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Introduction

Hilbert’s irreducibility theorem is classically used in the Inverse Galois

Problem in the following way. If a finite group G can be realized as the

Galois group of an extension E/Q(T ), then it can also be realized as

the Galois group of an extension of Q by specializing T to some rational

number t ∈ Q: Hilbert’s theorem indeed assures that the Galois group is

preserved by specialization for infinitely many t ∈ Q. A common approach

to the Inverse Galois Problem is thus to work over Q(T ), which provides

a geometrical angle: finite extensions E/Q(T ), if they are regular over

Q, i.e., if E ∩ Q = Q, exactly correspond to covers of P1 defined over

Q. In fact, most works in this area focus on this regular form of the

Inverse Galois Problem: is each finite group the Galois group of a regular

Galois extension of Q(T )? But then, one does not need the full Hilbert

specialization property to deduce the Inverse Galois problem: one only

needs it for regular Galois extensions of Q(T ). This weaker property is

called the RG-hilbertian specialization property.

All this generalizes in a straightforward manner to arbitrary fields (in-

stead of Q) to give rise to the Inverse Galois Problem and its regular form

over a field K, and to the notions of hilbertian and RG-hilbertian fields.

The RG-hilbertian property has been introduced by Fried and Völklein. In

their paper [FrVo] they give Galois-theoretic characterizations of hilbert-

ian fields and RG-hilbertian fields that are Pseudo Algebraically Closed

(PAC) and use them to produce an example of an RG-hilbertian but non-

hilbertian PAC field, thereby showing that the RG-hilbertian property is

indeed weaker than the full hilbertian property. These results along with

the relevant definitions are recalled in §3.

In §1, we produce a new wide class of RG-hilbertian fields. These are

all extensions inductively obtained from a real hilbertian field by adjoining

real p-th roots (for some fixed prime p 6= 2); we call them real p-radical

extensions. Furthermore, many such real p-radical extensions are not hil-

bertian and among them are some classical fields such as the real closure

of Q under taking real p-th roots, the p-fermatian closure of Q, etc. These

new examples of RG-hilbertian non-hilbertian fields are contained in R
and so, contrary to those from [FrVo], are not PAC; furthermore, they are

relatively “small” in that their index over Q is p∞ and the Galois group

of their Galois closure is of order (p− 1)p∞. This first part suggests that

there are more RG-hilbertian fields than may have been expected first,

and consequently more fields for which the Inverse Galois Problem should

hold if one believes in the Regular Inverse Galois Problem.

In §3 we deal with another specialization property, close to the hil-
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bertian property. We say a field K is mordellian if for every polynomial

P (T, Y ) ∈ K[T, Y ], absolutely irreducible and with degY P ≥ 2, there ex-

ist infinitely many t ∈ K such that P (t, Y ) has no root in K. If the same

property holds but with the single polynomial P (T, Y ) replaced by any fi-

nite set of polynomials P1(T, Y ), . . . , Pn(T, Y ) (and with t the same for all

Pis), then the field K can classically be shown to be hilbertian (e.g. [FrJa,

Lemma 12.1]). But it has been unknown whether this remains true with

n = 1, that is, if mordellian fields are hilbertian. We show the answer is

negative: the mordellian property is a new specialization property. In fact,

we give a Galois characterization of mordellian PAC fields and combine it

with [FrVo] to produce a mordellian non-hilbertian PAC field.

In §4 we introduce some further specialization properties in a more

systematic manner. These are variations on the (RG)-hilbertian-mordell-

ian definitions. For example an R-hilbertian field is a field for which the

hilbertian specialization property holds but only for absolutely irreducible

polynomials. Theorem 4.2 shows that R-hilbertian PAC fields are hilbert-

ian. We do not know whether the same result holds if the PAC assumption

is removed. In §5, we investigate more completely the relations exist-

ing between the variants of the hilbertian property we have introduced

(Theorem 5.1). The paper ends with other related observations and open

questions.

The somewhat more technical §2 contains several group-theoretic lem-

mas used in the paper.

We wish to thank Bruno Deschamps for valuable comments on a pre-

liminary version of the paper.

Unless otherwise specified, the fields we consider are of characteris-

tic 0.

1. RG-hilbertian fields

For each integer n 6= 0 let ζn be a primitive n-root of 1. Denote the nth

root function R → R (if n is odd) and R+ → R+ (if n is even) by n
√−.

Given a prime p 6= 2, an extension K/k with k ⊆ R is called a real p-

radical extension if there exists a sequence (an)n>0 of real numbers an ∈ R
such that:

{
K = k( p

√
a1, p

√
a2, p

√
a3, . . .)

an ∈ k( p
√
a1, p

√
a2, . . . , p

√
an−1) for each n > 0.
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Remark 1.1: Let K/k be a tower of real p-radical extensions, that is, K

is the union of an increasing sequence of fields K1 = k,K2, K3, . . . such

that Ki+1/Ki is a p-radical extension for each i > 0. Then K/k is itself a

real p-radical extension.

Indeed, each extension Ki+1/Ki is of the form Ki+1 = Ki( p
√
ain| n >

0) with ain ∈ Ki( p
√
aik| 0 < k < n) (n > 0, i > 0). Choose an enumeration

(bm)m>0 of the countable set {aij | i, j}. We may assume that each of

the numbers in the sequence (bm)m>0 occurs infinitely many times —

otherwise replace b1, b2, b3, . . . by

b1, b1, b2, b1, b2, b3, b1, b2, b3, b4, b1, b2, b3, b4, b5, . . .

Next define by induction a sequence (mr)r>0 of integers (possibly finite)

by letting mr+1 be the first integer larger than mr such that bmr+1
∈

k( p
√
bm1

, p
√
bm2

, . . . , p
√
bmr

). We are done if we prove that {aij | i, j > 0} =

{bmr
| r > 0}. Suppose that this is not the case and then let (i, j) be the

smallest pair (in the lexicographical order) such that aij /∈ {bmr
| r > 0}.

Then

aij ∈ Ki( p
√
ai1, p

√
ai2, . . . , p

√
ai j−1) = k( p

√
aαβ| (α, β) < (i, j)).

Therefore there exists a finite subset S of {(α, β)| (α, β) < (i, j)} such that

aij ∈ k( p
√
aαβ | (α, β) ∈ S). By assumption, aαβ ∈ {bmr

| r > 0} for every

(α, β) ∈ S. Hence there is an integer r such that {aαβ| (α, β) ∈ S} ⊆
{bm1

, bm2
, . . . , bmr

}. Now there is an integer m > mr such that bm = aij.

It then follows from

bm = aij ∈ k( p
√
aαβ| (α, β) < (i, j)) ⊆ k( p

√
bm1

, p
√
bm2

, . . . , p

√
bmr−1

),

that m is in the sequence (mr)r>0. Thus aij ∈ {bmr
| r > 0} — a contra-

diction.

Examples 1.2: In this paper we will consider in particular the following

examples:

(a) For each prime p define the field Kp,∞ as the union of the field Kn

(n ≥ 0) defined inductively by: K0 = Q and for n > 0, Kn+1 is the field

generated over Kn by all elements p
√
b where b runs over Kn. The field

Kp,∞ is the smallest extension of Q contained in R closed under taking

real pth roots.

(b) For each prime p consider the field Fp defined similarly as in (a)

but with Kn+1 obtained from Kn by adjoining all elements p
√

1 + bp where
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b runs over Kn. In [Ri], a field K is said to be p-fermatian if any sum

xp + yp is a p-th power in K. The field Fp is the real p-fermatian closure

of Q, i.e. the smallest extension of Q contained in R that is p-fermatian.

The field F2 is more classically called the pythagorean closure of Q.

The fields Kp,∞, Fp are not hilbertian. In fact, for P (T, Y ) = Y p −T
[resp. P (T, Y ) = Y p − (1 + T p)], the polynomial P (t, Y ) has a root in K

for each t ∈ Kp,∞ [resp. for each t ∈ Fp]. However Theorem 1.3 below will

show that for p 6= 2, these fields are RG-hilbertian, as any real p-radical

extension with p 6= 2.

Below we say that the Inverse Galois Problem (IGP) [resp. the Reg-

ular Inverse Galois Problem (RIGP)] holds over a field K if every finite

group G is the Galois group of a Galois extension E/K [resp. a Galois

extension E/K(T ) with E/K regular (i.e. E ∩K = K)]. Also recall from

[FrVo, p. 478] that a field K is said to be RG-hilbertian if for each polyno-

mial P (T, Y ) ∈ K[T, Y ], absolutely irreducible, with degY P ≥ 1 and such

that the associated function field extension K(T )[Y ]/(P (T, Y )) of K(T )

is Galois, there exist infinitely many t ∈ K such that P (t, Y ) is irreducible

in K[Y ].

Theorem 1.3: Let k ⊆ R be a field, p 6= 2 be a prime number and K/k

be a real p-radical extension. Then K/k has the following properties.

(a) K/k is linearly disjoint from every Galois extension (finite or not) of

k not containing ζp.

(b) If the IGP holds over k then the IGP holds over K.

(c) If k is hilbertian then K is RG-hilbertian. Consequently, if the RIGP

holds over K, then the IGP holds over K.

Corollary 1.4: The fields Kp,∞, Fp (p 6= 2) are RG-hilbertian but they

are not hilbertian. If the IGP holds over Q then it necessarily also holds

over the fields Kp,∞ and Fp (p 6= 2).

Remarks 1.5: (a) For each α ∈ R∩k, if K/k is a real p-radical extension,

then K(α)/k(α) is also a real p-radical extension. Furthermore, if the IGP

holds over k, it also holds over k(α) and if k is hilbertian, so is k(α). So

the conclusions of Theorem 1.3 also hold for every finite extension E of

K contained in R. On the other hand it is unclear whether the condition

“E ⊆ R” can be removed. For example, are the fields Kp,∞(ζp), Fp(ζp)

RG-hilbertian? Are they hilbertian?

(b) Finding a p-radical extension K/Q such that the IGP does not

hold over K would disprove the IGP over Q (from Theorem 1.3 (b)) and

so the RIGP over Q but also the RIGP over K (from Theorem 1.3 (c)).
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Also the field K could not be ample, for the RIGP is known to hold over

ample fields ([Po], [DeDes]).

Lemma 1.6: Let F be a subfield of R and p be a prime number. Let

N/F be a Galois extension (finite or not) not containing ζp. Then for each

b ∈ F , the extensions F ( p
√
b)/F and N/F are linearly disjoint and the field

N( p
√
b) does not contain ζp.

Proof: Let b ∈ F . Suppose b ∈ F p, i.e. b has some pth root in F .

Since F ⊆ R, a fortiori the real p-root p
√
b is in F and so the assertions

of the lemma are trivial. Assume therefore that b /∈ F p. Then Xp − b is

irreducible over F [La, Corollary VIII.9.1], and hence [F ( p
√
b) : F ] = p.

Since [N ∩ F ( p
√
b) : F ] divides this prime number, either N ∩ F ( p

√
b) =

F ( p
√
b) or N ∩ F ( p

√
b) = F .

In the first case p
√
b ∈ N ; and, as N/F is Galois, also the root ζp

p
√
b

of Xp − b is in N . Therefore ζp ∈ N , a contradiction.

In the second case, N and F ( p
√
b) are linearly disjoint over F . In

particular, [N(
p
√
b) : N ] = p. But [N(ζp) : N ] divides p − 1 and is not 1,

so it does not divide p = [N( p
√
b) : N ]. Therefore ζp /∈ N( p

√
b).

Proof of Theorem 1.3: (a) follows by induction from Lemma 1.6. By

definition of real p-radical extension we have K =
⋃∞

i=0 ki, where k0 = k,

and ki = ki−1( p
√
ai), with ai ∈ ki−1, for each i ≥ 1. It suffices to show

that each ki is linearly disjoint from any given Galois extension E of k not

containing ζp.

Assume, by induction, that ki−1 is linearly disjoint from E over k and

ζp /∈ Eki−1. By Lemma 1.6 (with F = ki−1, N = Eki−1, and b = ai),

ki is linearly disjoint from Eki over ki−1 and ζp /∈ Eki. Therefore [La,

Proposition X.5.1], ki is linearly disjoint from E over k.

(b) Let G be a finite group. It is a classical exercise to show that if

the IGP holds over k, then there actually exists a Galois extension N/k of

group G linearly disjoint from k(ζp)/k (and more generally, from any given

finite extension of k). From (a), the extensions K/k and N/k are linearly

disjoint. Thus we have G(NK/K) = G. The group G being arbitrary, the

IGP holds over K.

(c) For later reference, we prove a more general property than the

RG-hilbertian property. Instead of a single polynomial P (T, Y ), consider n

absolutely irreducible polynomials P1(T, Y ), . . . , Pn(T, Y ) ∈ K[T, Y ] such

that

(*) degY Pi ≥ 2 and the function field K(T )[Y ]/(Pi(T, Y )) is a Galois

extension of K(T ), for i = 1, . . . , n.
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We show that, under the assumption “k hilbertian”, there exist infinitely

many t ∈ K such that each of the polynomials P1(t, Y ), . . . , Pn(t, Y ) is

irreducible in K[Y ].

Let K0 ⊆ K be a finite extension of k such that (*) holds with K0

replacing K. Denote the function field K0(T )[Y ]/(Pi(T, Y )) by Ni,T , i =

1, . . . , n. Consider the field K0(ζp). It is a hilbertian field (as a finite

extension of k) and each Pi(T, Y ) is irreducible over it (since Pi(T, Y ) is

absolutely irreducible). Thus there exist infinitely many t ∈ K0 such that

Pi(t, Y ) is irreducible over K0(ζp)
3, i = 1, . . . , n. Conjoined with ζp /∈ K0

(since K0 ⊆ K ⊆ R), that implies that the specialization Ni,t of Ni,T at

t (which, since Ni,T /K0(T ) is Galois, is the splitting field of Pi(t, Y ) over

K0) does not contain ζp, i = 1, . . . , n. The extension K/K0 is a real p-

radical extension. Thus part (a) of Theorem 1.3 applies to conclude that

the extensions Ni,t/K0 and K/K0 are linearly disjoint; hence Pi(t, Y ) is

irreducible in K[Y ], for i = 1, . . . , n.

2. Some preliminary group-theoretic results

The following results will be used in the subsequent sections.

Lemma 2.1: Let G be a finite group, let K be a normal subgroup of G

and let B be a subgroup of G. Let C be a coset of K in G that satisfies

C ⊆ ⋃
σ∈GB

σ. Assume that BK = G. Then

(a) |C ∩ Bσ| = |K ∩ B| for every σ ∈ G;

(b) C is the disjoint union C =
⋃· n

i=1(C ∩Bσi), where Bσ1 , . . . , Bσn are

the distinct conjugates of B in G; and

(c) the number n of distinct conjugates of B in G is (G : B).

Proof: The condition BK = G ensures that every conjugate of B in G is

of the form Bk with k ∈ K. Moreover, it is of the form Bk, where k runs

through a system Σ of representatives of the right cosets of K ∩ B in K.

It then follows from C ⊆ ⋃
σ∈GB

σ that

(1) C =
⋃

k∈K

(C ∩Bk) =
⋃

k∈Σ

(C ∩ Bk).

If g ∈ C and k ∈ K, then gk = k−1gk = g(g−1k−1g)k ∈ gK = C.

Therefore

(d) C is invariant under conjugation by elements of K.

3 Here we use the classical fact that Hilbert subsets of a finite extension E of a hilbertian

field K contain infinitely many elements of the lower field K [FrJa, §11.2].
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Proof of (a): Let k ∈ K. By (d), C ∩ Bk = (C ∩ B)k, and hence

|C ∩ Bk| = |C ∩ B|. In particular, by (1), we have C ∩ B 6= ∅. Choose

g ∈ C ∩ B. Then |C ∩B| = |gK ∩ B| = |K ∩ g−1B| = |K ∩ B|.
Proof of (b): We have |C| = |K| = (K : K ∩ B) · |K ∩ B|, hence by

(a) , |C| =
∑

k∈Σ |C ∩Bk|. It follows from (1) that the sets {C ∩Bk}k∈Σ

must be disjoint.

Proof of (c): Clearly n ≤ (G : B). By the proof of (b), the subgroups

Bk, for k ∈ Σ, are distinct. Hence n ≥ |Σ| = (K : K ∩ B) = (KB : B) =

(G : B).

Recall that a finite embedding problem ρ: Γ � A, α:G � A for a

profinite group Γ is a diagram

Γ

?
ρ

1 - N - G -α A - 1

in which the row is an exact sequence of finite groups and the map ρ: Γ → A

is an epimorphism. A (proper) solution is a surjective homomorphism

ψ: Γ → G such that α ◦ ψ = ρ; without the condition “ψ surjective”, such

a map ψ is said to be a weak solution. The embedding problem is said to

be split if α:G � A has a group-theoretic section.

Lemma 2.2: Let P be a projective profinite group, let F̂2 be the free

profinite group on 2 generators, and let Γ = P ? F̂2 be the free profinite

product of P and F̂2. Consider a finite embedding problem ρ: Γ � A,

α:G � A for Γ, and let B be a proper subgroup of G. Then there exists a

continuous homomorphism ψ: Γ → G such that α ◦ ψ = ρ and ψ(Γ) * Bσ

for every σ ∈ G.

Proof: As P is projective, there is a continuous homomorphism ψ′:P →
G such that α ◦ ψ′ = resP ρ. Let x1, x2 be free generators of F̂2 and let

a1, a2 be their images in A by ρ. Let C1 = α−1(a1) and C2 = α−1(a2);

these are cosets of the kernel K of α. Choose g1 ∈ C1 and g2 ∈ C2 (in

a way to be specified below) and define ψ′′: F̂2 → G by ψ′′(x1) = g1 and

ψ′′(x2) = g2. Then α ◦ψ′′ = resF̂2
ρ. The maps ψ′ and ψ′′ define a unique

homomorphism ψ: Γ → G such that α ◦ ψ = ρ.

If α(B) is a proper subgroup of A, then, for every σ ∈ G,

α(ψ(Γ)) = ρ(Γ) = A = Aα(σ) * α(B)α(σ) = α(Bσ),

and hence ψ(Γ) * Bσ. Thus we are left with the case α(B) = A, that is,

BK = G.
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By our choice g1, g2 ∈ ψ(Γ). Therefore it suffices to show that we can

choose g1 ∈ C1 and g2 ∈ C2 so that

(2) {g1, g2} * Bσ for each σ ∈ G.

If either C1 or C2 are not contained in
⋃

σ∈GB
σ, this is clear. Assume

therefore that C1, C2 ⊆ ⋃
σ∈GB

σ.

Let Bσ1 , . . . , Bσn be the distinct conjugates of B in G. By Lemma 2.1,

n ≥ 2 and so we may choose g1 ∈ C1 ∩ Bσ1 and g2 ∈ C2 ∩ Bσ2 . By

Lemma 2.1(b) we have

g1 /∈
⋃

i6=1

Bσi and g2 /∈
⋃

i6=2

Bσi .

Thus {g1, g2} * Bσi , for each 1 ≤ i ≤ n. This gives (2).

Lemma 2.3: Let H = Hn = G0 nV , where V is a vector space over Z/3Z
(written additively) of finite dimension n ≥ 3, and G0 = 〈c〉 of order 2

acts on V by vc = −v, for all v ∈ V . Then

(a) If σ ∈ H r V , then σ2 = 1 and vσ = −v, for all v ∈ V .

(b) The centralizer of each σ ∈ H rV in H is 〈σ〉.
(c) If B ≤ H and σ ∈ BrV , then B = 〈σ〉nW , where W is a subspace

of V , and 〈σ〉 of order 2 acts on W by wσ = −w. In particular,

B ∼= Hm for some m ≤ n.

(d) rankH (= the least number of generators of H) is n+ 1.

(e) The Frattini subgroup Φ(H) of H is trivial.

Proof: Property (a) is immediate, and (b) follows from (a).

(c) Put W = B∩V . By (a), 〈σ,W 〉 = 〈σ〉nW . Clearly, 〈σ〉nW ⊆ B.

Conversely, let b ∈ B. If b ∈ V then b ∈ W ; if b /∈ V , then σb ∈ V , and

hence σb ∈W . Therefore b ∈ 〈σ〉 nW . Thus B = 〈σ〉 nW .

(d) As rankV = dimV = n and rankG0 = 1, we have rankH ≤ n+1.

Suppose, by contrary, that σ, σ1, . . . , σn−1 generate H. Without loss of

generality σ /∈ V . We may assume that σi ∈ V , for i = 1, . . . , n− 1,

otherwise replace σi by σσi. Put W = 〈σ1, . . . , σn−1〉. Then H = 〈σ,W 〉
and |W | = 3dim W < 3n. By (a), H = 〈σ〉 n W , and hence |H| < 2 · 3n.

But clearly |H| = 2 · 3n, a contradiction.

(e) If W is a subspace of V of dimension n − 1, then G0 n W is a

maximal subgroup of H; so is V . Therefore

Φ(H) ⊆ V ∩
⋂

W≤V
dim W=n−1

G0 nW =
⋂

W≤V
dim W=n−1

W = {0}.
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Lemma 2.4: Let a finite group G act on a finite group A0, and let α0:Gn
A0 → G be the canonical projection. Let m ≥ 1 be an integer. Then

there is a finite group A on which G acts, with the following property.

Let Γ = G n A and let α: Γ → G be the canonical projection. If H is a

subgroup of Γ such that α(H) = G and (Γ : H) ≤ m, then there is an

epimorphism θ:H → Gn A0 such that α0 ◦ θ = resH α.

Proof:

Part A: It suffices to find A finitely generated (instead of finite). Sup-

pose that A is a finitely generated group that has all the required properties

except for being finite. Then Γ is also finitely generated, and hence has

only finitely many subgroups of index ≤ m|G n A0|. Therefore the in-

tersection N of these subgroups is of finite index in Γ. Clearly, N is a

characteristic subgroup of Γ and N ≤ A. Let A1 = A/N . It follows that

A1 is a finite group. We claim that it has the required property.

Let Γ1 = Γ/N = GnA1, let µ: Γ → Γ1 be the quotient map, and let

α1: Γ1 → G be the map induced from α, that is, α1 ◦ µ = α.

Let H1 be a subgroup of Γ1 such that α1(H1) = G and (Γ1 : H1) ≤ m.

Let H = µ−1(H1) ≤ Γ. Then α(H) = G and (Γ : H) ≤ m. Hence by

assumption there is an epimorphism θ:H → G n A0 such that α0 ◦ θ =

resH α.

Since (Γ : H) ≤ m, we have N ≤ H. Since (H : Ker θ) = |GnA0|, we

have (Γ : Ker θ) ≤ m|Gn A0|, and hence N ≤ Ker θ. Therefore θ induces

an epimorphism θ1:H1 → Gn A0 such that α0 ◦ θ1 = resH1
α1.

H

?
Z

ZZ~
µ
PPPPPPq

θ

Γ H1
-

θ1
GnA0

Z
ZZ~
µ
PPPPPPq

α

? ?
α0

Γ1
-

α1
G

Thus we may relax the requirement that A be finite by A being finitely

generated.

Part B: Free products. Let e = |A0|. Let F be the free group on e

generators and let Γ = G?F be the free product. Define an epimorphism

α: Γ → G by letting α be the identity on G and α(F ) = 1. Let A = Kerα;

then Γ = GA and G ∩ A = 1, so Γ = G n A and α:G n A → G is the

canonical projection.

9



Let H be a subgroup of Γ such that α(H) = G and (Γ : H) ≤ m. By

the Kurosh Subgroup Theorem [Mas, Theorems VII.5.1, VII.5.2]

H =
m
?

i=1
(H ∩Gγi) ?

n
?

j=1
(H ∩ F δj ) ?E

where γ1, . . . , γm, δ1, . . . , δn ∈ Γ and E is a finitely generated free group

[Mas, Theorem VII.5.3]. Thus H can be written as the free product H =

F1 ?F2, where F1 = H ∩ F δ1 . Since (F δ1 : F1) ≤ (Γ : H) ≤ m < ∞, the

group F1 is a finitely generated free group of rank

rankF1 = 1 + (F δ1 : F1)(e− 1) = e+ [(F δ1 : F1) − 1](e− 1) ≥ e

[FrJa, Proposition 15.25]. Therefore there exists an epimorphism θ1:F1 →
A0.

Define θ:H → GnA0 by letting θ be θ1 on F1 and resF2
α on F2 (here

we identify G with its preimage in GnA0). As F1 ≤ F δ1 ≤ A, and hence

α(F1) = 1, we get that α0 ◦θ = resH α. In particular, α0(θ(H)) = G; since

θ(H) ⊇ θ1(F1) = A0; thus θ is an epimorphism.

3. Mordellian fields

We recall the following characterization of hilbertian fields (e.g. [FrJa,

Lemma 12.1]):

Lemma 3.1: A field K is hilbertian if and only if for every finite set of

absolutely irreducible polynomials P1(T, Y ), . . . , Pm(T, Y ) ∈ K[T, Y ], of

degree ≥ 2 in Y , there exist infinitely many t ∈ K such that none of the

polynomials P1(t, Y ), . . . , Pm(t, Y ) ∈ K[Y ] has a root in K.

It would be interesting to know whether one can take m = 1 in the

above lemma. Formally, we define:

Definition 3.2: A field K is mordellian, if for every absolutely irreducible

polynomial P (T, Y ) ∈ K[T, Y ] with degY P > 1, there exist infinitely

many t ∈ K such that P (t, Y ) ∈ K[Y ] has no root in K.

Clearly, every hilbertian field is mordellian. Thus the question is,

whether the converse is true4. In this section we show that this is not

the case: we produce PAC mordellian fields that are not hilbertian. Re-

call a field K is P(seudo) A(lgebraically) C(losed) if every curve defined

over K has at least one (in fact infinitely many) K-rational points [FrJa,

4 See [FrJa, Exercise 12.1] for a related problem.
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Chapter 10]. Moreover, we show that the mordellian property neither im-

plies nor is implied by the RG-hilbertian property. To show this, we first

develop a Galois theoretic characterization of mordellian fields.

Let K be a field, let K̄ be its algebraic closure, and let F be a finite

Galois extension of E = K(T ). Let t ∈ K. Extend T 7→ t to a place

φ:F → K̄; such an extension is unique up to composition with elements

of the Galois group G(F/E) [La, Corollary VII.2.6]. Assume that φ is

unramified in F ; this is true for all but finitely many values of t. The

decomposition group Dt of φ in F/E is a subgroup of G(F/E) and it

is uniquely determined by t, up to conjugation in G(F/E). There is an

epimorphism φ∗:G(K) → Dt ⊆ G(F/E) given by

(1) φ
(
φ∗(σ)z

)
= σ φ(z),

for all σ ∈ G(K), z ∈ F integral over K[T ]. In fact, if F ′ is the residue

field of F , then φ∗ is the composition of resF ′ :G(K) → G(F ′/K) and the

isomorphism G(F ′/K) → Dt.

Remark 3.3: Embedding property. Let E = K(T ) and L be the algebraic

closure of K in F .

(a) Replacing φ by φ ◦ σ for a suitable σ ∈ G(F/E), if necessary, we

may assume that φ is an L-place. It then follows from (1) with z ∈ L that

the following diagram commutes

(2)

G(K)
������) φ∗

?
resL

G(F/E) -
resF/L

G(L/K) .

(b) Conversely, let φ∗:G(K) → G(F/E) be a homomorphism such

that (2) commutes. If K is PAC, the field-crossing argument (see [FrJa,

Proposition 23.2]) says that there exist infinitely many L-places φ:F → K̄

unramified over E such that φ(E) = K and (1) holds. In particular,

φ∗(G(K)) is the decomposition group of φ. Choose φ so that t = φ(T ) 6=
∞; then φ extends T 7→ t.

Now we can express the mordellian property in terms of decomposition

groups.

Lemma 3.4: A field K is mordellian if and only if the following property

holds.

(M1) Let F/K(T ) be a finite Galois extension, let G be its Galois group,

and let B be a proper subgroup of G. Then there exist infinitely

many t ∈ K such that Dt 6⊆ Bσ for every σ ∈ G.
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Proof: Let P (T, Y ) ∈ K[T, Y ] be irreducible, monic in Y , and of degree ≥
2 in Y . Let F be a finite Galois extension of K(T ) that contains the

splitting field of P (T, Y ) over K(T ) and let G be its Galois group. Let y

be a root of P (T, Y ) in F and let B be the (necessarily proper) subgroup

of G that fixes y. Then {σy| σ ∈ G} are all the roots of P (T, Y ), and

σBσ−1 is the fixed group of K(T )(σy), for each σ ∈ G.

Let t ∈ K be such that T 7→ t is unramified in F . Extend T 7→ t to a

place φ:F → K̄ and let Dt be the decomposition group of φ in F/K(T ).

Then {φ(σy)| σ ∈ G} are the roots of P (t, Y ) ∈ K̄. We have φ(σy) ∈ K

iff Dt fixes σy iff Dt ⊆ σBσ−1.

Thus for all but finitely many t ∈ K we have:

(3) P (t, Y ) has a root in K iff Dt ⊆ Bσ for some σ ∈ G.

Therefore (M1) implies that K is mordellian. Conversely, let K be mor-

dellian, and let F , G, and B be as in (M1). Let y be a primitive element

for the fixed field of B over K(T ), integral over K[T ]. Then the irreducible

polynomial P (T, Y ) of y over K(T ) is in K[T, Y ], and so we can apply (3)

to get that (M1) holds.

Remark 3.5: In the setup of (M1) let L be the algebraic closure of K in F .

We may assume in (M1) that the restriction map G(F/K(T )) → G(L/K)

splits. Indeed, by [Ha, Lemma 2.2] there is a finite Galois extension

F ′/K(T ) such that F ⊆ F ′ and, denoting by L′ the algebraic closure

of K in F ′, the map G(F ′/K(T )) → G(L′/K) splits. Let G′ be its Galois

group and let B′ ≤ G′ be the pre-image of B under the restriction map

res:G′ → G. If φ′:F ′ → K̄ is a place and φ:F → K̄ is its restriction to

F , then φ∗ = res ◦φ′∗. Therefore, φ′
∗
(G(K)) 6⊆ (B′)σ′

for every σ′ ∈ G′

implies φ∗(G(K)) 6⊆ Bσ for every σ ∈ G.

In the case of PAC fields, Lemma 3.4 leads to the following criterion.

Proposition 3.6: Let K be a PAC field and let Γ be its absolute Galois

group. Then K is mordellian if and only if the following condition holds:

(M2) Let α:G → A be a split epimorphism of finite groups, let ρ: Γ → A

be a continuous epimorphism, and let B be a proper subgroup of G.

Then there exists a continuous homomorphism ψ: Γ → G such that

α ◦ ψ = ρ and ψ(Γ) is contained in no conjugate of B in G.

Proof: Suppose that (M2) holds. Let F , G, and B be as in (M1). Let L

be the algebraic closure of K in F , let A = G(L/K), and let α:G→ A and

ρ: Γ → A be the restriction maps to L. By Remark 3.5 we may assume

that α:G → A splits. Let ψ be as in (M2). By Remark 3.3(b) there are

infinitely many t ∈ K such that Dt = ψ(Γ); for these t, Dt 6⊆ Bσ for every

σ ∈ G. Thus (M1) holds.
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Conversely, assume (M1). Let ρ: Γ → A, α:G→ A, and B ≤ G be as

in (M2). Let L be the fixed field of Ker ρ; thus A = G(L/K) and ρ is the

restriction map to L. We will use the following result recently proved in

Inverse Galois Theory: if K is an ample field, split embedding problems

over K(T ) have proper regular solutions ([Po, Main Theorem A] or [HJ,

Theorem 6.4]). This result, applied here over the PAC (and so ample) field

K, precisely asserts that there exists a Galois extension F of K(T ) that

contains L and is regular over L, and an isomorphism θ:G→ G(F/K(T ))

such that resL ◦θ = α. Without loss of generality G = G(F/K(T )) and

α = resL.

By (M1) there is an element t ∈ K such that T 7→ t is unramified in

F and its extension φ:F → K̄ defines a homomorphism φ∗: Γ → G such

that φ∗(Γ) = Dt 6⊆ Bσ for every σ ∈ G. By Remark 3.3(a) we may assume

that α ◦ φ∗ = ρ.

Proposition 3.6 should be compared to the following result which

provides a Galois theoretic characterization of the hilbertian and RG-

hilbertian properties for PAC fields.

Proposition 3.7 ([FrVo, Theorems A and B]): Let K be a PAC field.

Then

(a) K is hilbertian if and only if all finite embedding problems over K

are solvable.

(b) K is RG-hilbertian if and only if every finite group is a Galois group

over K.

We will now use Proposition 3.6 and Proposition 3.7 to prove the

following.

Proposition 3.8: There exist mordellian PAC fields K1, K2 that are not

hilbertian and

(a) K1 is not RG-hilbertian.

(b) K2 is RG-hilbertian.

Proof: Let F̂2 be the free profinite group on 2 generators. If P is a

projective profinite group, then Γ = P ? F̂2 is projective. By [FrJa, Corol-

lary 20.16] there is a PAC field K with absolute Galois group Γ. By

Lemma 2.2, Γ satisfies the criterion (M2) of Proposition 3.6, and hence

K is mordellian.

(a) In the above, take P to be finitely generated, e.g. P = Ẑ. Then Γ

is also finitely generated, and therefore not every finite group is a quotient

of Γ. By Proposition 3.7, K is not RG-hilbertian. In particular, K is not

hilbertian.
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(b) Let G1, G2, G3, . . . be an enumeration of all finite groups. Let

G =
∏∞

i=0Gi and for each i ≥ 0 let πi:G→ Gi be the canonical projection.

Let ρ:P → G be the universal Frattini cover of G. Then P is projective

[FrJa, Proposition 20.33]. Take Γ and K as above.

Let φ: Γ → P be the epimorphism which is the identity on P and

maps F̂2 onto 1. Every finite group Gi is a quotient of Γ (by πi ◦ ρ ◦
φ). By Proposition 3.7, K is RG-hilbertian; and to show that K is not

hilbertian, it suffices to show that Γ is not ω-free, that is, that there is a

finite embedding problem for Γ that has no solution.

Without loss of generality G0 is of order 2, say, G0 = 〈c〉. Let H =

Hn = G0 n V as in Lemma 2.3, where n ≥ 3, and let α:H → G0 be the

canonical projection. We claim that there is no epimorphism ψ: Γ → H

such that α ◦ ψ = π0 ◦ ρ ◦ φ: Γ → G0.

Assume the contrary. Let B = ψ(P ). Then B is not contained in

V , since α(B) = G0, while α(V ) = 1. By Lemma 2.3(c), B ∼= Hm for

some m ≤ n. By Lemma 2.3(e), the Frattini subgroup of B is trivial.

Therefore ψ maps the Frattini subgroup of P into 1, and hence induces an

epimorphism ψ̄:G→ B such that α ◦ ψ̄ = π0.

Recall that c is the generator of the subgroup G0 of G. Let σ = ψ̄(c).

Since c centralizes Gi, for i ≥ 1, σ centralizes ψ̄(Gi) in B. Furthermore,

ψ̄(Gi) ≤ V , since π0(Gi) = 1. By Lemma 2.3(b), ψ̄(Gi) = 1. Hence

ψ̄(G) = 〈σ〉. It follows that ψ(P ) = 〈σ〉.
Now let D = ψ(Γ). Then D = 〈σ, σ1, σ2〉, where σ1, σ2 are the images

of the generators of F̂2 in G. By Lemma 2.3(d), D 6= H.

4. R-hilbertianity and further specialization properties

The hilbertian property of a field K is that

(Data:) For every polynomial P (T, Y ) ∈ K[T, Y ] with

degY P ≥ 2 such that

(Assumption:) P (T, Y ) is irreducible in K(T )[Y ],

there exist infinitely many t ∈ K such that

(Conclusion:) P (t, Y ) is irreducible in K[Y ].

We consider variants of the hilbertian property where the assump-

tion is modified to include the extra hypothesis (R) or/and (G) below

and the conclusion about P (t, Y ) either remains the Hilbert conclusion

or is weakened to be the Mordell conclusion below. Given a polynomial

P (T, Y ) ∈ K[T, Y ] irreducible in K(T )[Y ], the possible extra hypotheses

(R) and (G) are:

(R) P (T, Y ) is absolutely irreducible,
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(G) The function field K(T )[Y ]/(P (T, Y )) is a Galois extension of K(T ).

and the possible conclusions (for t ∈ K) are:

(Hilbert) P (t, Y ) is irreducible in K[Y ],

(Mordell) P (t, Y ) has no root in K[Y ].

According to what the conclusion is, these new properties are called

hilbertian or mordellian. We add the prefix R and/or G (or no prefix)

according to the assumptions that are made on the polynomial P (T, Y ).

Examples 4.1: These definitions contain in particular the definitions of

“RG-hilbertian” and “mordellian” given respectively in §1 and §3. But

they give rise to new ones. For example, a field K is RG-mordellian

if for every polynomial P (T, Y ) ∈ K[T, Y ], absolutely irreducible, with

degY P ≥ 2 and such that the function field K(T )[Y ]/(P (T, Y )) is a Galois

extension of K(T ), there exist infinitely many t ∈ K such that P (t, Y ) has

no root in K[Y ].

There are some relations between all these specialization properties.

Some are classical and some are proved in this paper. Theorem 5.1 (in next

section) recapitulates these results. The current section is concerned with

the R-hilbertian property. From above, a fieldK is R-hilbertian if for every

polynomial P (T, Y ) ∈ K[T, Y ], absolutely irreducible, with degY P ≥ 2,

there exist infinitely many t ∈ K such that P (t, Y ) is irreducible in K[Y ].

Theorem 4.2: Every PAC R-hilbertian field is hilbertian.

Proof: Let K be a PAC R-hilbertian field. By Proposition 3.7(a) it

suffices to show that every finite embedding problem for G(K) is solvable.

In fact, since PAC fields have a projective absolute Galois group, Jarden’s

Lemma [Mat, p. 231] allows us to restrict our attention to split embedding

problems. So let L be a finite Galois extension of K and let its Galois

group G = G(L/K) act on a finite group A0. Let α0:Gn A0 → G be the

canonical projection, and let resL:G(K) → G be the restriction map. We

have to find an epimorphism ψ:G(K) → GnA0 such that α0 ◦ ψ = resL.

Put m = |G| and let A and α: Γ = G n A → G be as in Lemma 2.4.

Using [Po, Main Theorem A] or [HJ, Theorem 6.4], as in the proof of

Proposition 3.6, we may assume that there is a Galois extension F of K(T )

with Galois group Γ such that α is the restriction to L of G(F/K(T )) and

F/L is regular. Let E1 be the fixed field of G in F . Then E1∩L = K, and

hence E1 is regular over K. Therefore there is an absolutely irreducible

polynomial P (T, Y ) ∈ K[T, Y ], monic in Y , a root of which generates E1

over K(T ).
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Since K is R-hilbertian, there exist infinitely many t ∈ K such that

P (t, Y ) ∈ K[Y ] is irreducible. Choose such an element t so that a place

φ:F → K̄ that extends T 7→ t is unramified over K(T ). By Remark 3.3(a)

there is a homomorphism φ∗:G(K) → G(F/K(T )) such that (2) (from

§3) commutes. The image H of φ∗ in G(F/K(T )) is the decomposition

group of φ. The residue field F ′ of F contains a root of P (t, Y ), and hence

|H| = [F ′ : K] ≥ degP = |Γ|/|G|. Therefore (Γ : H) ≤ |G|. Furthermore,

α(H) = resLG(K) = G.

By Lemma 2.4 there is an epimorphism θ:H → G n A0 such that

α0 ◦ θ = resH α = resH resF/L. Put ψ = θ ◦ φ∗; then α0 ◦ ψ = resL.

5. Concluding remarks.

The next result recapitulates what we know about the relations existing

between the various specializations properties that we have introduced.

Theorem 5.1: All implications shown in the diagram below hold and

none of the converses to (2), (3), (4), (5) and (6) holds.

hilbertian

⇔ G-hilbertian

(1)

ww�

R-hilbertian

(2)

ww�

both mordellian and RG-hilbertian

(3)

ww� (4)

ww�

mordellian RG-hilbertian

⇔ R-mordellian

(5)

ww�
(6)

wwwww�

G-mordellian

⇔ RG-mordellian
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Thus, out of the 8 possible variants of the hilbertian property, there

are at least 4 and at most 5 that are non-equivalent. We do not know

whether the converse of (1) holds in general; from Theorem 4.2, that is

the case for PAC fields.

Proof of Theorem 5.1: Some of the implications are classical. For ex-

ample, “G-hilbertian ⇒ hilbertian” is proved in [FrJa, Lemma 11.12]5.

Equivalences “mordellian ⇔ R-mordellian” and “G-mordellian ⇔ RG-

mordellian” readily follow from the fact that if a polynomial P (T, Y ) is

irreducible inK[T, Y ] but is not absolutely irreducible, then theK-rational

points (t, y) on the curve P (t, y) = 0 are singular points; in particular there

are only finitely many of them. Implications (1), (3), (4) and (5) are trivial

and implications (2) and (6) hold because the Hilbert conclusion implies

the Mordell conclusion.

From Corollary 1.4 the fields Kp,∞, Fp (p 6= 2) are RG-hilbertian, and

hence, by (6), G-mordellian, but not hilbertian. In fact, these fields are not

even mordellian (see Examples 1.2). It follows that neither the converse

to (4) nor the converse to (5) hold. The field K1 from Proposition 3.8

is mordellian but not RG-hilbertian. In particular, it is RG-mordellian.

It follows that neither the converse to (3) nor the converse to (6) hold.

Finally, the PAC field K2 from Proposition 3.8 is both mordellian and RG-

hilbertian, but not hilbertian. By Theorem 4.2 it is not even R-hilbertian.

Therefore the converse to (2) does not hold.

We end the paper with some related comments.

P -splitting fields. B. Deschamps [Des] introduces the following defi-

nition. Given a field K and an irreducible polynomial P (T, Y ) ∈ K[T, Y ]

with degY P ≥ 2, a field K is said to be P -splitting (P -décomposant) if

for all t ∈ K the polynomial P (t, Y ) is totally split in K[Y ]. A P -splitting

field is not hilbertian and, in fact, most classical non-hilbertian fields are

P -splitting for some polynomial P (T, Y ) (Examples 5.2 below). But there

are non-hilbertian fields that are not P -splitting for any choice of P . In

fact, we show below that “P -splitting for some P” is equivalent to “non

G-mordellian” (Remark 5.3).

Examples 5.2: The fields R, Qtr (field of totally real algebraic numbers),

F2 (pythagorean closure of Q) are P (T, Y )-splitting for P (T, Y ) = Y 2 −
(1 + T 2).

The fields Qp and Qtp (field of totally p-adic algebraic numbers) are

P (T, Y )-splitting for P (T, Y ) = Y p − Y − (pT/(T 2 − p)). More generally,

5 With the slight adjustment that the extension K(T,y)/K(T ) in their proof should be

required to be Galois.
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let K be the quotient field of a henselian discrete valuation ring. Let

Q(Y ) ∈ K[Y ] be a monic polynomial with integral coefficients and such

that the reduction q(Y ) of Q(Y ) is totally split and has no multiple roots

in the residue field of K (e.g. Q(Y ) = Y 2−Y ) and let π be an element ofK

of minimal positive valuation. Then K is P (T, Y )-splitting for P (T, Y ) =

Q(Y ) − (πT/(T 2 − π)).

Indeed, it is straightforwardly checked that, for each t ∈ K, the ele-

ment t/(t2 − π) is in the valuation ring of K. Thus for each t ∈ K, the

reduction of P (t, Y ) equals q(Y ) and so is totally split in the residue field

of K (with only simple roots). Apply Hensel’s lemma to lift each of those

roots to a root of P (t, Y ) in K.

Remark 5.3: We have: “P -splitting for some P ⇔ non-G-mordellian”.

Indeed, suppose K is P -splitting for some polynomial P (T, Y ). Let N

be the normal closure of the function field K(T )[Y ]/(P (T, Y )). For all

t ∈ K, the specialization of N at t is trivial. So if Q(T, Y ) ∈ K[T, Y ] is

the irreducible polynomial of a primitive element of the Galois extension

N/K(T ), then Q(t, Y ) is totally split in K[Y ]; thus the field K is not

G-mordellian.

Conversely, suppose K is not G-mordellian. That is, there exists a

polynomial P (T, Y ) = a0(T )Y d + a1(T )Y d−1 + · · · + ad(T ) ∈ K[T, Y ]

with degY P ≥ 2, irreducible in K(T )[Y ], such that the function field

K(T )[Y ]/(P (T, Y )) is a Galois extension of K(T ) and P (t, Y ) has a root

in K for all but finitely many t ∈ K. Because of the Galois assumption

on P (T, Y ), we have that P (t, Y ) is in fact totally split in K[Y ] for all

but finitely many t ∈ K. Let {t1, . . . , tn} be the finite set of possible

exceptions and p(T ) = (T−t1) · · · (T−tn). Set then P̃ (T, Y ) = a0(T )Y d+

a1(T )p(T )Y d−1 + · · · + p(T )dad(T ). It is readily checked that P̃ (t, Y ) is

totally split for all t ∈ K. Thus K is P̃ -splitting.

Finite extensions. Finite extensions of hilbertian fields are hilbertian

(see e.g. [FrJa, §11.2]). On the other hand it is unclear whether the same

is true for R-hilbertian [resp. RG-hilbertian, mordellian, G-mordellian]

fields. However that is the case for PAC RG-hilbertian fields. This easily

follows from the criterion of Lemma 3.7(b), since if the IGP holds over a

field, then it holds over every finite extension (an easy exercise), and every

finite extension of a PAC field is also PAC [FrJa, Corollary 10.7].

The similar question for transcendental extensions of finite type is

not interesting: such extensions are automatically hilbertian [FrJa, Theo-

rem 12.10].
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Multi-polynomial variants. Other variants of the specialization prop-

erty can be defined: allow the data to consist of any finite set of polynomi-

als P1(T, Y ), . . . , Pn(T, Y ) satisfying the assumptions (instead of a single

polynomial P (T, Y )) and require that the conclusion be satisfied for each

of the specialized polynomials P1(t, Y ), . . . , Pn(t, Y ). We add the extra

prefix “m” to the name of the property in question when we consider the

“multi-polynomial variant” of it.

In fact, several polynomials are involved in the usual definition of

“hilbertian”. So according to our terminology, “hilbertian” is really “m-

hilbertian”. But as [FrJa, Lemma 11.12] shows, the two notions actually

coincide. Also, the classical Lemma 3.1 shows that “mR-mordellian” im-

plies “hilbertian”. It immediately follows that “m-mordellian” and “mR-

hilbertian” are equivalent to “hilbertian”. On the other hand, “mRG-

hilbertian” does not imply “hilbertian” (and does not even imply “mor-

dellian”). Indeed the proof of Theorem 1.3 shows that each real p-radical

extension of a hilbertian field contained in R is mRG-hilbertian. In par-

ticular, the fields Kp,∞, Fp (p 6= 2) are examples of mRG-hilbertian but

non-mordellian (and so non-hilbertian) fields. Finally, using similar tech-

niques as in §2 and §3, one can show the RG-hilbertian non-hilbertian

fields produced in [FrVo] are not mRG-hilbertian. Thus “mRG-hilbertian”

is strictly stronger than “RG-hilbertian”.
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