The Bottom Theorem

By

Dan Haran*)

In this note we prove the following result:

(The Bottom) Theorem. Let K be a Hilbertian field, K_s its separable closure and $G(K) = G(K_s/K)$ its absolute Galois group. Let e be a positive integer. Then for almost all e-tuples $\sigma \in G(K)^e$ the fixed field $K_s(\sigma)$ of σ is a finite extension of no proper subfield containing K.

(Here "almost all" is used in the sense of the Haar measure on $G(K)^{e}$.)

This has been conjectured by Jarden in [2, p. 300], where the case e = 1 has been settled. Later Jarden [3] proved the Bottom Conjecture over global fields for $e \leq 5$, developing some properties of maximal *p*-extensions of fields.

The theorem gains particularly in interest as the profinite analogue of Stalling's theorem – which by [2, p. 300] would imply the Bottom Conjecture – is now known to be false (cf. [1]).

Our proof is based on results of [2] and some elementary properties of permutation groups. Fix K and e as above and write the free profinite group \hat{F}_e on e generators as the inverse limit of a sequence $\dots \xrightarrow{\pi_3} H_3 \xrightarrow{\pi_2} H_2 \xrightarrow{\pi_1} H_1$ of epimorphisms of finite groups.

Lemma 1. There exists a sequence $\dots \xrightarrow{\pi_3} A_3 \xrightarrow{\pi_2} A_2 \xrightarrow{\pi_1} A_1$ of finite groups such that for every $k \ge 1$:

- (i) H_k is a subgroup of A_k , and $\pi_k: A_{k+1} \to A_k$ extends the map $\pi_k: H_{k+1} \to H_k$;
- (ii) there exists a subgroup B_k of A_k such that $A_k = B_k H_k$ and $B_k \cap H_k = 1$;
- (iii) for almost all $\sigma \in G(K)^e$ there exists a continuous homomorphism $\varrho: G(K) \to A_k$ such that $\varrho \langle \sigma \rangle = H_k$.

P r o o f. (i) For every $k \ge 1$ let $n_k = |H_k|$ and let S_{n_k} be the symmetric group on the set $\{1, \ldots, n_k\}$. Apply Cayley theorem to construct an embedding $\mu_k: H_k \to S_{n_k}$ with the property

(1) for all $1 \leq i, j \leq n_k$ there is a unique $h \in H_k$ s.t. $i^{\mu_k(h)} = j$.

Denote $A_k = S_{n_1} \times \ldots \times S_{n_k}$ and define $\lambda_k \colon H_k \to A_k$ by

$$\lambda_k(h) = (\mu_1 \circ \pi_1 \circ \cdots \circ \pi_{k-1}(h), \ \mu_2 \circ \pi_2 \circ \cdots \circ \pi_{k-1}(h), \ \dots, \ \mu_k(h)).$$

*) Supported by Rothschild Fellowship.

This is an embedding, so we may identify H_k with its image in A_k . Now let $\pi_k: A_{k+1} \to A_k$ be the projection on the first k components of A_{k+1} . Then (i) is obviously satisfied.

(ii) Fix a $1 \leq j_k \leq n_k$ and let

$$B_k = \{(\tau_1, \ldots, \tau_k) \in A_k = S_{n_1} \times \ldots \times S_{n_k} | j_k^{\tau_k} = j_k\}$$

Then (ii) follows easily from (1).

(iii) Choose $\bar{\sigma}_1, \ldots, \bar{\sigma}_e \in A_k$ such that $H_k = \langle \bar{\sigma}_1, \ldots, \bar{\sigma}_e \rangle$. Let $p_i: A_k \to S_{n_i}, i = 1, \ldots, k$ be the coordinate projections. By [2, Lemma 4.2] for almost all $\sigma \in G(K)^e$ there exist epimorphisms $\varrho_i: G(K) \to S_{n_i}$ such that $\varrho_i(\sigma_j) = p_i(\bar{\sigma}_j)$ for $i = 1, \ldots, k, j = 1, \ldots, e$. (We use the fact that an intersection of finitely many sets of measure 1 is again a set of measure 1.) These maps define a unique homomorphism $\varrho: G(K) \to A_k$ such that $\varrho(\sigma_j) = \bar{\sigma}_j$, for $j = 1, \ldots, e$, whence $\varrho \langle \sigma \rangle = \langle \bar{\sigma} \rangle = H_k$. \Box

Proof of the Theorem. Let $\sigma_1, \ldots, \sigma_e \in G(K)$ and let G be a closed subgroup of G(K) such that $H = \langle \sigma_1, \ldots, \sigma_e \rangle \leq G$ and $n = (G: H) < \infty$. Then G is clearly finitely generated and we may assume without loss of generality that

- (i) G is torsion-free (by [2, Theorem 12.2]),
- (ii) $H \cong \hat{F}_e$ (by [2, Theorem 5.1]),

(iii) the sets

$$X_k = \{ \varrho \colon G \to A_k | \varrho(H) = H_k \}, \quad k = 1, 2, \dots$$

are not empty (by Lemma 1 (iii)).

The sets X_k 's form an inverse system $\dots \xrightarrow{\pi_3^{\circ-}} X_3 \xrightarrow{\pi_2^{\circ-}} X_2 \xrightarrow{\pi_1^{\circ-}} X_1$, and they are finite since every homomorphism from G into A_k is determined by its action on a finite set of generators of G. Thus $\frac{\lim_{k \to \infty} X_k \neq \emptyset}{k}$, i.e., there exist $\varrho_k \in X_k$ such that $\pi_{k+1} \circ \varrho_{k+1} = \pi_k$ for every k.

Denote $G_k = \varrho_k(G)$. Then $\dots \xrightarrow{\pi_3} G_3 \xrightarrow{\pi_2} G_2 \xrightarrow{\pi_1} G_1$ is an inverse system and ϱ_k 's define an epimorphism $\varrho: G \to \varprojlim_k G_k$ such that $\varrho(H) = \varprojlim_k H_k$. Now by the choice of H_k 's and by (ii), $\varrho(H) \cong \hat{F_e} \cong H$. Thus $H \cap \operatorname{Ker} \varrho = 1$, by [4, Corollary 7.7]. But then (Ker $\varrho: 1$) = (H Ker $\varrho: H$) $\leq (G: H) < \infty$, hence Ker $\varrho = 1$, by (i). Thus $G = \varprojlim_k G_k$, $H = \varprojlim_k H_k$.

It follows that there is a k_0 such that

(iv)
$$(G_k: H_k) = (G: H) = n$$
 for all $k \ge k_0$. Without loss $k_0 = 1$.

For every $k \ge 1$ let Y_k be the set of all subgroups B'_k of G_k that satisfy

(v)
$$B'_k \cap H_k = G_k$$

and one of the following three equivalent conditions

(vi)
$$B'_k \cap H_k = 1, \quad |B'_k| = n, \quad |B'_k| \le n$$

(the equivalence is an immediate consequence of (iv) and (v)). The finite sets Y_k form an inverse system $\dots \xrightarrow{\pi_3} Y_3 \xrightarrow{\pi_2} Y_2 \xrightarrow{\pi_1} Y_1$, and they are not empty, since $B_k \cap G_k \in Y_k$, by

Vol. 45, 1985

Lemma 1 (ii). Thus $\varprojlim_k Y_k \neq \emptyset$, i.e., for every k there is a $B'_k \leq G_k$ of order n such that $\pi_{k+1} B'_{k+1} = B'_k$ for all k.

It follows that there exists a subgroup B' of G such that $B' = \frac{\lim_{k} B'_{k}}{\lim_{k} B'_{k}}$, in particular, |B'| = n. But this implies n = 1, by (i). Hence G = H.

References

- D. HARAN, Non-free torsion free profinite groups with open free subgroups. To appear in Israel. J. Math.
- [2] M. JARDEN, Algebraic extensions of finite corank of Hilbertian fields. Israel. J. Math. 18, 279-307 (1974).
- [3] M. JARDEN, An analogue of Artin-Schreier theorem. Math. Ann. 242, 193-200 (1979).
- [4] L. RIBES, Introduction to profinite groups and Galois cohomolgy. Queen's Papers in Pure and Appl. Math. 24, Kingston 1970.

Eingegangen am 26.9.1984

Anschrift des Autors:

Dan Haran Mathematisches Institut Universität Erlangen-Nürnberg Bismarckstraße 1 1/2 D-8520 Erlangen