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Introduction 

If G is a free product of a family {Ai}ieI of discrete groups then a subgroup H of 
G is the free product of a free group F and (Af n H), where a E ~(i), i E I, and 
~(i) is a set of representatives of Ai \ G / H. This is the content of the Kurosh 
subgroup theorem (KST). Is a similar result true for closed subgroups of free 
(profinite) products of pro finite groups? (Say, with F projective instead of free.) 

An answer to this question requires an appropriate definition of a free product 
over an infinite family of groups. Such a definition has been proposed, by 
Gildenhuys and Ribes in [3], for groups indexed by compact topological spaces so 
that the factors are locally equal to each other, except for neighbourhoods of one 
distinguished point. In spite of the fact that the KST holds for open subgroups of 
such free products, this definition seems to be too restrictive: if H is a closed 
subgroup of the free product then the groups Af n H, with a E G, i E I, need not 
be 'locally equal' to each other (cf. Example 2.4). 

We propose a very natural generalization of the free product with finitely many 
factors: an inverse limit of such free products (over an inverse system with 
mappings that send respective factors again into factors of a free product). This, 
essentially, also includes the definition of [3]. 

We do not know whether the analogue of the KST holds for open subgroups of 
these free products. Nevertheless, if we restrict ourselves to separable groups, we 
give a satisfactory account of the closed subgroups of the free products. 

1. The analogue of the KST does not hold, in general, for closed subgroups of 
free products (Example 5.5). 

2. We define for a pro finite group G the notion of projectivity relative to a 
given family I of its subgroups (Definition 4.2). We show: 

2a. if G is a free product of the groups in I, and H is a closed subgroup of G, 
then H is projective relative to {fa n HI f E I, a E G}; 

2b. conversely, if H is separable and projective relative to ~ then H is a closed 
subgroup of a free product G of a family I of subgroups such that 
~ = {fa n HI rEI, a E G}. 

3. Separable relative projective pro-p-groups are in fact free products 
(Corollary 9.6). 

Hence we can answer a question of Lubotzky [13, 2.10]: 
4. The KST holds for separable closed subgroups of free pro-p-products. 
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The desired extension of these results to inseparable groups remains an open 
question. 

The main tool to obtain the above theorems is the notion of etale structure 
(Definition 6.1). It is a (not immediate) generalization of the Artin-Schreier 
structures of [6] and the r -structures of [7] on one hand and of the etale spaces of 
[3] on the other hand. 

Notation. Unless said to be otherwise, groups are pro finite groups, subgroups 
are closed, and maps are continuous. We write resr <I> for a restriction of a map <I> 
to a subset r of the domain of <1>; AU B is the disjoint union of A and B, and 
A * B is the free profinite product of the groups A and B. 

Acknowledgement. I am indebted to W.-D. Geyer for many discussions on the 
subject of this paper and for his helpful suggestions. 

1. Etale spaces 

Let E be a Boolean topological space, i.e. an inverse limit of finite discrete 
spaces. The family of closed subsets of E is usually denoted by exp(E). If 
E = lim; E; with the E; finite, then exp(E) is equal, as a set, to lim; exp (E;). This 
~ ~ 

induces a Boolean space topology on exp(E). Explicitly, the clopen subsets are of 
the form 

{S E exp(E) I {il S n Ui =1= 0} E ~}, 

where E = Ur=l ~ is a partition of E (that is, Ub ... , Un are non-empty clopen 
subsets of E), and ~ is a family of subsets of {1, ... , n}. 

EXAMPLE 1.1. Let G be a profinite group. Then the family Subg(G) of all 
closed subgroups of G is closed in exp( G), since Subg( G) = lim Subg( G / N), as N 

~ 

runs through the open normal subgroups of G. For the same reason the family of 
closed subsets of G that (topologically) generate G is also closed in exp(G). 

LEMMA 1.2. Let X ~ exp(E) be closed. Then F = USEXS is closed in E. 

Proof. Write E as limi Ei with Ei finite. Then X = lim;~, where ~ is the image 
~ ~ 

of X in exp(E;). Obviously F = limi F;, where F; = USE.¥; S ~ Ei , and hence it is 
closed. ~ 

We note that a continuous map of Boolean spaces cp: E ~ F is closed and 
therefore induces a map cp: exp(E)·~ exp(F) defined by S ~ cp(S), which is 
continuous. 

A pro finite group f may be considered as a 4-tuple (f, M, I, e), where r is a 
Boolean space, M is a closed subset of f x r x r that represents the multiplica­
tion relation on f, I ~ f x r represents the inverse relation, and e E f is the unit 
element of f, such that certain obvious conditions are satisfied (for example, M 
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represents a function r x r~ r, the multiplication is associative, etc.). More 
generally, we make the following definition: 

DEFINITION 1.3. Let E be a Boolean space and write 

G(E) = exp(E) x exp(E x E x E) x exp(E x E) x E. 

A group in E is a 4-tuple (r, M, I, e) E G(E) such that M s;;; r x r x r, Is;;; r x r, 
e E r, and (r, M, I, e) is a profinite group. 

For two groups in E we write (r, M, I, e) ~ (r', M', 1', e') if r s;;; r', 
M = M' n (r x r x r), I = l' n (r x r), and e' = e. 

Of course, we shall abbreviate (r, M, I, e) by r, and it should be clear from the 
context whether we mean r E G(E) or r s;;; E. For instance, if H is a pro finite 
group then Subg(H) is a closed subset of G(H). 

Note that a continuous map of Boolean spaces cp: E ~ F induces, in an 
obvious way, a continuous map cp: G(E)~ G(F) which has the following 
property: if r E G(E) is a group in E and cp(r) is a group in F then the restriction 
resrcp: r ~ cp (r) of cp to r is an epimorphism of profinite groups. (Moreover, if 
cp: E ~ F is injective and r E G(E) is a group, then cp(r) is a fortiori a group in 
F.) 

We are now ready to define the object of this section. Let us agree that 
whenever X (Y, ... ) is a family of groups in a Boolean space then X' (Y', ... ) 
denotes the family of subgroups of the groups in X (Y, ... ). 

DEFINITION 1.4. An Etale space is a pair (E, X), where E is a Boolean space 
and X is a family of groups in E such that 

(a) E = UrEXr (disjoint union), 

(b) X' = UrEx {r' E G(E) I r' ~ r} is closed in G(E). 

We associate with every etale space (E, X) two surjective functions 11: X' ~ X 
and :rr: E ~ X defined by 

t-t(r') = r if r' ~ rand :rr(a) = r if a E r. 

LEMMA 1.5. The maps 11 and :rr define the same quotient topology on the set X, 
and X is a Boolean space in this topology. 

Proof. The map t: X' ~ E given by r' ~ 1r , (the unit element of r') is 
continuous: it is the restriction of the projection G(E)~ E to X'. By Definition 
1.4(b), its image El = {lr IrE X} = {lr I r' E X'} is closed in E. By Definition 
1.4(a), the restriction Jrl: El ~ X of :rr to El is bijective. There exists a 
commutative diagram 

Now t is closed, and hence is a quotient map. If 11 is also a quotient map then 
:rrl must be a homeomorphism. Therefore X is Boolean in the quotient topology 
induced from X' by 11. On the other hand, :rr is continuous, and hence is closed 
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and a quotient map. Indeed, let V ~ X be closed, that is, .u -leV) ~ G(E) is 
closed; by Lemma 1.2, 

is closed. 

From now on we mean by 'the topology on X' the above quotient topology, 
forgetting the topology induced from G(E) (which need not be the same); the 
latter will be the topology of X'. 

Let us also agree that Jr and .u will always denote the above defined maps, for 
ambient etale spaces. 

Before turning to examples and applications we complete the definition of the 
category of etale spaces. 

DEFINITION 1.6. A morphism of etale spaces ep: (E, X)~ (F, Y) is a continuous 
map ep: E ~ F such that ep(X') ~ Y'. Equivalently, for every rEX there is ~ E Y 
such that ep(r) ~ ~ and reSr ep: r~ ~ is a homomorphism. 

A morphism ep is an. epimorphism if ep(X') = Y', that is, for every ~ E Y there 
exists rEX such that ep(r) = ~ (but not necessarily ep(r) E Y for all r E Xl); in 
particular epeE) = F. 

A morphism ep: (E, X)~A of an hale space (E, X) into a pro finite group A is 
a continuous map ep: E ~ A such that reSr ep: r ~ A is a homomorphism for 
every rEX. 

Note that a morphism ep: (E, X)~ (F, Y) induces a continuous map ep: X ~ Y 
such that the following diagram commutes: 

E ..!E... F 

Jrl lJr 

1.7. Examples of hale spaces 
A. Let X be a Boolean space and G a profinite group. Put E = X x G and for 

every x E X define an embedding 8x : G ~ E by g ~ (x, g). The set of groups 
{8xC G) I x E X} may be identified with X, and (E, X) is an etale space. Note that 
Jr: E~X (cf. Lemma 1.5) is open. 

A slight generalization may be obtained if we take E to be a disjoint union of 
finitely many etale spaces of the above type. 

B. (Gildenhuys and Ribes [3]) Let (X, *) be a pointed Boolean space and 
{Vi liE I} a family of disjoint open subsets of X\ { *} that covers X\ { * }. For 
every i E I, let Ai be a profinite group. Let E = (UiEI Vi x Ai) U {*} be given the 
following topology: the sets Vi x Ai (with the product topology) are open in E, 
and for every open neighbourhood V ~ X of * let 

{ (x, a) EEl x E V n Vi' a E Ai' i E I} U { * } 
be an open neighbourhood of * in E. One can show that E is a Boolean space. 
The set X may be identified with a set of groups in E: if x E U;, for i E I, then 
{x} x Ai is a group in Vi x Ai as in Example A; the group {*} is trivial. 
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(In fact, the etale space of [3] is the quotient space D of E obtained by 
identification of the unit elements of rEX with *. However, the map D ~ X 
induced from n: E ~ X is then in general not continuous, contrary to [3, p. 
311].) 

C. Let (E = X x G, X) be as in Example A and let p: G ~ H be a continuous 
homomorphism. Let Xo be a closed subset of X. We define an equivalence 
relation on E: (Xl' gl) ---- (X2' g2) if and only if Xl = X2 E Xo and P(gl) = P(g2)' Let 
F = E / ---- and let p: E ~ F be the corresponding quotient map. Now F is a 
Boolean space. Indeed, F has a basis consisting of the clopen subsets p(V x gN), 
where V is clopen in X and N is an open normal subgroup of G such that 
Ker p ::::; N if V n Xo * 0; moreover, F is compact, since p is continuous and E is 
compact. We may identify every X E X with the image of the group {x} x Gin F. 
Thus (F, X) is an etale space and p is a morphism of etale spaces. 

D. Let (E, X) be an etale space and let rEX. Suppose that r is a subgroup of 
a pro finite group ~. Write El = E U ~ (identify r in E with its image in ~) and let 
Xl = {~} u (X\ {r}). Then (E11 Xl) is an etale space and the embedding E ~ El 
gives rise to a morphism (E, X)~ (E11 Xl)' The map n: El ~ Xl is in general not 
open in this case. 

Etale space (E, X) represents the notion of a 'continuous' family X of pro finite 
groups. Part (a) of Lemma 1.9 elucidates this feature. For its proof we need two 
lemmas; the first one is a consequence of an easy compactness argument: 

LEMMA 1.8. Let cP: E ~ F be a continuous map of Boolean spaces, and let 
U £; E be open and S £; F closed such that cp-l(S) £; U. Then there exists a clopen 
subset V of F such that S £; V and cp-l(V) £; U. 

LEMMA 1.9. Let E be a Boolean space and F a closed subset in E. Let 
CPo: F ~ A be a continuous map into a finite (discrete) space A. Then CPo can be 
extended to a continuous map cp: E ~ A. 

Proof. For every a E A the fibre F(a) = cpol(a) is clopen in F, and hence there 
is a clopen E(a) in E such that E(a) n F = F(a). (Indeed, the c10pen subsets of E 
are a basis for its topology; hence their intersections with F are a basis for F. By 
the compactness of F(a) there are clopen U1 , ... , Un in E such that 

F( a) = (Ul n F) U ... U (Un n F). 

Put E(a) = Ul U'" U Un.) Without loss of generality, we may assume that 
E(a) n E(b) = 0 for a * b; otherwise replace E(a) by E(a) \Ub=foa E(b). Now fix 
ao E A and define cp as follows: 

cp(E(a)) = a for all a EA and CP(E\ U E(a)) = ao. 
aEA 

Clearly, cp is continuous. 

LEMMA 1.10. Let (E, X) be an etale space. Let ro E X and let CPo: ro~ A be a 
continuous homomorphism into a finite group A. Then 

(a) CPo can be extended to a morphism cp: (E, X)~A, 
(b) if cp, cp I: E ~ A are two continuous extensions of CPo then there exists a 

clopen neighbourhood V £; X of r 0 such that reSr cp = reSr cp I for every rEV. 
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Proof. (a) First extend C{Jo to a continuous map C{J: E~A (Lemma 1.9). Let 

X' = U {f' E G(E) I f' ~ f} 
reX 

and let 1/1: X' ~ G(A) denote the restriction to X' of the map G(E)~ G(A) 
induced by C{J. The set ,u - \f 0) is closed in X', and 1/1 maps it into a discrete space 
G(A), whence V' = 1/1-I(1/1(,u-\fo») is open in X'. As ,u-I(fo) £ V', by Lemma 
1. 8 there exists a clopen V £ X such that foE V and ,u - \V) £ V I. If f E V then 
f E V'; that is, there is f' ~ fo such that 1/1(f) = 1/1(fl) in G(A). But 1/1(fl) is a 
group, since C{Jo is a homomorphism, so reSr C{J: f~A is a homomorphism. Now 
without loss of generality we may assume that C{J has the value 1 on the clopen set 
n-\X\ V), that is, reSr C{J = 1 for all f E X\ V. 

(b) The set 

is clopen in E, and n-I(fo) = fo ~ V. By Lemma 1.8, there is an open 
neighbourhood V £ X of fo such that n-I(V) £ V. If f E V then f £ V; obviously 
resu C{J = resu C{J I, and hence our claim follows. 

It is quite straightforward to show that an inverse limit of etale spaces is an 
etale space. Conversely, we have: 

PROPOSITION 1.11. An etale space is a limit of an inverse system of finite etale 
spaces with epimorphisms. 

Proof. Let (E, X) be an etale space and let F = {VI' ... , Vrn} be a partition of 
E. Define C{JF: E ~ F by C{JF(a) = ~ if a E~. Call the partition F €tale if the 
induced map G(E)~ G(F) maps X' onto a set Y' of groups in F and 
F = U~eY(F) ~, where Y(F) is the set of maximal elements of Y'. In this case 
(F, Y(F)) is an etale space and C{JF: (E, X)~ (F, Y(F)) is an epimorphism. 

If G is an etale partition of E finer than F then there exists an obvious 
epimorphism C{JG,F: (G, Y(G»~ (F, Y(F)) such that C{JF = C{JG,F 0 C{JG' In this 
manner the set of etale partitions {F} is an inverse system of finite etale spaces 
with epimorphisms. The maps C{JF induce an epimorphism onto its inverse limit. 
We now have to show that it is an isomorphism, that is: 

Claim. For every partition {VI' ... , Vrn} of E there is a finer etale one. 

Let f E X and let C{Jr: f~ A = A(f) be a continuous epimorphism onto a finite 
groupA, such that the partition f /Ker C{Jr off is finer than {f n ~ =1= 01 1 ~ i ~ m}. 
By Lemma 1.1 O( a) there exists a clopen V = V (f) £ X such that f E V and C{Jr 
extends to a continuous surjection 

C{Jr: V = n-I(V) ~ A 

such that resro C{Jr: f'~A is a homomorphism for all f' E V. By Lemma 1.10(b) 
we may assume that the partition of V into the fibres of C{Jr is finer than 
{Vn~11~i~m}. 

The covering {V (f) I f E X} has a finite subcovering. The intersections of its 
elements constitute a partition rv;, ... , Vn } of X, and for every 1 ~j ~ n there 
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exists a continuous map qJj: n-I(ltj)~ Aj into a finite group Aj such that 
reSr qJj: f ~ Aj is a homomorphism for every f E ltj, and the partition 

F= {qJ;\a) 11~j~n, a EAJ 

is finer than {U11 ••• , Urn}· 
If for every 1 ~ j ~ n there is f E ltj such that qJlf) = A j, then we have finished: 

we identify F with the set U7=IAj and let Y= Y(F) = {AI' ... , An}. The maps 
qJl1 ... , qJn define an epimorphism qJ: (E, X)~ (F, Y), that is, F is etale. 

If, however, say, qJI(r) *AI for all f E VI then we proceed by induction on IAII 
in the following way. Without loss of generality V (f) ~ VI for every f E VI, and 
qJr = reSr qJI with A(f) <A1. The covering {V(f) I f E V1} of V1 has a finite 
subcovering. This gives rise to a partition {Vll , ... , Vll } of VI with maps 
qJ1k: n-1(V1k)~A1k <Al1 for k = 1, ... , l. We replace {VI' ... , Vn} by 
{Vll1 ... , Vll , V2 , ••• , Vn} and construct F as above. Repeating this process finitely 
many times we arrive at an etale partition F. 

2. Free products of profinite groups 

We use the notion of etale space (Definitions 1.4 and 1.6) to define free 
products. 

DEFINITION 2.1 (cf. Gildenhuys and Ribes [3, §1]). Let (E, X) be an etale 
space. The free product over (E, X) is a profinite group G with a morphism 
ct>: (E, X)~ G such that for every profinite group A and every morphism 
1jJ: (E, X) ~ A there exists a unique continuous homomorphism ll': G ~ A such 
that 

(1) 

commutes. 
Note that the definition does not change if we require that A be a finite group 

(a standard limit argument). 
The uniqueness of a free product is obvious. To construct it, let Gd be the 

discrete free product of the groups in X, and define f: E ~ Gd such that f(f) = f 
and resr f is the identity map of f, for every f E X. Let 

}f = {N<lG d I (Gd
: N) < 00, f-l(gN) is open in E, for every g E G d

} 

and write G = lim.,v Gd 
/ N. Put <I> = i 0 f, where i: Gd ~ G is the canonical 

~ 

completion map. It can be easily verified that ct>: (E, X)~ G is the free product. 
We note that <I>(E) (topologically) generates G. 

Let (E, X) be the inverse limit of an inverse system of etale spaces (Ei , X;), 
where i E J, and let 

qJi: (E, X)~ (Eu X;), qJji: (Ej, Xj)~ (Ei , X;), for i, j E J, i ~ j, 

be the corresponding maps. For every i E J let <l>i: (Ei , X;)~ Gi be the free 
product over (Ei' X;). By its universal property there exists for every j ~ i a 
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unique homomorphism lPji: Gj ~ Gi such that 

~. 
<p. 
-4 Gj 

lPjil IlPji 

Ei ~ G i 
I 

commutes. Moreover, (Gi , lPj;) is an inverse system. Let G be its limit with the 
maps lPi: G~ Gi. Then there is a unique <P: (E, X)~ G such that lPi 0 <I> = 

<Pi 0 lPi for every i E 1. 
It is not difficult to see that <1>: (E, X)~ G is a free product. To this end just 

note that every morphism 1/1: (E, X)~ A into a finite group A necessarily factors 
through some lPi: (£, X)~ (Ei' X;). Furthermore, <I>(E) generates (topologi­
cally) G, since <Pi(E;) generates Gi for each i E I. 

We formulate this as follows: 

LEMMA 2.2. Inverse limits of free products are free products. Conversely, every 
free product is an inverse limit of free products over finite etale spaces, such that 
the corresponding morphisms of etale spaces and the group-homomorphisms are 
ep imorph isms. 

The second assertion follows from the first one by Proposition 1.11 and the 
uniqueness of the free product. 

LEMMA 2.3. Let <P: (E, X)~ G be a free product. Then 
(a) reSr <P: f~ G is a monomorphism for every f E X, 
(b) if f v f 2 E X and a E G satisfy <I>(f 1) <J n <I>(f 2) =1= 1 then 

f1 = f2 =1= 1 and a E <I>(f1), 

whence 

Proof By Lemma 2.2 and standard limit arguments we may assume that 
(£, X) is finite. 

(a) Let fEX. An isomorphism 1/1: f~A of groups extends by Lemma 1.10 to 
a morphism 1/1: (£, X) ~ A. Thus there exists a homomorphism a which makes 
(1) commute, whence reSr <I> is injective. 

(b) If fl =1= f2' let A = fl x f2 and define a morphism 1J1: (£, X)~ A by 
resrj 1J1 = id(fi ), for i = 1, 2, and 1J1(f) = 1 for other f EX. Let a: G ~ A 
complete (1). Then, since f1 <JA, 

a 0 <P(f1)<J = ff(<J) = f} and a 0 <I>(f2) = f 2. 

But 1/1 is injective on f2' hence ll' is injective on <I> (f2) , whence 
a(<I>(fl)<J n <I>(f2» =1= 1, a contradiction. 

If fl = f2' we can apply Theorem 2(iii) of Herfort and Ribes [10] to get 
a E <I>(fl). 

EXAMPLE 2.4. Our free products are more general than those of Gildenhuys 
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and Ribes [3]. Consider a free product <1>: (E, X)~ G such that (some restriction 
is necessary as every group is a free product of 'itself') all f E X are finite. Write 

V= {fEXI f=2/22} and U= U f£;E. 
reV 

Then by [10, Theorem 2] (which clearly holds in our case too) 

<I>(U)G\{l} = U <I>(U)G\{l} 
GeG 

is the set of elements of order 2 in G not contained in a finite subgroup of G of 
order greater than 2. 

In the definition of [3, Example 1.7.C], V U {*} is closed in X, and hence 
U U { *} is closed in E. Thus <1>( U) = <1>( U U { * }) is closed in G, whence <1>( U)G 
is closed in G. 

On the other hand, let X = N U {oo} be the one-point-compactification of N, 
and let 

E = (N x 22/42) () ({oo} x 2/42) 

be the subspace of the product space E1 == X x 2/47l.. Write 7L/42 as {O, 1,2, 3}. 
Then <I>(n, 2) ~ <1>(00, 2) as n ~ 00, but <1>(00,2) f <1>( U)G. So <1>( U)G is not closed. 

Furthermore, the free product <1>1: (E1' X)~ Glover (Ev X) is a free product 
in the sense of [3]. The embedding E ~ E1 gives rise to an embedding G ~ G1 (cf. 
[9, Proposition 4]). So our free product is a subgroup of the free product in [3]. 

3. Inner free products 

In the preceding section free products have been constructed for given families 
of groups. We now wish to state when a given pro finite group is a free product of 
a given family of its subgroups. But, to be quite honest, we use this section as a 
convenient setting to introduce certain constructions that are essential in the 
sequel. For this reason our discussion will be slightly more general than is actually 
necessary at this point. 

DEFINITION 3.1. A family I of closed subgroups of a profinite group G is said to 
be separated if, for all distinct fI' f2 E I, 

(a) fl n f2 == 1, and 
(b) there exist subfamilies Iv I2 £; I such that I = II L:.J I 2, fi E Ii, and 

Urex; f is closed in G, for i = 1,2. 
Note that (b) implies that D = UrEX f is closed in G. 

DEFINITION 3.2. Let I be a separated family of subgroups of G. We say that G 
is a free product of the groups in I (briefly, free I-product) if the following 
condition is satisfied. 

Let tjJ: UrEX f ~ A be a continuous map into a profinite group A such that 
resr tjJ: f ~ A is a homomorphism for every f E I. Then tjJ extends to a unique 
continuous homomorphism tjJ: G ~ A. 

We shall see that this is essentially the definition of the free product from § 2. 
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PROPOSITION 3.3. Let <1>: (E, X)~ G be a free product. Then G is a free 
product of the groups in x = cI>(X). 

Proof We first check that x is separated. Property 3.1(a) follows from Lemma 
2.3. Furthermore, if fl' f2 E X are not equal, there are clopen VI, V2 ~ X such 
that X = VI L:J V2 and fl E VI, f2 E V2 • Put 

Xi = <I>(~) = {<I>(f) I f E~}, for i = 1,2. 

By Lemma 1.2, Ei = UrEV; f is closed in E, whence U~EXi ~ = <I>(Ei) is closed in 
G, for i = 1,2. This shows that part (b) of Definition 3.1 is satisfied. 

The universal property of Definition 3.2 follows easily from the universal 
property of the free product (Definition 2.1). 

For the converse we have to work harder. 
Let x be a separated family of subgroups of a profinite group G. Assume 1 ft. x 

(G is a free x-product if and only if G is a free (x \ {1} )-product). 
As remarked, D = UrEx f is a Boolean space. Denote D / = D \ {1} and define 

a map p: D / ~ x by p(g) = f if and only if g E f. The definition is good by 
Definition 3.1(a). Put the quotient topology on x. A subset g) ~ x is clopen if and 
only if p-l(g) is clopen in D', that is, both UrEV f and UrEX\V f are closed in D. 
Therefore by Definition 3.1 (b), x is a Hausdorff space possessing a basis 
consisting of clopen sets. If G is separable then so is D' and therefore also x. 

LEMMA 3.4. Assume that x is closed under the conjugation in G (of course, this 
is not the case if G is a free x-product). 

(a) If g) is clopen in x and N is a closed subgroup of G then g)N = UgEN g)g is 
also clopen in x. 

(b) The clop en subfamilies g) of x with open stabilizer (that is, those for which 
there exists an open N <J G such that g)N = g) form a basis of x. 

Proof (a) Let Dl = UrEV f, D2 = UrEX\V f. Then UrEVN f = Dl( is closed in G 
(it is the image of the compact Dl x N under the conjugation action (g, a) ~ gO of 
G on itself) and UrEX\VN f = ngEN D~ is also closed in G. 

(b) Let f E X and let Xl ~ x be its clopen neighbourhood. Write X2 = x \ Xl. 
Then D2 = UrEx2 f is closed in G and f ct D2 , by Definition 3.1(a). Therefore if 
N is a sufficiently small open normal subgroup of G then f r;t D'{ = UrExf f, that 
is, rEX \x'{. This set is clopen by (a) and it is clearly contained in Xl. 

LEMMA 3.5. The space x can be embedded as a dense subset of a Boolean space 
X such that: 

(a) if x is closed under the conjugation in G then the action of G on x extends 
to a continuous action of G on X; 

(b) if x is separable then so is X. 

Proof Fix a basis L of x consisting of clopen subfamilies of x such that 
(a) the elements of L have open stabilizers if x is closed under the conjugation 

in G, and 
(b) L is countable if x is a separable space. 
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Without loss of generality 2: is a Boolean algebra (that is, if Iu Iz E 2: then 
Il n xz, I\1l E 2:) and, in Case (a), 2: is closed under the conjugation in G. 

A 2:-partition of I is a finite collection of disjoint non-empty elements of 2: 
whose union is I. The 2:-partitions of I form an inverse system of finite quotient 
spaces {~}iEI of I in an obvious way (d. [6, §1]). Let X=lim~. This is a 

~ 

Boolean space and the quotient maps I ~ X; define a continuous map I ~ X. It 
is an embedding, since 2: is a basis of I, and the image of I is dense in X, by [15, 
p. 19]. 

If L is countable then I is countable, whence X is separable. If I is closed 
under the conjugation in G then 2: is closed under the action of G. Since 2: is a 
Boolean algebra and every element of 2: has only finitely many conjugates, one 
easily sees that there is a co finite set J s; I of ~-partitions that are also 
G-partitions (i.e. if j E J and V E ~ then vg E ~ for all g E G). The conjugation 
on I compatibly induces actions of G on ~, for j E J, and these give rise to an 
action of G on X, which extends the conjugation on I. 

LEMMA 3.6. Let X be as in Lemma 3.5. There exist an hale space (E, X) and a 
morphism <1>: (E, X)~ G such that Irl = 1 for every r E X\I, and the induced 
map <1>: X ~ Subg(G) maps I identically onto itself. 

Proof. Let E = (UrEX r) L:J (X\ I) as a set. Define two maps 

n: E~X and <1>: E~G 

by 

n(e)=r ifeErEI and n(e)=e ifeEX\I, 

<1>( e) = e if e ErE I (that is, we identify the subset r of E with the subgroup 

r of G via <1» and <I>(e) = 1 if e Ex\I. 

Endow E with the weakest topology in which both n and <I> are continuous. 
We claim that E is a Boolean space. Indeed, the maps n, <I> define a unique 

map 'I/J: E ~ X x G such that the following diagram commutes 

and the topology on E is precisely the weakest topology in which 'I/J is continuous. 
So it is enough to show that 'I/J is injective and 'I/J(E) is closed in X x G. The 
injectiveness follows as <I> is injective on every rEX. If (r, g) E X x G then 
(r, g) E 'I/J(E) if and only if either g E rand rEI or g = 1 and r fJ I. Assume 
(r, g) fJ 'I/J(E); then g =1= 1. If g fJ D = UrEX r then also for every g' near to g we 
have g' fJ D, since D is closed. In this case (r', g') fJ 'I/J(E) for all r' EX. If g E D, 
there is a unique r 1 E I such that g E r l' As r 1 =1= r, there is a clopen V s; X such 
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that r 1 E V and r f/. V. The family I n V is clopen in .x, whence U = U~E,Inv 6. is 
closed in G. Now g f/. U, and hence if g' is near to g then g' E U and g' =1= 1. 
Therefore (r', g') f/. 1jJ(E) for all r' E V. This proves that 1jJ(E) is closed in X X G. 

We may identify X (as a set) with a set of groups in E, by the definition of E. 
(Of course, the topology of X need not be induced from that of G(E).) To show 
that (E, X) is an etale space we have to verify that 

X' = {r' E G(E) 13 rEX, r' ~ r} 

is closed in G(E). To this end let Z £; G(X) denote the family of trivial subgroups 
in the space X (that is, the family of points in X). Obviously, Z is closed in G(X). 
But 

X' = {f' E G(E) I ncr') E Z and <I>(r') E Subg(G)}, 

whence X' is closed in G(E). 

PROPOSITION 3.7. Let G be a free I-product. Then there exists a free product 
<1>: (E, X)~ G such that <I>(X) U {I} = I U {I}. 

Proof. Without loss of generality 1 f/. I. Let <1>: (E, X)~ G be as in Lemma 
3.6. Then <I>(E) = D = UrE,X r, and <1>: E ~ D is a quotient map, since it is 
closed. Let 'IjJ: (E, X)~ A be a morphism into a profinite group A. Then there 
exists a unique continuous map 1jJ I: D ~ A such that 1/J = <I> 0 1jJ'. As 
resr <1>: r~ <I>(r) is an isomorphism for every rEX, we know that 
res<I>(r)1jJ': <I>(r)~A is a homomorphism. So by the universal property of G, 1jJ' 
extends to a unique homomorphism 1jJ': G~A. Thus <1>: (E, X)~ G is a 
free product. 

As a by-product of the proof of Lemmas 3.5 and 3.6 we get: 

COROLLARY 3.8. Let I be a separated family of subgroups of a profinite group 
G. Then .x' = UrE,X {r' E Subg(G) I r' ~ r} is closed in Subg(G). 

Proof. Without loss of generality we may assume that 1 ~ I. If <1>: (E, X)~ G 
is as in Lemma 3.6 then the induced continuous map <1>: G(E)~ G(G) maps 
X' = UrEx {r' E G(E) I r' ~ r} onto .x'. Thus I' is closed. 

4. Relative projective groups 

Let I be a family of subgroups of a profinite group G. 

DEFINITION 4.1. A finite I-embedding problem (<p: G ~ A, a: B ~ A, 
Con(B» for G consists of 

(i) an epimorphism of finite groups a: B ~ A, 

(ii) a continuous homomorphism <p: G ~ A, and 

(iii) a family Con(R) of subgroups of B closed under the inclusion and the 
conjugation in B such that 

(iv) for every rEI there is a continuous homomorphism 1/Jr: r ~ B that 
satisfies 

a 0 1jJr = resr <p and 1/Jr(r) E Con(B). 
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A solution of this problem is a continuous homomorphism 'ljJ: G ~ B such that 

ll' 0 1jJ = qJ and 1jJ(x) £; Con(R). 

DEFINITION 4.2. Let G be a profinite group and 1 a separated family 
(Definition 3.1) of its subgroups closed under the conjugation in G. We say that 
G is projective relative to x if every finite x-embedding problem for G has a 
solution. 

Obvious examples of relative projective groups are the free products: 

PROPOSITION 4.3. Let G be a free product of the groups in a family x of its 
subgroups. Then G is projective relative to xG = {fg I f E 1, g E G} and 

(1) 

for all f1' f2 E X and every 0 E G. 

Proof. By Proposition 3.7 there exists a free product <1>: (E, X)~ G such that 
<I>(X) U {I} = x U {I}. Therefore (1) follows from Lemma 2.3. 

We check that xG is separated. Let fb f2 E 1 and 01, 02 E G be such that 
ffl =1= f22. By (1), ffl n f22 = 1, which verifies Definition 3.1(a). If f1 =1= f2 then 
there are Xl, X2 £; 1 such that x = 11 L:J X2, fi E Ii, and Di = UrEx; f is closed in 
G, for i = 1,2. By (1), I G = x? (J xr, and clearly UrExpf = DF is closed in G, 
for i = 1,2. If f1 = f2 then f 10 1 =1= f 20 2 (since ffl =1= f22). Hence there is an open 
H~G such that f1 ~H and HOI =1= H02 • A compactness argument shows that 
there is a clopen neighbourhood V of f 1 in 1 such that UrEg} f £; H. Let 
11 = VHat, 12 = VGVlat, 13 = (I\V)G. Then I G = Xl L:J 12 L:J X3, by (1), ffl E 11, 
f22 E 1 2, and UrEx; f is closed in G, for i = 1,2,3. This proves that I G is separated. 

Now let (cp: G~A, ll': B~A, Con(B)) be a finite I G -embedding problem 
for G. To solve it, it suffices to construct a morphism 1jJ: (E, X)~ B such that 
ll' 0 1jJ = <I> 0 cp and 'ljJ(f) E Con(B) for every f E 1, since then we can use the 
universal property of the free product <1>: (E, X)~ G. 

Let f EX. By assumption there exist ~ E Con(B) and a homomorphism 
1Pr: f ~ ~ such that ll' 0 1Pr = cp 0 resr <1>. By Lemma 1.10 there exists a clopen 
neighbourhood V of f in X and a continuous extension 1P: Ur'Evf ' ~ ~ of 1Pr 
such that reSr' 1P: f' ~ ~ is a homomorphism and ll' 0 resr' iP = cp 0 resr <I> for all 
f' E V. Using the compactness of X we may assume that V = X, that is, 1P is 
defined on E. Now 1P induces the required morphism 1jJ: (E, X)~ B. 

The significance of relative projective groups will be apparent from the next 
section. We conclude this section by a technical result, preceded by a lemma. 

LEMMA 4.5. Let G be projective relative to 1. Let f E 1 and 0 E G be such 
that fa = f. If cp: G ~ A is an epimorphism onto a finite group A such that 
cp(f) =1= 1 then there is f' E 1 such that cp(f) ~ cp(f') and cp( 0) E cp(f'). 

Proof. Let {~1' ... , ~n} £; Subg(A) be the set of maximal elements in 
{cp(f') I f' E I}. It is closed under the conjugation in A and does not contain 1. 
Denote B =A * ~1 * ... * ~n' and let &: B~A be the epimorphism which is the 
identity on A, ~1' ... , ~n" 
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If rEB \t:,.i then t:,.I n t:,.i = 1 (Herfort and Ribes [10, Theorem 2(iii)]). 
Therefore there is an open N <JB such that t:,.IN n t:,.iN = 1. By the compactness 
of B \Ui t:,.i Ker a there exists an open N <JB such that, for every 1:!S i :!S nand 
every rEB, 

a(r) ft t:,.j =} t:,.IN n t:,.iN = 1. 

Put B = B / N, let a: B ~ A be the map induced from a, and define 
Con(B) = {(t:,.iN/N)b I 1:!S i ~ n, bE B}. Then, for all t:,. E Con(B) and all bE B, 

(2) t:,.b n t:,. * 1 =} a(b) E a(t:,.). 

Furthermore, if Con'(B) denotes the closure of Con(B) under the inclusion, then 
(cp, a, Con'(B)) is an I-embedding problem. 

By assumption there exists a homomorphism 1jJ: G ~ B such that a 0 1jJ = cp 
and 1jJ(I) ~ Con'(B). Let t:,. E Con(B) be such that 1jJ(f) ~ t:,.. Then 1jJ(f) * 1, 
since cp(f) = a( 1jJ(f» * 1, whence 

t:,.1/J(a) n t:,. ;;2 1jJ(f)1/J(a) n 1jJ(f) = 'ljJ(f) * l. 
By (2), cp(a) = a 0 1jJ(a) E a(t:,.). On the other hand, cp(f) = a 0 1jJ(f) ~ a(t:,.). 
Since by our construction there is f' E I such that a(t:,.) = q:>(f'), the lemma has 
been proved. 

LEMMA 4.6. Let G be projective relative to I. Let f E I and a E G such that 
fa = f. If f * 1 then a E f. 

Proof· Since I is separated, it suffices to show the following: if I = II U I2 
such that f E II and Di = Ur'EXi f' are closed in G, for i = 1, 2, then a E D I . To 
this end it is enough to show that a E DIN for all sufficiently small open N<JG. 

Since f $ D2, we may assume f ¢. D2N. Let cp: G ~ G / N be the quotient map. 
If f' E I2 then f' N ~ D2N, whence cp(f) ¢. q:>(f'). It follows from Lemma 4.5 that 
q:>(a) E cp(f'), where f' E II' Therefore a E DIN. 

5. The subgroup theorem 

THEOREM 5.1. Let G be a profinite group, projective relative to a family I of 
its subgroups, and let H be a closed subgroup of G. Then H is projective relative to 
g) = {f n HI f E I}. 

Proof. Clearly g) is separated since I is separated. So we are left with finding a 
solution to a finite g)-embedding problem 

(1) (cp: H~A, a: B~A, Con(B» 

Part A. Reduction to H open. As Ker q:> is open in H, there exists an open 
normal subgroup Ko of G such that Ko n H ~ Ker q:>. Extend q:> to a homomorph­
ism q:>: HKo~ A with cp(Ko) = 1. 

Write I' = UrEX {f' E Subg(G) I f' ~ f} and let f E I'. By assumption there 
exists t/J: f n H ~ B such that 1jJ(f n H) E Con(B) and a 0 t/J = reSrnH cpo Choose 
an open subgroup K of Ko normal in G such that K n (f n H) ~ Ker t/J, and 
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extend 1jJ to 1jJ: (f n H)K ~ B by letting 1jJ(K) = 1. Then 

a 0 1jJ = res(rnH)KCP and 1jJ«f n H)K) = 1jJ(f n H) E Con(B). 

There exists an open subgroup Hr of G such that 

H~Hr~HK and fnHr~(fnH)K. 

Let 1jJr = reSrnHr 1jJ; then 

a 0 1jJr = reSrnHr cP and 1jJr(f n Hr) E Con(B) 

(since 1jJr(f n Hr) ~ 1jJ(f n H». 
Now let f' E X I be near to r in Subg( G), that is, f' N = fN, where N is an 

open normal subgroup of G contained in Hr n K. Then 

f' n Hr~fN n Hr = (f n Hr)N~ (fnH)K 

and 1jJr' = reSr'nHr lJ1 satisfies 

lY 0 1jJr' = resrnHr cP and 1jJr,(f' n H) E Con(B). 

By the compactness of I' (Corollary 3.8) there are open subgroups Hv ... , Hn 
of G such that H ~ Hi ~ HKo, for i = 1, ... , n, and for every fEl' there exist i 
with 1 ~ i ~ n and a homomorphism 1jJr: f n Hi ~ B such that 

lY 0 1/Jr = resrnHi cP and 1jJr(f n H) E Con(B). 

Let H' = n7=1 H;. Then (resH' cP: H' ~ A, lY: B ~ A, Con(B» is a finite 
{f n H' I f E I}-embedding problem for H'. Clearly, a restriction of its solution 
1jJ': H' ~ B to H solves (1). So we may assume that H is open. 

Part B. Wreath products. We follow the pattern of [1, § 5]. Let S"1:. be the 
symmetric group on the set L of the right cosets of H in G, and let g ~ g denote 
the obvious homomorphism G ~ S"1:.; let G be its image. To fix the notation, let C 
be a profinite group, and C"1:. the direct product of I~I copies of C. As G acts on 
C"1:. by 

fX(Hg) = f(Hgx- 1
), where f E C"1:., x,g E G, 

we [./.lay form the semi direct product 

G w C = G ~ C"1:. (=G X C"1:. as a topological space). 

Let p: f ~ C"1:. be a continuous map from a subgroup f of G into C"1:.. It induces 
a map p: f~ G w C by x ~ (x, p(x». If x E f and Hg E L, let PHg(X) denote the 
value of p(x): L~ C at Hg. The following characterization is trivial. 

LEMMA 5.2. The map p is a continuous homomorphism if and only if for all 
Hg E ~ and all X,Z E f, 

(2) 

Fix t: L~ G such that t(Hg) E Hg for all Hg E ~ and t(H) = 1. Define 
A: G~H};. by 

AHg(X) = t(Hgx-1)xt(Hg)-1, where x E G, Hg E L. 

Then A induces by Lemma 5.2 a continuous homomorphism A: G~ (; w H (in 
fact, it is an embedding). 
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We may consider a w - as a functor: a homomorphism of profinite groups 
a: B ~ A induces a homomorphism a w a: G w B ~ a w A defined in an ob­
vious way. Write Hw C = {(x, f) E awe I x E H}. This is a subgroup of awe 
and we note that 

(3) (G w a)-l(Hw A) = Hw B. 

Finally, let 1'lc: HwC~C be the epimorphism (x,f)~f(H). 
From (1) we get a commutative diagram 

G~ -,H 

Xl resHX1" 
(4) 

GwH ~ HwH 1i;? H 

G w <pI res a w <pI IlP 
GwA ~ HwA F* A 

Gwo/' AesGwa~ 
GwB( -,HwB 1'lB •• B 

Define 

ConCH w B) = {S E SUbg(H w B) I ]fB(S) E Con(B)}, 

Con(G w B) = {S E Subg(G w B) I SK n (H w B) E Con(H w B), for all g E G}. 

Both of these sets are closed under the inclusion and the conjugation in the 
respective groups. 

Suppose we can find a continuous homomorphism 'ljJ: G ~ G w B such that 
(a w a) 0 'ljJ = (G w <p) 0 A and 'ljJ(I/) ~ ConCa w B). Then 

(a w a) 0 'ljJ (H) = ((; w <p) 0 X(H) ~ H w A, 

and hence by (3), 

'ljJ(H) ~fIw B. 

Obviously 'ljJ(V) ~ Con(H w B), whence ]fB 0 'ljJ(V) ~ Con(B). We see that ]fB 0 'ljJ 
solves (1). 

Thus we just have to show the following: 
Part C. ((a w <p) 0 A, G w (1', Con(G w B)) is an I-embedding problem for G. 

Clearly, G w (1' is surjective. For the balance of this proof, fix f E I. 

LEMMA 5.3. Let Hg E:2:. There exists a continuous map 8 = 8Hg : f~ B such 
that 

(5) 

(6) 

(7) 

8(xy) = 8(x)8(y), for x E f, Y E f n Hg, 

(1' 0 8(x) = <p 0 AHg(X), for x E f, 

8(f n Hg) E Con(B). 

Assume that the lemma has been proved. Choose a system :2:0 of repre­
sentatives of the f-orbits (that is, [-orbits) in :2: and define 'ljJ: f~ B:2:. by 

(8) 'ljJHgy-l(X) = 8Hg(xy)8Hg(y)-1, where x,y E f, Hg E :2:0 . 
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This is a good definition. Indeed, every element of L can be written as Hgy- 1 

with Hg E Lo, Y E f. If Hg1Yl 1 = Hgy-1 with Hg1 E Lo, Y1 E 1', then Hg1 = 
Hg(y-lYl), and hence Hg1 = Hg and y-1Y1 E f n Hg. By (5), 

8(y!) = 8(y)8(y-lYl) and 8(XYl) = 8(xy)8(y-1Yl)' 

whence 

As 8Hg is continuous for every Hg E Lo, 'l/J is continuous. Let Hg E Lo and 
Xl, X2, Y E f. Then 

8 Hg{X 1X2Y) 8 Hg(Y) -1 = 8 Hg(X lX2Y) 8Hg (X2Y) -18Hg (X2Y) 8 Hg{y) -1; 

hence 

'l/J Hgy-l(XlX2) = 'l/J Hgy-1X21(Xl)'l/J Hgy-l(X2). 

By Lemma 5.2, 'l/J induces a homomorphism ijJ: f~ G w B. It follows immedi­
ately from (6) that a 0 'l/JHg{X) = cp 0 AHg(X) for all X E 1', and hence (G w a) 0 ijJ = 
resr(G w cp) 0 A. 

Finally, let Hg E Lo and Y E f. Put 8 = 8Hg . By (8) and (5), 

'l/J Hgy-l(f n Hgy-l) = {8(xy )8(y )-1 I X E I' n Hgy-l} 

= {8 (y z ) 8 (y ) -1 I Z E I' n Hg} 

= 8(f n Hg)8(y)-1 E Con(B). 

In other words, for every g E G, 

whence 

'l/J HiI' n Hg) E Con(B), 

nBC ijJ(f)K n fI w B) = nBC {(XK, 'l/J(X)K) I X E 1', XK E H}) 

= {'l/J Hg-t(X) I X E 1', XK E H} 

= 'l/J Hg-t(f n Hg-
1

) E Con(B). 

This shows that ijJ(f) E Con(G w B). 
Part D. Proof of Lemma 5.3. Without loss of generality, assume that 

t(Hg) = g. Thus 

(9) AHg{Y) = t(Hgy-l)yt(Hg)-l = gyg- l for all y E I' n Hg. 

By assumption there exists a continuous homomorphism 8': f g
-

t n H ~ B such 
that a 0 8' = res cp and 8'(fg

-
t n H) E Con(B). Define 8: r n Hg ~ B by 8(y) = 

8'(gyg-l) for all y E I' n Hg. Then by (9), 

(10) a 0 8(y) = cp 0 AHiy) for all y E I' n Hg, 

and 8(1' n Hg) = 8'(fg
-

t n H) E Con(B). 
Our task is to extend 8 to all of f. To this end choose a closed system S of 

representatives of the left cosets of I' n Hg in f (cL [15, p. 31]). Every X E I' has a 
unique representation x = sy, where S E S, Y E I' n Hg; it is not difficult to see that 
the maps x ~S, x ~ yare continuous. Fix, in addition, a section r: A ~ B of 
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£1': B~A. If x =sy as above, define 

(11) 8(x) = (r 0 ep 0 AHg{s»8(y). 

Then 8: f~ B is continuous. Furthermore (recall that Hgy-1 = Hg for y E 

f n Hg) by (10), 

£1' 0 8(x) = (ep 0 AHg{S»(ep 0 AHg{y» = ep(AHgy-l(S)AHg{y» = ep 0 AHg{X). 

Other requirements of Lemma 5.3 are obvious. 

COROLLARY 5.4. Let <1>: (E, X) ~ G be a free product, and let H be a closed 
subgroup of G. Then H is {<I>(f)g n H I f E X, g E G}-projective. 

The following example shows that the subgroups of free products need not be 
free products. 

EXAMPLE 5.5. Let A and B be finitely generated profinite groups and assume 
that they have open normal subgroups of index 2 and 3, respectively. Let 
G =A * B and denote 

'!Ie = {H E Subg(G) I A O,B1:::::::: H for some a, T E G}. 

If H E '!Ie then the sets {a E G I A ° ::::::: H}, {T E G I B 1: ::::::: H} are closed in G. We 
deduce that '!Ie is closed under descending chains. By Zorn's lemma it has a 
minimal element, say H. Clearly H = (A 0, B1:) for some a, T E G. We show that 
H =1= A * B. 

Indeed, if H == A * B then the isomorphisms A ~ A 0, B ~ B1: extend to an 
isomorphism G~H [15, p. 68]. Thus, without loss of generality, assume that 
H = G, that is, G is minimal in '!Ie. But this is impossible: there exists an 
epimorphism ep: G~S4 such that ep(A) = «(12», ep(B) = «(134». Choose T E G 
with ep( T) = (1234). Then 

ep (A, B 1:) = «(12), (134)(1234» = «(12), (241» #= S4; 

hence (A, B1:) #= G and (A, B1:) E '!Ie, a contradiction. 
If A = 7L/27L and B = 7L/37L then it is not difficult to strengthen the above 

argument and show that H is a free product of no two non-trivial subgroups. 
In particular, let p, q be two primes and let Qp, Q q be the p-adic and the q-adic 

closures (i.e. henselizations) of Q with respect to the p-adic and the q-adic 
valuation, respectively. Assume that G(Qp n Qq) = G(Qp ) * G(Qq). Then, as 
indicated above, there are a, T E G(Q) such that G(Q; n Q;) =1= G(Qp ) * G(Qq). 
This answers in the negative a conjecture of Ershov [2, p. 426]. (This is also 
implicit in a theorem of Heinemann [11, Theorem 3.2]: if I is a prime and K1 and 
K2 are the fixed fields of the I-Sylow subgroups of G(Qp ), G(Qq), respectively, 
then there are a, T E G(Q) such that G(Kf n KD is a pro-I-group. In particular, 
G(Kf n KD =1= G(K1) * G(K2), whence G(Q; n Q~) =1= G(Qp ) * G(Qq), by [9, 
Proposition 4]. I thank W.-D. Geyer for pointing out this fact to me.) 

We note that the above argument does not work for free products in the 
category of pro-p-groups. 

PROBLEM 5.6. Let G be a free I-product and let H be a closed subgroup of G. 
Write [) = {fg n HI f E I, g E G}. 
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(a) Is there a projective subgroup P of H such that H is generated by V and P, 
and H is projective relative to V lJ {p}H? 

(b) If H is open, are there a subfamily Vo of V and a free subgroup F of H such 
that H is a free VolJ{F}-product? 

6. Etale structures 

Our next aim is to show that separable relative projective groups are subgroups 
of free products. The main step is to define 'infinite' embedding problems which 
should be solvable for relative projective groups. In search of an appropriate 
definition we now introduce the category of etale structures. Though its definition 
is somewhat complicated, the constructions within this category are quite 
standard. 

Let (E, X) be an etale space and G a profinite group. Suppose that G acts 
continuously (on the right) on E. This induces a continuous action on G(E). If X 
(or, equivalently, X') is invariant under this action, we say that G acts on 

. a 
(E, X). ThIS means that for every a E G and every rEX the map r~ r a 

is an isomorphism of groups. 
In what follows G acts on itself by conjugation: gO = a-1ga. 

DEFINITION 6.1. An etale structure is a system 

(1) G = (G, E, X, <I> c > 

where G is a profinite group, (E, X) is an etale space on which G acts, and 
<l>c: (E, X)~ G is a morphism such that 

(a) <l>c: E~ Gis equivariant, that is, <l>c(aa) = <l>c(a)a, for a E E, a E G, 
(b) G acts regularly on E, that is, for every a E E, 

(2) {a E G I a a = a} = 1. 

REMARK. Condition (b) implies that 

(2') {a E Giro = r} = 1, for every rEX. 

Indeed, if r a = r then lr = Ira = (Ir)a, and hence a = 1, by (2). 

DEFINITION 6.2. A morphism of etale structures 

cp: G= (G, E, X, <l>c)~H= (H, F, Y, <l>H) 

is a pair consisting of a morphism of etale spaces lj): (E, X)~ (F, Y) and a 
continuous homomorphism cp: G ~ H such that 

(c) the following diagram commutes: 

and 

(d) 

E-LF 

<l>c1 1<1> H 

G ---. H cp 

cp(aa) = cp(a)cp(a), where a E E, a E G. 
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A morphism is said to be an epimorphism if both cp: (E, X)~ (F, Y) and 
cp: G~ Hare epimorphisms (that is, cp(G) = Hand 'P(X);2 Y). 

An epimorphism is said to be a cover if, for all a, bEE, 
(e) cp(a) = cp(b) implies that there is a E G such that b = aa (a is unique by (b) 

and a E Ker cp by (b) and (d». 
The concept of etale structure may be simplified in the following way. Let 

cpo: (EO, XO)~ G be a morphism of an etale space (EO, XO) into a profinite group 
G. Then G acts regularly on the product space EO x G by (a, g)a = (a, ga), where 
aEEo and g, aEG. Define <l>°xG: EOxG~G by (a,g)~<I>°(a)g; then 
<1>0 x G is equivariant. Identify the product space XO x G with the set of groups 
{ra IrE xo, a E G} in EO x G. Then (G, EO x G, XO x G, <1>0 x G) is an etale 
structure. 

Conversely, let G = (G, E, X, <l>G) be an etale structure. By [7, Lemma 2.4] 
there exists a closed system XO of representatives of G-orbits in X. Obviously, 
EO = .7l'-l(XO) = UrExo r is a closed system of representatives of G-orbits in E. 
Furthermore, (EO, XO) is an etale space and the restriction <1>0 of <l>G to EO is a 
morphism cpo: (EO, XO)~ G. We shall call it a representative of G, since clearly 
(G, EO x G, XO x G, <1>0 x G) =G. 

Working with representatives has the following advantage. 

LEMMA 6.3. Let G, H be €lale structures and <1>0: (EO, XO)~ G be a 
representative of G. Let cpo: (EO, XO)~ (E(H), X(H» be a morphism of etale 
spaces and cp: G ~ H a continuous homomorphism such that <I> H ° cp ° = cp ° cpO. 
Then (cpo, cp) extends to a unique morphism cp: G~ H. 

Proof This is clear. 

COROLLARY 6.4. Let cp: G~ H be a cover and <1>0: (EO, XO)~ G a 
representative for G. 

(a) If N is a closed normal subgroup of G then G~ GIN is a cover. 
(b) G = lim GIN, as N runs through open normal subgroups of G. 

~ 

( c) There exists a unique isomorphism ip: G IKer cp ~ H such that the following 
diagram commutes: 

G ..!L. H 

~h 
G/Ker cp 

(d) resE°<l>H: (cp(EO), cp(XO»~H is a representative for Hand 
reSEO cp: (EO, XO)~ (cp(EO), cp(XO» is an isomorphism of eta Ie spaces. 

(e) cp: (E(G), X(G»~ (E(H), X(H» has a section, that is, there is a morph­
ism 1J1: (E(H), X(H»~ (E(G), X(G») such that cp ° 1J1 is the identity. 

(f) For every r E X(G) we have cp(r) E X(H) and reSr: r~ cp(r) is an 
isomorphism. 

Proof This proof is also clear. (Cf. also [6, 4.1; 7, Lemma 2.4].) 
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It can easily be checked that an inverse limit of etale structures is again an etale 
structure. By way of a converse we have: 

LEMMA 6.5. Every etale structure is a limit of an inverse system of finite eta Ie 
structures with epimorphisms. 

Proof. Let G = (G, E, X, <l>c) be an etale structure. As G = lim GIN, where 
-E--

N runs through the open normal subgroups of G, we may assume that the group 
G is finite. 

Choose a representative <1>0: (EO, XO)~ G of G. By Proposition 1.11, 

(EO, XO) = lim (F;, Y;), 
-E-­
iEI 

where «F;, Y;), CfJij: (F;, Y;)~ (Fj, lj) 1 i,j E I, i ~ j) is an inverse system of finite 
etale spaces with epimorphisms. Let CfJi: (EO, XO)~ (F;, Y;), for i E I, be the 
corresponding epimorphisms. Without loss of generality, we may assume that the 
partition of EO into the fibres of CfJi: EO ~ F; is finer than the partition into the 
fibres of <1>0: EO~ G. Then there exists a unique morphism <l>i: (F;, Y;)~ G such 
that <1>; ° CfJi = <1>0. Now G; = (G, F; x G, Y; x G, <Pi X G) is an etale structure. 
Extend CfJ; to an epimorphism CfJi: (E, X) = (EO x G, XO x G)~ (F; x G, Y; x G) 
by 

(a, a) ~ (CfJi(a), a), for a E EO, a E G. 

Similarly extend CfJij to an epimorphism CfJij: (F; x G, Y; x G)~ (Fj x G, lj x G) 
by (a, a) ~ (CfJij(a), a), for a E F;, a E G. Then CfJi' CfJij' respectively, together with 
the identity map of G, give rise to epimorphisms of etale structures CfJi: G~ G i , 

CfJij: Gi~ Gj, respectively. Obviously G == limiEI Gi via the isomorphism induced 
-E--

by the CfJi' 

We now introduce fib red products of etale structures. Let 

be etale structures, and let CfJl: G 1 ~ Go, CfJ2: G2~ Go be morphisms. We define 

G = G1 x co G2, E = El XEo~' 

with the corresponding coordinate projections 

Pi: G~Gi' Pi: E~Ei' fori=1, 2. 

The actions of G; on Ei , for i = 1, 2, define componentwise an action of G on 
E; the maps <l>b <1>2 define a map <1>: E ~ G (componentwise). Also put 

X = {r = r 1 x Eo r 21 r 1 E Xv r 2 E X2, r '* 0}. 

Then X is a collection of non-empty closed subsets of E, that is, 

r 1 XEo r 2 = {(a l1 a2) E El X ~ 1 al E r l1 a2 E r 2, CfJl(al) = CfJla2)}' 

We can turn every r = r 1 x Eo r 2 E X into a group in E as follows. There are 
unique Lll' Ll2 E Xo such that CfJi(r;)!!S Lli' for i = 1,2. If r '* 0 then Lll n Ll2 '* 0; 
hence Lll = Ll2 • Thus r = r l x~r2' which carries an obvious group structure. 
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It is easy to see that E = UrEx f. Also 

X' = {f' E G(E) I (3 f E X)r' ~ r} = {f' E G(E) I PI(f') E X~, P2(f') E X~}, 

whence X' is closed in G(E). One can now directly verify: 

Claim. G = (G, E, X, <1» is an etale structure. 

The coordinate projections give rise to morphisms Pi: G~ G i , for i = 1, 2, 
such that the following diagram commutes 

G 
PY ~2 

(3) G 1 G2 

({J~ /q;2 
Go 

We denote G = G l xGo G 2 and call it the fibred product of G I and G 2 over Go. 
A diagram isomorphic to (3) is called a cartesian square. It may be characterized 
as follows. 

LEMMA 6.6. The following statements about a commutative diagram (3) of 
etale structures are equivalent. 

(a) (3) is a cartesian square. 
(b) G with PI, P2 is a pullback of the pair «({JI, ({J2), that is, for every hale 

structure H with morphisms 'lj!I: H~ G1, 'lj!2: H~ G 2 such that ({JI 0 'lj!I = ({J2 0 'lj!2 
there exists a unique morphism 'lj!: H ~ G such that 

PI 0 'lj! = 'lj!l and P2° 'lj! = 'lj!2' 

(c) The group G with Pv P2 is the pullback of ({Ji: Gi~ Go, for i = 1, 2, and 
the etale space (E, X) with PI, P2 is the pullback of ({Ji: (Ei' ~)~ (Eo, Xo), for 
i = 1, 2. 

(d) (1) If gl E Gv g2 E G2, and ({Jl(gl) = ((J2(g2) then there exists a unique g E G 
such that PI(g) = gv P2(g) = g2' 

(2) If al E Ev a2 E Ez, and ({JI(aI) = ((J2(a2) then there exists a unique a E E 
such that Plea) = aI, p2(a) = a2' 

Proof. This lemma is essentially an analogue of [8, Lemma 1.1]. 

We give a useful example of a cartesian square. 

LEMMA 6.7. Let PI: G~ G l be an epimorphism of etale structures, and let K be 
a closed normal subgroup of G such that K n Ker PI = 1. Let P2: G~ G/ K and 
({JI: G l ~ GI/Pl(K) be the quotient maps. Then there exists a unique epimorphism 
({J2: G/ K ~ Gt/Pl(K) such that 

G~G/K 

P11 1({J2 

G l ~ G]/P1(K) 
({Jl 

commutes. Moreover, it is a cartesian square. 
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Proof The lemma follows from an application of Lemma 6.6(d). Cf. [6, 
Lemma 4.7] for a similar proof. 

LEMMA 6.8. Let (3) be a cartesian square. If CPl is a cover then pz is a cover. 

Proof. This is straightforward. Cf. [5, Lemma 1.4]. 

7. Projective hale structures 

DEFINITION 7.1. Let G be an etale structure. An embedding problem (for G) is 
a diagram 

(1) 

G 

l<p 

B~A a 

of etale structures in which a is a cover. It is finite if B (and hence also A) is 
finite. 

A solution to (1) is a morphism 1jJ: G~ B such that a 0 1jJ = qJ. 

We call G projective if every embedding problem for G has a solution. 

It is not difficult to see that if <P: (E, X) ~ G is a free product over (E, X) then 
G = (G, E x G, X x G, <P x G) is a projective etale structure. The converse is in 
general not true (this will follow from the results of this section by Example 5.5). 
However, there is some immediate similarity: 

LEMMA 7.2. Let G be a projective etale structure and <P: (E, X)~ G a 
representative for G. Let A be a profinite group and 1jJ: (E, X)~ A a morphism. 
Then there exists a continuous homomorphism a: G ~ A such that a 0 <p( e) is 
conjugate to 1jJ(e) in A, for all e E E. 

Proof. Let A = (A, E x A, X x A, 1jJ x A). This is an etale structure and 
A/A == (1, E, X, 8), where 8 is the trivial map E~ 1. Let f3: A~ A/A be the 
quotient map. The identity E ~ E and the map G ~ 1 extend to a morphism 
cP: G~ A/A. By assumption there exists a morphism a: G~ A such that 
f3 0 a = cpo If e E E then f3 0 aCe) = <pee) = e, and hence aCe) = (e, b) for some 
b E B. Apply 1jJ x A to this identity to obtain 

a o <p(e) = (1jJ xA) 0 aCe) = (1jJ xA)(e, b) = 1jJ(e)h. 

For etale structures Hand G write H ~ G if H ~ G, E(H) £; E(G), X(H) £; 

X(G), and <PH = resE(H) <PG • 

LEMMA 7.3. Let G be a projective etale structure and let P be a free profinite 
group such that rank P ~ rank G. 

(a) reSr <PG is injective for all r E X(G). 
(b) If r 1, r z E X(G) are not both trivial then 

<PG(r1) = cI>G(rz) ¢:> cI>G(r t ) n cI>G(rz) =1= 1 

¢:> there is a E cI>G(r t ) such that r 2 = rf. 
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(c) There exists a free product <1>: (E, X)~ D such that G ~ C, where C = 
D * F and C = (C, Ex C, X x C, <I> X C). Moreover, let r E X(C) and denote 
~ = <l>e(r). If ~ ~ G then ~ E <l>G(X(G)); if ~ ~ G then ~ n G = 1. 

Proof. Let <1>0: (E, X)~ G be a representative of G and let <1>: (E, X)~ D be 
the free product over (E, X). Then <1>0 induces a (unique) homomorphism 
ll'l: D~ G such that ll'l ° <I> = <1>0. Choose a homomorphism (e.g. an epimorph­
ism) ll'2: F~G such that G=(ll'l(D), ll'iF». Then ll'l and ll'2 define an 
epimorphism ll': C = D * F ~ G. This map together with the identity map E ~ E 
induces (d. Lemma 6.3) a cover ll': C~ G. 

As G is projective, there exists a morphism tjJ: G~ C such that ll' ° tjJ = id(H). 
Clearly tjJ maps G isomorphically onto its image tjJ(G) , and tjJ(G) ~ C. This 
proves the first assertion of (c). Therefore, to show (a) and (b), we may replace G 
by C. The morphism (E lJ F, X lJ {F})~ C that extends <1>: (E, X)~ C and the 
identity F~F is clearly a free product. Thus (a) and (b), for C, easily follow 
from Lemma 2.3. 

Let r E X(C) and ~ = <l>e(r). Denote r' = tjJ ° ll'(r); then ~' = <l>e(r') ~ 
tjJ(G). If ~ =~' then ~ E <l>e( tjJ(G». If ~ =I=~' then ~ n~' = 1, by what has 
been said above. In particular, (~n tjJ(G)) n~' = 1. But ll' maps ~ onto ll'(~'), 
and it is injective on tjJ(G). Therefore ~ n tjJ(G) ~ ~', whence ~ n tjJ(G) = 1. 
This shows the last assertion of (c). 

REMARK. Let E' = E\ {lr IrE X}. By our construction, D is generated by 
<I>(E'). But (a) and (b) imply that <1>0 maps E' injectively into G. Hence if G is 
separable then so is D. 

LEMMA 7.4. An etale structure G is projective if and only if every finite 
embedding problem for G has a solution. 

Proof (d. Gruenberg [4, Proposition 1], and [6, Lemma 7.3]). Assume that the 
condition holds and let (1) be an embedding problem for G. Suppose first that 
K = Ker ll' is finite, so there is an open subgroup Min B such that M n K = 1. By 
Lemma 6.7 there exists a cartesian square of etale structures 

in which ll'o is a cover of finite etale structures. We have assumed that there is 
tjJo: G~ Bo such that ll'o ° tjJo = CPo ° cp. By Lemma 6.6 there exists a solution tjJ to 
(1) (for which also p ° tjJ = tjJo). 

The general case is verbally identical with Part II in the proof of [6, Lemma 
7.3]. 

In the remainder of this section we simplify the notion of projectivity. 

LEMMA 7.5. A finite embedding problem (1) has a solution if and only if there 
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exists a continuous homomorphism 1jJ: G ~ B such that lY ° 1jJ = ({J and for every 
f E X(G) there exists ~r E X(B) with a continuous homomorphism 1jJr: f~ ~r 
such that lY ° 1jJr = resr ({J and the following diagram commutes: 

(2) E(G) E(B) 

J J 
r 1jJr .. ~r 

Proof. The necessity is obvious. Conversely, let 1jJ and 

{1jJr: r~~rl fEX(G)} 

be as above. By Lemma 1.10 there exists for every r E X(G) a elopen 
neighbourhood V (f) such that 1jJr can be extended to a continuous map 
1jJr: Jt-I(V(f))~ ~r and for every r' E Vcr) the restriction resr' 1jJr: f' ~ ~r is 
a homomorphism which satisfies 

lY ° reSr 1jJr = resr' ({J, <I> B ° reSr 1jJr = 1jJ ° reSr <l>G' 

The covering {Vcr) IrE X(G)} of X(G) has a finite subcovering, say, 
V(fl), ... , Vern). Put 

Uk = Jt-\V(rk))\Jt-I(~ Veri))' for k = 1, ... , n. 

Then U1, ... , Un are disjoint elopen subsets of E(G) and E(G) = Uk=1 Uk' 
We may now define 1jJo: E(G)~ E(B) such that resu

k 
1jJo = resUk 1jJrk' Then 

1jJ0: (E(G), X(G))~ (E(B), X(B)) is a morphism of etale spaces and satisfies 

lY ° 1jJ0 = ({J and <1>8 ° 1jJ0 = 1jJ ° <l>G' 

Let <I>~: (EO, XO) ~ G be a representative of G. We restrict 1jJ0 to (EO, XC) and 
extend it to a morphism 1jJ: (E(G), X(G))~ (E(B), XeD)) by 

1jJ(aO) = 1jJ0(a)1JI(o), for a E EO, a E G. 

Then lY ° 1jJ = ({J, <1>8 0 1jJ = 1jJ ° <l>G' and 1jJ(aa) = 1jJ(a)1JI(a) for all a E E(G) and 
a E G. Thus we have a solution to (1). 

LEMMA 7.6. Let (1) be an embedding problem. Assume that Conditions (a) and 
(b) of Lemma 7.3 are satisfied. Then there exists a commutative diagram 

A &- At{f; G 
B --=--+ A 

pl (* )'1'1 'I' 

B~A 

with a cartesian square (*) of finite etale structures such that: 
(c) the restriction of a to <l>B(~) is injective for every ~ E XeS); 
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(d) if ~l' ~2 E X(A) and L\l, L\2 E X(A) such that q-Jo(~J ~ L\i' for i = 1,2, and 
L\f =1= L\2 for all a E <P A(L\l), then <P A(~l) n <P A(~2) ~ Ker q-Jo. 

Proof. By Lemma 6.5 there exists for every open normal subgroup N of G a 
finite etale structure A and a commutative diagram 

such that (jJ is an epimorphism and Ker (jJ ~ N. We define D = B x A A and let p, 
& be the coordinate projections. We elaim that (2) satisfies (c) and (d) provided 
that N is sufficiently small. 

(c) Fix a section f3 of a: (E(B), X(B»~ (E(A), X(A» (Corollary 6.4(e». 
The intersection of the family {<Pal(N) I N<JG is open} of elopen subsets in 
E(G) is <Pa1(1); hence by (a) it is contained in the elopen subset E' = 
{a E E(G) I <PB 0 f3 0 q-J(a) = 1} of E(G). Therefore a compactness argument (cf. 
Lemma 1.8) gives an open N<JG such that <Pa\N) ~ E'. 

Let A, 13, &, p be as indicated above. Then 

(3) (jJ 0 <PG(a) = 1 ~ <PB 0 f3 0 q-J(a) = 1, for a E E(G). 

By Lemma 6.6(c) there is a (unique) morphism 'I/J: (E(G), X(G»~ (E(D), X(D» 
such that & 0 'I/J = (jJ and p 0 'I/J = f3 0 q-J. Let a E E(G) such that 

(4) & 0 <Ph 0 'I/J(a) = l. 

Then 

(jJ 0 <PG(a) = <PA 0 (jJ(a) = <PA 0 &- 0 'I/J(a) = & 0 <Ph 0 1jJ(a) = 1, 

whence by (3), 

p 0 <Ph 0 'I/J(a) = <PB 0 P 0 1jJ(a) = <PB 0 f3 0 q-J(a) = 1. 

This together with (4) implies that <Ph 0 1jJ(a) = 1. In particular, if f E X(G) then 
&- is injective on <Ph 0 'I/J(f). 

Now let L\ E X(D). Since &- is a cover (Lemma 6.8), &-(L\) E X(A) (Corollary 
6.4(f»; hence there is f E X(G) such that (jJ(f) = &(L\). If 1jJ(f) = ~ then we have 
finished. If not, let L\' E X(B) such that 1jJ(f) ~ L\'. Then &-(L\') E X(A) and 
&-: L\' ~ &-(L\') is an isomorphism (Corollary 6.4(d». But &-(L\) = (jJ(f) = 
& 0 'I/J(f) ~ &(L\'); hence &-(L\) = &(~'), whence 'I/J(f) = ~'. By Definition 6.2(e) 
there is a E 13 such that L\' = L\ 0. Since &- is injective on <Ph(L\'), it is injective on 
its conjugate <P h(L\) as well. 

(d) Let Y be the set of pairs (fb f 2) E X'(G) x X'(G) which have the following 
property: if L\b L\2 E X(A) such that q-J(C) ~ L\i' for i = 1,2, then ~f =t= L\2 for all 
a E <P A(L\l). Obviously, Y is a elopen subset of X'(G) x X'(G) (since A is finite). 
If (fb f 2) E Y, let t 1 , t2 E X(G) such that fl ~ tb f2 ~ t 2 . Then also (tb t 2 ) E Y. 
In particular, tf =1= t2 for all a E <PG(t1), whence by (b), <PG(t1) n <PG(t2) = 1. So 
<PG(f1) n <PG(f2) = 1. This implies that there is an open N<JG such that 

(5) <PG(f1)N n <PG(f2)N ~ Ker q-J. 
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If f~, f~ E X'(G) are sufficiently near to fr, f2' respectively, then <l>G(f;) is 
near to <l>G(C) in Subg(G), so <l>G(fDN = <l>G(fi)N, for i = 1,2. Therefore (5) 
holds also with f~, f~ instead of fb f 2. 

By the compactness of Y there exists an open N <J G such that (5) holds 
simultaneously for all· (f 1, f 2) E Y. Let A, iJ, p, &- be as indicated above, and let 
~b ~2 E X(A) and ~b ~2 E X(A) satisfy the assumptions in (d). Choose fb 
f2 E X(G) such that tjJ(C) = ~j, for i = 1,2. Then (fb r 2) E Y, and hence (5) 
holds. Now Ker (jJ ~ N, whence 

<l>A(~l) n <l>A(~2) = (jJ 0 <l>G(f1) n (jJ 0 <l>G(f2) 

= {jJ [ <I> G (f d Ker {jJ n <I> G (f 2)Ker {jJ ] 

~ {jJ [ <I> G (f l)N n <I> G (f 2)N] 

~ {jJ (Ker cP ) 

= Ker CPo. 

LEMMA 7.7. An €lale structure G is projective if Conditions (a) and (b) of 
Lemma 7.3 are satisfied and for every finite embedding problem (1) there exists a 
continuous homomorphism 'IjJ: G ~ B such that (l' 0 'IjJ = cP and 

'IjJ 0 <l>G(X'(G» ~ <l>B(X'(B». 

Proof. We have to solve a given finite embedding problem (1). By Lemmas 7.6 
and 6.8 we may assume that (l' is injective on Cl>B(~) for every ~ E X(B). In 
addition to this we construct a diagram (2) with Properties (c) and (d) of Lemma 
7.6. 

By assumption there exists a continuous homomorphism ;p: G ~ iJ such 
that &- 0 ;p = (jJ and for every f E X(G) there exists ~ E XCD) such that 

(6) 

Put 'IjJ = P 0 ij,; then (l' 0 'IjJ = cpo For the rest of this proof fix f E X(G). 

Claim. There is ~ E X(B) such that 

(e) 

(f) 

'IjJ 0 <l>G(f) ~ <l>B(~)' 

cp(f) ~ (l'(~). 

Proof of the claim. If 'IjJ 0 <l>G(r) = 1, let ~l E X(A) such that cp(f) ~ ~l' Since 
(l'is a cover, there is ~ E X(B) such that (l'(~) = ~1' Thus (e) and (f) are satisfied 
in this case. 

If 'IjJ 0 <l>G(f) =1= 1, let ~ E XeD) satisfy (6) and let ~ E XeD) such that p(~) ~~. 
Then (e) follows from (6). 

We know that (l' is injective on <I> B(~); hence by (e) (l' is also injective on 
'IjJ 0 <l>G(f). Therefore from 'IjJ 0 <l>G(f) =1= 1 it follows that 

CPo 0 (jJ 0 <l>G(f) = (l' 0 'IjJ 0 <l>G(f) =1= 1. 

In other words, 

<I> A 0 {jJ (f) = {jJ 0 <I> G (f) rt: Ker CPo. 
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But by (6), 

fjJ 0 <I> G (f) = « 0 iP 0 <I> G (f) ~ « 0 <I> B( ~) = <I> A 0 «( ~ ) , 
SO in fact 

<I>A(<«~» n <I>A(fjJ(f» = fjJ 0 <I>G(f) c;t Ker CPo. 

It follows from this equation by Condition (d) of Lemma 7.6 that there is 
a E <I>A(a(~» such that (note that a(~) E X(A) , since a is a cover, and 
CPo(<«~» ~ a(~» 

cp(f) ~ a(~)a. 

As <I>A 0 a(~) = a 0 <I>B(~)' there is i E <I>B(~) such that a(i) = a. Thus 

cp(f) ~ a(~ T). 

Also <I>B(~ T) = <I>B(~)T = <I>B(~)' whence by (e), 

W 0 <I>G(f) ~ <I>B(~ T). 

Therefore ~ T satisfies the requirements of the claim. 

End of the proof of Lemma 7.7. Let ~ E XeD) satisfy (e) and (f). As a is a 
cover, ~ is mapped isomorphically onto a(~). Therefore there is a homomorph­
ism Wr: f ~ ~ such that a 0 Wr = resr cpo Then 

a 0 W 0 resr<I>G = cp 0 resr<I>G = <I>A 0 resr cp = <I>A 0 a 0 Wr = a 0 <I>B 0 Wr; 

hence W 0 reSr <I>G = <I>B 0 Wr, since a is injective on <I>B(~) and W 0 <I>G(f), 
<I>B 0 Wr(f) ~ <I>B(~)' It follows from Lemma 7.5 that (1) is solvable. 

8. The converse subgroup theorem 

We start with two simple observations. 

LEMMA 8.1. Let a profinite group G act on a separable Boolean space X. Then 
the quotient map X ~ X/G has a continuous section, that is, there exists a closed 
complete system of representatives of the G-orbits in X. 

Proof. There is an inverse system of transformation groups (~, Gi ) with finite 
~ such that (X, G) = limiEI (~, G;) (see [6, Proposition 1.5]). Since X is 

oE--

separable, we may assume that 1= N. By induction we can choose for every i E N 
a set Zi of representatives of the G;-orbits in ~ such that the map ~ ~ X i- 1 maps 
Zi into Zi-l' Then Z = lim Zi is a complete system of representatives of the 
G-orbits in X. oE--

REMARK 8.2. The separability condition on X in Lemma 8.1 is essential. If 
X = {a, 1}~2 and 71/271 acts on X X X by permuting the coordinates, then the map 
X X X ~ X x X/(71/271) has no section. This can be derived from a result of 
Scepin [16, pp. 157, 158]. (I thank S. Koppelberg for pointing out this fact to me 
and for supplying me with her notes [12] from which 1 learned about the above 
counter-example. ) 



294 DAN HARAN 

Let A ~ Band D be profinite groups. Then D * A ~ D * B (see [9, Proposition 
4]). 

LEMMA 8.3. Let a ED * B such that D U n (D * A) =1= 1. Then a E D * A. 

Proof. We imitate the proof of Herfort and Ribes [10, Lemma 3]. It suffices to 
show for an open subgroup H of D * B containing D * A that a E H. By the 
Kurosh subgroup theorem, 

where D * B = U~1 DSiH = Uj=1 BtjH, and Sl = tl = 1 (and F is a free profinite 
group). 

Let i ;:?!: 2. Projecting H onto the factor H n DSi we see that 

[(H n D) * (H n B)J n (H n DSi)h = 1 for every h E H. 

In particular, for every T = dsih E DsiH, 

(D * A) n Dr = (D * A) n (H n Dr) ~ [(H n D) * (H n B)] n (H n DSit = 1. 

Thus a ft U~2 DsiH, whence a E Ds l H = H. 

PROPOSITION 8.4. (a) If G is a projective hale structure then the group G is 
projective relative to oX = <l>o(X(G». 

(b) If a separable group G is projective relative to a family oX then there exists a 
projective eta Ie structure G = (G, E, X, <1>0) such that 

<l>o(X) U {1} = oX U {1}. 

Proof. (a) By Lemma 7.3(c) there exist a free product <1>: (E, X)~ D and a 
free profinite group F such that G ~ C = D * F and 

<l>o(X(G» U {1} = {f n G I f E <I>(X)C} U {1}. 

Clearly <I> extends to a free product (E l.J F, X l.J {F}) ~ C. By Propositions 3.3 
and 4.3, C is projective relative to (<I>(X) L:.J {F})c. It follows easily that C is 
projective relative to <I>(X)c. Thus our assertion follows from Theorem 5.1. 

(b) By Lemmas 3.5 and 3.6 there exist an etale space (E, X) and a morphism 
<1>: (E, X)~ G such that X is separable, <I>(X) U {1} = oX U {1}, resr <1>: f~ Gis 
injective for every f E X, and for all non-trivial f, f' E X we have f = f' if and 
only if <I>(f) = <I>(f'). Furthermore, G acts on X such that <I>(fU) = <I>(f)U for all 
fEX, aE G. 

Let XO be a closed system of representatives of the G-orbits in X, denote 
EO = UrExo f and let <1>0: (EO, XO)~ G be the restriction of <I> to EO. Then 

G = (G, EO X G, XO x G, <1>0 = <1>0 x G) 

is an etale structure and reSr <1>0: f~ G is injective for all f E X(G) = XO x G. 
We claim that if f~, f~ E X(G) satisfy <l>o(f~) n <l>o(fD =1= 1 then there is 
T E <l>o(fD such that f~ = f~r. Indeed, write f; = ffi, where fi E XO and ai E G, 
for i = 1, 2, and denote a = a2al1. Then <l>O(fl) n <l>0(f2)U =1= 1, whence <I>(fl) = 
<I>(f~, since oX is separated. So if we now consider fl' f~ as elements of X (rather 
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than XO x G) then fl = f~ in X. But then fl = f2' since fb f2 E Xc. By Lemma 
4.6 we get that 0 E <I>(f 1)' Thus 01102 E <I>(f~) and f~al1a2 = f~. 

Thus Conditions (a) and (b) of Lemma 7.3 are satisfied. If (q:;: G~ A, cr: B~ A) 
is a finite embedding problem for G then (q:;: G~A, cr: B~A, <l>B(X'(B))) 
is a finite I-embedding problem, and hence it has a solution. Thus G is projective 
by Lemma 7.7. 

We can now prove the complement of Theorem 5.1. 

THEOREM 8.5. Let H be a separable group, projective relative to a family g) of its 
subgroups. Then H is a subgroup of a separable group G which is a free product 
of a family I of its subgroups such that 

g) U {1} = {fg n H I f E I, g E G}. 

Proof. There exists a projective etale structure H with H as the underlying 
group such that <l>H(X(H)) U {1} = g) U {1} (Proposition 8.4). By Lemma 7.3(c) 
and the remark following it, we may assume that H ~ C = D * F, where D is a 
separable free product of a family II of its subgroups (cf. also Proposition 3.3) 
and F is the free pro finite group of countable rank such that 

g) U {1} = {fa n HI f E Iv 0 E C} U {1}. 

By a result of van den Dries and Lubotzky [14, Theorem 3.1], F can be 
embedded in F;, the free pro finite group on two generators. Let Ci = 7L/i7L, for 
i = 2,3. By the Kurosh subgroup theorem of [3], the kernel of the canonical map 
Cz * C3~ Cz X C3 is isomorphic to F2 • Therefore F ~ Cz * C3 , whence (cf. [9, 
Proposition 4]) 

Denote G = D * Cz * C3 and I = II L:J {C3 , C3 }; then G is clearly a free product 
of the groups in I. The group D * F;, whence also H, is contained in the kernel 
of the canonical projection G~ Cz X C3 • Therefore Cf n H = 1 for every g E G 
and i = 2,3. Furthermore, if f E II and g E G such that f g n H =1= 1, then 
Dg n (D * F) =1= 1, whence g E D * F = C, by Lemma 8.3. Thus 

{fg n HI f E I, g E G} = {fa n HI f E II, 0 E C} U {1} = g) U {1}. 

9. The Kurosh subgroup theorem for pro-p-products 

Let cg be a class of finite groups, closed under subgroups, quotients, and group 
extensions. Everything we have done so far for profinite groups (except for 
Example 5.5) can be also done in the category of pro-cg-groups. In this section we 
consider the case where cg is the class of p-groups, for a fixed prime p. The 
transition to the category of pro-p-groups causes no confusion. Indeed, we have 
(cf. Gruenberg [4, Theorem 1]): 

LEMMA 9.1. Let G be a pro-p-group and I a separated family of its subgroups. 
Then G is projective relative to I if and only if G is projective relative to I in the 
category of pro-p-groups. 
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Proof Assume that G is projective relative to I in the category of pro-p­
groups. Let (q;: G~A, a: B~A, Con(B» be a finite I-embedding problem 
for G; we have to solve it. Without loss of generality, assume that A is a p-group; 
otherwise replace it by q;( G) and B by a-1

( q;( G». Furthermore, we may assume 
that B is a p-group; otherwise replace it by its p-Sylow subgroup Sand Con(B) by 
Con(B) n Subg(S). This is still an I-embedding problem: a(S) = A, and if f E I 
and 1jJ: f~ B satisfies a 0 1jJ = reSr q; and 1jJ(f) E Con(B) then 1jJ(f) ~ Sb for 
some bEB. Choose SES such that a(s)=a(b) and let p: B~B be the 
conjugation by b- 1s. Then p 0 1jJ(f) ~ SS = Sand p 0 1jJ(f) E Con(B), and 
a 0 p 0 1jJ = resr q;. 

Since our I-embedding problem is now in the category of pro-p-groups, it has 
a solution. 

From now on we assume that all the groups are pro-p-groups. 

LEMMA 9.2. A closed subgroup G1 of an elementary abelian pro-p-group G has 
a direct complement in G. 

Proof Let n: G~ GIG1 be the quotient map. By Zorn's lemma there exists a 
minimal closed subgroup G2 of G such that n( G2 ) = G I Gl . Then Ker n n G2 is 
contained in the Frattini subgroup G; of G2 . But G2 is an elementary abelian 
pro-p-group, whence G; = 1. Therefore n: G2~ GIGl is an isomorphism. This 
is equivalent to G = G l X G2 • 

If G is a pro-p-group, let us denote by (; its quotient modulo its Frattini 
subgroup. It is an elementary abelian pro-p-group. The following is obvious: 

LEMMA 9.3. Let G be the free pro-p-product of A and B. Then (; is naturally 
isomorphic to Ii x E. 

LEMMA 9.4. Let G b G 2 be projective bale structures and let <l>i: (Ei, Xi)~ Gi 
be a representative of G i , for i = 1,2. Let A: (El, Xl)~ (E2, X2) be a morphism 
of etale spaces. Then there exists a continuous homomorphism X: (;1 ~ (;2 such 
that the following diagram commutes: 

El~ £2 

<1>11 14>2 

(1) G) G2 

1 1 
(;) --=-+ (; ') A ~ 

Moreover, such a map X is unique if <l>G
1
(E(G1)) generates G1 • If Gl = 

< <l>G/E(G1))) and A is an isomorphism then X is injective. 

Proof By Lemma 7.2 there exists a homomorphism A': G1 ~ G2 such that 
<1>20 A = A' 0 <1>1 modulo the conjugation in G2 • Thus the map X induced from A' 
makes (1) commute. 
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Assume that G1 = (CPG}(E(G1))). Then the image of El in G1 generates G1 , 

and hence X is unique. If ). is an isomorphism then, by the first assertion of this 
lemma, there exists a homomorphism fi,: G2~ G1 such that the following diagram 
commutes: 

£1 ~ £2 ).-\ £1 

cpt1 1CP2 1<1>1 

G1 G2 G l 

1 1 1 
G1 ---=-+ G 2 ----::-+ G 1 

). 11-

The uniqueness assertion implies that fi, ° X is the identity of G1 ; hence X is 
injective. 

THEOREM 9.5. Let G be a projective €tale structure such that G is a pro-p-group 
and let cpo: (E, X)~ G be a representative for G. Then there exists a free 
pro-p-subgroup F of G such that the morphism (E LJ F, X LJ {F})~ G that extends 
cpo and the identity map F ~ F is a free (pro-p-)product. 

Proof. We refine the construction in the proof of Lemma 7.3. 
Let CP: (E, X)~ D be the free pro-p-product over (E, X), and let at: D~ G 

be such that at ° cP = cpo. Now al induces a homomorphism a1: tJ~ G, which is, 
by Lemma 9.4, injective. Let P ~ G be a direct complement of at(D) in G 
(Lemma 9.2), and let a2: F ~ P be the universal Frattini cover of P (see [8, 
Theorem 2.6]). It is a projective pro-p-group, and hence free [15, p. 235]. In 
particular, there exists a homomorphism a2: F ~ G such that fG ° a2 = a2, 
where fG is the quotient map G ~ G. 

Exactly as in the proof of Lemma 7.3 (but in the category of pro-p-groups) we 
let C = D * F, C = (C, E x C, X x C, cP x C), extend av a2 and the identity 
map E~ E to a cover a: C~ G, and choose a section 1jJ: G~ C of a. The 
morphism (E LJ F, X U {F} ) ~ C that extends cP and the identity of F is a free 
product. So it suffices to show that a is an isomorphism, that is (since a is a 
cover), that 1jJ( G) = C. 

By Lemma 9.3, the map a: c~ G induced from a: C~ G is the isomorphism 
at x id(P): tJ x P~ G. The map iP: G~ C induced from 1jJ: G~ C is a section 
of a, whence iP(G) = C. Let fe: C~ C be the quotient map; then Ie ° 1jJ = 
iP ° fG, whence fe(1jJ(G)) = C. But fe is a Frattini cover, so 1jJ(G) = C (cf. [8, p. 
191]). 

Combining Theorem 9.5 with Propositions 8.4(b) and 3.3 we obtain: 

COROLLARY 9.6. Let G be a separable pro-p-group, projective relative to a 
family I of its subgroups. Then there exists a complete system IO of representatives 
of the conjugacy classes in I and a free pro-p-subgroup F of G such that G is the 
free pro-p-product of the groups in IO LJ {F}. 

We apply Theorem 5.1 to this characterization and obtain an analogue of the 
Kurosh subgroup theorem. 
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THEOREM 9.7. Let G be a free pro-p-product of the groups in a family I of its 
subgroups and let H be a separable closed subgroup of G. Then H is a free 
pro-p-product of the groups in the family 

g)={fanHI aE~(f),fEI}U{F}, 

where ~ (f) is a suitable set of representatives of f \ G / H, for every rEI, and F is 
a free pro-p-group. 

Proof. By Proposition 4.3, G is projective relative to IG; hence H is projective 
relative to {fa n HI f E I, a E G}. If fb f2 E I and a11 a2 E G, then fr 1 and f~2 
are conjugate in H if and only if f 1 = f 2 and there exists h E H such that 
a1ha:;1 E f1 (Proposition 4.3). The last condition may be rewritten as f1 = f2 and 
f1a1H = f2a2H. Therefore a complete system of representatives of the conjugacy 
classes in {fa n HI f E I, a E G} is a union of sets ~(f) of representatives of 
r\G/H, where r runs through I. The theorem now follows from Corollary 9.6. 
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