
& ()= a&(A’); hence &(A)= &(A’), whence y(I') = A’. By Definition 6.2(¢)
there is o € B such that A’ = A°. Since & is injective on ®z(A’), it is injective on
its conjugate ®3(A) as well.

(d) Let Y be the set of pairs (', I';) € X'(G) X X'(G) which have the following
property: if A;, A, € X(A) such that ¢(I';,) < A,, for i = 1,2, then A7 # A, for all
o € D 4(A;). Obviously, Y is a clopen subset of X'(G) X X'(G) (since A is finite).
If (I,T,) ey, let I“l, I, € X(G) such that ', < T, I, <T,. Then also (Fl, I,)eY.
In particular, I'Y # T, for all 0 € ®(T;), whence by (b), ®5(I')) N ®(T,) =1. So
&, (T) ND,(T,) = 1. This implies that there is an open N<IG such that

&) OL(TON N Os(T,)N s Ker ¢.
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If I'l, I'; € X'(G) are sufficiently near to I';, T, respectively, then ®(T}) is
near to () in Subg(G), so ®(I'/)N = ®s(T;)N, for i =1,2. Therefore (5)
holds also with I';, I'; instead of T';, T,.

By the compactness of Y there exists an open N<IG such that (5) holds
simultaneously for all (I';, [) e Y. Let A, B, p, & be as indicated above, and let
A, A,eX(A) and A, A, € X(A) satisfy the assumptions in (d). Choose T,
I'; € X(G) such that ¢(T)=A,, for i=1,2. Then (I',T,) €Y, and hence %)
holds. Now Ker § < N, whence

i(A) N @4(82) = § > P(T1) N § o D(T)
¢[Ps(I')Ker @ N O (T,)Ker ¢]
P[Ps(T1)N N @G(T2)N]

= @(Ker @)

= Ker @,.

I

LemMma 7.7. An étale structure G is projective if Conditions (a) and (b) of
Lemma 7.3 are satisfied and for every finite embedding problem (1) there exists a
continuous homomorphism . G— B such that « ° ¢ = @ and

Y ° ©6(X'(G)) < P(X'(B)).

Proof. We have to solve a given finite embedding problem (1). By Lemmas 7.6
and 6.8 we may assume that « is injective on ®z(A) for every A e X(B). In
addition to this we construct a diagram (2) with Properties (c) and (d) of Lemma
7.6.

By assumption there exists a continuous homomorphism Y: G— B such
that & o ) = ¢ and for every I' € X(G) there exists A € X (B) such that

(6) ¥ o O(T) < @5(A).
Put ¢ =p ° 9; then a ° 9 = @. For the rest of this proof fix I' € X(G).

Claim. There is A € X(B) such that
(e) Yo () = Dy(A),
® o(T) < &(A).

Proof of the claim. If y o &5(I') =1, let A, € X(A) such that @(I') < A,. Since
 1s a cover, there is A € X(B) such that a(A) = A;. Thus (e) and (f) are satisfied
in this case. X X

It o ®s(I) # 1, let A € X(B) satisfy (6) and let A € X(B) such that p(A) <A.
Then () follows from (6).

We know that « is injective on ®z(A); hence by (e) a is also injective on
Y o ©5(I). Therefore from y o ®;(T) # 1 it follows that

Poo@oPs()=aeypeds(I)#1.
In other words,

;0 ¢(I)= § o ®(T) ¢ Ker g,.
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But by (6),
§o@(T) =&y Ps(T)<&ePs(A)=d40° a(A),
so in fact
P4(&(A)) N Q4(§(I)) = ¢ ° P(T) & Ker go.

It follows from this equation by Condition (d) of Lemma 7.6 that there is
o e D, (a(A)) such that (note that a(A)e X(A), since a is a cover, and

Po(@(A)) < a(A))

o) < a(A)”.
As @, 0 @(A) = a o Dyz(A), there is T € P(A) such that «(t) = 0. Thus
@(0) < a(A").
Also ®5(AT) = Dz(A)° = Op(A), whence by (e),
Yo (I < Dp(A").

Therefore A° satisfies the requirements of the claim.

End of the proof of Lemma 7.7. Let A € X(B) satisfy (e) and (f). As o is a
cover, A is mapped isomorphically onto a(A). Therefore there is a homomorph-
ism . I'— A such that « ° yr = resr ¢. Then

acoPporessPs=@ores P =D oresp =P oaoyr=a°Pgzo yYr;

hence y oresy @ =Pz 0 9, since « is injective on Pz(A) and y o d(I),
@z o Pr(T) < Pp(A). It follows from Lemma 7.5 that (1) is solvable.

8. The converse subgroup theorem

We start with two simple observations.

Lemma 8.1. Let a profinite group G act on a separable Boolean space X. Then
the quotient map X — X/G has a continuous section, that is, there exists a closed
complete system of representatives of the G-orbits in X.

Proof. There is an inverse system of transformation groups (X;, G;) with finite
X; such that (X, G)= liﬂ’“ (X, G)) (see [6, Proposition 1.5]). Since X is

separable, we may assume that / = N. By induction we can choose for every i e N
a set Z; of representatives of the G;-orbits in X; such that the map X;— X,;_; maps
Z; into Z;_,. Then Z=1im Z; is a complete system of representatives of the
G-orbits in X. (_—

ReMark 8.2. The separability condition on X in Lemma 8.1 is essential. If
X = {0, 1} and Z/2Z acts on X X X by permuting the coordinates, then the map
X XX—> XX X/(Z/2Z) has no section. This can be derived from a result of
S¢epin [16, pp. 157, 158]. (I thank S. Koppelberg for pointing out this fact to me
and for supplying me with her notes [12] from which I learned about the above
counter-example.)
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Let A=< B and D be profinite groups. Then D * A <D * B (see [9, Proposition
4]).

LEMMA 8.3. Let 0 € D * B such that D°N (D * A)#1. Then 6 e D  A.

Proof. We imitate the proof of Herfort and Ribes [10, Lemma 3]. It suffices to
show for an open subgroup H of D * B containing D * A that o € H. By the
Kurosh subgroup theorem,

H=% (HND*)+ * (HNBY)* F,
i= j=

where D * B={J", Ds;H =)\, BtH, and s, =¢,=1 (and F is a free profinite
group).
Let i =2. Projecting H onto the factor H N D% we see that
[(HND)=(HNB)NHND* =1 forevery heH.
In particular, for every t = ds;h € Ds;H,
(D*A)ND =D *AYNHND)<[(HND)* (HNB)|N(HND% =1.
Thus o ¢ L, Ds;H, whence o € Ds;H = H.

ProposiTion 8.4. (a) If G is a projective étale structure then the group G is
projective relative to X = ®4(X(G)).

(b) If a separable group G is projective relative to a family ¥ then there exists a
projective étale structure G= (G, E, X, ®;) such that

Ds(X)U {1} =X U {1}.

Proof. (a) By Lemma 7.3(c) there exist a free product ®: (E, X)— D and a
free profinite group F such that G=C =D = F and

Do(X(G)U{1}={TNG| Te d(X)} U {1}.

Clearly ® extends to a free product (E UF, XU {£})— C. By Propositions 3.3
and 4.3, C is projective relative to (®(X) U {F})C. It follows easily that C is
projective relative to ®(X). Thus our assertion follows from Theorem 5.1.

(b) By Lemmas 3.5 and 3.6 there exist an étale space (E, X) and a morphism
®: (E, X)— G such that X is separable, ®(X)U {1} =X U {1}, res; &: > G is
injective for every I' € X, and for all non-trivial T', ' € X we have ['=1" if and
only if ®(I') = ®(I""). Furthermore, G acts on X such that ®(I'°) = ®(I')° for all
I'eX, ceG.

Let X° be a closed system of representatives of the G-orbits in X, denote
E°={Jrex-T and let ®°: (E°, X°)— G be the restriction of ® to E°. Then

G=(G E°XG,X°XG, ;=X G)

is an étale structure and resp @;: I'— G is injective for all ' e X(G) = X° x G.
We claim that if Ty, IeX(G) satisfy ®g(T)N®g(IL)#1 then there is
7 € ®(I']) such that I'; =T{". Indeed, write I'} =T, where T, € X° and 0, € G,
fori=1, 2, and denote ¢ = 0,07". Then ®;(I';)) N ®5(I',)° # 1, whence () =
®(I3), since X is separated. So if we now consider I';, I'{ as elements of X (rather
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than X°X G) then I', =T¥ in X. But then I';, =T, smce I';, T,e X°. By Lemma
4.6 we get that o € ®(T,). Thus o7 '0, € ®(I}) and [} =T},

Thus Conditions (a) and (b) of Lemma 7.3 are satisfied. If (¢: G— A, a: B—~ A)
is a finite embedding problem for G then (¢: G— A, a: B— A, Oyz(X'(B)))
is a finite X-embedding problem, and hence it has a solution. Thus G is projective
by Lemma 7.7.

We can now prove the complement of Theorem 5.1.

THEOREM 8.5. Let H be a separable group, projective relative to a family ) of its
subgroups. Then H is a subgroup of a separable group G which is a free product
of a family X of its subgroups such that

JU{l}={*NH| TeX, geG).

Proof. There exists a projective étale structure H with H as the underlying
group such that ®4(X(H))U {1} =Y U {1} (Proposition 8.4). By Lemma 7.3(c)
and the remark following it, we may assume that H<C =D * F, where D is a
separable free product of a family X, of its subgroups (cf. also Proposition 3.3)
and F is the free profinite group of countable rank such that

QU{1}={T°NH| TeX, 0eC}U{1)}.

By a result of van den Dries and Lubotzky [14, Theorem 3.1], F can be
embedded in E, the free profinite group on two generators. Let C, = Z/iZ, for
i =2,3. By the Kurosh subgroup theorem of [3], the kernel of the canonical map
G, % C;— G, X G, is isomorphic to E. Therefore £ <G, * C;, whence (cf. [9,
Proposition 4])

C=D=*F<D=*Cx*C,

Denote G=D * G+ Cyand X = Xl U {G;, G}; then G is clearly a free product
of the groups in X. The group D * E;, whence also H, is contained in the kernel
of the canonical projection G— G, X C;. Therefore CSNH =1 for every ge G
and i=2,3. Furthermore, if I'e X, and ge G such that I* NH #1, then
DEN (D * F)#1, whence g e D * F = C, by Lemma 8.3. Thus

{FFNH|TeX,geG}={T°NH|TeX,,0eClU{l}=9uU{1}.

9. The Kurosh subgroup theorem for pro-p-products

Let € be a class of finite groups, closed under subgroups, quotients, and group
extensions. Everything we have done so far for profinite groups (except for
Example 5.5) can be also done in the category of pro-4-groups. In this section we
consider the case where € is the class of p-groups, for a fixed prime p. The
transition to the category of pro-p-groups causes no confusion. Indeed, we have
(cf. Gruenberg [4, Theorem 1]):

LemMa 9.1. Let G be a pro-p-group and X a separated family of its subgroups.
Then G is projective relative to X if and only if G is projective relative to X in the

category of pro-p-groups.
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Proof. Assume that G is projective relative to X in the category of pro-p-
groups. Let (¢p: G— A, a: B— A, Con(B)) be a finite X-embedding problem
for G; we have to solve it. Without loss of generality, assume that A is a p-group;
otherwise replace it by @(G) and B by a~'(¢(G)). Furthermore, we may assume
that B is a p-group; otherwise replace it by its p-Sylow subgroup S and Con(B) by
Con(B) N Subg(S). This is still an X-embedding problem: a(S)=A, and if T e ¥
and y: ['— B satisfies a°p =resr @ and y(T) e Con(B) then y(I')<S® for
some b e B. Choose seS§ such that a(s)=a(b) and let p: B—~B be the
conjugation by b7's. Then poy(I)<S5 =S and pey(T)eCon(B), and
@opoyYy=resr Q.

Since our X-embedding problem is now in the category of pro-p-groups, it has
a solution.

From now on we assume that all the groups are pro-p-groups.

LeMMA 9.2. A closed subgroup G, of an elementary abelian pro-p-group G has
a direct complement in G.

Proof. Let m: G— G/G; be the quotient map. By Zorn’s lemma there exists a
minimal closed subgroup G, of G such that 7(G,) = G/G,. Then Kerz NG, is
contained in the Frattini subgroup G5 of G,. But G, is an elementary abelian
pro-p-group, whence G5 = 1. Therefore x: G,— G/G, is an isomorphism. This
is equivalent to G = G, X G,.

If G is a pro-p-group, let us denote by G its quotient modulo its Frattini
subgroup. It is an elementary abelian pro-p-group. The following is obvious:

Lemma 9.3. Let G be the free pro-p-product of A and B.Then G is naturally
isomorphic to A X B.

Lemma 9.4. Let Gy, G, be projective étale structures and let ®': (E', X')— G;
be a representative of G,, for i=1,2. Let A: (E', X")— (E?, X*) be a morphism
of étale spaces. Then there exists a continuous homomorphism A: G,— G, such
that the following diagram commutes:

E' A, E?

@!| |

(1) Gy G,

|

“T o
Moreover, such a map A is unique if P (E(Gy)) generates G,. If G, =
(D, (E(G1))) and A is an isomorphism then X is injective.

Proof. By Lemma 7.2 there exists a homomorphism A": G,— G, such that
@?0 1 =1"° ®' modulo the conjugation in G,. Thus the map A induced from A’
makes (1) commute.



FREE PRODUCTS OF PROFINITE GROUPS 297

Assume that G, = (®g,(E(G,))). Then the image of E' in G, generates G,
and hence A is unique. If A is an isomorphism then, by the first assertion of this
lemma, there exists a homomorphism @: G,— G, such that the following diagram
commutes:

A At

E' L5 A LT

o e

G G, G,

G, T’ G, —l_l_) G,
The uniqueness assertion implies that jie A is the identity of G;; hence 1 is

injective.

THEOREM 9.5. Let G be a projective étale structure such that G is a pro-p-group
and let ®°: (E, X)— G be a representative for G. Then there exists a free
pro-p-subgroup F of G such that the morphism (E U F, X U {F})— G that extends
®° and the identity map F— F is a free (pro-p-)product.

Proof. We refine the construction in the proof of Lemma 7.3.

Let @: (E, X)— D be the free pro-p-product over (E, X), and let a;: D> G
be such that a, © ® = ®°. Now «, induces a homomorphism &;: D— G, which s,
by Lemma 9.4, injective. Let F<G be a direct complement of al(D) in G
(Lemma 9.2), and let &,: F— F be the universal Frattini cover of F (see [8,
Theorem 2.6]). It is a projective pro-p-group, and hence free [15, p. 235]. In
particular, there exists a homomorphism a;: F— G such that f;oa,= a,,
where f is the quotient map G— G.

Exactly as in the proof of Lemma 7.3 (but in the category of pro-p-groups) we
let C=D+F, C=(C,EXC,XxC, ®xC), extend a,, @, and the identity
map E— E to a cover a: C— G, and choose a section y: G— C of a. The
morphism (E U F, XU {£})— C that extends ® and the identity of F is a free
product. So it suffices to show that « is an isomorphism, that is (since a is a
cover), that ¢(G)=C.

By Lemma 9.3, the map &: C— G induced from a: C— G is the isomorphism
oy X id(F): D x F— G. The map y: G — C induced from y: G— Cis a section
of & whence Y(G)=C. Let fo: C— C be the quotient map; then fooyp =
P © fo, whence fo(y(G))= C. But f is a Frattini cover, so y(G)=C (cf. [8, p.
191)).

Combining Theorem 9.5 with Propositions 8.4(b) and 3.3 we obtain:

COROLLARY 9.6. Let G be a separable pro-p-group, projective relative to a
family X of its subgroups. Then there exists a complete system X° of representatives
of the conjugacy classes in X and a free pro-p-subgroup F of G such that G is the
free pro-p-product of the groups in X°U {F}.

We apply Theorem 5.1 to this characterization and obtain an analogue of the
Kurosh subgroup theorem.
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THEOREM 9.7. Let G be a free pro-p-product of the groups in a family X of its
subgroups and let H be a separable closed subgroup of G. Then H is a free
pro-p-product of the groups in the family

Y={(I"NH| oe3X(T), TeX}U(F},

where 2(T) is a suitable set of representatives of T\G/H, for every T € X, and F is
a free pro-p-group.

Proof. By Proposition 4.3, G is projective relative to X°; hence H is projective
relative to {T°NH | TeX, 0e G}. f T}, [, € X and 0y, 0,€ G, then I'{* and 'y
are conjugate in H if and only if T',=T, and there exists & € H such that
0,ho; ! €Ty (Proposition 4.3). The last condition may be rewritten as I'; =T, and
I'io1H =T'0,H. Therefore a complete system of representatives of the conjugacy
classes in {T°NH| I'eX, 0 e G} is a union of sets (') of representatives of
I'\G/H, where T runs through X. The theorem now follows from Corollary 9.6.
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