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Introduction

The main problem in Galois theory is to describe the absolute Galois group G(K) of
a field K. This problem is solved in the local case, i.e., when K is algebraically, real
or p-adically closed. In the first case G(K) is trivial, in the second G(K) = Z/2Z and
in the third case it is given by generators and relations (Jannsen-Wingberg [JW] and
Wingberg [W]). The next case to consider is when K is “pseudo closed”. A field K is
called pseudo algebraically (resp., real, p-adically closed) (abbreviation : PAC,
PRC and PpC, respectively) if every absolutely irreducible variety V' defined over K has
a K-rational point, provided V has a K-rational simple point for each algebraic (resp.,
real, p-adic) closure K of K. The absolute Galois group of a pseudo closed field is best
described in terms of solvability of I'-embedding problems, where I" is 1 (resp., Z/27Z,

G(Qyp)):
Let GG be a profinite group. Consider a diagram
G
(1) |#
B = A

where « is an epimorphism of finite groups and ¢ is a homomorphism. We call (1)
a finite I'-embedding problem for G if for each closed subgroup H of G which is
isomorphic to I' there exists a homomorphism vg: H — B such that a o vy = Resgp.
The I'-embedding problem (1) is solvable if there exists a homomorphism v: G — B
such that a« oy = ¢. We call G T'-projective if every finite ['-embedding problem for
G is solvable, and if the collection of all closed subgroups of G which are isomorphic
to I' is topologically closed. For I' = 1 (resp., I' = Z/2Z, I' = G(Q,)) we obtain
projective (resp., real projective, p-adically projective) groups. Note that the
local-global principle included in the definition of pseudo closed fields is also reflected

in the definition of I'-projective groups.
THEOREM: If K is a PAC (resp., PRC, PpC) field, then G(K) is projective (resp., real
projective, p-adically projective). Conversely, if G is a projective (resp. real projective,

p-adically projective) group, then there exists a PAC (resp., PRC, PpC) field K such
that G(K) = G.



Ax [A1, p. 269] and Lubotzky-v.d. Dries [LD, p. 44] prove the theorem for PAC
fields. We prove the theorem for PRC fields in [HJ]. The goal of this work is to prove
the theorem for PpC fields.

As in the PRC case, the easier direction is to prove that if K is PpC, then G(K)
is p-adically projective. For the converse we must develop a theory of G(Q,)-structures,
which replaces the Artin-Schreier structures of the PRC case.

There are two intrinsic difficulties in going over from PRC fields to PpC fields.
The first one is that the group I is no longer the finite group Z/27 but rather the
infinite group G(Q,,). Fortunately G(Q,) is finitely generated and with a trivial center.
So we consider in Part A of the work a finitely generated profinite group I' with a
trivial center and define a I'-structure as a structure G = (G, X,d), where G is a
profinite group which acts continuously and regularly on a Boolean space X (i.e., for
each v € X and o € G the equality x° = x implies 0 = 1), and d is a continuous
map from X into Hom(I',G) which commutes with the action of G. The assumption
that T' is finitely generated implies that Hom(I', G) is a Boolean space. The regularity
assumption is essential in constructing cartesian squares of I'-structures. The latter are
essential in reducing arbitrary embedding problems to finite embedding problems. In
Section 5 we associate a I'-structure G with each I'-projective group G and prove that
G is projective. The proof depends on an extra assumption which we make on I'. For
each e and m, 0 < e < m, we consider the free product I'. ,,, of e copies of I' and the
free profinite group ﬁm_e. We assume that I' has a finite quotient ' with this property:
each closed subgroup H of T, which is a quotient of I' and has T as a quotient (we
call it a large quotient of ") is isomorphic to T.

The second difficulty that arises in dealing with PpC fields is that two p-adic
closures E and F of a field K are not necessarily K-isomorphic. Fortunately Macintyre
[M] gives a criterion for isomorphism: E =~ F if and only if K N E" = K N F™ for
eachn € N. As E*/(E*)" =2 Q) /(Q))", E is characterized up to K-isomorphism by
a homomorphism p: K* — <11_111 Q) /(Qp)"™ with K* N E™ as the kernel of the induced
map K* — Q) /(Q;)", n € N. In addition, the unique p-adic valuation defines a place
m: K — Qp U {oo} such that w(u) € Q) implies 7(u) = p(u). Here we have identified
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Q) as a subgroup of ® = lim Q1 /(Q)". We let © = Q, U{oo} U® and call 6 = (r,¢)
a ©-site of K. An extension of Q, to Q, replaces © by © and O-sites by O-sites.
With every Galois extension L/K we associate the space of sites X (L/K). This is the
collection of all ©-sites 6 of L such that (K) C ©. It is a Boolean space and G(L/K)
acts continuously and regularly on it. It replaces the space of orderings of Artin-Schreier
structures. We also use regularity to define a map d: X(L/K) — Hom(G(Q,),G(L/K))
which commutes with the action of G(L/K). A version of Krasner’s lemma proves that
d is continuous. Thus G(L/K) = (G(L/K),X(L/K),d) is a G(Q,)-structure.

In Section 11 we generalize a theorem of Neukirch and characterize Q N Qp by a
large finite quotient of G(Q,). Then we realize, for I' = G(Q,), each I'. ,,, as absolute
Galois group of a field K, algebraic over K (Section 12). The combination of these
results shows that the above assumptions on I' are satisfied in this case.

In part C we construct for each G(Q,)-structure G a Galois extension F//E such
that E is PpC and G(F/E) = G. The restriction map Res: G(E/E) — G(F/E) is
a cover (ie., if x,2’ € X(E/E) are mapped onto the same element of X(F/E), then
x' = a9 for some o € G(E)). Hence, if G is projective, Res has a section and therefore
G = G(E/E,) for some algebraic extension E; of E. Unfortunately unlike for PAC and
PRC fields, E1 need not be PpC. However, an extra transcendental construction finally
proves the existence of a PpC field K such that G(K) = G. In particular G(K) = G.
This concludes the proof of the Theorem for PpC fields.



Notation

K = the algebraic closure of a field K.

If K is a field of characteristic 0, then Ky, = K N @,

G(K) = the absolute Galois group of K.

For a place w of a field K, O, = {x € K| m(x) # oo} is the valuation ring and
Ur ={u € K|m(u) # 0,00} is the group of units and 7w(K) = w(O;) is the residue field
of .

If S is a set of automorphisms of a field F', then F(S) is the fixed field of S in F. In
particular for ¢ = (01, ...,0p), F(0) is the fixed field of o1,...,0,, in F.

For an abelian group A and a prime [, A; is the [-torsion part of A.

Q, = the field of p-adic numbers.

Qp,a1g = the algebraic part of Q,.

Z,, = the ring of p-adic integers.

Z,; = the group of units of Z,.

F, = the field with p-elements.

In Part A, T is a fixed finitely generated group; in Parts B and C, I' = G(Q,).



Part A. I'-Structures.

We fix for all of Part A a finitely generated profinite group I'. In particular I' has for
each n € N only finitely many open subgroups of index n. In Sections 1 and 2 we define
and discuss I'-structures. Later (Section 3) we require that I' share some properties
with G(Q,). This is used to prove properties of I'-projective groups and projective
I-structures (Section 4 and 5).

1. Definition of I'-structures.

Recall that a Boolean space X is an inverse limit of finite discrete spaces. Alternatively
X is a totally disconnected compact Hausdorff space [HJ, Definition 1.1]. A profinite
transformation group is a pair (X,G), with X a Boolean space and G a profinite
group that acts continuously on X: (x,0) — z°.

For each profinite group G consider the collection Hom(I', G) of continuous ho-
momorphisms from I into G. Each homomorphism h: G — G’ naturally induces a map
hy: Hom(I', G) — Hom(T', G") by h.(v) = ho. Thus Hom(T', G) = lim Hom(I', G/N),
where N ranges over all open normal subgroups of G. Since each ¢ € Hom(I',G/N)
is determined by its values on a finite set of generators of I', and since G/N is finite,
Hom(I', G/N) is a finite set. It follows that Hom(T', G) is a Boolean space. Obviously,
the above map h, is continuous.

The group G acts continuously on Hom(I', G) by
UT(g)=1""(g)r, Y eHom(l,G), T€G, gel.

Thus (Hom(I',G), Q) is a profinite transformation group and (h.,h) is a morphism
of profinite transformation groups (i.e., hy(1)7) = hy ()7 for p € Hom(T',G) and
T€G).

For a profinite group G denote the set of all closed subgroups of G by Subg(G).
Each homomorphism h: G — G’ maps closed subgroups of G onto closed subgroups of G’
and thus naturally induces a map h,: Subg(G) — Subg(G’). Compactness of G implies
that Subg(G) = lim Subg(G/N), where N ranges over all open normal subgroups. Thus
Subg(G) is a Boolean space.



Let Im: Hom(I', G) — Subg(G) be the map that assigns to each » € Hom(I', G) its
image Im(¢) = ¥ (I") in G. For an open normal subgroup N of G let ¢ € Hom(I', G/N)
be the homomorphism induced by 1. A standard compactness argument shows that
Im(y) = lim Im(¢n). Therefore Im: Hom(I', G) — Subg(G) is the inverse limit of the
maps Im: Hom(I', G/N) — Subg(G/N). In particular Im is a continuous map.

DEFINITION 1.1: A weak ['-structure is a system G = (G, X, d), where G is a profinite
group, X is a Boolean space on which G continuously acts, and d: X — Hom(T', G) is

a continuous map such that
(1) d(z?) =d(z)? for all x € X and 0 € G.

Call G a I'-structure if in addition the action of G on X is regular, i.e.,
(2) for each z € X, 7 = z implies 0 = 1.

We call X the space of sites, d the forgetful map and X/G the space of
orbits of G. The latter quotient space is Boolean [HJ, Claim 1.6]. For z € X we
call D(z) = Im(d(x)) the decomposition group of z. By (1), D(z?) = D(x)? for
all z € X and 0 € G. Since Im is continuous so is the map = — D(z) from X into
Subg(G).

Unless explicitly stated otherwise, the underlying group, the space of sites and
the forgetful map of a I'-structure G will be denoted by G, X(G) and d, respectively.
Analogously for H, A, B, etc.

A weak I' structure G is said to be finite if both G and X (G) are finite.

DEFINITION 1.2: A morphism ¢: H — G of (weak) I'-structures is a pair consisting
of a continuous homomorphism ¢: H — G and a continuous map ¢: X(H) — X(G)
such that
(3a) @(27) = @(2)?) for all z € X(H) and ¢ € H; and
(3b) d(¢(z)) = pod(x) for all z € X (H).

Call a morphism ¢: H — G an epimorphism if ¢(H) = G and ¢(X(H)) =
X(G). The epimorphism ¢ is a cover if
(3¢) for all z,2’ € X(H) such that ¢(x) = p(z’) there exists o € H such that 27 = z’.

6



If o: H — G is a morphism, then the map ¢: X(H) — X(G) induces a continuous
map ¢: X(H)/H — X(G)/G of the respective orbit spaces. Note that ¢ is a cover if
and only if
(3¢") ¢(H) = G and ¢ is a bijection (therefore a homeomorphism).

Also
(3d) if H and G are I structures, then o in (3c) is unique (by (2)) and o € Ker(y) (by

(3a)).

Next we consider quotients of weak I'-structures. Let G = (G, X, d) be a weak
[-structure and N a closed normal subgroup of G. Let pon = (h,n): (X,G) —
(X/N,G/N) be the canonical quotient map of transformation groups [HJ, Claim 1.6].
Define d: X/N — Hom(T', G/N) by d(h(zx)) = nod(x), for z € X. Thus the homomor-
phism 7,: Hom(I', G) — Hom(T', G/N) induced by 1 (Section 1) satisfies 1, od = d o h.
Since the maps 7, and d are continuous and h is open [HJ, Claim 1.6], d is continuous. It
follows that G /N = (G/N, X/N, d) is a weak I'-structure and ¢ n: G — G/N is a cover.
Moreover, if G is a I-structure, then so is G/N. Conversely, each morphism ¢: G — G’
of weak I'-structures with N < Ker(p) canonically induces a morphism ¢: G/N — G’
such that @ o oy = . If G’ is a I'-structure, ¢ is a cover and Ker(p) = N, then ¢ is
an isomorphism.

An inverse limit of (weak) I'-structures is a (weak) I'-structure. Conversely, each
weak I'-structure G is equal to <h_rn G/N, where N ranges over all open normal sub-
groups of G.

Let (X,G) be a profinite transformation group. Recall [HJ, Section 1] that a
partition of X is a finite collection Y = {V7,...,V,,} of disjoint nonempty open-closed
subsets of X such that X = V3 U---UV,. A partition Y’ of X is finer than Y if for
each V' € Y/ there is V € Y such that V/ C V. Call Y a G-partition if in addition for

each o € G and each i, 1 <i <mn, there exists j, 1 < j <mn, such that V,7 = V.

LEMMA 1.3: Every (weak) I'-structure G is an inverse limit of finite (weak) I'-structures
which are epimorphic images of G.

Proof: By the above remarks we may assume that the group G is finite. Let P be the
family of G-partitions Y of X(G) which



(4a) are finer than {d='(v)| ¥ € Hom(T',G)} (hence dy(U) = d(z) for U € Y and
x € U defines a continuous map dy: Y — Hom(T',G)); and
(4b) if G is a I'-structure, then U NU =) for allU € Y and 7 € G — {1}.

Fach Y € P defines a finite (weak) I'-structure Gy = (G,Y,dy). If Y’ is finer than Y,
then the map U’ — U for U € Y, U’ € Y’ and U’ C U gives a canonical epimorphism
Gy — Gy. Moreover, the map x — U, for U € Y and x € U defines an epimorphism
G — <h_m Gy . Since both X and <11_m Y are compact and Hausdorff it suffices to prove
that this map is injective. In other words, for distinct x1,x2 € X show that there exists
Y € P such that dy (x1) # dy (z2).

Indeed, let V' be an open-closed neighborhood of x1 such that xzo ¢ V. Let Y’ be
a G-partition of X finer than {V,X — V'} [HJ, Lemma 1.4]. If G is not a I'-structure
let Y = {Vnd1t), X -V)nd )|y € Hom(T,G)}. If G is a I-structure,
then each * € X has an open-closed neighborhood U, such that 7 ¢ U, for each
7 € G—{1}. Replace U, by d=*(d(z))NV NU, — Ureg—q1y Uz, if necessary, to assume
that U, C V Nd 1(d(x)) and UI NU, = O for each T € G — {1}. Since X is compact,
finitely many of these neighborhoods cover X. Then there exists a partition Yy of X
such that for each U € Yy and x € X either U C U, or UNU, = (. Finally use [HJ,
Lemma 1.4] to choose a G-partition Y of X, finer than Yy. Then Y € P. In each case

dy(:L‘) #* dy(x/). [ |

LEMMA 1.4: FEach weak I'-structure G with an injective forgetful map is an inverse limit
of finite weak I'-structures with injective forgetful maps which are epimorphic images
of G.

Proof: For each open normal subgroup N of G let ny: G — G/N be the canonical map.

The finite weak I'-structure
Gy = (G/N,{nn od(x)| x € X(G)},inclusion)

is obviously an epimorphic image of G. If z,y € X(G) and x # y, then d(z) # d(y).
Hence there exists N such that ny o d(z) # ny o d(y). It follows that G = lim Gn.
|



2. Basic properties of I'-structures.

A crucial ingredient in our construction is the existence of fibred products in the category
of I'-structures. Let a1: By — A and as: Bs — A be morphisms of weak I'-structures.
Consider the fibred products By x4 Bs and X(B1) X x(a) X(Bz). For i = 1,2 let
mi: By x4 By — B and i X(B1) X x(a) X(B2) — X (B;) be the projection maps. For
each (z1,22) € X(B1) xx(a) X(Bz), we have ai(d(z1)) = d(a1(z1)) = d(az(22)) =
as(d(z2)). Hence there exists a unique homomorphism cz(azl, x2): I' = By X4 Bs such

that the following diagram is commutative

Check that the map d: X (B1) x x(a) X (Ba) — Hom(I', By x 4 By) defined in this way
is continuous. Further let By x o B operate on X(B1) X x(a) X(B2) componentwise
and verify condition (1) of Section 1 for d to conclude that By xa By = (B x4
B, X(B1) X x(a) X(Bz2), d) is a weak T-structure. We call it the fibred product of
B, and B, over A. The coordinate projection m;: By xa Bos — B;, is a morphism,
i = 1,2. If both By and By are I'-structures, so is By xa Bo. If the forgetful maps of
both By and B, are injective so is the forgetful map of B1 x A Bs.

The proof of the following characterization of fibred products is standard (e.g.,
[HL, Lemma 1.1]). It is left to the reader.

LEMMA 2.1: Consider a commutative diagram of weak I'-structures.

B 2 B,
<1> T
B, 2 A



The following statements are equivalent:

(a) B is isomorphic to the fibred product By xa By (i.e., there is an isomorphism
(3: B — By xa By such that 80371 and 20371 are the coordinate projections);

(b) for each pair of morphisms 1;: C — B, i = 1,2, of weak I'-structures such that
a1 011 = Qg 0 Yy there is a unique morphism : C — B such that 3; o ¢ = 1;,
1 =1,2; and

(c) 1. for each o; € B;, i = 1,2, such that a;(01) = «aa(0o2) there exists a unique
o € B such that B;(c) = o4, i = 1,2; and 2. for each x; € X(B;), i = 1,2,
such that aq(x1) = as(x2) there exists a unique z € X (B), such that §;(x) = x;,
i=1,2.
We call a diagram (1) a cartesian square if it satisfies one of the equivalent

conditions of Lemma 2.1.

LEMMA 2.2: Ifin the cartesian square (1) A is a I'-structure and «y is a cover, then so
is 3.

Proof: Let x,2’ € X(B) and 31(z) = (1(2"). Then as(f2(x)) = a(f2(x")). Hence there
exists 0y € By such that Bo(x)?2 = By(z’). Therefore ag(F2(x))*2(72) = ay(fa(’)) =
as(P2(x)). Since A is a I'-structure as(o2) = 1. Conclude that there exists o € B such
that Ba(0) = o9 and (1(0) = 1. Thus [2(x?) = (a(z’) and p1(x7) = [1(2’). From

Lemma 2.1(c) % = «’. It follows that (3, is a cover. i

LEMMA 2.3: Let 31: B — B; be an epimorphism of I'-structures and let K be a
closed normal subgroup of B such that K N Ker(f1) = 1. Let f2: B — B/K and
ay1: By — By /B1(K) be the quotient maps. Denote the unique epimorphism such that
a1 001 =agofy by as: B/K — B1/61(K). Then the following diagram is a cartesian

square

B 2  B/Kk

(2) ml Jag

B % By/Bi(K)

Proof: We leave the proof of 1. of Lemma 2.1(c) to the reader and prove 2. of Lemma
2.1(c). To prove the existence let x1 € X(B1) and x5 € X(B)/K with ay(z1) = as(z2).
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There exists x € X(B) such that Ba2(z) = z2. Since ay(x1) = az(f2(z)) = a1(Bi(x)),
there exists o € K such that x; = (1(2)%(?) = 8, (x7). Finally x5 = B2(z) = B2(z7).

For the uniqueness consider x,z’ € X (B) that satisfy §;(z') = G;(z), i = 1,2.
There exists T € K, such that »' = x7. Hence 31 (x) = f1(z') = B1(2)? (7). Since B, is
a I'-structure, B1(7) = 1. Conclude from K NKer(5,) = 1 that 7 = 1. Hence ' = x.
|

Let (X,G) be a profinite transformation group. A subset Xy of X is a system
of representatives for the G-orbits of X, if for each x € X there exist xo € Xy and

o € G such that x = x§, and if x9,z1 € Xo, 0 € G and x§ = x; imply ¢ = x;.

LEMMA 2.4: Let G be a profinite group that acts regularly (Definition 1.1) (and con-
tinuously) on a Boolean space X. Then

(a) the quotient map m: X — X/G has a continuous section; and

(b) X has a closed system X of representatives for the G-orbits.
Proof: Note that assertions (a) and (b) are equivalent. Indeed, if \: X/G — X is a
continuous section of , then Xy = A\(X/G) satisfies (b). If (b) holds, then the restriction
of m to Xy is a homeomorphism onto X/G. Its inverse is a continuous section of .

We first prove (b) for G finite. Regularity implies that each x € X has an open-

closed neighborhood U, such that x° ¢ U, for each 0 € G, 0 # 1. Replace U, by
Uz — U, U7, if necessary, to assume that U, N U7 = ) for each o # 1. Since X is

compact, a finite collection of such sets, say Uy, ...,U,, covers X. Then
n 7j—1
Xo=Jw; —(J U v
j=1 i=10eq

is a closed system of representatives for the G-orbits of X. Indeed, for x € X let j be
the smallest positive integer for which there exists o € G such that x° € U;. Then
x? € X represents x. Also if xo,x1 € X and xz§ = z; for some o € G, then there
exists j, 1 < j < n, such that xg,x1 € U;. Hence o = 1. From the preceding paragraph
(a) is also true.

Now we prove (a) in the general case. Let L be the collection of all pairs (L, \),

where L is a closed normal subgroup of G and X is a continuous section of the quotient
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map 7r.c: X/L — X/G. Partially order L by defining (L', \') > (L, \) if L' < L and
wr LoN = A. By Zorn’s Lemma L has a maximal element (L, \). If L # 1, then L has a
proper open subgroup L’ which is normal in G. Since L/L' is finite wp, 1: X/L' — X/L
has a continuous section , say 6. Then (L',0 o \) € L and (L',0 o \) > (L,\), a
contradiction. Thus L =1 and (a) holds. i

COROLLARY 2.5: Let a: G — A be a cover of I'-structures. Then a: X(G) — X(A)
has a continuous section, and X (G) has a closed system of representatives for its G-
orbits.

Proof: We may assume that « is the quotient map X (G) — X (G)/Ker(a). Now apply
Lemma 2.4. |

LEMMA 2.6: Let X be a Boolean space, A a profinite group and dy: X — Hom(I", A)
a continuous map. Then there exists a I'-structure A = (A, X x A,d) such that X is a
closed system of representatives for the A-orbits of X(A) = X x A and Resxd = d.

Proof: Define the action of A on the Boolean space X x A by (z,a)* = (x,ad’). Then
the map d: X x A — Hom(T', A) defined by d(x,a) = do(x)® is continuous and A =
(A, X x A,d) is a I'-structure. Finally identify X with X x 1 to find that X is a closed

system of representatives for the A-orbits of X x A and Resxd = dj. |

The following lemma asserts that the I'-structure A of Lemma 2.6 is unique up

to an isomorphism.

LEMMA 2.7: Let A be a weak I'-structure, let B be a I'-structure, and let X a closed
system of representatives of the B-orbits of X (B). Also, let ag: B — A be a continuous
homomorphism and o: X — X (A) a continuous map such that d(o/(z)) = ag o d(x)
for each x € X. Then o uniquely extends to a map ai: X(B) — X(A) such that
a = (ag,a1): B — A is a morphism of weak I'-structures.

Moreover, « is an epimorphism if and only if «g is an epimorphism and o/ (X)
contains a representative of each A-orbit of X (A).

If A is a I'-structure, then « is a cover if and only if g is an epimorphism, o is

injective and o/y(X) is a system of representatives of the A-orbits of X (A).

12



Proof: The map (z,0) — x?,z € X and o € B, gives an isomorphism of transformation
groups (X(B),B) = (X x B, B), where B acts on X x B by multiplication from the
right on the second factor. Define the map a: X(B) — X(A) by ay(z%) = o (x)*(),
It extends o} and a: B — A is a morphism of weak T'-structures. The rest of the lemma

follows from Definitions 1.1 and 1.2. [ |

The following lemma shows that each finite weak I'-structure A has a unique

minimal cover A which is a finite I'-structure.

LEMMA 2.8: Let A = (A, X,d) be a finite weak I'-structure. Then there exists a finite
[-structure A = (A,)A( ,cZ} and a cover m: A — A such that for every (epi)morphism
o: B — A from a D-structure B there exists an (epi)morphism &: B — A such that
Tod& = Q.
Proof: Let X, be a system of representatives for the A-orbits of X. Since X is finite,
Lemma 2.6 gives a D-structure A = <A,)A(,CZ) such that X = Xo x A, Xy is a closed
system of representatives for the A-orbits of X and d(zo) = d(zo) for each =y € Xo.
The map id: A — A and the map Xo x A — X given by (xg,0) — z§, for zy € X, and
o € A define a cover m: A — A (Lemma 2.7). In particular d(n(xz)) = d(z) for each
S )A( .

Let now B be a I'-structure and a: B — A a morphism. By Corollary 2.5, X (B)
has a closed system Yy of representatives for its B-orbits. Choose a map p: o(Yy) — X
such that m(p(x)) = x for each x € a(Yy). Since a(Yy) is finite, p is continuous.
Denote the restriction of a: X(B) — X(A) to Yy by o} and let &, = p o «). Then

d(&)(yo)) = aod(yo) for each yg € Yy. By Lemma 2.7, o/j: Yo — X and a: B — A

extend to a morphism &: B — A such that wo & = . |
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3. The I'-structure I, ,,.

For integers 0 < e < m take e copies I'y,...,I'c of I'. Let
(1) I‘e,mzfl*---*f‘e*ﬁm_e

be the free product (in the category of profinite groups) of I'y,...,T'. and the free
profinite group ﬁm_e of rank m —e. We view I'y, ..., T, and ﬁm_e as closed subgroups
of T'c . Each (e + 1)-tuple (71,...,%e,Yet1) of homomorphisms of I'y,..., T, F\mfe,
respectively, into a profinite group G uniquely extends to a homomorphism v: I'c ,,, — G.
The results about projectivity obtained in Sections 4 and 5 depend on the following

assumptions on I' and T ,,.

ASSuMPTION 3.1: The profinite group I satisfies the following conditions:

(a) T is finitely generated and nontrivial.

(b) The center of T is trivial.

(c) Suppose that closed subgroups H, H' of I, ,,, are isomorphic to I'. Then
(cl) H is conjugate to one of the groups I'y,...,[;
(c2) ifo € I'c , satisfies H” = H, then o0 € H; and
(¢3) if H' # H, then H' N H = 1.

(d) T has a finite quotient I with the following property: if a closed subgroup H of
Ce.m is a quotient of I' and has T as a quotient, then H = T' (hence, by (c), H is
conjugate to one of the subgroups I'y, ..., T).

DEFINITION 3.2: We call a quotient H of I' large if T is a quotient of H. Assumption

3.1(d) says that any closed subgroup of I, ,,, which is a large quotient of I" is isomorphic

to I'.
LEMMA 3.3: The subgroups I'1,...,I'c of I'c ,,, are mutually nonconjugate. The cen-
tralizer of I'; in I ,, is trivial, i =1, ... e.

Proof: The identity maps I'; — I';, @ = 1,...,e and the trivial map ﬁm_e — 1 give a
homomorphism ¢ of T, ,, onto the direct product I'y x- - - xI'.. SinceI # 1 (Assumption
3.1(a)), I'y, ..., I'c are mutually nonconjugate as subgroups of I'y x - -- x I'.. Hence they
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are mutually nonconjugate as subgroups of I'c ,,,. The assertion about the centralizer

follows from 3.1(b) and 3.1(c2). i

REMARK 3.4: Assumption 3.1(c) does not hold for arbitrary I'. For example, let I' =
Zp, e =m = 2. Then I'y 5 is the free product of subgroups (a) and (b), each isomorphic
to Z,. Consider the map a: I'so — Z, X Z, defined by a — (1,0) and b — (0,1).
Then o(ab) = (1,1) generates a group isomorphic to Z, but conjugate to none of the
components of Z, x Z,. Hence, the subgroup (ab) of I'; » contains a subgroup which is
isomorhic to Z, but conjugate to neither (a) nor (b). Thus Assumption 3.1(cl) is not
fulfilled. Herfort and Ribes [Thm. B’ of HR] prove Assumptions 3.1(c2) and 3.1(c3)
for arbitrary I' by group theoretic methods. We however verify Assumption 3.1 for
I' = G(Qp), the only case we need, by field theoretic methods (Proposition 12.10).
|

LEMMA 3.5: Let 0 < e < m be integers. In the above notation choose for each i,
1 < i < m, an isomorphism ¢;: I' = T';. Let X = {¢7|i=1,...,e; 0 € I'e,,} and let
d: X — Hom(I',T'c ,,,) be the inclusion map. Then

(a) Tepm = (Lem, X, d) is a I'-structure (Definition 1.1);

(b) the elements of X are embeddings of I" into I'; ,,;

(c)
{D()|ze X} ={T7|i=1,...,e; 0 €len}

={H <T.,,| H is a large quotient of I'};
and
(d) for x,y € X, D(z) = D(y) if and only if there exists o € D(x) such that y = x7;
if D(x) # D(y) then D(x) N D(y) = 1.
Proof: To prove (a) it suffices to check the regularity of the action of T, ,,, on X . Indeed,
if ¢y =1; for somei,1 <1 <nando €I, then o belongs to the centralizer of I'; in
Ic . Therefore Assumptions 3.1(c2) and 3.1(b) imply that o = 1. Assertion (c) follows

from Assumption 3.1(d). Finally assertion (d) is a combination of (c), Assumption

3.1(c2) and Assumption 3.1(d). i
COROLLARY 3.6: Let B be a finite weak I'-structure. Then, for suitable 0 < e < m,
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there exists a cover 3:T'¢ ,,, — B.

Proof: Let x1,. ..,z represent the B-orbits of X (B) and let m = e + rank(B). Define
an epimorphism (3: T, — B such that its restriction to Ty is d(x;) o1, ', i=1,... e
(in the notation of Lemma 3.5) and its restriction to e maps this group onto B. Now
define a surjective map (: X — X (B) by B(¢7) = xf(a), foroc €le,mandi=1,... €.
Then (3: T, ,,, — B is a cover (Definition 1.2). |

4. I'-projective groups.

Let G be a profinite group. A conjugacy domain of subgroups of G is a collection of
closed subgroups of G which is closed under conjugation by elements of G. In particular,
the collection of all subgroups of G which are isomorphic to I is a conjugacy domain. We
denote it by D(G). Since I is finitely generated each ip € Hom(I', G) with (I") € D(G)
is an embedding [R, p. 69]. We say that a conjugacy domain of subgroups of G is
closed if it is a closed subset of the Boolean space Subg(G) (Section 1).

DEFINITION 4.1: Let D be a closed conjugacy domain of subgroups of a profinite group
G which are isomorphic to I'. A D-embedding problem for G is a diagram
G
(1) |#
B % A
(abbreviated ” (¢, «)”), where « is an epimorphism of profinite groups, ¢ is a homo-
morphism and for each H € D there exists a homomorphism ~vg: H — B such that
aovg = Resgy. The problem is finite if B is a finite group. A solution to (1) is a
homomorphism v: G — B such that aovy = . We say that G is D-projective if every
finite D-embedding problem for G is solvable.
We say that G is I'-projective if D(G) is topologically closed in Subg(G) and
if G is D(G)-projective. In this case we refer to a D(G)-embedding problem also as a
I'-embedding problem.
The condition on G to be D-projective may be considered as a local-global prin-
ciple. Thus (1) is solvable if for each H € D the local problem associated to H is

solvable.
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REMARK 4.2: Note that if X is a subset of Hom(I', G) such that {¢(T")| ¢ € X} = D,
then each 1) € X is an embedding. Thus (1) is a D-embedding problem if and only if
for each ¥ € X there exists p € Hom(I", B) such that ao p = @ o). |

EXAMPLE 4.3: For each e and m, 1 < e < m, I'c ,,, is a I'-projective group. Indeed
let (1) with G = TI'.,, be a finite embedding problem for I'c,,. Then for each i,
1 < ¢ < e, there exists a homomorphism v;: I'; — B such that « ov; = Resp,p. Also,
as a free profinite group E_. is projective. Therefore there exists a homomorphism
Vet1: ﬁm_e — B such that a0,y is the restriction of ¢ to ﬁm_e. Combine 1, ..., Yet1

to a solution ~ of (1). i

LEMMA 4.4: In the notation of Definition 4.1, if G is D-projective, then every D-
embedding problem (1) in which A is finite and rank(B) < Rq [J3, Sec.1] has a solution.
Proof: There exists a descending sequence Ker(a) = Ny > Ny > Ny > --- of open
normal subgroups of B with a trivial intersection. Identify A with B/Ny and let g = ¢
and a9 = o. For each i and j, j >1i >0, let a;: B — B/N; and oj;: B/N; — B/N; be
the quotient maps.
Claim: Let i > 0 and let p;: G — B/N; be a homomorphism such that (y;,«;) is
a D-embedding problem for G. Then there exists p;+1 € Hom(G, B/N;11) such that
Qi1 © @ir1 = @; and (i+1,iy1) Is a D-embedding problem for G.

Use the claim to inductively construct ¢;+1 € Hom(G, B/N;11) such that a4 ;0
©Yit+1 = p;. The maps p; define v € Hom(G, B) such that aoy = .

Without loss prove the claim for i@ = 0. For each j the pair (¢,aj0) is a D-
embedding problem for G. For each # € Hom(G, B/N;) let foHom(I',G) = {Boy|¢ €
Hom(I',G)}. It is a subset of the finite set Hom(I', B/N;). Thus, since G is D-projective,

the finite collection of sets

Z; ={foHom(I',G)| B € Hom(G, B/Nj), ajoof =}
is nonempty. The map [ o Hom(I',G) — «jy1; o f o Hom(I',G) maps Z;41 into Z;.
It follows that (h_m Z; # 0, ie., there exist homomorphisms (3;: G — B/N; such that
ajp o Bj = ¢ and
(2) Oj+1,5 Oﬁj—kl OHOHI(F, G) :Bj OHOHI(F,G), J=0,1,2,....
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In particular ajo o 31 = ¢. Apply Remark 4.2 to show that (1, 1) is a D-embedding
problem for G. Indeed, let ¢y € Hom(I', G) and use (2) to inductively construct ; €
Hom(I', G) such that 41,508 +10041 = B0, 7 =1,2,3,.... Themaps 3j01;: I' —
B/N; define p € Hom(T', B) such that ay o p = (31 o4p1. This concludes the proof of the

claim for i = 0. |

LEMMA 4.5: In the notation of Definition 4.1 suppose that G is a D-projective group.
Then

(a) if Hi < G is a large quotient of I' (Definition 3.2), then Hy € D; therefore

D =D(G), G is I'-projective and D(G) is topologically closed in Subg(G));

(b) if HHH' € D and H # H', then HN H' = 1; and

(c) if Hy € D and o € G satisfies HY = H, then 0 € H,.
Proof: Let Hi < G be a large quotient of I, let H H',Hy € D and let o € G such
that H # H' and H§ = H,. Since D is closed in Subg(G) = lim Subg(G/N), where N
ranges over all open normal subgroups of G, there is N such that, with A = G /N, the
quotient map ¢: G — A satisfies

(3a) ¢(Hy),p(H),o(H') and ¢p(Hs) are large quotients of T';
(3b) ¢(H1) ¢ (D) if Hy ¢ D;

(3c) ¢(H) # ¢(H'); and
(3d) @(o) ¢ p(Hz) if o ¢ Hs.

Let aq, ..., a. be alisting of all « € Hom(I", A) such that «(I") € ¢(D). WithT'; =--- =
I'c =T the maps a;: I'; — A together with a suitable epimorphism o4 1: ﬁm_e — A
(for some m > e) define an epimorphism o of I'g ,, =T’y % --- T’ % ﬁm_e onto A such
that (p,«) is a D-embedding problem. By Lemma 4.4 there exists a homomorphism
v: G — T'¢ ,, such that a oy = .

From (3a) and Assumption 3.1(d), v(Hy),v(H),v(H') and v(H3) are isomorphic
to I'. By Assumption 3.1(cl), each of the groups vy(H1),v(H),v(H'), and v(H3) is
conjugate to some I';, i = 1,... e. Therefore p(H1) € ¢(D). Conclude from (3b) that
Hy, € D. This proves (a).
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From (3c), v(H) # ~v(H'). By Assumption 3.1(c3), v(H) N~(H') = 1. Now note
that since y(H) =2 H = T, the restriction of v to H is injective. Therefore H N H' = 1.

Finally observe for (c) that since y(H3)7(?) = ~(Hs), Assumption 3.1(c2) implies
that v(o) € v(Hz). Hence (o) € p(Hz). Conclude from (3d) that o € Hs. i

REMARK 4.6: The group Aut(I") of all automorphisms of I" is profinite [Sm, Thm. 1.3].
It acts on Hom(I', G) by the following rule:

P = ow, ¢ € Hom(I', G), and w € Aut(T).

Note that the actions of Aut(I') and G on Hom(I',G) commute. Also, let 1,9’ €
Hom(T', G).

(a) If (T") = /(') and ® is an embedding, then there exists w € Aut(I') such that
W =y

(b) For g € T let [g] be the inner automorphism of I' determined by g. Then !9 =
%9, Thus there exists ¢ € ' such that ¢/ = 9 if and only if there exists
o € ¢(T) such that ¢ = °.

LEMMA 4.7: Suppose that a profinite group G is I'-projective. Then there exists a closed
subset X of Hom(I', G), closed under the action of G, such that {)(I')|¢ € X} = D(G)
and for each ¢, € X,

(4) ¥(I') =o' (I") if and only if there exists o € ¢ (I') such that i)' = 7.

Proof: The set Y = {¢ € Hom(I',G)| ¥(I') € D(G)} is closed under the actions of
G and Aut(I') on Hom(I',G). By Lemma 4.5(a) the collection D(G) is topologically
closed in Subg(G). Since Im: Hom(T', G) — Subg(G) is continuous (beginning of Section
1), Y is topologically closed in Hom(I',G). The quotient space Y /G is Boolean [HJ,
Section 1]. Since the actions of G and Aut(I') on Y commute, Aut(I") acts on Y/G. By
Remark 4.6(b), the group of inner automorphisms Inn(I") of T, acts trivially on Y/G.
Hence Aut(I") /Inn(I") acts on Y/G. We claim that this action is regular (Definition 1.1).
Indeed, if for ¢ € Y, w € Aut(I') and 0 € G we have ¢ = 97, then (I') = ¢(I")°.
Hence o € ¢(I') (Lemma 4.5(c)). Thus o = (g), with g € I'. By Remark 4.6(b),

Y =991, But since v is an embedding, w = [g], which proves our claim.
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By Lemma 2.4(b) there exists a closed system of representatives X for the
Aut(T")/Inn(T)-orbits of Y/G. Let X be the preimage of X under the map Y — Y/G.
Then {(I)| ¢ € X} = D(G). If v,¢' € X and ¢¥(I') = ¢'(I'), then there exists
w € Aut(T") such that ¢/ = ¢* (Remark 4.6(a)). By the definition of X there ex-
ists 0 € G such that ¢’ = ¢?. Lemma 4.5(c) implies that o € (I'). The converse

implication of (4) is trivial. i

LEMMA 4.8: Suppose that GG is a I'-projective profinite group. Let X be as in Lemma
4.7 and let G = (G, X, inclusion) be the corresponding weak T'-structure. Consider an
epimorphism a: B — A of finite weak I'-structures, a morphism p: G — A and an

open normal subgroup Ny of G. Then there exists a commutative diagram

G

@

&

@
v}

T

l
J

:‘\
<_

~

= A

v}

in which & is an epimorphism of weak I'-structures with injective forgetful maps (inclu-
sion, for simplicity), such that Ker(¢) < Noy;
(a) foreach A € X(]§), Ker(&)NA(T") =1 (i.e., the restriction of & to A\(T') is injective);
(b) if p,p' € X(K) and there exists w € Aut(I") such that p’ = p“, then there exists
g € T such that mo p' = o pldl; and
(c) for each v € X the group ¢(¢(T")) is a large quotient of T' (Definition 3.2).
Proof: By Corollary 3.6 there exists an epimorphism (3: I, ,, — B for suitable e, m.
Since the forgetful map of L', ,,, is injective, 3 induces an epimorphism B of a finite weak
[-structure By with an injective forgetful map onto B (Lemma 1.4). Replace B by B,
and « by a o 3, if necessary, to assume that the forgetful map of B is injective.
Let N be an open normal subgroup of G which is contained in Ny N Ker(y) and
denote the quotient map G — G/N by ¢. Then A = Gy = (G/N,{¢ o | ¢ €

X}, inclusion) is a finite weak I'-structure. Lemma 1.4 implies that if N is sufficiently

small, then the map G/N — A defined by ¢ can be completed to a morphism 7: A—A
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such that o = Top. WithB =B xa A (Section 2), we obtain a commutative diagram
(5). Since the injective maps of both B and A are injective so is the injective map of
B (Section 2). Our aim now is to choose N sufficiently small such that (a), (b) and (c)
hold.

~

To achieve (a) let A be the intersection of all Ker(\) with A € X (B). Since I is
finitely generated, A is an open normal subgroup of I'. For each open normal subgroup
M of G let Z(M) = {yp € X|y~Y (M) < A}. Ifp € Z(M) and ' € X coincides with
Y modulo M, then v’ € Z(M). Thus Z(M) is open in X. For each ¢ € X there exists
M such that (T') N M < (A). Since 1 is an embedding, ¥ ~1(M) < A and therefore
Y € Z(M). Thus the collection of all Z(M)’s covers X. By compactness there exist
open normal subgroups Mj, ..., M,, of G such that X = Z(M;)U---UZ(M,,). Choose
N < Myn---NM,. Then Ker(p o) = p~1(N) < A < Ker(\) for every ¢ € X
and A\ € X(B). Now, for each A\ € X(B), & o A is an element of X(A). Thus there
exists ¢ € X such that & o A\ = ¢ o 1. Conclude that Ker(& o A) < Ker(n' o \), i.e.,
7' (AMT") N Ker(&)) = 1. Hence, by Lemma 2.1(c) 1. we get that Ker(&) N A(I") = 1.

To achieve (b) let Y7,...,Y, be the distinct Inn(T")-orbits of X(A). Then X; =
e 1Y) ={¢Y € X|poyp €Y;},i=1,...,n, are open-closed subsets of X. If 1; € X;
and v¢; € X, for i # j, then ¢; and v; are not in the same Inn(I")-orbit. From Remark

4.6(b) there exists no o € 1;(I") such that 1p; = 7. Hence by (4), ;(I") # ¢;(I') and
Aut(T")

i

therefore 1; and 1); are not in the same Aut(I')-orbit. That is, the closed subsets )
Aut(T)

7

and ¢fUt(F) of X are disjoint. Hence, if N is sufficiently small, ¢ o 1)
Aut(T)

j
N, then ¢ o ngUt(F) is disjoint from ¢ o ngAut(F). Use the compactness of X; x X, to
find an N such that ¢ o @DZAM(F) Ngo ¢?Ut(r) = () for all i # j and each v; € X; and
P € X;.

If p,p' € X(;&) and p' = p¥ for some w € Aut(I'), then there exists 1,9’ € X

is disjoint

from ¢ o) . Obviously, if ¢ and v; coincide with ; and 1);, respectively, modulo

such that p = ¢ ot and p' = $ o1)’. By the choice of N, ¢ and 1)’ lie in the same X;.
Hence mop = po1 and wo p' = p o) belong to the same Y;. Conclude that there
exists g € I' such that mo p' = o pl9l. This proves (b).

Finally, to achieve (c), note that for each v € X the group ¥ (I") is isomorphic to
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['. Therefore ¢(1(I')) is a large quotient of I" if N is sufficiently small. The same holds
for € X if ¢ o)) = ponp, ie., if Y’ lies near 1. Use the compactness of X to choose
N such that ¢(¢(I')) is a large quotient of I" for each ¢ € X. |

5. Projective I'-structures.

We define projective I'-structure and prove that the underlying group of each of them
is I'-projective. Conversely we show that the I'-structure associated in Lemma 4.8 with

a I'-projective group is projective.
DEFINITION 5.1: Let G be a I'-structure. A diagram

G

(1) |#
B % A

(abbreviated by ”(yp,«)”) where ¢ is a morphism and « is an epimorphism of weak I'-
structures is called a weak embedding problem for G. If A and B are I'-structures
and « is a cover, we call (p, ) an embedding problem for G. The problem is finite
if B is finite. A solution to (¢, «) is a morphism v: G — B such that a0~y = ¢. The

structure G is projective if every finite weak embedding problem for G has a solution.

LEMMA 5.2: If G is a projective I'-structure, then every embedding problem for G has
a solution.

Proof: Consider embedding problem (1) for G. Let K = Ker(a) and assume without
loss that A = B/K and « is the quotient map (Section 1). Divide the rest of the proof

into two parts.

PART A: K is finite.  Then there exists an open normal subgroup Ny of B such that
NoNK = 1. By Lemma 1.3 there exists an epimorphism (3 of B onto a finite I'-structure
By such that Ker(8) < Ny. Now use Lemma 2.3 to construct a cartesian diagram of

epimorphisms of I'-structures
B % A

Tt

By =% Ay



in which «q is a cover. By assumption there exists a morphism vy: G — Bg such that

ag oy = a1 0. Thus, Lemma 2.1(b) gives a morphism : G — B such that aovy = .

PART B: The general case.  Let A be the family of pairs (L, \), where L is a closed
normal subgroup of B contained in K and \: G — B/L is a morphism such that

>
B/L——>B/K

commutes (o is the cover induced by L < K ). Partially order A by letting (L', \") >
(L, \) mean that L' < L and

(2) G

B/L' —>B/L

commutes. Then A is inductive and by Zorn’s Lemma it has a maximal element (L, \).
If L # 1, there is an open normal subgroup N in B such that L £ N; hence ' = NN L
is a proper open normal subgroup of L. Since L/L’ is finite Part A gives a morphism
N: G — B/L’ such that (2) commutes. Then (L', \') € A and (L',\N) > (L,\), a

contradiction. Conclude that L = 1, as required. |

LEMMA 5.3: Fach projective I'-structure G has the following properties.

(a) the forgetful map d: X(G) — Hom(I', G) is injective;

(b) for each x € X(G) the map d(z): I' — G is injective (therefore D(x) = T');

(c) if H < G is a large quotient of I' (Definition 3.2), then H = T" and there exists
x € X(G) such that D(x) = H (Definition 1.1);

(d) ifz,y € X(G) ,then D(z) = D(y) if and only if there exists o € D(x) such that
y = a7; if D(x) # D(y), then D(z) N D(y) = 1; and

(e) the set D(G) = {H < G| H = T'} is closed in Subg(G) and possesses a closed

system of representatives for the conjugacy classes.
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Proof: Let ¢ be an epimorphism of G onto a finite I'-structure A. By Corollary 3.6

there exists a cover a: I', ., — A, for some e and m, 0 < e < m. Since G is projective,

m

there exists a morphism v: G — [ such that aw oy = . Recall that G is the

e,m
inverse limit of finite I'-structures (Lemma 1.3). Since I'. ,,, has properties (a)-(e) above

(Lemma 3.5), a suitable choice of A will imply these properties for G.

Proof of (a): Suppose that x,2’ € X(G) and x # x'. Choose ¢ such that p(x) # p(x').

Then ~(x) # ~(x'). Hence d(vy(x)) # d(v(«')). It follows that v(d(x)) # ~(d(z')).
Therefore d(x) # d(x').

Proof of (b): The right hand side of v o d(x) = d(y(x)) is injective. Hence d(x) is

injective.

Proof of (¢): Choose A such that ¢(H) is a large quotient of I'. Then ~(H) is a large
quotient of T'. Tt follows that v(H) = T'. Since H is also a quotient of ', H = T" [R, p. 69)].
Now the map D: X(G) — Subg(G) is continuous (Section 1). Since X (QG) is compact,
{D(zx)|z € X(G)} is closed in Subg(G) and it is the inverse limit of {D(a)|a € X(A)},
where A ranges over all finite quotients of G. If H # D(x) for all x € X(G), then we
may choose A such that ¢(H) # D(a) for all a € X (A). Therefore v(H) # D(y) for all
y € X(Te ). Since yv(H) =T, this is impossible.

Proof of (d): Obviously, if y = x° with ¢ € D(z), then D(z) = D(y). Conversely if
D(z) = D(y), then D(y(x)) = D(y(y)). Hence vy(z) and v(y) lie in the same I, ,,-
orbit. Therefore p(x) and ¢(y) lie in the same A-orbit. Since this holds for each A and
since the G-orbit of = is closed, x and y lie in the same G-orbit. Finally suppose that
D(z) # D(y). Choose A such that D(¢(x)) # D(p(y)). Then D(y(z)) # D(v(y)).
Hence v(D(z)) N~v(D(y)) = 1. Since the restriction of v to D(x) is injective (by (b)),
D(z) N D(y) = 1.

Proof of (e): By (b) and (c), D(G) = {D(z)| = € X(G)}. Hence D(G) is closed
in Subg(G). Now let Xy be a closed system of representatives for the G-orbits of

X(G) (Corollary 2.5). Then (d) implies that {D(z)| z € Xy} is a closed system of

representatives for the conjugacy classes of D(G). |
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PROPOSITION 5.4: (a) If G is a projective I'-structure, then G is a I'-projective group.
(b) Conversely, let G be a I'-projective group. Then there exists a closed subset X of
Hom(T', G), closed under the action of G such that D(G) = {¢(I')| v € X} and
for all ¢,y € X, ¢(I') = ¢'(I") if and only if there exists o € (') such that

7 =1). For each such X, G = (G, X, inclusion) is a projective I'-structure.

Proof of (a): From Lemma 5.3, D(G) is topologically closed in Subg(G) and we may
assume that the forgetful map of G is an inclusion. Choose a closed system X of
representatives for the G-orbits of X(G) (Corollary 2.5). As in (1) of Definition 4.1
let (p, ) be a finite D(G)-embedding problem for G. Then Yo = {p o | € X}, as
a subset of Hom(I', A), is finite, and for each p € Yo we may choose p € Hom(T', B)
such that o p = p. Let Yy = {p| p € Yo}. Define regular actions of A and B on
Yo x A and Yy x B by (p,a)* = (p,aa’) and (p,b)?" = (p,bb'), respectively. Define
maps dy: Yo x A — Hom(T', A) and dp: Yy x B — Hom(T', B) by da(p,a) = p® and
dp(p,b) = p°, respectively. Then A = (A,Yox A,ds) and B = (B, Yy x B,dg) are finite
[-structures. Since (X (G),G) and (Xox G, G) are isomorphic as transformation groups,
the map 7 — (p o, (o)) for v € Xy and o € G together with the homomorphism
¢: G — A is a morphism ¢: G — A. Similarly the map (p,b) — (p, a(b)) gives together
with the homomorphism «: B — A an epimorphism a: B — A. Since G is projective,
there exists a morphism v: G — B such that coy = . The underlying homomorphism

~v: G — B solves the I'-embedding problem for G.

Proof of (b): The existence of X is the content of Lemma 4.7. So we only have to prove
that G is a projective I'-structure. Note first that the action of G on X is regular.
Indeed, suppose that 1 = 1 for some 1) € X and o € G. Since ¥(I") € D(G), Lemma
4.5(c) implies that o € ¢(T"). But then o belongs to the center of ¥)(I') 2 T". Conclude
from Assumption 3.1(b) that o = 1. Thus G is a I'-structure.

To prove that G is projective we solve each finite weak embedding problem (p, o)
as in Definition 5.1. Replace o: B — A by é&: B — A and ¢ by ¢ of (5) of Lemma 4.8

to assume that the forgetful maps of A and B are embeddings and
(3) for each A € X(B), « is injective on \(I).
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Apply Lemma 4.8 again to obtain a commutative diagram (5) of finite weak I'-structures

with injective forgetful maps such that

-~

(4) for p,p’ € X(A), if there exists w € Aut(I") such that p’ = p*, then there exists
g € T such that wo p' = 7o pl9; and
(5) ¢(y(I')) is a large quotient of " for each i) € X.

Choose for suitable e, m an epimorphism [3: L...— B (Corollary 3.6). Then (, & o B)
is a I'-embedding problem for G. Indeed if H € D(G), then there exists ) € X such
that (T') = H. Since & o 3: X(Te.m) — X(A) is surjective and p o € X(A) there
exists 6 € X(I'c ;) such that Go Bod = po1). Asp is injective, there is an isomorphism
0: H — I such that ¥ o6 = id. Thus &030600 = Resy¢. Now, since G is I'-projective
there exists 7' € Hom(G, ' ,,,) such that & o Bo~' = ¢ (Lemma 4.4). Let 4 = Bo~
and v = ©’ o 4. To show that v defines a solution to the embedding problem (¢, a) of
I'-structures it suffices now to prove for each v € X that o1 € X(B).

Indeed, by (5), (v o ¢)(T) is a large quotient of I'. Hence by Lemma 3.5(c) there
exists ' € X (¢ ) such that \'(I') = (7/0¢)(T"). Moreover X" and ~'o1) are embeddings.
Hence there exists w € Aut(I") such that v o) = N ow. Both & o Bory o) =@orp and
&oBo) belong to X(A) and &0 B0~ 0 = &oBoX ow. Thus (4) gives g € T such that
Todofoy oth =modofo(N)9. Rewrite this as aon’' oo o) = aon’ ofo(N)W9
Since ' o f o (X)W € X(B), (3) implies that o is injective on (7' o f o~ o ¢)(I) =
(7' 0 Bo (N)(T). Hence yotp =’ o for otp =a' o Fo (M) € X(B), as required.
|

DEFINITION 5.5: We call a morphism ¢: G — H of I'-structures rigid if for each
x € X(G) we have Ker(d(z)) = Ker(d(¢(x)). This condition is equivalent to Ker(¢) N
D(z) =1 and also to “p induces an isomorphism of D(z) onto D(p(x))”. It is satisfied
if D(y) =T for each y € X(H). |

LEMMA 5.6: Let ¢: G — H be a rigid morphism of I'-structures. Then each open
normal subgroup M of G contains an open normal subgroup K of G such that the

induced morphism ¢: G/K — H/p(K) is rigid.
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Proof: Let x € X(G) and y = ¢(x) € X(H). Denote the collection of all open normal
subgroups N of G contained in M by N. For each N € N let xxy € X(G)/N and

yn € X(H)/@(N) be the respective images of x and y. Note that d(x ) is the composed

map ra G/N and d(yn) is the composed map r'y H/p(N). Therefore

ﬂ Ker(d(yn)) = Ker(d(y)) = Ker(d(z)) < Ker(d(znr)).-
NeN

Since the latter group is open in I' there exists N € N such that

(6) Ker(d(yn)) < Ker(d(zar))-

As Hom(I',G/M) and Hom(I', H/p(N)) are finite, there exists an open neighborhood
U of z in X(G) such that for each ' € U and y' = ¢(a'), d(z'p) = d(xp) and
d(y' ) = d(yn). Thus (6) holds also for x' and y'. Use the compactness of X (G) to
assume that (6) holds for all x € X(G).

Let K= MnNy Y(o(N)). Then K e N, N C K C ¢ (p(N)) and p(K) = p(N).
Thus for each x € X(G) and y = p(z) we have yx = yn. By (6)

Ker(d(rx)) = d(z) ' (K) = d(2) " (M) Nd(x) " (¢~ (¢(N)))

= d(z)~' (M) Nd(y) ' (p(N)) = Ker(d(zar)) N Ker(d(yn)) = Ker(d(yx))-

This means that p: G/K — H/p(K) is rigid. |
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Part B. The G(Q,)-structure associated with Galois extension.

For the rest of this work we fix a prime p. In Section 11 we characterize the p-adic clo-
sures of Q as algebraic extensions of Q whose absolute Galois groups are large quotients
of G(Qp). Since G(Q)) is finitely generated we may speak about G(Q,,)-structures. To
each field K of characteristic 0 we associate its absolute G(Q))-structure G(K). The
elements of the space of sites of G(K) are essentially the p-adic closures of K. If L
is a Galois extension of K, then the relative G(Qy)-structure G(L/K) is the quotient
structure G(K)/G(L). Most of Part B (Sections 7, 8, 9 and 10) is dedicated to describe
the elements of the space of sites, X(L/K), of G(L/K) in terms of L /K. The orbit of
each site in X (L/K) is uniquely determined by the following data: a field Ly between
K and L (the decomposition field), a place my: Ly — Q, U {oo} and a homomorphism
po: Ly — lim Q) /(Qy)™. It satisfies the following conditions: the place o is trivial
on Q, it does not extend to a Q,-valued place of a proper extension of Lo in L, and
mo(u) # 0,00 implies my(u) = po(u). In Section 12 we define pseudo p-adically closed
fields and realize each I'. ,,, as the absolute Galois group of a pseudo p-adically closed
field, algebraic over Q. We combine this with the results of Section 11 to conclude that
I' = G(Q,) satisfies Assumption 3.1.

6. p-adically closed fields.

A valued field is a pair (K,v), where K is a field and v is a valuation of K. The
valuation v is called p-adic if the residue field is F), and v(p) is the smallest positive
element of the value group v(K*). A field K which admits a p-adic valuation is for-
mally p-adic; it must be of characteristic 0. As with formally real fields, the existence
of a p-adic valuation can be expressed in terms of the field. The p-adic substitution for

the square operator X? is the Kochen operator

1 XP-X

(1) /7<X) - ]_Q(Xp — X)2 -1

LEMMA 6.1: If (K,v) is a p-adically valued field, then ~(z) is defined for each x €
K and v(y(x)) > 0. Conversely, let K be a field of characteristic 0. If ap~™t #
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f(v(x1),...,7v(xy)) for each a € Z, a # 0 relatively prime to p, for each polynomial
f €Z[X1,...,X,]| and each x1,...,x, € K, then K is formally p-adic.
Proof: [PR, pp. 95 and 99]. |

A p-adically valued field (K,v) which has no proper p-adically valued algebraic
extension is p-adically closed. Zorn’s Lemma implies that each p-adically valued field
(K,v) has an algebraic extension (K,v) which is p-adically closed. This is a p-adic
closure of (K, v). Its isomorphism type over K is determined by the following theorem

of Macintyre [M].

PROPOSITION 6.2: Let (K,v) be a p-adically valued field. Two p-adic closures (L1, v1)
and (Lg,v2) of (K,v) are isomorphic over K if and only if for eachn € N, L} N K =
LiNK.

Proof: [PR, p. 57]. |

The p-adically closed fields are characterized among all p-adically valued fields
by the following result. Recall that a Z-group is an ordered abelian group A with a

smallest positive integer 1 such that (A : nA) =n for each n € N.

PROPOSITION 6.3: Let (K,v) be a p-adically valued field. Then (K,v) is p-adically
closed if and only if (K, v) is Henselian and v(K*) is a Z-group. In particular, if (K,v)
is p-adically closed, then v is the unique p-adic valuation of K.

Proof: [PR, pp. 34 and 37]. |

Let (K, v) be a p-adically closed field. Using the uniqueness of v we also refer to

K as p-adically closed.

PROPOSITION 6.4: Let (K,v) be a p-adically closed field that extends a p-adically
valued field (Kg,vo).
(a) If Ky is algebraically closed in K, then (K, vo) is p-adically closed.
(b) If (Ko, vg) is p-adically closed, then K is an elementary extension of Kj.
(c) Let V be an absolutely irreducible variety defined over K. A necessary and suf-
ficient condition for v to extend to the function field of V is that Vi (K) # ()
(Vsim (K) is the set of K-rational simple points of V).
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Proof: [PR, pp. 38, 86 and 145]. |

The field Q admits a unique p-adic valuation v,. The p-adic closure of Q coincides
with its Henselization with respect to v,. Hence it is unique up to isomorphism. We
denote it by Qy . and consider Qp a1 as the algebraic part of the field Q, of p-adic

numbers.

PROPOSITION 6.5: G(Q,) is finitely generated and has a trivial center.

Proof: Jannsen and Wingberg [JW] and [W] give for p # 2 a presentation of G(Q,)
by 4 generators and relations. For p = 2, Diekert [Di] presents an open subgroup of
G(Q2) of index 2 by 5 generators and relations. Thus G(Q3) is generated by at most 6
elements.

That G(Qy) has trivial center follows from the basic results of local class field

theory (e.g., [I, p. 7]). |

For each field K of characteristic 0 let K, = QNK.

COROLLARY 6.6: Let K be a p-adically closed field. Then K,z = Qp.alg, QK = K and
G(K) = G(Qy).

Proof: By Proposition 6.4, K, is p-adically closed. Since its unique p-adic valuation
extends vy, Kag = Qp ale. Without loss identify Kag with Qp .1, By Proposition 6.5,
Q) has for each n € N only finitely many extensions of degree < n (see also [L2, p. 64]).
Since Q, and K are elementary extension of Q, ais (Proposition 6.4(b)), Qp a1z and K
have for each n only finitely many extensions of degree < n. Moreover, each extension

of K of degree < n is the compositum of K with an extension of Q, ., of degree < n.

Thus QK = K. It follows that G(K) 2 G(Qp.1s) = G(Qy). |

It is convenient to shift our point of view from p-adic valuations to the corre-
sponding coarse valuations [PR, p. 25] or rather to their associated Q,-valued places.
We do not distinguish between equivalent p-adic valuations (i.e., p-adic valuations with

the same valuation ring).

LEMMA 6.7: Let K be a field. There is a canonical bijection v — m, between p-adic

valuations v of K and places m: K — Q,U{oco}. A p-adically valued field (L, w) extends

30



(K,v) if and only if (L,m,) extends (K, m,).

Proof: Let v be a p-adic valuation of K, with a valuation ring O,,. Each element a € O,
can be uniquely written as a = ag + bip, with 0 < a9 < p and by € O,. Thus, a
defines by induction a sequence ag, a1, as, ... of integers between 0 and p — 1 such that
a = ap+a1p+- - -+a,p™ mod p"Tt0,, m € N. This gives a homomorphism 7,: O, — Z,,
mp(a) = >0 g anp™, with Ker(m,) = (., p"Oy. The local ring O, of O, at Ker(m,),
as an overring of a valuation ring, is a valuation ring. Hence 7, uniquely extends to
a place m,: K — Q, U {oo} with O, as the valuation ring. Obviously the restriction
of m, to Q and hence to K,z is an embedding into Q,. Observe that if v and v’ are
equivalent p-adic valuations, then mw, = .

Note that O, = {x € Oy| my(x) € Z,}. Indeed, if x belongs to the right hand
side but x ¢ O,, then ' € pO,. Hence 1 = m,(x~')m,(z) € pZ,, a contradiction. It
follows that the map v — m, is injective. We show that it is also surjective.

Let m: K — Q, U {oc} be a place with a valuation ring O. Then O = {z €
O| 7(x) € Z,} is a valuation ring with pO as the maximal ideal. Since 7 is the identity
map on Q, we have Ker(Resom) = (., p"O. Denote the corresponding valuation by
v. Then O/pO = Z,/pZ, = F, and v(p) is the smallest positive integer of v(K™).
Thus v is a p-adic valuation. Moreover, each x € O has for each n € N a unique
representation © = xg + x1p + -+ + ,p" mod p" 1O, with 0 < 2; < p, i =0,...,n.
Hence 7(z) = m,(x) mod p"*'Z,, n =1,2,3,.... Conclude that m coincides with T,
on O and therefore on the valuation ring O,. It follows that O = O; and ™ = ,,.

To prove the second assertion of the lemma check that K N O,, = O, if and only
if KN Oy = 0. i

The following lemma gives information about the multiplicative group Q, and its

profinite completion ® = lim Q) /(Q))™.

LEMMA 6.8: (a) The canonical map Q) — ® is injective; we consider Q) as a subgroup

of ®.
(b) For eachn € N

(b1) Q*(Q)" =Q;;
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(b2) Q) ., NP" = ( and Qp g ®" = ©; and

(b3) ¢ € ® and (" =1 implies ( € Q*

D, alg)

p,alg’

Proof of (a): The multiplicative group Q) of Q, has a canonical decomposition Q5 =
(p) x Z, . The discrete group (p) generated by p is isomorphic to Z. The group of units
Ly of Qp, is compact and isomorphic to Z/(p — 1)Z X Zy, if p # 2 and to Z/27 x L if
p = 2. It follows that [, cy(Q, )" = 1. Hence the canonical map x +— (z(Q))")nen of

Q, into ® is injective. We identify x with its image in ®.

Proof of (b1): Let n € N. From the proof of (a) it suffices to show that each x € Z)
belongs to Q*(Q)X)". Indeed x = a + p**»"™ b with a € Z, a # 0 and b € Z,. By

the Hensel-Rychlik-Newton Lemma ¢ = 1+ p?"»("+1q=1h € (QX)". Hence x = ac €
QX (Q; )n.

Proof of (b2): The group ®" is the closure of (Q))" in ®. From [L2, p. 47] (Q;)" is a

closed subgroup of Q,; of finite index. Therefore (Q;)” is open in Q. It follows that

Q, N®@™ = (Q,)". Obviously Qp alg (Q;f)” = ( o alg) Hence Qp ag O™ = ( ;’alg)”.
Also, Q) ®" = ®. Therefore Qx = & follows from (bl).

D, alg

Proof of (b3): From (a), ® = 7 x Z, . Since 7 is torsion free, each ¢ € ® with (" =1

belongs to Z,; , hence to |

D, alg
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7. F-closed fields.

In Section 6 we have associated a place m: K — Q, U {oo} to each p-adically closed
field (K,v). The results we achieve depend only on char(Q,) = 0. Also, in Section
9 we consider places into the algebraic closure of Q,. Thus, to gain more clarity and
generality, we replace Q, by some fixed field F' of characteristic 0 and consider pairs
(K, ) where m: K — F U {oo} is a place. Call each such pair an F-valued placed
field. Let O, = {x € K| n(z) € F} be the valuation ring of . Denote the group
{u € K|n(u) € F*} of m-units of K by U, and denote the residue field of m by 7(K).
Let (K', ') be an F-valued placed field that extends (K, ). Take valuations v and v' of
K and K', corresponding to w and 7' respectively such that v' extends v. We say that
(K',7') is an unramified extension of (K,7) if v(K*) = v(K'"). Lemmas 7.1-7.3

give information on the existence and uniqueness of extensions of F-valued placed fields.

LEMMA 7.1: Let (K, 7) be an F-valued placed field. Denote the valuation of K that
corresponds to m by v. Let o be an element of the divisible closure Q @ v(K*) of
v(K*) and let n be the smallest positive integer such that na € v(K*). Choose an
element a € K* such that v(a) = na, let = a'/® and L = K(x). Then m uniquely
extends to an F-valued place ' of L with v' the corresponding valuation such that
[L: K] = (o(L7) : /(K%)= n.

Proof: Extend  to an F-valued place ' of L and let v' be the corresponding valuation

that extends v. Then v'(x) = « and

n < ((v(K*),a):v(K*)) < (' (L*):v(K*)) <[L: K| <n.

Hence
(1) (W' (L*) :v(K*)) =[L: K] = n.
Now let v'y,...,v", be all extensions of v to L, and let L'y,..., L', be their residue

fields. Then, for the residue field K’ of v we have [Ri, p. 228]

(2) > Wi (LX) oK) K') < [L: K].

=1
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Conclude from (1) and (2) that g = 1, v’ is the unique extension of v to L and the
residue field of v' is K'. Thus 7’ is F-valued. If ©” is another extension of w to L, then
7' is equivalent to w’. That is, there exists an automorphism o of K’ (which is the
residue field of both «’ and ©"") such that " = oon’. For each ' € K’ take x € K such

that m(x) = 2’. Then o(2') = o(n'(x)) = n"(x) = 2’. Conclude that n"" = 7’ i

LEMMA 7.2: Let m: K — F U{oo} be a place and let K' = w(K) be its residue field.
If K’ is algebraically closed in F', then m maps K,y isomorphically onto Fas. Now
suppose that L’ is an algebraic extension of K’ contained in F'. Then m extends to a
place p: L — F U {oc} such that L' = p(L) and (L, p) is an unramified extension of
(K, ).
Proof: Note that the restriction of m to K, is an embedding into F,g. If K'NF = K,
then QN F =QnNn(K) =nx(QNK). Thus 7 maps K, isomorphically onto Fg.
Next suppose that L' /K’ is algebraic and L' C F. Use Zorn’s lemma to reduce
the existence of p to the case where L' /K’ is finite, say of degree n. Choose a primitive
element 2’ for L' /K’ and let f' = irr(z’, K'). Take a monic polynomial f € O,[X] with
deg(f) = deg(f’) such that w(f) = f’. Let z be a root of f and let L = K(z). Extend

7 to a place p1: L — K'. Then 2'; = p1(2) is a root of f’. Hence
n=[K'(z1): K'|<[p(L): K'|<[L:K]<n.

It follows that [L : K| = n and f is irreducible. Thus m extends to a place ' of L such
that n'(z) = 2’. Since L' C n'(L) we have n = [L' : K'| < [7'(L) : K'] < [L : K] = n.
Thus L' = 7n'(L) and 7' is an F-valued place. Also, (2) implies that (L,7")/(K,n) is

unramified. [ |

LEMMA 7.3: Let m: K — F U {oo} be a place and let 7y = Resg,,, 7. Consider an
algebraic extension Lo of K, and an extension my: Lo — F. Then for L = LoK
there exists a unique place n': L — F U {oco} which extends both m and 7(,. Moreover,
(L,7")/(K,n) is an unramified extension. In particular, if (K,) has no unramified
extension to a proper algebraic extension of K, then m maps K, isomorphically onto

Fag.
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Proof: Let O be the valuation ring of w. Since char(F') = 0, 7, is an embedding of fields.
Without loss assume that Lo/ Kag is a finite extension with a primitive element z. Since
Ly is linearly disjoint from K over K, there exists a homomorphism 7': O[z] — F
which extends both m(, and w. The discriminant of z over K is a nonzero element of
K.g, hence a unit of O. Therefore, since O is integrally closed, O|[z] is the integral
closure of O in L [ZS, p. 264]. It follows that the local ring of O[z] with respect to
Ker(n') is a valuation ring [L3, p. 18]. Conclude that m uniquely extends to a place
7't L — F'U{oo} such that Resp, 7’ = .

To prove the second assertion of the lemma consider f = irr(z, Kag). Let n(f) =
f1 -+ fr be a factorization into irreducible factors over K' = w(K). Foreachi, 1 <i <,
take a root z'; of f; and extend 7 to a place p; of L such that p;(z) = z';. Then
deg(fi) < [pi(L) : K'|. Since the restriction of m to K,y is injective fi,..., f, are
distinct. Therefore pi(L), ..., p,(L) are mutually nonisomorphic over K’ and py, ..., p,
are nonequivalent places. Let v be a valuation of K that corresponds to v. Let w; be a

valuation of L that corresponds to p;, i =1,...,r. From (2)

L : K] =[Ly: Kag] = deg(f Zdeg fi)

< Z wi( LX) (KX )[pi(L) : K] < [L: K],
Hence py, ..., p, represent all equivalent classes of places of L that extend w. Also
wi(L*) = v(K™), that is, p; is unramified over K, i =1,...,r. In particular, ', which

is equivalent to one of the p;’s, is unramified over K.
To prove the last assertion note that if mo(K,e) is properly contained in Fq, then
7o extends to an embedding 7, of a proper algebraic extension Lo into F. Then use the

two first parts of the lemma. |

Call an F-valued placed field (K, m), F-closed if m does not extend to a place
7't K' — F U{oo} of a proper algebraic extension K’ of K. If in addition (K, ) is an
extension of an F-valued field (K, my) and K is algebraic over Ky, then (K, 7) is an
F-closure of (Ky,m). The existence of an F-closure of a given F-valued field (K, )

is a straightforward application of Zorn’s lemma.
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REMARK 7.4: From Lemma 6.7, a p-adically valued field (K,v) is p-adically closed if
and only if the corresponding Q,-placed field (K, m,) is Q,-closed. |

The following characterization of F-closed placed fields overlaps with [PR, Thm.
3.1].

LEMMA 7.5: Let (K, m) be an F-valued placed field and let v be the valuation of K
that corresponds to . The following three conditions are equivalent:
(3) (K,m) is F-closed;
(4a) every proper algebraic extension (K',7") of (K, ) to an F-valued placed field is
ramified (i.e., v(K*) is a proper subgroup of v(K'*)); and

(4b) v(K™*) is a divisible group;
and

(5a) the residue field Ky = n(K) is algebraically closed in F’;
(5b) (K,v) is Henselian; and

5¢) v(K™) is a divisible group.
( g

Proof that (3) implies (4): Condition (3) implies that (K, ) has no proper algebraic
extensions to F-valued placed fields. Thus (4a) is trivially fulfilled and (4b) follows from

Lemma 7.1.

Proof that (4) implies (5): Condition (5a) follows from (4a) by Lemma 7.2. Since in
the transfer from (K,v) to its Henselian closure neither the residue field nor the value

group are changed (4a) implies that (K, v) is Henselian.

Proof that (5) implies (3): Let (L,p) be an F-valued finite extension of (K,m) and
let w be the unique (by (5b)) extension of v to L. By (5a), m(K) = p(L). Since
L/K is algebraic w(L*) is contained in the divisible hull of v(K*). Hence, by (5¢c),
v(K*) =w(L*). As char(F) = 0 and K is Henselian, [L : K| = [p(L) : 7(K)][w(L*) :
v(K*)] =1 [A2, Prop. 15]. Conclude that (K, ) is F-closed. i

LEMMA 7.6: Let (K, ) be an F-closed placed field.
(a) The place m maps Kajs isomorphically onto Fyg.
(F*)™ = F*. ThenK;lg(KX)m = K*.

(b) Suppose that for a positive integer m, F;ﬁg
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Proof: Lemma 7.5(5a) and Lemma 7.2 imply (a). To prove (b) let x € K*. Denote the
valuation of K that corresponds to m by v. By Lemma 7.5(5¢) there exists y € K* such
that mv(y) = v(x). Then, for z = zy~™ we have v(z) = 0 and therefore m(z) € F*.
By assumption there exist b € F;fg and ¢ € F* such that m(z) = bc™. Choose u € K,jg
such that w(u) = b. Observe that ¢ solves the equation m(u)T™ = 7(z). Apply Hensel’s
lemma (Lemma 7.5(5b)) to the polynomial uT™ — z to conclude the existence of t € K*
(K*)m™. i

such that ut™ = z. Thus x = u(ty)™ € K,

LEMMA 7.7: Let m: K — F'U{oco} be a place, with v the corresponding valuation such
that the value group v(K*) is divisible. Let (K1,71) and (K2,m3) be F-closures of
(K, 7). Then there exists a unique K-isomorphism o: K1 — Ko such that m = w3 0 0.
Proof: For i = 1,2 let v; be the valuation of K; corresponding to ;. Since (K;,v;) is
Henselian (by (5b)), it contains a Henselization (K, v?) of (K,v). The residue field K’
of K with respect to v is the residue field ofKih with respect to vzh. Extend m; to a place
7; of K with residue field K' and let ¥; be the corresponding valuation. Since @(I?X) is
the divisible hull of v(K*) [Ri, p.256] it coincides with v(K ™), i.e., v; is unramified over
K. In addition, since char(K') = 0, the extension (K,7;)/(K,v) is defectless. Therefore
the inertia subgroup I(v;) = {x € G(K;)|m;ok = 7;} of v; /v is trivial [E, p.184] and the
map L — 7;(L) is a bijective correspondence between the set of algebraic extensions of
K! and the algebraic extensions of K' [E, p.162].

Suppose now that o, 7: K1 — Ky are K-isomorphisms such that mooo = m = mg0
7. Extend 0,7 too,T € G(K). Then there exists p € G(K7) such that Tooc0p = Ta0T
[L1, p. 247]. Therefore 6p - (7)™ belongs to I(v2). Thus op(7)~! = 1. Restrict this
equality to K5 to conclude that ¢ = 7. This proves the uniqueness of o.

To prove the existence of o note first that there exists a K -isomorphism o": K" —
K% such that v} = v} o o [Ri, p. 176]. Hence there exists an automorphism p of K’
such that p o7 = wh o 0. Apply both sides on the elements of O, to conclude that

p = 1. Extend o" further to ¢ € G(K) such that 71 = 700 [L1, p. 247]. By (5a)
%2(5.[{1) == 7T1(K1) == ]’?/ NFE = 7T2(K2) == %Q(KQ)

Since both 6K, and K, are algebraic extensions of K the first paragraph of the proof
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implies that c K1 = K5. Let o be the restriction of ¢ to K; and obtain m; = my 0 0.

8. Sites.

Let K be a p-adic closure of a formally p-adic field. Proposition 6.2 characterizes K
up to K-isomorphism by the sequence K N fn, n = 1,2,3,... . For each n € N,
K*NK" is the kernel of the canonical homomorphism K* — K~ /(K" )". Observe

that K, N(K*)" = (Kj,)". Since Q1. (Q)™ = Q, (Lemma 6.8(b1)) Lemma 7.6(b)
with F' = Q, implies that K, (K*)" = K*. Thus, by Lemma 7.6(a)

KR ) 2K/ (Kog)™ = Q0 /(QF )" = QX /(@)™

Therefore K induces a compatible sequence of homomorphims ,: K* — Q,y /(Qy)",

such that KN K & = Ker(¢y), n = 1,2,3,... . It defines a homomorphism ¢: K* —
lim Q/(Q;)".

As in Section 7 we replace Q, by a field F' of characteristic 0 and lim Q, /(Q))"
by a group ®. The properties (a)-(d) of Lemma 6.8 that Q, and Q; /(Q, )" have are

made here as assumptions on F' and ®.

AsSSuMPTION 8.1: (a) F'* is a subgroup of ®.
(b) For eachn € N

(b1) F (F*)" = F*;
(b2) F,, N®" = (F)},)" and F,}, ®" = &; and

(b3) ¢ € ® and (" =1 implies ¢ € F,), .
Note that Lemma 6.8(bl) is somewhat stronger for F' = Q, than Assumption
8.1(b1). We denote the set theoretic union F'U {oo} U ® by ©.

DEFINITION 8.2: Let K be a field of characteristic 0, m K — F U {oco} a place
and ¢: K* — ® a homomorphism. We say that the pair (m,p) is a O-site of K if
o(u) = 7(u) for every u € U, (see Notation).

Let 6 = (m,¢) and 0" = (7’,¢’) be O-sites of fields K and K’', respectively. We
say that (K',0") extends (K,0) if K C K', 7’ extends m and ¢' extends ¢. If o is an

isomorphism of a field Ky onto K, then § o 0 = (moo,po o) is a ©-site of Kj.
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REMARK 8.3: Most of this section and Sections 9 and 10 holds if we replace Assumption
8.1(a) by a weaker assumption saying that there exists a homomorphism 7: F* — &.
The connection between m and ¢ in a ©-site has to be modified to p(u) = n(w(u)) for
each u € U,.

In this version ordered fields may also be viewed as ©-sites. Here F = R, ® = {£1}
and n: R* — & is the sign function. Then the obvious modification of Assumption 8.1(b)
is true. If (K, <) is an ordered field, then the ring of “finite elements” O = {z € K|3r €
Q: |z| < r} is a valuation ring of K. The corresponding place 7 defined for = € O by
m(x) = sup{r € Q| r < z} maps K into RU {oco}. The homomorphism ¢: K* — & is
defined by ¢(z) = 1 if and only if z > 0. If w(u) € R*, then 0 < r < |u| < s for some
r,s € Q, hence r < |r(u)| < s and therefore p(u) = n(w(u)). Thus (7, ) is a O-site.
Conversely, if (7, ¢) is a ©-site, then “z > 0 if and only if p(x) = 1”7 defines an ordering
of K.

LEMMA 8.4: Let 6 = (m,¢) be a ©-site of K and v the valuation corresponding to .
Let o be an element of the divisible hull of v(K*) and let n be the smallest positive
integer such that na € v(K*). Choose a € K* such that v(a) = na, let x = a'/™ and
let L = K(x). Suppose that there exists w € ® such that w™ = p(a). Then 0 extends
to a unique O-site §' = (n’, ') of L such that ¢'(z) = w.

Proof: By Lemma 7.1 it suffices to prove only the existence and uniqueness of ¢’. Write
each y € L™ in the form y = Z;:ol b;x* with b; € K. Let v' be the valuation of L that
corresponds to 7. If 0 < i < j < n, then, since v'(z) = «a, v'(b;x") # v'(bjz?). Hence
there existsi € Z and b € K> such thatv'(y) = v'(bz?). In particular 7’ (yb~tax~%) € F*.
Define ¢'(y) = @(b)w'n’(yb~tax~"). If also j € Z and ¢ € K* are elements such that

v'(y) = v'(ca?), then n divides j — i and hence u = be~1x'=7 € U,. It follows that
plow ' (ye ™) = p(e)w'e’ 'm(u)r’ (yb~a )
= ('@ M p(u)n (yb~ e )
= p(c)w'p(be ) (yb e ™) = p(b)w'n (yb~ "),
Thus, ¢’ is well defined. Moreover, one easily checks that ¢’ is a homomorphism of L*

into ® and that it extends .
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If (7', ¢") is another ©-site which extends 0 such that ¢"(x) = w, and y is as
above, then apply ¢©" on the identity y = bx® - yb~ 'z =% to obtain

¢"(y) = pb)w'" (yb~ 'z ") = p(b)w'n (b~ z ") = ¢/ ().

This proves the uniqueness of ¢’. |

LEMMA 8.5: Let 0 = (m,¢) be a O-site of K and let L an algebraic extension of K.
Let ' be an F-place of L, unramified over K and which extends w. Then ¢ uniquely

extends to a homomorphism ¢’: L* — ® such that (7', ¢’) is a ©-site. Moreover
(1) o' (L") C o' (K7)-7'(L)".

Proof: Let v’ be a valuation of L that corresponds to n’. By assumption v'(L*) =
v'(K*). Hence, for each y € L™ there exists b € K* such that v'(y) = v'(b) and
therefore ' (yb~') € F*. Define ¢©'(y) = @(b)7'(yb~1). As in the proof of Lemma 8.4
this definition is independent of b, it is unique and gives the desired extension (7', ¢")

of § such that (1) holds. |

Let 0 = (m, ) be a ©-site of a field K. We say that (K,0) is ©-closed if § does
not extend to a ©-site of a proper algebraic extension of K. If in addition (K,#@) is
an extension of a ©-site (Ko, 0y) and K/Ky is algebraic, then (K,#) is a ©-closure of
(Ko, 60). Note that if (K, ) is F-closed, then (K,0) is ©-closed. The converse of this

is less obvious but equally true.

LEMMA 8.6: Let 6 = (m,¢) be a O-site of K such that (K, ) is ©-closed. Then (K, )
is F'-closed.
Proof: By Lemma 8.5, m has no unramified extension to an F'-place of a proper algebraic
extension of K. Hence, by Lemma 7.3, m maps K, isomorphically onto F,s. Let v be
the valuation of K corresponding to w. By Lemma 7.5 it suffices to show that v(K ™)
is divisible.

Let a be an element of the divisible hull of v(K *) and let n be the smallest positive
integer such that na = v(a) witha € K*. By Assumption 8.1(b2), there exists ug € I},

and w € ® such that uy = p(a)w™". Let ag be the element ofKaXlg such that w(ag) = ug.
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Then ¢(ag) = n(ag) = p(a)w™". Thus p(aay') = w™ and, since v(ag) = 0, n is the
smallest positive integer such that v(aag ') = no. By Lemma 8.4, 6 extends to a O-site
of L = K((aay')*/™). But then L = K and therefore a = v((aag*)*/™) € v(K*). Thus
v(K™) is divisible. |

PROPOSITION 8.7: Let § = (m,p) be a ©-site of a field K. Then (K,0) has a O-
closure (K,0). If (K',0") is another ©-closure of (K,), then there exists a unique
K -isomorphism o: K — K’ such that § =0 o 0.

Proof: The existence of (K, ) follows from Zorn’s lemma. To prove the existence and
uniqueness of o apply Zorn’s lemma again to construct a maximal extension (K1, 6;)
of (K,0) such that (K,f) extends (Ki,0;) and for which there exists a unique K-
embedding o: K1 — K' such that ' = foo on K;. If we show that (K7, 0;) is ©-closed,
then so will be (6(K7),01 o o) and therefore o(K,) = K'.

Without loss assume that o is the identity. Otherwise extend o to an automor-
phism of K, replace (K1,01) by (6(K1),6, o o) and (K,) by (6(K),8 o o). Further,
replace (K,0) by (Ki,60,) to assume that (K,0) has no proper extension (Ka,0s) for
which there exists a unique K-embedding o: Ko — K’ such that 8/ =6 o0 on Ky. We
have to show that K = K.

Let § = (7,9), 8 = (7,9) and §' = (7', ¢'). Denote the valuation of K (resp., K,
K') that corresponds to m (resp, 7, ©') by v (resp., v, v'). We divide the rest of the

proof into three parts.

PART A: K,z = K. and m maps K, isomorphically onto Fjg. By Lemma 8.6
(K,7) and (K',7') are F-closed. Therefore, by Lemmas 7.5(5a) and 7.2, 7 (resp., ')
maps Kayg (resp., K'a) isomorphically onto F,,. Thus there exists a unique K-
isomorphism og: Kag — K'ag such that @ = 7' 0 09 on K. Since K and K
are linearly disjoint over Ka , 09 uniquely extends to a K-isomorphism o: Fang —
K'yeK. By Lemma 7.3, 7 =7’ oo on fang. Moreover, the restriction of T to Fang
is an unramified extension of w. Hence, by Lemma 8.5, ¢ = ¢’ o o on Kang . Thus
0 =6 oo on Fang. Conclude that Fang = K, falg = K,z and m maps K,ig

isomorphically onto Fjg.
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PArRT B: w(K™) is divisible.  Let o be an element of the divisible hull of v(K™).
Let n be the smallest positive integer such that na € v(K*). As in the proof of
Lemma 8.6 (use Part A instead of Lemma 7.3) find a € K* and w € ® such that
ag(E )" =K".
Hence there exists b € F:lg such that ab € (fx)” Thus ¢(b) € ™. By Assumption

8.1(b2), p(b) € (F

alg

v(a) = na and ¢(a) = w™. By Assumption 8.1(bl) and Lemma 7.6 K

). Hence, by Part A, b € (F:Ig)”. Conclude that there exists
Yy € K™ such that y" = a. Apply ¢ to obtain ¢(y)" = p(a) = w". From Assumption
8.1(b3), p(y)w™t € FX

alg- Hence Part A gives an nth root of unity z € K, such that

—1 1

w(z) = o(y)w Thus x = yz~" satisfies 2™ = a and ¢(z) = w. If x; € K™ also

satisfies ©% = a and @(z1) = w, then (zz7")™ = 1. In particular zz7"' € K,

alg and

@(xxy) = 1. From Part A = = ;.

Similarly there exists a unique x' € K’ such that (z')" = a and ¢'(2') = w. By
Lemma 7.1, the polynomial X™ — a is irreducible over K. Hence there exists a unique
K-embedding o: K (x) — K' such that o(x) = 2’. By Lemma 7.1, 7 = 7’ o 0 on K(z).
Since ¢'(o(z)) = ¢'(2') = w = @(x), Lemma 8.4 implies that ¢ = ¢’ o o0 on K(z).
Finally observe that if o’: K(x) — K’ is a K-embedding such that § = ' o o', then
o' (o' (z)) = p(x) = w and o' (x)™ = o'(a) = a. Thus the uniqueness of x’ implies that

o'(z) = 2" and ¢’ = 0. Conclude that K(x) = K and therefore n = 1.

PArT C: Conclusion. By Part B and Lemma 7.7 there exists a unique K-embedding
0: K — K’ such that # = n’ oo. From Lemma 8.5, ¢’ oo. Conclude that K = K. That
is, (K, m) is F-closed. |

LEMMA 8.8: Let § = (m,¢) and ' = (7', ¢') be O-sites of a field K. Then
(a) m(x) =0 if and only if (1 4+ z) = ¢(1 —z) = 1; and

(b) ¢ = ¢ implies T = 7’.

Proof of (a): If m(x) =0, then p(1+ ) = (1 +z) = 1. If n(x) = oo, then w(z~1) =0,
hence p(1+z~1) = 1. Therefore p(1+x) = p(x) and p(1—z) = p(—x) = 7(—1)p(x) =
—p(x) # (1 4+ x). If m(x) = —1, then (1 —x) = w(l —x) = 2 # 1. Finally if
m(z) # —1,0,00, then w(1 + x) # 0,1, 00, hence p(1 4+ z) = (1 +x) # 1.
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Proof of (b): Apply (a) tox € K*:

m(z)=0 <= ¢(Qxtz)=p(lxz)=1 <= 7'(z)=0

m(r)=00 <<= 7w H=0 <= 7@ ')=0 = 7(r)=0c0.

It follows that Uy = Uy. For x € U, we have m(z) = ¢(x) = ¢'(x) = 7’(z). Conclude
that m = 7’. i

The following result is restricted to the case F' = Q, and ® = lim Qy /(@)™

PROPOSITION 8.9: Let (K, ) be a Qp-closed placed field.
(a) There exists a unique homomorphism ¢: K* — & which is the identity on Q*.
Moreover, (7, ) is a O-site.
(b) 7 is the only Q,-place of K.
(¢) If K/Ky is an algebraic extension, then Aut(K/Ky) = 1.

Proof of (a): Let v+ € K* and n € N. By Lemma 6.8(bl) there exists a, € QX
such that x € a,(K*)™. If b is another element of Q* such that z € b(K*)", then
a,b~t e Qﬂ(KaXlg)”. Hence a,b~! = w(a,b™1) € (Qy)". Therefore a, is unique modulo
(Q,)". This implies for m|n that a, € an(Q,)™. Thus there is a unique p(x) € @
such that ¢(x) € a,®" for each n € N. Obviously p: K* — ® is a homomorhism with
p(z) = x for each z € Q*.

If : K* — & is another homomorhism which is the identity on Q*, then
o(x)(z)™t = (p(z)a, V) (ah(z)~1) € ®" for each n € N. Therefore p(x) = (x).

1

If x € Uy, then, since also a,, € Uy, so is za,*. Hence 7(x)a,' = n(za, ') €

(Q,)". Conclude that m(z) = ¢(z) and that (m,¢) is a O-site.

Proof of (b): If " is a Qp-place of K, then, by (a), (n', ) is a ©-site of K. Conclude

from Lemma 8.8 that ' = .

Proof of (c): Let 0 = (m,¢) and 6y = Resk,0. Then (K,0) is a O-closure of (K, 0).
By (a) and (b) each o € Aut(K/K)) satisfies § = § o 0. Conclude from Proposition 8.7
that o = 1. |
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COROLLARY 8.10: For each Q,-place ™ of a field K there exists a homomorphism
p: K* — ® such that (m,p) is a O-site.

Proof: Let (K,7) be a Qp-closure of (K,7). By Proposition 8.9(a) K has a O-site
(7,®). Then (m, Res?/KgE) is a ©-site of K. |

REMARK: Note that Proposition 8.7 implies Macintyre’s result (Proposition 6.2). In-
deed in the notation of Proposition 6.2 let m; be the Q,-place that corresponds to v;.
Let ¢; be the unique homomorphism ¢;: L — ® such that (m;, ¢;) is a O-site, i = 1,2
(Proposition 8.9). Suppose that K N L} = KN LY forn=1,2,3,.... For each n € N
and each x € L there exists a € Q* such that ¢1(z) = @ mod ®" (Lemma 6.8). By
Lemma 6.8 there exists b € Q* such that za='b~! € ®. Then b € QN d"™ C Q- It
follows that ps(x) = a mod ®". Hence ¢1(z) = @2(x) mod ®". Since this is true for
each n we have ¢1(x) = p2(x). Conclude from Proposition 8.7 that L; X L. i

9. O-sites.

Each F-place 7 of a field K extends to an ﬁ—place of K. An analogue of this holds for

sites. For each algebraic extension E of F' define a group
bp=E* x®/{(a" " a)|ac F*}.

For z € EX and w € ® define the class of (z,w) modulo the subgroup {(a™t,a)|a € F*}
to be [z,w]. In particular [x,w] = [za™!,wa] for every a € F*. Both EX and ® can be
embedded in ®g by z — [z, 1] and w — [1,w], respectively. These embeddings coincide
on F*.

The case E = F deserves special attention. We write ® for (ID;:. Note that ® is

the union |J®r where E ranges over all finite extensions of F.

LEMMA 9.1: The group ® is divisible.
Proof: Let n be a positive integer. For x € F* and w € ® choose b € Faxlg and
wy € ® such that wb = w? (Assumption 8.1(b2)). Let y € F* satisfies x = by™. Then

[z, w] = [xb™ Y, wb] = [y, w1]™. |
LEMMA 9.2: F and ® satisfy Assumption 8.1.

44



Proof: Since FNQ = Q and (F*)™ = F* Assumption 8.1(b1) is trivial and (b2) follows
from Lemma 9.1. Thus we have only to prove Assumption 8.1(b3).

Let [z, w] € ® with [z,w]™ = 1. Then there exists t € F* such that 2™ =t~ and
w" =t. By Assumption 8.1(b1), there exist a € F}, and s € F* such that ats" = 1.
By Assumption 8.1(b2), a € F}, N ®" = (F;})". Let b € F}, such that b" = a. Then
(wsb)™ = 1 and by Assumption 8.1(b3) ¢ = wsb € F},. Conclude that (xs™ib~le)n =1
and [z,w] = [zs~ b te,wsbct] = [zs~ b, 1] € F*. Since [z,w]” = 1 we have

[z,w] = ﬁaﬁg.

|

We abbreviate E U {co} U ®g by ©p and write © for Oz A O-site of a field
L is a pair § = (m,¢), where 71 L — F U {oo} is a place and ¢: L* — ® is a
homomorphism such that p(u) = m(u) for each u € U,. For a subfield K of L, Resk =
(Resg (), Res g« () is a ©-site of K. Write (L) C © if m(L) C FU{oo} and ¢(L*) C
®. In this case Resk0 is a O-site of K. Lemma 9.2 implies that the results of Section
8 except Proposition 8.9 may be applied to O-sites.

PROPOSITION 9.3: Let 0y be a ©-site of a field K and let L be a Galois extension of
K. Then
(a) Oy extends to a O-site 0 of L;
(b) if another O-site 0’ of L extends 0, then there exists a unique o € G(L/K) such
that 6 = ¢ o o.
Proof: Consider 0y as a O-site. Use Lemma 9.2 and apply Proposition 8.7 on (K, 0g)
to obtain a ©-closure (K,0), with 6 = (7, ). In particular (K, 7) is F-closed (Lemma
8.6). Hence K = K. Then = Res.0 is an extension of 6y to L. This proves (a).
To prove (b) extend 0 as above to a ©-site §' of K. By Proposition 8.7 there

exists a unique 7 € G(K) such that § = 0’ o 7. Hence 6 = 0’ o RespT. i

Define an action of G(F) on ®:
glr,w] = [g(x), w], geG(F), z€ F* and we ®.

If E is an algebraic extension of F and [x,w] € ® is fixed under the action of G(E),

then for each g € G(E) there exists a € F* such that (g(z),w) = (x,w)(a"!,a). Hence
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a =1 and g(z) = x. Thus ®p is the fixed subgroup of ® under G(E). Since G(F) acts
on F, this defines an action of G(F) on ©. The fixed subset of © under G(E) is O .
For a O-site § = (m,¢) of a field L and g € G(F') we define g o0 to be (gom,go p).
Then g o 0 is also a O-site of L. Also, for x € L*, we write (z) for (7(z), p(x)).

DEFINITION 9.4: Let L/K be a Galois extension and 6 a ©-site of L such that 8(K) C
©. For each g € G(F) we have Resk(g o ) = Resk(0). Thus Proposition 9.3(b)
gives a unique element dg(g) € G(L/K) such that go 6 = 0 o dg(g). We call D(0) =
{dy(g)| g € G(F)} the decomposition group of 0. The fixed field in L of D(0) is the

decomposition field of 6.

LEMMA 9.5: Let L/K be a Galois extension and let 6 be a ©-site of L such that
9(K) C O.
(a) If L' /K’ is a Galois extension such that K C K' and L C L', and ¢ is a O-site
of L' that extends € such that 6'(K') C O, then dy(g) = resy(de/(g)) for each
g € G(F) and therefore D(0) = res; D(6’).
(b) The decomposition field Ly of @ (Definition 9.4) is the unique maximal field such
that K C Lo C L and §(Lo) C ©. If L = K, then (Lo, Resy,,0) is ©-closed.
(c) For each finite extension K' of K which is contained in L there exists a finite
extension F' of F' such that [F' : F| < [K' : K] and (K') C Op: .
(d) The map dy: G(F) — G(L/K) is a continuous homomorphism.
(e) For each 0 € G(L/K) and each g € G(F) we have dyo(g) = 0~ dg(g)o.

Proof of (a): Restrict gof' = 6" ody (g) to L to obtain gof = @oresy(dg(g)). Conclude
that resy,(dg/(g)) = dg(g).

Proof of (b): If x € L, then g(6(z)) = 0(dg(g)(x)) = 6(x), for all g € G(F'). Hence
f(z) € ©. Conversely, let M be a field between K and L such that §(M) C ©. For each
g € G(F) we have Resp;(6 o dg(g)) = Respr(g 0 0) = Resps(0). The existence part of
Proposition 9.3(b) for L/M gives T € G(L/M) such that §odg(g) = 0oT. The uniqueness
part of Proposition 9.3(b) implies that dg(g) = 7. It follows that G(L/Ly) < G(L/M)
and therefore M C L.

46



Proof of (c): Extend 6 to a ©-site, also denoted § = (m,p), of K. Let K be the
decomposition field of 6. By (b), (K, Res0) is ©-closed, and by Lemma 8.6, (K, Resz)
is F-closed. In particular Reszr is unramified in K'K (Lemma 7.5(5c)). Let F' =
m(K'K). Then [F' : F] < [K'K : K] < [K' : K]. By Lemma 8.5, ¢((K')*) C

— —X

O((K'K)*) C (K" )(F')* C ®pr. Therefore §(K') C Op: .

Proof of (d): The multiplicativity of dg is an immediate consequence of the definition
of dg(g). To prove its continuity let K' be a finite Galois extension of K contained in
L. By (c) there exists a finite extension F' of F' such that §(K') C ©p/. Then for each
g € G(F') we have fody(g) = go = 0 on K'. Apply the uniqueness part of Lemma 9.3
to the extension K'/K to conclude that Resk dg(g) = 1. Thus dg(G(F")) < G(L/K').

Conclude that dy is continuous.

Proof of (e): By definition 6 o o 0 dgos(g) = gofoo =0ody(g)oc =0occo0c tdy(g)o.

The uniqueness of dgo, implies dgoe = 0 1dg(g)o. |
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10. The space of sites of a Galois extension.

From now on we consider only the case F' = Q, and ® = lim Q. /(Q))". Thus © =
QpU{oo} U® and © = Q, U{oo} U D. The goal of this section is to associate a G(Q,)-
structure G(L/K) with each Galois extension L/K. The space of sites of G(L/K) is
the collection of all ©-site 0 of L such that 0(K) C ©. The forgetful map maps 6 onto
dg (Definition 9.4).

Endow @; with the p-adic (locally compact) topology. Observe that ®, as a
profinite group, is compact. Equip ® = (@; x ®)/{(a,a")|a € Q¥} with the quotient
topology of the product topology of

Then the canonical embeddings of Q; and ® into ® (Section 9) are continuous.

Since the action of G(Q,) on @; is continuous so is the action of G(Q,) on 3.

LEMMA 10.1: If a topological group G has an open subgroup H of finite index and H
is profinite, then so is G.

Proof: G is a union of finitely many disjoint cosets modulo H. FEach coset gH is a
Boolean space (Section 1). Therefore so is G. It follows that G is a profinite group [R,
p- 16]. i

LEMMA 10.2: Let E be a finite extension of Q,. Then the subgroup ®g of ® is profinite.
Proof: Let t be a prime element of E/, U the group of units of E and e the ramification
index of E over Q,. Then V = (t°) x U = (p) x U is an open subgroup of E*
of finite index which contains Q. By Lemma 10.1 it suffices to prove that W =
(V x ®)/{(a,a™")| a € QF} is profinite. Indeed, use Q¥ = {p"u|n € Z, u € Z}} and
= {pmulmeZ*, ve Zy } to define a continuous open homomorphism V x ® — ZxU
by (p"u,p™v) — (p"t™ wv), forn € Z, w € U, m € 7 and v € Zy . The kernel is
{(a,a™ ") a € QF}. Thus W = Z x U. Since U is compact [L2, p.46] so is W. i

For a Galois extension L/K we denote the set of all ©-sites 6 = (r, ) of L such
that O(K) C © by X(L/K). Since 7: L — Q,U{oco} and @: L* — & are maps, consider
X(L/K) as a subset of Y = (Q, U {oo})~ x ®L". Equip Q, U {co} with the topology
of one point compactification. Then Y and X (L/K) are topological spaces.

If I'/K’ is another Galois extension such that K C K’ and L C L', then the
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obvious restriction map Resy,;: X(L'/K') — X(L/K) is continuous. Moreover
1) X(L/K) 2 lim X(Lo/K),

where Lo/ K ranges over all finite Galois subextensions of L /K.
Let K C K' C Land 6 € X(L/K), and suppose that D(0) < G(L/K') (Definition
9.4). Then §(K') C © (Lemma 9.5(b)). Conclude that

(2) X(L/K') ={0 € X(L/K)| D(0) < G(L/K")}.

LEMMA 10.3: (a) For each Galois extension L/K, X(L/K) is a Boolean space.
(b) The collection of sets

(3) {(m, @) € X(L/K)[ ¢(y) € V},

where y ranges over L™ and V ranges through a basis of (5, is a subbasis for the

topology of X (L/K).

Proof of (a): By (1), it suffices to consider the case where L/K is finite. Denote the
compositum of all extensions of Q, of degree < [L : K| by E. It is a finite extension
of Q, (Proposition 6.5). By Lemma 9.5(c), §(L) C ©f for each § € X(L/K). Thus
X(L/K) is a subspace of Yg = (E U {oo})l x ®L*. Since generalized addition and
multiplication in E'U {oo} are continuous, X (L/K) is closed in Yg. As E is a locally
compact totally disconnected Hausdorff space, E U {00} is Boolean. By Lemma 10.2,
so is . Hence the product space Yg is Boolean and therefore so is X (L/K).

Proof of (b): The map (m, ) — ¢ of X(L/K) into ®L” is injective, by Lemma 8.8(b).
By (a) it is a homomorphism of X (L/K) onto its image in ®-" . |

If L/K is a finite extension, E is the compositum of all finite extensions of Q, of
degree at most [L : K|, then (L*) C O for each § € X(L/K) (Lemma 9.5(c)). Hence,
in order to get a subbasis of X (L/K), it suffices to allow V' in (3) to run through a basis
of .
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REMARK 10.4: The action of G(L/K) on X(L/K). Define the action of G(L/K) on
X(L/K) by 8 =6 o0. Each 0 € G(L/K) maps the set (3) onto the set

{(m,¢) € X(L/K)| ¢(c7'V) € V}.

Moreover 6 o 0 = 6 implies 0 = 1 (Proposition 9.3(b)). Hence this action is contin-
uous and regular and (X (L/K),G(L/K)) is a profinite transformation group (Lemma
10.3). If L'/K’ is another Galois extension such that K C K’ and L C L', then
Resp//r: (X(L'/K'),G(L'/K')) — (X(L/K),G(L/K)) is a morphism of transformation
groups. |

REMARK 10.5: The space X(K). We write X (K) for X(K/K), the set of all O-sites
of K. The subbasis for its topology given by

{(m,¢) € X(K)| p(a) =w mod ™}, a€e K*, we® and m €N,

(Lemma 10.3(b)) consists of open-closed sets.
By Lemma 10.3(a) each open-closed subset H of X (K) is compact. Hence it is a

finite union of finite intersections of subbasis sets
(4) H = N{(r ) € X(E)| p(ai;) = wi; mod &}

with a;; € K*, w;; € ® and m;; € N. Let m be a common multiple of all m;;’s.
Since @™ /O™ = (Q))™¥ /(Q,)™ is finite, we may enlarge each (i), if necessary,
to assume that m;; = m for each ¢ and j. Lemma 6.8 gives b;; € Q* such that
bij =w;j mod®™, i =1,...,kand j =1,...,0(¢). Then p(b;;) = m(b;;) = b;;. Replace
a;j by bi_jlaij if necessary and use De-Morgan laws to change the order of the union and
intersection in (4) and add trivial conditions if necessary like ¢(1) € ®™ to represent H

as

J

-
=1

Again, let L/K be a Galois extension. Define a map

{(m ) € X(K)| p(ai;) € @} B

d: X(L/K) — Hom(G(Qy), G(L/K))
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by d(0) = dg, where dy: T' — G(L/K) is the unique homomorphism for which §ody(g) =
g o6 for every g € G(Qp) (Definition 9.4). For each ¢ € G(L/K)

0° odgo(g) =gob’ =gobfoo=0ocoo tody(g) oo =07 odg(g)°.

Hence d(0)? = d(6”). Continuity of d is a consequence of the next result which is a

version of Krasner’s lemma.

LEMMA 10.6: Let L/K be a finite Galois extension and let § € X(L/K). Then 6 has
an open neighborhood Vy such that dy = dg: for each 6’ € Vj.
Proof: We first fix an element g € G(Q,,) and construct an open neighborhood Vy , of
§ = (m, ) such that dy(g) = dg/(g) for each 0" € Vj .

Indeed let 0 = dy(g). Let 7 € G(L/K), T # 0. Proposition 9.3(b) implies that
ot # 6oo. Hence poT # ¢ oo (Lemma 88(b)). Choose a, € L* such that

(poT)(ar) # (poo)(ar).

Let E be the compositum of all finite extensions of Q,, of degree at most [L : K|. E
is a finite extension of Q,, (Proposition 6.5) and ¢'(L*) C ® for each (1, ¢") € X(L/K)
(Lemma 9.5(c)).

Since L/K is finite and ®g is profinite (Lemma 10.2) ®g has an open subgroup
U such that

9) (poT)(ar) # (poo)(ar) mod U for each T € G(L/K), T # 0.

Replace U, if necessary, by ﬂheg(E/Qp) h(U) to assume that g(U) = U.
Now define Vj 4 to be the set of all 0’ = (7', ¢’) € X(L/K) such that

(10) (¢ ok)(ar) = (pok)(a,) mod U for all k,7 € G(L/K).

It is an open neighborhood of 0. In particular, for k = 1, ¢'(a;) = ¢(a;) mod U, and
therefore (g o ¢')(a;) = (g o ¢)(ar) mod U for all T € G(L/K). Thus

(11) (¢ ode(9))(ar) = (poo)(ar) mod U for every 7 € G(L/K).
Substitute k = dg/(g) in (10) to obtain

(12) (¢ odo(9))(ar) = (pody(g))ar) modU for every 7 € G(L/K).
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It follows from (11) and (12) that
(13) (pody(g))(ar)=(poo)(a;) modU for every T € G(L/K).

Thus (9) and (13) imply that dg:(g) = 0 = dp(g).
Finally let Vg =, Vy,4, where g ranges over a finite set Gy of generators of G(Q,)
(Proposition 6.5). Then Vj is an open neighborhood of 6 such that for each 6’ € Vy and

each g € Gy we have dy(g) = dg/(g). Since dy and dy: are continuous homomorphisms

(Lemma 9.5(d)) dg = dp-. i

PRroOPOSITION 10.7: Let L/K be a Galois extension. Then
(a) G(L/K)=(G(L/K),X(L/K),d) is a G(Qp)-structure;
(b) if Lo/ Ky is a Galois extension such that Ko C K and Lo C L, then

RGSL/LOI G(L/K) — G(Lo/Ko)

is a morphism of G(Qy)-structures;
(c) in particular if Ko = K, then Resy, 1, is a cover of G(Q,)-structures.
Proof: By Lemma 9.5(a) and in the notation of (b), the following diagram commutes:
X(L/K) - Hom(G(Q,).G(L/K))
(10) ReSL/Lol lResL/LO
X(Lo/Ky) ~% Hom(G(Q),G(Lo/Ko))

Since X(L/K) = (h_mX(LO/K) (by (1)) and
Hom(G(Q,), 6(L/K)) = lim Hom(G(Q,), (Lo/K)

where Lo/ K ranges over all finite Galois subextensions of L/K (Section (1)), the map
d: X(L/K) — Hom(G(Q,),G(L/K)) is the inverse limit of the maps d: X (Lo/K) —
Hom(G(Q,),G(Lo/K)). By Lemma 10.6, d is continuous. Combine this with Remark
10.4 to conclude that G(L/K) is a G(Q,)-structure. Similarly conclude (b). Assertion
(c) follows from Proposition 9.3. i

If L = K we write G(K) for G(K/K) and call G(K) the absolute G(Q,)-

structure of K.
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LEMMA 10.8: Let K be a field and let 6,6’ € X(K/K). Denote the decomposition
field of 0 (resp., ') by M (resp., M'). Then
(a) M is p-adically closed;
(b) the map dp: G(Q,) — G(K) is injective, MQ = M and G(M) G(Qp);
M = M’ if and only if there exists o € G(M) such that 0" = 6 o o;
the forgetful map d: X(K/K) — Hom(G(Q,),G(K)) of G(K) is injective; and

)
(c)
(d)
(e) every p-adically closed field L, with K C L C K is the decomposition field of some
0 € X(K/K).

Proof of (a): Combine Lemma 8.6 with Lemma 9.5(c). By Lemma 9.5(b), (M, Resy0)
is ©-closed. Hence, with 8 = (m, ), (M,Resym) is Qp-closed. That is, M is p-adically
closed (Remark 7.4).

Proof of (b): By (a) and Corollary 6.6, G(M) = G(Q,) and MQ = M. Since
do: G(Qp) — G(M) is surjective and G(Q)) is finitely generated (Proposition 6.5),

dy is injective.

Proof of (c¢): If M = M, then, by (3), 6,0/ € X(K/M). By (a) and Proposition
8.9, resp0 = resp 6. Hence, by Proposition 9.3(b), there exists o € G(M) such that
0’ = 0 o 0. Conversely, if the latter condition holds, then dg/(g) = o~ 'dy(g)o for each
g € G(Qp) (Lemma 9.5(e)). Hence M = M’.

Proof of (d): If dgr = dp, then, from the proof of (c), o belongs to the center of G(M).
Since the latter is trivial ((b) and Proposition 6.5) o = 1. Thus ¢’ = 6.

Proof of (¢): By Proposition 8.9, L has a (unique) ©-site 6. Let § € X(K/L) C
X(K/K) be an extension of 8y (Proposition 9.3(a)). Since (L,8y) is ©-closed, L is the
decomposition field of 6 (Lemma 9.5(b)). i
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11. Characterization of Q, ., by a large quotient of G(Q,).

J. Neukirch proves in [N2] that if K is an algebraic extension of Q and G(K) = G(Q,),
then K = Q a1.. The main result of this section generalizes this to the case where
G(K) is a priori only a quotient of G(Q,,) which maps surjectively onto a “large” finite
quotient of G(Q,). Throughout this section we usel (resp., p) to denote a prime number
and (; (resp., (,) to denote primitive lth (resp., pth) root of unity.

For a prime | and a profinite group G denote the maximal pro-l quotient of G by

G(l) and let rank;G = rank(G(1)) = dimy, Hom(G, Z/IZ).

LEMMA 11.1: Every finitely generated profinite group GG has an open normal subgroup
Gg such that G /G| is an l-group and for each open normal subgroup N of G contained
in Gy, rank;G/N = rank;G.

Proof: There are only finitely many homomorphisms of G into Z/lIZ. Take Gy to be

the intersection of the kernels of these homomorphisms. |

LEMMA 11.2: Let G be a finitely generated profinite group. Suppose that G(l) is not
a free pro-l-group. Then G has an open normal subgroup Gy with G/Gy an l-group
such that if G is a closed normal subgroup of G and G; < Gy, then G/G is not a free
pro-l-group.

Proof: Choose G such that G/G is an l-group and rank(G/Gy) = rank(G(l)) (Lemma
11.1). Let G; < Gy be a closed normal subgroup of G. If G/G; is a free pro-l-group,
then it is a quotient of G(l), on one hand, and has G/Gq as a quotient on the other
hand. Hence rank(G/G1) = rank(G(l)). Conclude that G(l) is also a free pro-l-group
[R, p. 69], a contradiction. |

The l-ranks are well known for G = G(FE), where E is an algebraic extension of

Qp such that I1*° [[E : Qp] [N2, Satz 4]:

1 ifl#pand( ¢ E
2 ifl#pand (; € E
1+[EF:Qp) ifl=pand(y ¢ E
24+ [E:Q, ifl=pand(,€kFE.

(1) rank;G(F) =

In what follows we denote the Brauer group of a field L by Br(L) = H*(G (L), LY).

S
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Let Br(L); = {a € Br(L)| la = 0} be its lth torsion part. All groups are assumed to

operate trivially on Z/IZ.

LEMMA 11.3: Let L be an algebraic extension of QQ which contains (; (resp., v/—1 € L
ifl =2). If Br(L); # 0, then Br(L'); # 0 for each finite extension L’ of L.

Proof: Consider the following short exact sequence
1— U — Q*—5Q* — 1,

where | means raising to the [th power. It induces a four term exact sequence,

(2)  HY(G(L),Q*) — H*(G(L),Ui) — H*(G(L),Q*)——H*(G(L),Q*).

By Hilbert’s Theorem 90 the first term of (2) is trivial. Since U; C L, the second
term is isomorphic to H*(G(L),Z/IZ). Thus, (2) turns to be

0 — H*(G(L),Z/1Z) —> Br(L)——Br(L).
It follows that
(3) Br(L), & H%(G(L),Z/1Z).

Consider now the induced module A = Indggé,))Z/lZ and an appropriate short

exact sequence

1— A — ASZ)17 — 0

of trivial G(L)-modules. It induces an exact sequence of cohomology groups
H*(G(L), A)"~H*(G(L), Z/IZ) — H*(G(L), Ar).

Since cd;L < 2 [R, p. 303], the right term in this sequence is 0. Therefore T is surjective.
Hence, by (3), H*(G(L),A) # 0. By Shapiro’s lemma [R, p. 146], H*(G(L), A) =
H?*(G(L"),Z/1Z). Conclude from (3), with L' replacing L, that Br(L'); # 0. i

LemMA 11.4 (F.K. Schmidt): (a) A field K which is not separably closed can be

Henselian with respect to at most one 1-rank valuation.
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(b) Let L/K be a Galois extension of fields. If L is Henselian with respect to a rank-1
valuation v and L is not separably closed, then K is Henselian with respect to
Resgw.

Proof: See Engler [En, pp. 5 and 7] for a generalization to higher rank valuations. |

PROPOSITION 11.5: For each prime p there exists a finite Galois extension E of Q,
with this property: if K is an algebraic extension of Q and there exist epimorphisms
0: G(Qp) — G(K) and ¢: G(K) — G(E/Q)), then K = Q, alq-
Proof: Choose a prime p’ ¢ {2,3,p} and let S = {p,p’}. Denote the compositum of all
extensions of Q, with degree at most max{p — 1,p’ — 1} by Ey. This is a finite Galois
extension of Q,. Since [Q,((;) : Qp] <1 —1, it contains (; for each | € S.

By Proposition 6.5 and Lemma 11.1, Ey has a finite extension FE such that for

each | € S and for each Galois extension E’q of Eq which contains F;
(4) rank;G(E’1/Ey) = rank;G(E)p).

Since for eachl € S, (; € Ey, the maximal [-quotient of G(Ey) is not I-free [Se, p. 1I-30).
Therefore, by Lemma 11.2, Ey has a proper finite Galois [-extension E; such that for
each Galois extension E'; of Ey which contains E; the group G(E';/Ey) is not a free
pro-l-group.

Let E be the compositum of all finite extensions of Q, of degree at most m =
max{[E1 : Qpl, [Ep : Qpl, [Ep : Qpl}. It is a finite Galois extension of Q. Let K be as in
the theorem and denote the fixed field in @, of Ker(p) by N. Then G(N/Q,) = G(K).
Also, for the fixed field E' of Ker(v o ), we have G(E'/Q,) = G(E/Q,). Therefore E’
is a compositum of extensions of Q, of degree at most m. Hence E' C E. Since both
fields have the same degree over Q,, E’' = E. Thus, since Ker(y) < Ker(¢ o ¢), we
have E C N. We prove in two parts that K = Q) alg-

PART A: K is a Henselian field. =~ By construction, each | € S divides [N : Ey|. Let
E((,l) be the maximal l-extension of Ey. Then E; C NN Eél). Hence, the maximal pro-
quotient G(N N E(()l)/Eo) of G(N/Ey), is not [-free. It follows [R, p. 255] that

(5) cd,G(N/Ep) > 1.
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Let Ly be the fixed field in Q of ¢(G(Ey)). It is a finite Galois extension of K,
G(Lo) = G(N/Ey) and G(Ey/Qp) = G(Lo/K). In particular Loy contains every finite
extension of K of degree < [ — 1. Since [K((;) : K] <1 —1, we have (; € Ly. Since
p' —1>2, we have /—1 € Ly. By (5), cd;G(Lo) > 1. Hence [R, p. 261] Ly has a finite

extension L; such that

(6) Br(L;); # 0.

Let Ly be a finite Galois extension of K that contains both L, and L, . By
Lemma 11.3, Br(Ly); # 0 for I = p,p’. Also, since G(Ly) is isomorphic to a subgroup
of G(N/Q,), G(L1) is prosolvable. Thus, Neukirch’s Satz 1 of [N1] asserts that L; is
Henselian. Now apply Lemma 11.4 to the Galois extension Ly /K and conclude that K

is Henselian.

PART B: K =2 Qpalg-  Denote the characteristic of the residue field of K with respect
to its Henselian valuation by q. Then K contains an isomorphic copy of Qg 1. Assume
without loss that Qg a1 C K. By (6), Br(L,), # 0. Hence p>*° [[L, : Qq.a1¢] [R, p. 291]

and therefore

(7) P> MLo : Qg ag)-

On one hand (4) and (1) give

(8) rank,G(Lo) = rank,G(N/Ey) = rank,G(Ey) = 2 + [Ey : Q).

On the other hand (1) implies

2 ifp#q

9) rank,G (L) = { 2+ [Lo:Qqage] ifp=gq.

Clearly, (8) and (9) can be reconciled only if p = q and [Ey : Qp] = [Lo : Qg,a1g]. But
[Eo : Qp] = [Lo : K], so necessarily K = Qy alg- 1
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12. Pseudo p-adically closed fields.

We call a field extension E/K totally p-adic if the map Resp/x: X(E) — X (K)

(Section 10) is surjective.

LEMMA 12.1:
(a) A regular extension FE/K is totally p-adic if and only if the ResE/l?: X(E/E) —
X(K/K) is a surjective map.
(b) A regular extension E/K is totally p-adic if and only if for each p-adic closure K
of K, KE/K is totally p-adic.
(c) Let V' be an absolutely irreducible variety defined over K and let E be its function
field. Then E/K is totally p-adic if and only if Vg, (K ) # () for each p-adic closure

K of K.

Proof of (a): Suppose that Resg,/x: X(FE) — X(K) is surjective. Let 0 € X(K/K).
Take 01 € X (F) that extends 6 = Resl?/Kg and extend it to 0, € X(E/E) (Proposition

9.3(a)). Let 0 = ResE/f(G’l. Since Res%/KG = Res%/KH’ Proposition 9.3(b) gives
o € G(K) such that 8/ = 0°. Since E/K is regular o extends to 7 € G(FE). Then 6, =
(0,)" ' € X(E/E) and extends 0. Thus Resg X(E/E) — X(K/K) is surjective.
The converse is trivial.
Proof of (b): We use (a). Suppose first that E/K is totally p-adic, let K be a p-adic
closure of K and let § € X(K/K). Extend 0 to ¢’ € X(E/E). Then Res=D(0') =
D(#) < G(K) (Lemma 9.5(a)). Hence D(¢') < G(KE). By (3) of section 10, §' €
The converse holds, since each 6 € X(K/K) belongs to X (K /K), where K is the
decomposition field of 6.

Proof of (c): By (b) we may assume that K is p-adically closed. Suppose first that
Viim(K) # 0. Let (m, ) be the unique O-site of K (Proposition 8.9). Then 7 extends
to a Qp-place " of E (Proposition 6.4(c) and Lemma 6.7). By Corollary 8.10, E has a
O-site (7', ¢"). Since (m,Resg,k(¢")) is a O-site of K, the uniqueness of ¢ implies that
¢ = Resg/k(¢’). Conversely, if (7, ¢) extends to a ©-site of I, then Proposition 6.4(c)
implies that Vi (K) # 0. i
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DEFINITION 12.2: We call a field K of characteristic 0 pseudo p-adically closed
(PpC) if every absolutely irreducible variety V' defined over K has a K-rational point,
provided that the function field of V is totally p-adic over K (i.e., Viim (K) # 0 for every
p-adic closure K of K).

Note that we do not assume that K has a p-adic valuation; a PpC with no p-adic
valuation is pseudo algebraically closed.

We shall construct a class of PpC fields contained in Q with finitely many p-adic
valuations. Since the p-adic closure of a formally p-adic number field is its Henselization,
i.e., an isomorphic copy of Q) a1, we may use the results of Heinemann and Prestel [HP]

to simplify the definition of algebraic PpC fields.

LEMMA 12.3: let K be a subfield of Q and let Q° .,ngalg be p-adic closures of

D alg
K. Suppose that every absolutely irreducible polynomial f € K[X,Y] has a K-rational

zero, provided that for each i, 1 < i < e, there exist a,b € Q7' such that f(a,b) =0

p,alg
and —f(a,, b) # 0. Then K is PpC and its only p-adic valuations are those induced from
@p alg? " ’Qp alg’

Proof: Let f € K[X,Y] be an absolutely irreducible polynomial that admits a Q},,-
rational simple point for i = 1,...,e. After a linear transformation of the coordinates,
balg Such that f(a,b) =0

and g—{j(a, b) # 0. By assumption, f has a K-rational zero. It follows from [HP, Thm.

we may assume that for each i, 1 <1 < e, there exist a,b € Q7°

1.8] that K is PpC, and from [HP, Lemma 1.6] that the only p-adic valuations on K are

those induced from Q |

palg""’@palg

Fix integers 0 < e < m. For each o = (01,...,0m,) € G(Q)™ let

Qo = @g,lalg -N Qp alg N @(o‘e+1) N---N @(Um)-
Also, for o, € G(Q)™ write oA for (01A1,...,0mAm). In the following result we use

the term “almost all” in the sense of the Haar measure of G(Q)™

LEMMA 12.4: Let 7 € G(Q)™ and let L C Qr be a finite extension of Q. Then
almost all A € G(L)™ have this property: if f € L[X,Y] is an absolutely irreducible

polynomial and for each 1 < i < e there exist ag;, by; € such that f(ag;,bo;) =0

p alg
and g—{;(am, boi) # 0, then f has a Qry-rational zero.
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Proof: Let n = degy f. Without loss assume that for some d between 1 and e,

. ,(@p alg Tepresent the L-isomorphism classes of the set {Q’ }. In

palg"' palg"" palg

particular Q™ . ,Qp alg induce distinct p-adic valuations on L.

Dlalgr -
Since L is Hilbertian we may use [G, Lemma 3.4] to inductively find ay, as, as, . .. €

L and by, bs, bs, ... € Q such that for each j > 1
pralg t = 1,...,d;
(1b) f(a;,Y) is irreducible over L of degree n, and f(a;,b;) = 0; and

(la) a; lies near ap; in Q'

(1c) for L; = L(b;), the sequence Ly, Lo, Ls, . .. is linearly disjoint over L.

Condition (1a) and f(ap;,bo;) = 0 imply by Krasner’s lemma [Ri, p. 190] that
f(aj,Y) has a root in Qp algs U = 1,...,d. By the choice of d this also holds for
i=d+1,...,e. Thus, by (1b), there exist A\j1,...,\je € G(L) such that L; Aji cQr
i=1,...,e. Let \jy =7, fori=e+1,...,m and Aj = (N\j1,..., A\jm)-

p,alg’

Condition (1c) implies by [J1, Lemma 6.3] that for almost all A\ € G(L)™ there

L - At
exists j > 1 such that resLj)\ b resLj}\j. But then Lj’ = L I C @p alg? hence L; C
@;f;\lﬁg, i=1,...,e. Also, resLj)\i_l = resg,T;, hence L; C Q(riNi), i=e+1,...,m.
Conclude that L; C Qrx. Thus (a;,b;) is a Qx-rational zero of f. |

LEMMA 12.5: For almost all ¢ € G(Q)™ the field Q4 is PpC and has at most e distinct
p-adic valuations.

Proof: Fix a countable dense subset T of G(Q)™. Let o0 € G(Q)™ and consider an
absolutely irreducible polynomial f € Qg[X,Y] which has a ngalg—rational zero (a;,b;)
such that 2 57 (al, i) # 0 fori=1,...;e. Let L C Q, be a finite extension of Q that
contains the coefficients of f. Consider T € T NaG(L)™. Since Q'
to @pialg over L, f has a Q"
1

palg 1S isomorphic

bialg-Tational zero (a’;,b';) such that B—Y(a b)) #0, 1=
,...,e. Hence, by Lemma 12.4, f has a Qg-rational point, unless o belongs to a zero
subset of TG(L)™. Use that a countable union of zero sets is again a zero set to exclude
such a case. Conclude from Lemma 12.3 that Q4 is PpC and has at most e distinct

p-adic valuations. |

REMARK 12.6: Regular action. A regular action of a finite group on a finite set X is

unique up to a permutation of X. More precisely, if two groups G and G’ act regularly
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on X (Definition 1.1) and there exists an isomorphism ¢: G — G’, then there exists a

permutation s of X such that
(2) x#9)s = 59, forge G and x € X.

Indeed, let X be a system of representatives for the G-orbits of X. Then each x € X can
be uniquely written as x = zf with 2o € Xy and g € G. It follows that | Xo| = | X|/|G].
Similarly, a system X'( of representatives for the G’-orbits of X has | X|/|G’| elements.
Thus there exists a bijective map s: X’'g — Xo. Extend s to a permutation of X by the

rule 9% = 239, for o € X’y and g € G. Obviously, it satisfies (2). i

NOTATION 12.7: Let I'c ,p, =Ty %+ --# T'e ﬁm_e be the free product in the category of
profinite groups of e copies I', ..., I'. of G(Q,), and ﬁm_e, the free profinite group on

m — e generators (c.f., (1) of Section 3).

LEMMA 12.8: For almost all 0 € G(Q)™
(3) G(Qo) =T m.

Proof: We follow Geyer’s proof [G] for the case e = m. The case e = 0 is treated in
[J2, Thm. 5.1]. So assume e > 1. Since both sides of (3) are finitely generated, it
suffices to prove that they have the same finite quotients. But G(Q, ), being generated
by G(Q)'n.) = G(Qp), i =1,....¢, and (Ge41,.-.,0m) Iis a quotient of I'c r,. Thus it
suffices to consider finite groups of the form G = (G1,...,Gey1) where G; = G(E/Q,),
i =1,...,e, the field F is a finite Galois extension of Q,, and G.11 is generated by
m — e elements, and to prove that G is a quotient of G(Q,) for almost all @ € G(Q)™.

Let z1 be a primitive element for the extension E/Q, and let x1,...,xs be the
conjugates of x1 over Q,. Note that n = |G| is a multiple of s = |G;|, i = 1,... e.
Take integers ki, ..., ky/s such that x; + kj # x, + k¢ if (i,7) # (r,t). Then f(X) =
-, H;Lfl(X — x; — k;) is a monic polynomial with coefficients in Q, with n = deg(f)
distinct roots. Each of the roots is a primitive element for E/Q,. Hence G(E/Q,) acts

regularly on them.
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Use Hilbert irreducibility theorem and [G, Lemma 3.4] to inductively construct
a sequence f1, fa, f3,... of monic polynomials in Q[X] of degree n and a sequence

Lq, Lo, Ls, ... of Galois extensions of Q such that for each 7 > 1

( 4a) L; is the splitting field of f; over Q, and G(L;/Q) = S,;
( 4b) f; is p-adically close to f; and
( 4c) L1, Lo, Ls, ... are linearly disjoint over Q.

(cf. the proof of [J1, Lemma 2.2]).

Condition (4b) implies by Krasner’s lemma [Ri, pp. 190-197] that the splitting
field of f; over Q, coincides with that of f, namely with E. Moreover each of the
roots of f; is p-adically close to a root of f and therefore generates E over Q,. Thus
G(L;/L;NQ,) = G(E/Q,) regularly acts on the set of roots R; of f;, and |R;| = n. On
the other hand G acts regularly on itself by multiplication from the right. So identify G
as a subgroup of G(L;/Q), which is by (4a) the full permutation group of R;. Denote the
image of G; under this identification by Gj;,i = 1,...,e+ 1. Choose an isomorphism
i Gji — G(L;/L; N Qp). By Remark 12.6 there exists oj; € G(L;/Q) such that
x%31(9)%5i = 39519 for each = € R; and g € Gj;. Thus aj_ilgoji(g)aﬂ = g for each g € Gj;.
It follows that Gj; = G(L;/L;NQ,)%¢. Also, let 0 ¢t1,...,0m be generators of G e41.

By [J2, Lemma 4.1], for almost all ¢ € G(Q)™ there exists j > 1 such that the

restriction of o to Lj is (0j1,...,0;m). Therefore

G(L;jQs/Qo) = G(L;/L; N Q)
= (G(L; /L N Qp)%t, o, G(Ly /L Q)% Ojegs o5 Tm)
=(Gj1,...,Gje,Gjet1) =G.
Thus G is a quotient of G(Q, ). i
PROPOSITION 12.9: The following statements hold for almost all ¢ € G(Q)™:
(a) Qo is a PpC field;
(b) G(Qs) = G(Q)1,) * -+ x G(Q%1) * (Tet1se ooy 0m) Z e s

(¢) Qo has exactly e p-adic valuations; they are induced by the p-adic Henselizations

Qg}alg, e ngalg of Q,; and
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(d) if M and M’ are two distinct p-adic Henselizations of Q,, then MM’ = Q.
Proof of (a): See Lemma 12.5.

i =1,...,e, and F,,,_., —

Proof of (b): The isomorphisms G(Q,) — G(Q)%,,)
(Oet1y.-.,0m) combine to an epimorphism ¢: I'c ,, — G(Q,). Since, by Lemma 12.8,

both groups are finitely generated and isomorphic, ¢ is an isomorphism [R, p. 69].

Proof of (c): Map G(Q,) homomorphically onto the direct product G(Q}%,,) X -+ X

G(Q)5g) to conclude that G(QpL,, ). - - -, G(Q)¢,,) are pairwise nonconjugate in G(Q,).
Thus Qp alg? ,ng‘alg induce e distinct p-adic valuations vq,...,v. on Q,. Since Q.
has at most e p-adic valuations (Lemma 12.5), vy, ..., v, are all of them.

Proof of (d): Extend the p-adic valuations v of M and v' of M’ to Q. Since M and
M’ are the respective decomposition fields of v and v’, these valuations are distinct on
Q and therefore on MM’. Thus MM’ is Henselian with respect to two distinct 1-rank
valuations. Use Lemma 11.4 to conclude that MM’ = Q. |

We conclude this section by a proposition that allows us to apply the results of
Sections 3, 4 and 5 to I' = G(Q,).

PROPOSITION 12.10: The group I' = G(Q,) satisfies Assumption 3.1.

Proof: Proposition 6.5 says that G(Q,) satisfies conditions (a) and (b) of Assumption
3.1. As to the other conditions let @ be an element of G(Q)™ that satisfies the con-
clusions of Proposition 12.9. In particular G(Q,) = I'c,,,. Let E be the finite Galois
extension of Q, mentioned in Proposition 11.5. Consider a closed subgroup H of G(Q,).
Suppose that H is a quotient of G(Q,) and has G(E/Q,) as its quotient (i.e., H is a
large quotient of G(Q,)). Then Q(H) = Q... Hence H = G(Q,) (this gives As-
sumption 3.1(d)). Also, Q(H) induces p-adic valuation on Q,. By Proposition 12.9, it

coincides with the valuation induced by some Therefore Q(H) is Q,-isomorphic

p alg

to Qp alg» and H is conjugate to G(Q7 Thus Assumption 3.1(c1) holds. Assumption

D, alg)
3.1(c2) follows from Proposition 8.9(c). Finally Proposition 12.9(d) implies Assumption

3.1(c3). i
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Part C. Projective G(Q,)-structures as absolute G(Q,)-Galois structures.

From now on we replace the term “G(Q,)-projective group” by “p-adically projective
group”. The absolute G(Q))-structure G(K) of a PpC field K is projective and the
absolute Galois group of K is p-adically projective (Theorem 15.1). Most of Part C
proves the converse. For each projective G(Q,)-structure G there exists a PpC field K
such that G =2 G(K) (Theorem 15.3) and for each p-adically projective group G there
exists a PpC field K such that G = G(K) (Theorem 15.4). Section 13 prepares the
proof by showing the existence of continuous sections to the maps Resg/: X (F/E) —
X(L/K) in various cases. In particular Proposition 13.11 asserts that for each Boolean
space X there exists a PpC field K such that X = X (K). In Section 14 we prove that
for each p-adic structure G (not necessarily projective) there exists a Galois extension

F/E, with E PpC, such that G =2 G(F/E).

13. Restriction maps of spaces of sites.

The restriction map Resy//r: X(L'/K') — X(L/K) for two Galois extensions L' /K’
and L/K with K C K’ and L C L' is continuous (Section 10). Since spaces of sites
are compact and Hausdorff, Resy /1, is a closed map. In this section we prove openness

results and investigate the existence of continuous sections for these maps.

LEMMA 13.1: Let E/K be a finite extension. Then Resg/x: X(F) — X(K) is an
open map. Moreover, X (F) has a partition {V;}_, such that for each i, 1 < i < n,
Resg/i: Vi — Resg/k (Vi) is a homeomorphism.
Proof: By compactness, it suffices to find for each 0 € X(FE) an open-closed neighbor-
hood V' on which Resgk is injective and such that Resg, (V') is open-closed.

Indeed let L be a finite Galois extension of K that contains E. Consider the
following commutative diagram

X(L/E) -5 X(L/K)
Resy /El lResL P
X(E) —  X(E)

Here i is the inclusion map. By (2) of Section 10, X (L/E) consists of all § € X(L/K)
such that D(0) < G(L/FE). Since D: X(L/K) — Subg(G(L/K)) is continuous and
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G(L/K) is finite, X(L/FE) is open in X(L/K). Hence i is open. The vertical maps
are quotient maps by G(L/E) and G(L/K), respectively, and therefore open [HJ, Claim
1.6]. Conclude for each open subset V' of X(E) that Resg/ (V) = ResL/K(ResZ}E(V))
is open in X (K).

Now extend 6 to 0 € X(L/E). Since (0')° # 0’ for each 0, 1 # 0 € G(L/K)
(Proposition 9.3(b)), ' has an open-closed neighborhood V' C X (L/FE) such that 0" ¢
(V')7 for each 0, 1 # o0 € G(L/K). Replace V' by V' — (1, (V')? to assume that
V'O (V)7 =0 for each o # 1. It follows that Resy/k is injective on V' (Proposition
9.3(b)). Hence Resg/ is injective on the open-closed neighborhood V' = Resy /g (V")
of 6. |

LEMMA 13.2: Let L/ K be a Galois extension, T an ordered set of algebraically indepen-
dent elements over L and ¢ a function from T into {£1}. Consider E = K(T'), F' = L(T)
and for eacht € T let Ly = L(tg € T|tg < t). Then each 6 € X(L/K) uniquely extends
to Op = (mp, pr) € X(F/E) such that

(1) mr(at) =0 for all a € Ly and @p(t) = &(t).
Moreover, for each t € T and each f € L;X]| with f(0) # 0

(2) pr(f(t) = ¢r(£(0)).

Finally, the map 0 + 0 is a continuous section of Resp/r: X(F/E) — X(L/K).
Proof: Replace T if necessary by {e(t)t| t € T} to assume that e(t) =1 for allt € T.
The uniqueness part of the Lemma reduces the infinite case to the finite case. The latter
follows by induction on |T'| from the case |T'| = 1. So assume that T = {t}.

Each element a € F'* has a unique presentation,

L4+ bit+ -+ btk
L+et+--+att’

a = agt™

where ag € L*, m € Z and 1 + byt + --- + byt* and 1 + c1t + --- + ¢;t! are relatively

prime polynomials in L[t].
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Let 0 = (m,9) € X(L/K) and let ' = (n',¢") € X(F/E) be an extension of 0
which satisfies (1). Then

(3) (L4 byt + -+ bpt®) =a'(L+ et + -+ t’) = 1.
Hence

0 ifm>0
(4) 7'(a) = 7 (apt™) = { m(ag) ifm=0

00 ifm < 0.

By (3), @' (1 + byt + -+ bpt?) = @' (1 + et + - - - + ¢t!) = 1. Hence

(5) ¢'(a) = ¢(ao).

This proves the uniqueness of 8’ and (2).

To prove the existence, use (4) and (5) as definitions for 7’ and ¢' and check that
indeed 0" = (7', ¢") € X(F/E).

The continuity of the map 6 — 0’ follows from (4) and (5) by (1) of Section 10.
|

DEFINITION 13.3: Let e(t) =1 for all t € T. We call 0y € X (F/E) of Lemma 13.2 the
infinitesimal extension of 6 to X (F/E) with respect to T'.

PROPOSITION 13.4: Let E/K be a finitely generated extension and let Hg be an open-
closed subset of X(E). Then Hix = Resg,x(HEg) is open-closed in X (K) and the
restriction map Resg,/k: Hg — Hk has a continuous section.
Proof: First note that if K C K' CE, Hg = Resg, k' (Hg) and the proposition holds
for the maps Resg,x: Hp — Hy and Resk/ k: Hix: — Hp, then it also holds for
their composition Resg,x: Hg — Hy. This reduces the proposition to the case where
E/K is a simple extension. Also, by compactness, it suffices to find for each 0 € Hy
an open-closed neighborhood V' in Hg and a continuous map s: V — Hpg such that for
each 0 € V', s(0) extends 0. If E/K is finite this follows from Lemma 13.1. So, assume
that E' = K(t) and t is transcendental over K.

Let 6y = (mo, o) € Hix and let 0 = (n}, ¢() € Hg be an extension of 0y to E.
By Remark 10.5, 6, has an open-closed neighborhood H'p, C Hp of the form

Hpg={x¢)e X(E)(fi(t) € @™, i=1,...,r}
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where fi(t),..., fr(t) € E*, and m € N. Let f;(t) = g;(t)/go(t), with go(t),...,g.(t) €
KIt]. Replace f;(t) if necessary by f;(t)go(t)™ ! to assume that f;(t) € K[T], i =

1,...,r. The rest of the proof splits into two parts.

PART A: A special case.  Suppose first that there exists a € K such that

fi(a) #0 and ¢((fi(a)) € @™, 1=1,...,7.

Replace t if necessary by t —a to assume that a = 0. By Lemma 13.2 Resg/x: X (E) —
X (K) has a continuous section s such that each (7', ¢") € s(X(K)) satisfies ¢'(f;(t)) =
©(fi(0)), i=1,...,r. In particular s maps the open-closed neighborhood of 6,

V=A{(m¢) e X(K)[¢(f:(0)) € @™, i=1,...,r}

into HE.

PART B: Reduction of the general case to the case of Part A. Let (E,0), with
b0 = (7o, Po) be a O-closure of (E,0)) (Proposition 8.7). Then E is Q,-closed (Lemma
8.6), so E is p-adically closed (Remark 7.4). By Lemma 7.6 and Lemma 6.8(b), ¢
induces an isomorphism of E” /(E")™ onto ®/®™. Since @o(fi(t)) € ®™ there exists
z; € E such that filty=z2m"i=1,...,r.

The field K = K N'E is p-adically closed (Proposition 6.4(a)). Hence, E is an
elementary extension of K (Proposition 6.4(b)). In particular there exist a € K and
Cly...,Cp € K™ such that fila) = ¢™ fori = 1,...,r. Let L = K(a,c1,...,¢),

(2

F=L(t), 0, = (r},¢)) = Resgby, 0; = Res 0],
Hp= Res;}E(H’E) ={(7",¢) e X(F)| ¢ (fi(t)) e @™, i=1,...,r}

and H';, = Resp/(H'p). Then Resy i (H'y) € Hg. By Part A, 01 has an open-
closed neighborhood Vi and there exists a continuous map s1: V4 — H'pg such that
s1(0) extends 0 for each 6 € V. Since L/K is finite, the beginning of the proof implies
that V' = Resy/x (V1) is an open-closed neighborhood of 6y and Resy,/x: Vi — V has a
continuous section sg. Clearly s = Resp/p 0 81050 V — Hp is a continuous map and

s(0) extends 0 for each € V. |
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LEMMA 13.5: Let K be a field and let H be an open-closed subset of X (K). Then
there exists a finitely generated regular extension I of K such that Resp,x X(E) = H.
Proof: We divide the proof into three parts.

PART A: Construction of E. Write H in the form

T n

H =) J{(m 0) € X(K)| p(ay) € 2™},

i=1j=1

with a;; € K* and m € N (Remark 10.5). Let S C Z be a finite set of representatives
for Q) /(Q, )™ (Lemma 6.8(b1)). By Lemma 7.6(b), S represents M /(M )™ for every
p-adically closed field M. Choose k € N such that

(6) k> 2v,(m) + 2v,(s) for all s € S.

Consider the algebraic subset V of the affine space A("*+2)" defined by the system

of equations
(7) (V1" —ain) - (Y — ain) :aﬂ"‘ainpkn(’Y(Xil)‘f”Y(Xz‘Q)), i=1,...,m

where (X)) is the Kochen operator ((1) of Section 6). By a theorem of Schinzel [Sc], each
of the equations in (7) is absolutely irreducible. Since the equations are algebraically
independent, V' is an absolutely irreducible variety defined over K. Its function field £

is a finitely generated regular extension of K.

PART B: Resp/x X(E) C H. Let 0 = (m,¢) € X(E). As in Part B of the proof of
Proposition 13.4, let (E, ), with § = (7, @), be a O-closure of (E, ). By construction

there exist y;1,...,Yin € E* and x;1,x;2 € E such that

(8) (Wit —an) - (Y — am) = an - amp™" (V(zi1) + Y(2i2)), i=1,...,m

For each 1 and j take b;; € E” and sij € S such that a;; = bg?sij. Let z;; = yij/bij.
Divide (8) by b} - -- bl to obtain

m

(9 (aiF = si) o (2 = sin) = sin s (V(wian) +y(wi2)), i=1.7
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Apply the p-adic valuation v of E associated with & on (9) and use Lemma 6.1:
(10) Z ii = Sij) Z Up(Sij) i=1,...,7r

j=1 j=1
For each i, 1 <i <, (10) gives j = j(i) such that

(11) 77(2?]1 — Sij) > T)(Sij) + k> T)(SZ‘]‘).

Therefore ¥(2]}) = ¥(s;;). Hence, by (6) and (11),

Since E is Henselian with respect to v (Lemmas 8.6 and 7.5) we may apply the Hensel-
Rychlik lemma to Z™ — s;; and obtain c;; € E™ such that iy =sij, i =1,...,r. It
follows that ¢(ai;) = @(bijci;)™ € ®™. This means that Resp k0 € H.

PART C: H C Resg/gX(E). Let 0 = (m,90) € H. Extend (K,) to a ©-closure
(K,0), with = (7, ) (Proposition 8.7). By Lemma 8.6, K is p-adically closed. Hence
@ induces an isomorphism of K /(K )™ onto ®/®™ (Lemma 7.6 and Lemma 6.8(c)).
In particular, for each i,1 < i < r, there exist j(i), 1 < j(i) < n, and y; ju) € K"
such that ;" = a; @) Let yij = 0 for each j # j(i) and z;1 = x;5 = 0. Then
{(its -+ s Yin, Ti1, Ti2)| i = 1,...,7)} is a K-rational simple point of V. Extend T to a
Q,-place m of KE (Proposition 6.4(c)). The p-adic closure (E,7) of (KE,m) has a
unique O-site §' whose restriction to K is the unique O-site § of K (Proposition 8.9).
The p-adic closure (E,7) of (KE,#) has a unique ©-site §' whose restriction to K is
the unique ©-site § of K (Proposition 8.9). Conclude that 6 = ResE/K(ResE/EQ’) €
Resp/k X (E). i

LEMMA 13.6: Let K be a field and let C' be a closed subset of X (K). Then there exists
a regular extension E of K such that Resg,x X (E) = C, and Resg/i: X(E) — C has
a continuous section.

Proof: The set C'is the intersection of open-closed sets, C' = (1, _,, Hx, where X ranges

over all ordinals smaller than some cardinal number m. For each i < m let C,, =
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ﬂ)\<ﬂ Hy. Thus Cy = X(K) and Cp, = C. If A < X < m, then Cy C C\. Denote the
inclusion map Cy» — Cy by iy . Finally let Ey = K and let sy be the identity map of
X(K).

Let n < m. Suppose, by transfinite induction, that for each A < p we have

constructed

(12a) a regular extension Ey of K such that Resg, ;x X (Ex) = Cy; and

(12b) a continuous section sy: Cx — X (Ey) of Resg, /i ;

such that for every A < X < p
(13) Ex C Ex and Resg,, /g, 08y = 8x 0y .

If p is a limit ordinal, let E;, = |Jy_, Ex. Then E, /K is regular and X(E,) =

lim X(E). Hence Resp, )k X(Eyu) = (<, Cx = Cu. Also, the maps s iy x, with
A<p
A < u, define a section s,,: C, — X (E,,) of Resg, sk such that Resg, /g, 05, = 8301,

for every \ < p.

If y=X+1, then C, = C\x N Hy. Hence C’,, = Resgi/K(C’M) = Resgi/K(H,\) is
an open-closed subset of X (Ey) and sx(C,) C C’,,. By Lemma 13.5, E has a finitely
generated regular extension E,, such that Resg, /g, X (E,) = C’,,. By Proposition 13.4,
Resg, /g, X(Eu) — C', has a continuous section s',: C', — X(E,). Obviously
Resp, /k X(E,) = C, and the map s, = s, 0 s\ 0i, is a continuous section of
Resg, k: X(E,) — C, such that Resg, /g, 05, = sxoi, . Thus E, and s, satisfy the
induction hypothesis.

Let E = E,, and s = s,,,. Then Resp/xX(K)=Cy,, =C and s: C — X(E) is a

continuous section of Resg |

LEMMA 13.7: Let K be a field and let C' be a closed subset of X(K). Then K has a
regular extension E such that Resp,x maps X(E) homeomorphically onto C.

Proof: Let Ey = K and Cy = (. Suppose by induction that for n € N there ex-
ists a tower Fy C E; C --- C F, of regular extensions and for each i, 1 < 1 < n,
Resg, /g, (X(E;)) = Ci—1 and X(E;) has a closed subset C; which Resg, /g,

, maps

homeomorphically onto C;_1. By Lemma 13.6, E,, has a regular extension F, 1 such
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that Resg, ., /g, (X(Ent1)) = Cn and Resg, /g, : X(Eny1) — C, has a continuous
section s,. Then Cp 11 = s,(Cy) is a closed subset of X(E, 1), and Resg, ., /g, maps
Ch+1 homeomorphically onto C,,.

Nowlet E =J,_, E,. Then X(E) = lim C',. Conclude that for eachn, Resg g,
maps X (F) homeomorphically onto C,,. 1

DEFINITION 13.8: Recall that an extension of fields E/K is totally p-adic if
RGSE/KZ X(E) — X(K)

is surjective (Section 12). We say that E/K is exactly p-adic if Resg/x: X(E) —
X (K) is a homeomorphism.
The field K is existentially closed in FE if each formula without quantifiers in

the language of fields with coefficients in K which is satisfiable in F is satisfiable in K.

LEMMA 13.9: Let K be a field.
(a) If K is PpC (Definition 12.2), then K is existentially closed in every regular totally
p-adic extension.

(b) If K is existentially closed in every regular exactly p-adic extension, then K is

PpC.

Proof of (a): Let E be a regular totally p-adic extension of K. We have to show that if
fiseo s frygn, .-y 09s € K[X1,...,X,] and the system

(14) fi(X)=0, i=1,...,r; g;(X)#0, j=1,...,s

has a solution x € E", then it also has a solution in K™. Replace g;(X) #0,j=1,...,s,
if necessary, by the equation g1(X) - gs(X)X,+1 — 1 = 0 to assume that s = 0. Since
K(x)/K is a regular extension, x generates over K an absolutely irreducible variety V.
Since K (x)/K is totally p-adic, Lemma 12.1(c) implies that Vg, (K) # () for each p-adic
closure K of K. Conclude from K being PpC that V has a K-rational point x’. This
point solves (14).

Proof of (b): Let V' be an absolutely irreducible variety defined over K. Denote the
function field of V' by E and assume that E/K is totally p-adic. By Proposition 13.4,
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the surjective map Resp/x: X(E) — X(K) has a continuous section s. Its image
s(X(K)) is closed in X(F). By Lemma 13.7, E has a regular extension F' such that
Resp,p maps X (F) homeomorphically onto s(X(K')). Hence Resp/x: X (F) — X (K)
is a homeomorphism. Thus F/K is a regular exactly p-adic extension. It follows that
K is existentially closed in F'. Since V has an F-rational point it also has a K-rational

point. |

PRrOPOSITION 13.10: Let L/K be a Galois extension and let C' be a closed subset
of X(L/K) which is closed under the action of G(L/K). Then there exists a Ga-
lois extension F/E such that E is a regular PpC extension of K, LE = F, the map
Resp,r: G(F/E) — G(L/K) is an isomorphism, and Resp,;, maps X (F/E) homeomor-
phically onto C.

Proof: Let Cy = Resy,/x(C). Lemma 13.6 gives a regular extension K’ of K such that
Resg/ )k maps X (K') homeomorphically onto Cy. Denote the class of regular exactly
p-adic extensions of K’ by €. Clearly, £ is closed under union of chains. Hence £ has a
member E which is existentially closed in each E' € £ that contains E [D, p. 28]. If E”
is an exactly p-adic extension of E, then E" is an exactly p-adic extension of K'. Hence
E” € £ and therefore E is existentially closed in E"”. Conclude from Lemma 13.9(b)
that E is PpC. By construction E is a regular extension of K and Resg,x maps X (E)
homeomorphically onto Cy. In particular, for F = LE, Resp/r:G(F/E) — G(L/K) is
an isomorphism.

If 9 € X(F/E), then Resp/kx(Resp;0') = Resg/x(Resp/pt’) € Co. Since
Resy/x: G(L/K) — G(K/K) is a cover and C' is closed under the action of G(L/K),
we have Resp,0’ € C. Conversely, if ¢ € C, then there exists 0, € X(E) such
that Resy k0 = Resp/k0y. Extend 0y to 0" € X(F'/E). Then Resy,/x(Resgp/0") =
Resy k(). Hence there exists o € G(L/K) such that (Resp,0")” = 0. Extend o
to o' € G(F/E). Then Resp,; maps (0")7" onto 0. If Resp,;, maps 01,05 € X(F/E)
onto the same element § € X(L/K), then, since Resg,x: X(F) — X (K) is injective,
there exists o' € G(F/E) such that 0, = (0})” . Hence, § = 0%, where o = Resp/ro’.
Since the action of G(L/K) on X(L/K) is regular, 0 = 1. Hence ¢’ = 1. Thus

Resp,r: X(F/K) — C is a bijective continuous map. Conclude that it is a homeomor-

72



phism. |

The following Proposition is the p-adic analogue of a result of Craven [C, Thm 5]

for spaces of orderings.

PROPOSITION 13.11: For every Boolean space X there exists a PpC field E such that
X (E) is homeomorphic to X.
Proof: By Proposition 13.10 it suffices to construct a field K and an embedding of X
into X (K). Since every Boolean space is homeomorphic to a closed subset of the space
{+£1}T, for a suitable set T [HJ, Definition 1.1], we may assume that X = {£1}T.
Assume without loss that T is an ordered set of algebraically independent elements
over Q and let E = Q(T'). Denote the unique ©-site of Q by 6. For each ¢ € X (i.e.,
e: T — {£1}) let 0. = (7., pe) € X(E) be the unique extension of 6 to E such that
me(at) =0 for each t € T and each a € Q(to| to < t), and p.(t) = e(t)t (Lemma 13.2).
The map ¢ — 0. from X into X(F) is obviously injective. To show that it is
continuous consider a1, ...,a, € E. Let Ty be a finite subset of T such that a4, ...,a, €
Q(Ty). If two elements €, € X coincide on Ty, then ¢.(t) = ./ (t) for each t € Ty.
By the uniqueness part of Lemma 13.2, . = ... Conclude from Lemma 10.5 that the

map € +— 0. is continuous. |
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14. Realization of G(Q,)-structures as G(F/E).

PROPOSITION 14.1: Let L/K be a Galois extension, G a G(Q,)-structure and a: G —
G(L/K) an epimorphism. Then there exists a Galois extension F//E such that E is
a regular PpC totally p-adic extension of K, L. C F and there exists a commutative

diagram

(1) G . G(F/E)

\ ResF/L/
“ Ve

G(L/K)

in which p is an epimorphism of G(Q,)-structures and the underlying map of groups
p: G — G(F/E) is an isomorphism. Moreover, if the forgetful map of G is injective,
then p: G — G(F/FE) is an isomorphism.

Proof: It suffices to prove the existence of a commutative diagram (1) such that E is
a regular extension of K, F/FE is Galois, L C F, p: G — G(F/FE) is a morphism and
p: G — G(F/E) is an isomorphism. Indeed, use Proposition 13.10 to construct a Galois
extension F'/E’ such that E’' is a regular PpC extension of E, FE' = F'" and

Respr/p: (G(F'/E'), X (F'/E"),d) — (G(F/E), p(X(G)),d)

is an isomorphism of G(Q,)-structures. Then replace p, E and F' in (1), respectively,
by p' = Res;,l/ rop, B and F' to obtain a commutative diagram with the required
conditions. Note that since « is an epimorphism, so is resp,r: X (E) — X (K). Hence
E'/K is a totally p-adic extension. Also, if the forgetful map of G is injective and for
x, 2 € X(G), p/'(x) = p'(2'), then p' od(x) = p' od(2"). Hence d(z) = d(x') and x = x’.
Thus in this case p’ is an isomorphism of G(Q))-structures.

The rest of the proof splits into five parts.

PART A: Reduction to the case where « is rigid (Definition 5.5).  Let L' be a Galois
extension of K that contains L such that D(0) = G(Q,) for each § € X(L'/K). For

example, by Lemma 10.8(b), this is the case for L' = K. Construct a cartesian square
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(Lemma 2.1): /
G = GU'/K)

i [
G % G(L/K)
Then ' is a rigid morphism (i.e., &': D(y') — D(&/(y’)) is an isomorphism for each y' €
X (G')). Suppose that there is a Galois extension F' / E such that E is a regular extension
of K, L' C F', and there is a morphism p': G’ — G(F'/E) such that p': G' — G(F'/E)

is an isomorphism of groups, and the upper face of the following diagram commutes:

G/ - G(F'/E)

\O/ ReSF’/L’

\
™ G(L//K) ResF’/F
Res;/ /g,

G ! ? G(F/E)

\ /

Resp/r
—
G(L/K)

Since Resy//r: G(L'/K) — G(L/K) is a cover, so is m (Lemma 2.2). Let F' be the
fixed field of p'(Ker(w)). Then p' induces a morphism p such that the back face of (2)

commutes. Also
ReSF//L(g(F//F)) == ReSL//L e} ResF//L, ) p'(Ker(w))
= Resy/ /g, 0 o/ (Ker(m)) = a o m(Ker(r)) = 1.
Hence L C F and the right face of (2) commutes. Conclude from the surjectivity of

that the lower face of (2) commutes.

So we may assume that « is a rigid morphism.

PART B: Definition of E and F.  Let N be the family of open normal subgroups N
of G for which the induced morphism an: G/N — G(L/K)/a(N) is rigid. By Lemma
5.6, N is a basis for the open neighborhoods of 1 in G. For each N € N choose ay € L

75



such that K(ay) is the fixed field of a(N) in L. Thus an: G/N — G(K(ayn)/K) is a
rigid morphism.

Let C={No|N €N, o0 € G} and let T = {tc| C € C} be a set of algebraically
independent elements over L. Define an action of G on F' = L(T) by the following rules:

20 =249 ze L ando € G; and
(tc)? =tce C€Cando €.

Then G acts faithfully on T and therefore also on F. The stabilizer of z € L is
a 1 (G(L/K(z))) and the stabilizer of ty, is N. Both are open subgroups of G. Hence
the stabilizer of each element of F' is open in G.

Let E be the fixed field of G in F. By [W, Thm. 1] there exists an isomorphism
p: G — G(F/E) compatible with the action on F. In particular the following diagram
of groups commutes: Since G acts on L as G(L/K), we have LN E = K. Since F/L is

a purely transcendental extension EL/L is regular. Hence FE/K is also regular.

PART C: Purely transcendental extensions.  Let x € X(G). Denote the fixed field
of p(D(x)) (resp., a(D(x))) in F (resp., L) by M’ (resp., M ). We prove that M’ is a
purely transcendental extension of M.

Indeed, the commutativity of (3) implies that Resp, 1, (p(D(x))) = a(D(x)), there-
fore M C M'. Since « is injective on D(x) and p is an isomorphism, Resg/r: G(F/M') —
G(F/M) is an isomorphism. Thus LM’ = F and LN M' = M.

The group D(z) acts on T (as a subgroup of G). Let T, be the collection of D(x)-
orbits of T. Each S € T, has the form S = {tn,s| 0 € D(x)}, with N € N and o € G.
Since N is the stabilizer of each element of S, |S| = (D(z) : D(x)NN) = (D(z)N : N).
So, ifé1,...,0, € D(x) represent D(x)N/N, then S = {tnys,|i = 1,...,n} withn = |S)|.
Let

n
i—1)5; .
(4) “S,jzza% ) INGs; 7=1,...,n.
i=1

Since N acts trivially on ay, the right hand side of (4) is independent of the choice of
01,...,0p. In particular D(z) acts trivially on us j. Sous; € M’', j=1,...,n.
Since an: G/N — G(K(an)/K) is rigid (Part B), ay maps D(x)N/N injectively

into G(K (an)/K). In particular a(];\}, e ,a‘;\? are distinct. Hence the coefficients matrix
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i~ 1)0ivn
(QS\JI ) )i,j:l

follows that

of the linear system (4), which is a Vandermonde matrix, is invertible. It

(5) L(us,j

j=1,...,n) = L(S).

Since S is a set of n algebraically independent elements over L, (5) implies that ugs j,j =
1,...,n, are also algebraically independent over L.

Let Uy, = {us ;| S € 7, and j = 1,...,|S|}. Since L(S), S € T,, are free over
L, the elements of U, are algebraically independent over L. Moreover, by (5), L(U) =
L(T) = F. Hence, the linear disjointness of L and M’ over M gives [M' : M(U,)] =
[F': L(U,)] = 1. Conclude that M' = M(U,) is purely transcendental over M.

PART D: Definition of p: X(G) — X(F/E). Fix an ordering of I' (as a set). For
each x € X(G), it induces an ordering of U, (We use the notation of Part C). By (2) of
Section 10, o(x) € X (L/M). Define p(x) to be the infinitesimal extension of a(z) with
respect to U,, (Definition 13.3). Then p(x) € X (L(U,)/M(U,)) = X(F/M') C X(F/E),
and Resp/r, o p(x) = a(x). The images of both homomorphisms p o d(x) and d(p(z))
from G(Q,) into G(F/FE) are contained in G(F/M"). Moreover,

Resp/ropod(xz) = aod(r) =d(a(r)) = dResp,r(p(x))) = Resg/r, o d(p(x)).

Since Resp,y, is injective on G(F/M'), we have p o d(z) = d(p(x)).

ParT E: Continuity of p: X(G) — X(F/E). Let x € X(G). Each open neighbor-
hood of p(z) = (7, ¢.) in X(F/E) contains a basic open neighborhood of the form

V=A{(r¢) € X(F/E)| p(a;) €V, i=1,... k}

for some ai, . ..,a; € F* and open subsets Vi, ..., Vi of ® (Lemma 10.3(b)). Since F =
L(Uy) there are u; = ug;) jiy € Uz, 1 =1,...,7, such that ay,...,ax € L(uy, ..., u.).
Let N; be the stabilizer of the elements of S(i), i = 1,...,r. There exists an open
neighborhood Wy of x in X(G) such that for each z € Wy, D(x)N; = D(z2)Nj,
i=1,...,r. Hence S(1),...,5(r) € 7, and uy,...,u, € U,. Let Fy = L(uy,...,u,)
and Ey = K(uy,...,u,). The definition of p(x) and p(z) = (7.,¢,) imply that
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Resp/r, (p(x)) and Resp g, (p(z)) are respectively the infinitesimal extensions of a(x)
and a(z) to X (Fy/Ey) with respect to {uy,...,u,}. Since o and the infinitesimal exten-
sion map from X(L/K) into X(Fy/Eyp) are continuous (Lemma 13.2) Wy contains an
open neighborhood Wy of x such that if z € Wy, then ¢.(a;) € V;, 1,..., k. Therefore
p(z) € V. Conclude that p: X(G) — X(F/FE) is continuous.

Parr F: Conclusion of the proof. ~ We still have to ensure that p(x°) = p(x)?(°) for
allz € X(G) and o € G. Unfortunately this need not be the case. So we have to modify
the definition of p: X(G) — X(F/FE). By Lemma 2.5, X(G) has a closed system X
of representatives for the G-orbits. Denote the restriction of p: X(G) — X (F/E) and
a: X(G) — X(L/K) to X by pg and ay, respectively. By Part D, Resg/r,0po(r) = ao(x)
and d(po(x)) = p(d(z)) for each x € X. Hence, by Lemma 2.7, py extends to a map of
X (G) into X(F/FE) which, together with the group isomorphism p: G — G(F/E), is a
morphism p: G — G(F/E) (this is the modified p). Moreover, both Resg/r, o p and o
coincide on X with py and on G with ag. Hence, by Lemma 2.7, Resp/p o p = a.

The modified morphism p satisfies the requirements of the proposition. |

COROLLARY 14.2: Let G be a G(Q,)-structure. Then there exists a PpC field E and
a Galois extension F' of E such that G = G(F/FE).

Proof: The quotient space X(G)/G is Boolean. Hence, by Proposition 13.11, there
exists a PpC field K such that X(K) = X(G)/G. This isomorphism defines a cover
a: G — G(K/K). By Proposition 14.1, K has a PpC extension E which has a Galois
extension F, and there exists an epimorphism p: G — G(F/E) with a trivial kernel
such that the diagram (1), with L = K, commutes. Since « is a cover, so is p. Hence p

is indeed an isomorphism. |
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15. The main results.

We are finally able to characterize the p-adically projective groups as absolute Ga-
lois groups of PpC fields. An analogous characterization holds for projective G(Q,)-

structures.

THEOREM 15.1: Let K be a PpC field. Then

(a) G(K) is a p-adically projective group; and

(b) G(K) is a projective G(Q,)-structure.
Proof: Let X = X(K/K) and let D be the collection of all subgroups G(M) of G(K)
where M is a p-adically closed field and K C M C K. By Lemma 10.8(d) and (e) the
forgetful map d: X — Hom(G(Q,), G(K)) is injective and D = {D(0)| 0 € X} is the
collection of all decomposition groups of the elements of X. In particular D is a closed
conjugacy domain of subgroups of G(K). Also, for each 0,0' € X, D(0) = D(#') if and
only if there exists o € D(0) such that 07 = 0’ (Lemma 10.8(c)). We show that G(K)
is D-projective (Definition 4.1).

Consider a finite embedding problem for G(K)

B % G(L/K)

with L/K a finite Galois extension. Let Xy be a closed system of representatives
for the G(L/K)-orbits of X(L/K) (Corollary 2.5). Since G(L/K) is finite the subset
{d(0)] € Xo} of Hom(G(Qy),G(L/K)) is finite. Let 1,...,%, be a listing of its
elements. Choose 0; € X, such that d(0;) = v; and let §; € X be an extension of
0;, i = 1,...,n. By Remark 4.2 there exists v; € Hom(G(Q,), B) such that a o ¢; =
resod(0;) =v;, i =1,...,n (Remark 4.2). Define a map dy: Xo — Hom(G(Q,), B) by
the rule, do(6) = v; if and only if d() = ;. Since d is continuous, so is dy. By Lemma
2.6, there is a G(Q,)-structure B with B the underlying group, X, a closed system of
representatives for the B-orbits of X (B), and such that the forgetful map extends d.
The epimorphism « together with the identity map define a cover o: B — G(L/K)
(Lemma 2.7).
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Apply Proposition 14.1 to construct a Galois extension F/E such that F is a

regular totally p-adic extension of K and L C F', and a commutative diagram of groups

B G(F/E)

3
res

G(L/K)

such that p is an isomorphism. There will be no loss to assume that B = G(F/FE) and
a =resp/r. Also, replace E and F', if necessary, by a sufficiently large finitely generated
subextensions of K and L, to assume that E is finitely generated over K.

Let z be a primitive element for F/E, let f = irr(z,E) and let ¢ € E be the
discriminant of f. Take an integrally closed domain R, finitely generated over K, which
contains ¢! and the coefficients of f, and such that E is the quotient field of R. By
definition of PpC field (Definition 12.2) there exists a K-homomorphism ¢: R — K.
Let S be the integral closure of R in F (and note that L C S). Extend 1 to an L-
homomorphism v: S — K. Let D(v) be the decomposition group of v in G(F/E) and
let M be the splitting field of the polynomial ¥(f) over K. Then L C M, and v (f)
has no multiple roots, since ¥(c) # 0. Then M /K is a Galois extension and v induces
an isomorphism 1,: D(¢)) — G(M/K) such that ¥(y)¥+(?) = 1 (y?) for each o € D(v))
andy € S [L1, p. 248]. The homomorphism ;! o TS ar’ G(K) — G(F/E) solves the
embedding problem. Thus G(K) is D-projective.

By Lemma 4.5(a), D is the collection D(G(K)) of all closed subgroups of G(K)
isomorphic to G(Qy). In particular G(K) is p-adically projective. For each 0,0" €
X, D(0) = D(¢') if and only if there exists 0 € G(K) such that 7 = 6’ (Lemma
10.8). Since the forgetful map of G(K) is injective, the last statement of Proposition
5.4 implies that G(K) is a projective G(Q,)-structure. i

The proof of Theorem 15.1 gives an additional information on PpC fields.

COROLLARY 15.2: Let K be a PpC field. Then a closed subgroup H of G(K) is
isomorphic to G(Q,,) if and only if its fixed field M is p-adically closed.

Now we prove the converse of Theorem 15.1.

80



THEOREM 15.3: Let G be a projective G(Q,)-structure. Let L /K be a Galois extension
and a: G — G(L/K) an epimorphism. Then there exists a totally p-adic PpC extension

FE of K and a commutative diagram

G G(E)

G(L/K)

in which p is an isomorphism.
Proof: The forgetful map of G is injective (Lemma 5.3(a)). Hence, Proposition 14.1
gives a totally p-adic PpC extension Fy of K, a Galois extension F} of E; that contains

L, and an isomorphism p; such that the following diagram commutes

p1

G \ G(E)
G(L/K)
Since TESE gy G(E;) — G(F1/E,) is a cover and G is projective, there exists a
morphism a1: G — G(F1) such that res= oaj; = p1 (Lemma 5.2). Since p; is an

Er/Fy
isomorphism, a1: G — G(F7) and ay: X(G) — X (E1/Ey) are injective.

Let K be the fixed field of a1 (G) in Ey. Then o1 (G) = G(K1). We prove also that
a1(X(G)) = X (K1 /K1). Indeed, for each z € X (G), D(ay(x)) = oq(D(x)) < a1 (G) =
G(K4). Hence, by (2) of Section 10, o (z) € X (K1 /K1). Conversely, let § € X (K1 /K3).
Take the unique closed subgroup H of G such that ay(H) = D(0). Since H = D(f) =
G(Qp) (Lemma 10.8(b)) and since G is G(Qp)-projective there exists x € X(G) such
that D(x) = H (Lemma 5.3(c)). Thus D(0) = ay(H) = D(ay(x)). Hence, by Lemma
5.3(d), there exists o € G such that 0 = a;(x)*(?) = a1(27) € a1 (X(G)).

It follows that a;: G — G(K3) is an isomorphism and the following diagram

commutes

G N G

al r1 resl

G(L/K) «— G(F\/E")

res
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We do not know if K; is PpC. So we proceed as follows.

First observe that since a; and p; are isomorphisms, so is res G(K;) —

Ki/F
G(Fy/Ey). In particular K, is totally p-adic over Fy. Repeat the above construction
(with oy instead of «) and use induction to obtain an ascending chain of fields K =

Ky CEy C Ky C Ey C--+, and isomorphisms a;: G — G(K;), i = 1,2,... such that

(2a) TSR ik, © Qi1 = Qi i=1,2,...;
(2b) E1, Es, ... are PpC fields; and
(2c) E;/K,_1 and K;/E; are totally p-adic extensions (therefore so is E;11/FE;), i =

1,2,....

Let E = J;2, E; = Ujo K;. The maps «; define an isomorphism p: G — G(E)
such that (1) commutes. In particular E/K is totally p-adic. Furthermore, E is PpC.
Indeed, let V' be an absolutely irreducible variety defined over E with a function field
F, totally p-adic over E. Then there exists ¢ > 1 such that V is defined over E;. By
(2c), F/E; is totally p-adic. Hence, the function field of V' over E; (which is a subfield
of F) is totally p-adic over E;. Since, by (2b), E; is PpC, V has an E;-rational point.
This point is also E-rational. Conclude that E is PpC. |

THEOREM 15.4: For each G(Q,)-projective group G there exists a PpC field E such
that G(E) = G.

Proof: By Proposition 5.4(b) there exists a G(Q,,)-projective structure G with G as the
underlying group. Proposition 13.11 gives a field K such that X(G)/G = X(K). This
isomorphism defines a cover a: G — G(K/K). Theorem 15.3 gives a PpC field E and
an isomorphism p: G — G(E). In particular G(E) = G. ]

A well known theorem of Artin-Schreier says that each field K with G(K) = 7. /27

is real closed. The p-adic analogue is unknown.

PROBLEM 15.5: Is each field K with G(K) = G(Q,) p-adically closed?

This question has an affirmative answer if K is algebraic over Q (Neukirch’s the-
orem [N2]) or K is algebraic over a PpC field (Corollary 15.2). L. Pop [P] generalizes
Neukirch’s theorem to the case where QK = K.
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