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Introduction

The main problem in Galois theory is to describe the absolute Galois group G(K) of

a field K. This problem is solved in the local case, i.e., when K is algebraically, real

or p-adically closed. In the first case G(K) is trivial, in the second G(K) ∼= Z/2Z and

in the third case it is given by generators and relations (Jannsen-Wingberg [JW] and

Wingberg [W]). The next case to consider is when K is “pseudo closed”. A field K is

called pseudo algebraically (resp., real, p-adically closed) (abbreviation : PAC,

PRC and PpC, respectively) if every absolutely irreducible variety V defined over K has

a K-rational point, provided V has a K-rational simple point for each algebraic (resp.,

real, p-adic) closure K of K. The absolute Galois group of a pseudo closed field is best

described in terms of solvability of Γ-embedding problems, where Γ is 1 (resp., Z/2Z,

G(Qp)):

Let G be a profinite group. Consider a diagram

(1)

Gyϕ
B

α−→ A

where α is an epimorphism of finite groups and ϕ is a homomorphism. We call (1)

a finite Γ-embedding problem for G if for each closed subgroup H of G which is

isomorphic to Γ there exists a homomorphism γH : H → B such that α ◦ γH = ResHϕ.

The Γ-embedding problem (1) is solvable if there exists a homomorphism γ: G → B

such that α ◦ γ = ϕ. We call G Γ-projective if every finite Γ-embedding problem for

G is solvable, and if the collection of all closed subgroups of G which are isomorphic

to Γ is topologically closed. For Γ = 1 (resp., Γ = Z/2Z, Γ = G(Qp)) we obtain

projective (resp., real projective, p-adically projective) groups. Note that the

local-global principle included in the definition of pseudo closed fields is also reflected

in the definition of Γ-projective groups.

Theorem: If K is a PAC (resp., PRC, PpC) field, then G(K) is projective (resp., real

projective, p-adically projective). Conversely, if G is a projective (resp. real projective,

p-adically projective) group, then there exists a PAC (resp., PRC, PpC) field K such

that G(K) ∼= G.

1



Ax [A1, p. 269] and Lubotzky-v.d. Dries [LD, p. 44] prove the theorem for PAC

fields. We prove the theorem for PRC fields in [HJ]. The goal of this work is to prove

the theorem for PpC fields.

As in the PRC case, the easier direction is to prove that if K is PpC, then G(K)

is p-adically projective. For the converse we must develop a theory of G(Qp)-structures,

which replaces the Artin-Schreier structures of the PRC case.

There are two intrinsic difficulties in going over from PRC fields to PpC fields.

The first one is that the group Γ is no longer the finite group Z/2Z but rather the

infinite group G(Qp). Fortunately G(Qp) is finitely generated and with a trivial center.

So we consider in Part A of the work a finitely generated profinite group Γ with a

trivial center and define a Γ-structure as a structure G = 〈G,X, d〉, where G is a

profinite group which acts continuously and regularly on a Boolean space X (i.e., for

each x ∈ X and σ ∈ G the equality xσ = x implies σ = 1), and d is a continuous

map from X into Hom(Γ, G) which commutes with the action of G. The assumption

that Γ is finitely generated implies that Hom(Γ, G) is a Boolean space. The regularity

assumption is essential in constructing cartesian squares of Γ-structures. The latter are

essential in reducing arbitrary embedding problems to finite embedding problems. In

Section 5 we associate a Γ-structure G with each Γ-projective group G and prove that

G is projective. The proof depends on an extra assumption which we make on Γ. For

each e and m, 0 ≤ e ≤ m, we consider the free product Γe,m of e copies of Γ and the

free profinite group F̂m−e. We assume that Γ has a finite quotient Γ with this property:

each closed subgroup H of Γe,m which is a quotient of Γ and has Γ as a quotient (we

call it a large quotient of Γ) is isomorphic to Γ.

The second difficulty that arises in dealing with PpC fields is that two p-adic

closures E and F of a field K are not necessarily K-isomorphic. Fortunately Macintyre

[M] gives a criterion for isomorphism: E ∼=K F if and only if K ∩ En = K ∩ Fn for

each n ∈ N. As E×/(E×)n ∼= Q×
p /(Q×

p )n, E is characterized up to K-isomorphism by

a homomorphism ϕ: K× → lim←−Q×
p /(Q×

p )n with K× ∩ En as the kernel of the induced

map K× → Q×
p /(Q×

p )n, n ∈ N. In addition, the unique p-adic valuation defines a place

π: K → Qp ∪ {∞} such that π(u) ∈ Q×
p implies π(u) = ϕ(u). Here we have identified
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Q×
p as a subgroup of Φ = lim←−Q×

p /(Q×
p )n. We let Θ = Qp ∪{∞}∪Φ and call θ = (π, ϕ)

a Θ-site of K. An extension of Qp to Q̃p replaces Θ by Θ̃ and Θ-sites by Θ̃-sites.

With every Galois extension L/K we associate the space of sites X(L/K). This is the

collection of all Θ̃-sites θ of L such that θ(K) ⊆ Θ. It is a Boolean space and G(L/K)

acts continuously and regularly on it. It replaces the space of orderings of Artin-Schreier

structures. We also use regularity to define a map d: X(L/K)→ Hom(G(Qp),G(L/K))

which commutes with the action of G(L/K). A version of Krasner’s lemma proves that

d is continuous. Thus G(L/K) = 〈G(L/K), X(L/K), d〉 is a G(Qp)-structure.

In Section 11 we generalize a theorem of Neukirch and characterize Q̃ ∩ Qp by a

large finite quotient of G(Qp). Then we realize, for Γ = G(Qp), each Γe,m as absolute

Galois group of a field K, algebraic over K (Section 12). The combination of these

results shows that the above assumptions on Γ are satisfied in this case.

In part C we construct for each G(Qp)-structure G a Galois extension F/E such

that E is PpC and G(F/E) ∼= G. The restriction map Res: G(Ẽ/E) → G(F/E) is

a cover (i.e., if x, x′ ∈ X(Ẽ/E) are mapped onto the same element of X(F/E), then

x′ = xσ for some σ ∈ G(E)). Hence, if G is projective, Res has a section and therefore

G ∼= G(Ẽ/E1) for some algebraic extension E1 of E. Unfortunately unlike for PAC and

PRC fields, E1 need not be PpC. However, an extra transcendental construction finally

proves the existence of a PpC field K such that G(K) ∼= G. In particular G(K) ∼= G.

This concludes the proof of the Theorem for PpC fields.
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Notation

K̃ = the algebraic closure of a field K.

If K is a field of characteristic 0, then Kalg = K ∩ Q̃,

G(K) = the absolute Galois group of K.

For a place π of a field K, Oπ = {x ∈ K| π(x) 6= ∞} is the valuation ring and

Uπ = {u ∈ K| π(u) 6= 0,∞} is the group of units and π(K) = π(Oπ) is the residue field

of π.

If S is a set of automorphisms of a field F , then F (S) is the fixed field of S in F . In

particular for σσσ = (σ1, . . . , σm), F (σσσ) is the fixed field of σ1, . . . , σm in F .

For an abelian group A and a prime l, Al is the l-torsion part of A.

Qp = the field of p-adic numbers.

Qp,alg = the algebraic part of Qp.

Zp = the ring of p-adic integers.

Z×p = the group of units of Zp.

Fp = the field with p-elements.

In Part A, Γ is a fixed finitely generated group; in Parts B and C, Γ = G(Qp).
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Part A. Γ-Structures.

We fix for all of Part A a finitely generated profinite group Γ. In particular Γ has for

each n ∈ N only finitely many open subgroups of index n. In Sections 1 and 2 we define

and discuss Γ-structures. Later (Section 3) we require that Γ share some properties

with G(Qp). This is used to prove properties of Γ-projective groups and projective

Γ-structures (Section 4 and 5).

1. Definition of Γ-structures.

Recall that a Boolean spaceX is an inverse limit of finite discrete spaces. Alternatively

X is a totally disconnected compact Hausdorff space [HJ, Definition 1.1]. A profinite

transformation group is a pair (X,G), with X a Boolean space and G a profinite

group that acts continuously on X: (x, σ) 7→ xσ.

For each profinite group G consider the collection Hom(Γ, G) of continuous ho-

momorphisms from Γ into G. Each homomorphism h: G→ G′ naturally induces a map

h∗: Hom(Γ, G)→ Hom(Γ, G′) by h∗(ψ) = h ◦ψ. Thus Hom(Γ, G) = lim←−Hom(Γ, G/N),

where N ranges over all open normal subgroups of G. Since each ψ ∈ Hom(Γ, G/N)

is determined by its values on a finite set of generators of Γ, and since G/N is finite,

Hom(Γ, G/N) is a finite set. It follows that Hom(Γ, G) is a Boolean space. Obviously,

the above map h∗ is continuous.

The group G acts continuously on Hom(Γ, G) by

ψτ (g) = τ−1ψ(g)τ, ψ ∈ Hom(Γ, G), τ ∈ G, g ∈ Γ.

Thus (Hom(Γ, G), G) is a profinite transformation group and (h∗, h) is a morphism

of profinite transformation groups (i.e., h∗(ψτ ) = h∗(ψ)h(τ) for ψ ∈ Hom(Γ, G) and

τ ∈ G).

For a profinite group G denote the set of all closed subgroups of G by Subg(G).

Each homomorphism h: G→ G′ maps closed subgroups ofG onto closed subgroups ofG′

and thus naturally induces a map h∗: Subg(G)→ Subg(G′). Compactness of G implies

that Subg(G) = lim←−Subg(G/N), where N ranges over all open normal subgroups. Thus

Subg(G) is a Boolean space.
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Let Im: Hom(Γ, G)→ Subg(G) be the map that assigns to each ψ ∈ Hom(Γ, G) its

image Im(ψ) = ψ(Γ) in G. For an open normal subgroup N of G let ψN ∈ Hom(Γ, G/N)

be the homomorphism induced by ψ. A standard compactness argument shows that

Im(ψ) = lim←− Im(ψN ). Therefore Im: Hom(Γ, G) → Subg(G) is the inverse limit of the

maps Im: Hom(Γ, G/N)→ Subg(G/N). In particular Im is a continuous map.

Definition 1.1: A weak Γ-structure is a system G = 〈G,X, d〉, whereG is a profinite

group, X is a Boolean space on which G continuously acts, and d: X → Hom(Γ, G) is

a continuous map such that

(1) d(xσ) = d(x)σ for all x ∈ X and σ ∈ G.

Call G a Γ-structure if in addition the action of G on X is regular, i.e.,

(2) for each x ∈ X, xσ = x implies σ = 1.

We call X the space of sites, d the forgetful map and X/G the space of

orbits of G. The latter quotient space is Boolean [HJ, Claim 1.6]. For x ∈ X we

call D(x) = Im(d(x)) the decomposition group of x. By (1), D(xσ) = D(x)σ for

all x ∈ X and σ ∈ G. Since Im is continuous so is the map x 7→ D(x) from X into

Subg(G).

Unless explicitly stated otherwise, the underlying group, the space of sites and

the forgetful map of a Γ-structure G will be denoted by G, X(G) and d, respectively.

Analogously for H, A, B, etc.

A weak Γ structure G is said to be finite if both G and X(G) are finite.

Definition 1.2: A morphism ϕ: H → G of (weak) Γ-structures is a pair consisting

of a continuous homomorphism ϕ: H → G and a continuous map ϕ: X(H) → X(G)

such that

(3a) ϕ(xσ) = ϕ(x)ϕ(σ) for all x ∈ X(H) and σ ∈ H; and

(3b) d(ϕ(x)) = ϕ ◦ d(x) for all x ∈ X(H).

Call a morphism ϕ: H → G an epimorphism if ϕ(H) = G and ϕ(X(H)) =

X(G). The epimorphism ϕ is a cover if

(3c) for all x, x′ ∈ X(H) such that ϕ(x) = ϕ(x′) there exists σ ∈ H such that xσ = x′.
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If ϕ: H→ G is a morphism, then the map ϕ: X(H)→ X(G) induces a continuous

map ϕ̄: X(H)/H → X(G)/G of the respective orbit spaces. Note that ϕ is a cover if

and only if

(3c′) ϕ(H) = G and ϕ̄ is a bijection (therefore a homeomorphism).

Also

(3d) if H and G are Γ structures, then σ in (3c) is unique (by (2)) and σ ∈ Ker(ϕ) (by

(3a)).

Next we consider quotients of weak Γ-structures. Let G = 〈G,X, d〉 be a weak

Γ-structure and N a closed normal subgroup of G. Let ϕN = (h, η): (X,G) →

(X/N,G/N) be the canonical quotient map of transformation groups [HJ, Claim 1.6].

Define d̄: X/N → Hom(Γ, G/N) by d̄(h(x)) = η ◦ d(x), for x ∈ X. Thus the homomor-

phism η∗: Hom(Γ, G)→ Hom(Γ, G/N) induced by η (Section 1) satisfies η∗ ◦ d = d̄ ◦ h.

Since the maps η∗ and d are continuous and h is open [HJ, Claim 1.6], d̄ is continuous. It

follows that G/N = 〈G/N,X/N, d̄〉 is a weak Γ-structure and ϕN : G→ G/N is a cover.

Moreover, if G is a Γ-structure, then so is G/N . Conversely, each morphism ϕ: G→ G′

of weak Γ-structures with N ≤ Ker(ϕ) canonically induces a morphism ϕ̄: G/N → G′

such that ϕ̄ ◦ ϕN = ϕ. If G′ is a Γ-structure, ϕ is a cover and Ker(ϕ) = N , then ϕ̄ is

an isomorphism.

An inverse limit of (weak) Γ-structures is a (weak) Γ-structure. Conversely, each

weak Γ-structure G is equal to lim←−G/N , where N ranges over all open normal sub-

groups of G.

Let (X,G) be a profinite transformation group. Recall [HJ, Section 1] that a

partition of X is a finite collection Y = {V1, . . . , Vn} of disjoint nonempty open-closed

subsets of X such that X = V1 ∪ · · · ∪ Vn. A partition Y ′ of X is finer than Y if for

each V ′ ∈ Y ′ there is V ∈ Y such that V ′ ⊆ V . Call Y a G-partition if in addition for

each σ ∈ G and each i, 1 ≤ i ≤ n, there exists j, 1 ≤ j ≤ n, such that V σi = Vj .

Lemma 1.3: Every (weak) Γ-structure G is an inverse limit of finite (weak) Γ-structures

which are epimorphic images of G.

Proof: By the above remarks we may assume that the group G is finite. Let P be the

family of G-partitions Y of X(G) which
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(4a) are finer than {d−1(ψ)| ψ ∈ Hom(Γ, G)} (hence dY (U) = d(x) for U ∈ Y and

x ∈ U defines a continuous map dY : Y → Hom(Γ, G)); and

(4b) if G is a Γ-structure, then Uτ ∩ U = ∅ for all U ∈ Y and τ ∈ G− {1}.

Each Y ∈ P defines a finite (weak) Γ-structure GY = 〈G, Y, dY 〉. If Y ′ is finer than Y ,

then the map U ′ 7→ U for U ∈ Y , U ′ ∈ Y ′ and U ′ ⊆ U gives a canonical epimorphism

GY ′ → GY . Moreover, the map x 7→ U , for U ∈ Y and x ∈ U defines an epimorphism

G→ lim←−GY . Since both X and lim←−Y are compact and Hausdorff it suffices to prove

that this map is injective. In other words, for distinct x1, x2 ∈ X show that there exists

Y ∈ P such that dY (x1) 6= dY (x2).

Indeed, let V be an open-closed neighborhood of x1 such that x2 /∈ V . Let Y ′ be

a G-partition of X finer than {V,X − V } [HJ, Lemma 1.4]. If G is not a Γ-structure

let Y = {V ∩ d−1(ψ), (X − V ) ∩ d−1(ψ)| ψ ∈ Hom(Γ, G)}. If G is a Γ-structure,

then each x ∈ X has an open-closed neighborhood Ux such that xτ /∈ Ux for each

τ ∈ G−{1}. Replace Ux by d−1(d(x))∩V ∩Ux−
⋃
τ∈G−{1} U

τ
x , if necessary, to assume

that Ux ⊆ V ∩ d−1(d(x)) and Uτx ∩ Ux = ∅ for each τ ∈ G − {1}. Since X is compact,

finitely many of these neighborhoods cover X. Then there exists a partition Y0 of X

such that for each U ∈ Y0 and x ∈ X either U ⊆ Ux or U ∩ Ux = ∅. Finally use [HJ,

Lemma 1.4] to choose a G-partition Y of X, finer than Y0. Then Y ∈ P. In each case

dY (x) 6= dY (x′).

Lemma 1.4: Each weak Γ-structure G with an injective forgetful map is an inverse limit

of finite weak Γ-structures with injective forgetful maps which are epimorphic images

of G.

Proof: For each open normal subgroup N of G let ηN : G→ G/N be the canonical map.

The finite weak Γ-structure

GN = 〈G/N, {ηN ◦ d(x)| x ∈ X(G)}, inclusion〉

is obviously an epimorphic image of G. If x, y ∈ X(G) and x 6= y, then d(x) 6= d(y).

Hence there exists N such that ηN ◦ d(x) 6= ηN ◦ d(y). It follows that G = lim←−GN .
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2. Basic properties of Γ-structures.

A crucial ingredient in our construction is the existence of fibred products in the category

of Γ-structures. Let α1: B1 → A and α2: B2 → A be morphisms of weak Γ-structures.

Consider the fibred products B1 ×A B2 and X(B1) ×X(A) X(B2). For i = 1, 2 let

πi: B1×AB2 → Bi and πi: X(B1)×X(A)X(B2)→ X(Bi) be the projection maps. For

each (x1, x2) ∈ X(B1) ×X(A) X(B2), we have α1(d(x1)) = d(α1(x1)) = d(α2(x2)) =

α2(d(x2)). Hence there exists a unique homomorphism d̂(x1, x2): Γ → B1 ×A B2 such

that the following diagram is commutative

Γ

d(x1)

����
��

��
��

��
��

��
��

d(x2)

��7
77

77
77

77
77

77
77

7

d̂(x1,x2)

��
B1 ×A B2

π1
zzttt

ttt
ttt

t

π2
$$JJJ

JJJ
JJJ

J

B1

α1
%%JJJJJJJJJJ B2

α2
yytttttttttt

A

Check that the map d̂: X(B1)×X(A) X(B2)→ Hom(Γ, B1 ×A B2) defined in this way

is continuous. Further let B1 ×A B2 operate on X(B1) ×X(A) X(B2) componentwise

and verify condition (1) of Section 1 for d̂ to conclude that B1 ×A B2 = 〈B1 ×A
B2, X(B1) ×X(A) X(B2), d̂〉 is a weak Γ-structure. We call it the fibred product of

B1 and B2 over A. The coordinate projection πi: B1 ×A B2 → Bi, is a morphism,

i = 1, 2. If both B1 and B2 are Γ-structures, so is B1 ×A B2. If the forgetful maps of

both B1 and B2 are injective so is the forgetful map of B1 ×A B2.

The proof of the following characterization of fibred products is standard (e.g.,

[HL, Lemma 1.1]). It is left to the reader.

Lemma 2.1: Consider a commutative diagram of weak Γ-structures.

(1)

B
β2−→ B2yβ1

yα2

B1
α1−→ A

9



The following statements are equivalent:

(a) B is isomorphic to the fibred product B1 ×A B2 (i.e., there is an isomorphism

β: B→ B1×A B2 such that β1 ◦β−1 and β2 ◦β−1 are the coordinate projections);

(b) for each pair of morphisms ψi: C → Bi, i = 1, 2, of weak Γ-structures such that

α1 ◦ ψ1 = α2 ◦ ψ2 there is a unique morphism ψ: C → B such that βi ◦ ψ = ψi,

i = 1, 2; and

(c) 1. for each σi ∈ Bi, i = 1, 2, such that α1(σ1) = α2(σ2) there exists a unique

σ ∈ B such that βi(σ) = σi, i = 1, 2; and 2. for each xi ∈ X(Bi), i = 1, 2,

such that α1(x1) = α2(x2) there exists a unique x ∈ X(B), such that βi(x) = xi,

i = 1, 2.

We call a diagram (1) a cartesian square if it satisfies one of the equivalent

conditions of Lemma 2.1.

Lemma 2.2: If in the cartesian square (1) A is a Γ-structure and α2 is a cover, then so

is β1.

Proof: Let x, x′ ∈ X(B) and β1(x) = β1(x′). Then α2(β2(x)) = α2(β2(x′)). Hence there

exists σ2 ∈ B2 such that β2(x)σ2 = β2(x′). Therefore α2(β2(x))α2(σ2) = α2(β2(x′)) =

α2(β2(x)). Since A is a Γ-structure α2(σ2) = 1. Conclude that there exists σ ∈ B such

that β2(σ) = σ2 and β1(σ) = 1. Thus β2(xσ) = β2(x′) and β1(xσ) = β1(x′). From

Lemma 2.1(c) xσ = x′. It follows that β1 is a cover.

Lemma 2.3: Let β1: B → B1 be an epimorphism of Γ-structures and let K be a

closed normal subgroup of B such that K ∩ Ker(β1) = 1. Let β2: B → B/K and

α1: B1 → B1/β1(K) be the quotient maps. Denote the unique epimorphism such that

α1 ◦ β1 = α2 ◦ β2 by α2: B/K → B1/β1(K). Then the following diagram is a cartesian

square

(2)

B
β2−→ B/Kyβ1

yα2

B α1−→ B1/β1(K)

Proof: We leave the proof of 1. of Lemma 2.1(c) to the reader and prove 2. of Lemma

2.1(c). To prove the existence let x1 ∈ X(B1) and x2 ∈ X(B)/K with α1(x1) = α2(x2).
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There exists x ∈ X(B) such that β2(x) = x2. Since α1(x1) = α2(β2(x)) = α1(β1(x)),

there exists σ ∈ K such that x1 = β1(x)β1(σ) = β1(xσ). Finally x2 = β2(x) = β2(xσ).

For the uniqueness consider x, x′ ∈ X(B) that satisfy βi(x′) = βi(x), i = 1, 2.

There exists τ ∈ K, such that x′ = xτ . Hence β1(x) = β1(x′) = β1(x)β1(τ). Since B1 is

a Γ-structure, β1(τ) = 1. Conclude from K ∩ Ker(β1) = 1 that τ = 1. Hence x′ = x.

Let (X,G) be a profinite transformation group. A subset X0 of X is a system

of representatives for the G-orbits of X, if for each x ∈ X there exist x0 ∈ X0 and

σ ∈ G such that x = xσ0 , and if x0, x1 ∈ X0, σ ∈ G and xσ0 = x1 imply x0 = x1.

Lemma 2.4: Let G be a profinite group that acts regularly (Definition 1.1) (and con-

tinuously) on a Boolean space X. Then

(a) the quotient map π: X → X/G has a continuous section; and

(b) X has a closed system X0 of representatives for the G-orbits.

Proof: Note that assertions (a) and (b) are equivalent. Indeed, if λ: X/G → X is a

continuous section of π, thenX0 = λ(X/G) satisfies (b). If (b) holds, then the restriction

of π to X0 is a homeomorphism onto X/G. Its inverse is a continuous section of π.

We first prove (b) for G finite. Regularity implies that each x ∈ X has an open-

closed neighborhood Ux such that xσ /∈ Ux for each σ ∈ G, σ 6= 1. Replace Ux by

Ux −
⋃
σ 6=1 U

σ
x , if necessary, to assume that Ux ∩ Uσx = ∅ for each σ 6= 1. Since X is

compact, a finite collection of such sets, say U1, . . . , Un, covers X. Then

X0 =
n⋃
j=1

[Uj − (
j−1⋃
i=1

⋃
σ∈G

Uσi )]

is a closed system of representatives for the G-orbits of X. Indeed, for x ∈ X let j be

the smallest positive integer for which there exists σ ∈ G such that xσ ∈ Uj . Then

xσ ∈ X0 represents x. Also if x0, x1 ∈ X0 and xσ0 = x1 for some σ ∈ G, then there

exists j, 1 ≤ j ≤ n, such that x0, x1 ∈ Uj . Hence σ = 1. From the preceding paragraph

(a) is also true.

Now we prove (a) in the general case. Let L be the collection of all pairs (L, λ),

where L is a closed normal subgroup of G and λ is a continuous section of the quotient
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map πL,G: X/L → X/G. Partially order L by defining (L′, λ′) ≥ (L, λ) if L′ ≤ L and

πL′,L◦λ′ = λ. By Zorn’s Lemma L has a maximal element (L, λ). If L 6= 1, then L has a

proper open subgroup L′ which is normal in G. Since L/L′ is finite πL′,L: X/L′ → X/L

has a continuous section , say θ. Then (L′, θ ◦ λ) ∈ L and (L′, θ ◦ λ) > (L, λ), a

contradiction. Thus L = 1 and (a) holds.

Corollary 2.5: Let α: G → A be a cover of Γ-structures. Then α: X(G) → X(A)

has a continuous section, and X(G) has a closed system of representatives for its G-

orbits.

Proof: We may assume that α is the quotient map X(G)→ X(G)/Ker(α). Now apply

Lemma 2.4.

Lemma 2.6: Let X be a Boolean space, A a profinite group and d0: X → Hom(Γ, A)

a continuous map. Then there exists a Γ-structure A = 〈A,X ×A, d〉 such that X is a

closed system of representatives for the A-orbits of X(A) = X ×A and ResXd = d0.

Proof: Define the action of A on the Boolean space X ×A by (x, a)a
′
= (x, aa′). Then

the map d: X × A → Hom(Γ, A) defined by d(x, a) = d0(x)a is continuous and A =

〈A,X ×A, d〉 is a Γ-structure. Finally identify X with X × 1 to find that X is a closed

system of representatives for the A-orbits of X ×A and ResXd = d0.

The following lemma asserts that the Γ-structure A of Lemma 2.6 is unique up

to an isomorphism.

Lemma 2.7: Let A be a weak Γ-structure, let B be a Γ-structure, and let X a closed

system of representatives of the B-orbits of X(B). Also, let α0: B → A be a continuous

homomorphism and α′1: X → X(A) a continuous map such that d(α′1(x)) = α0 ◦ d(x)

for each x ∈ X. Then α′1 uniquely extends to a map α1: X(B) → X(A) such that

α = (α0, α1): B→ A is a morphism of weak Γ-structures.

Moreover, α is an epimorphism if and only if α0 is an epimorphism and α′1(X)

contains a representative of each A-orbit of X(A).

If A is a Γ-structure, then α is a cover if and only if α0 is an epimorphism, α′1 is

injective and α′1(X) is a system of representatives of the A-orbits of X(A).
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Proof: The map (x, σ) 7→ xσ, x ∈ X and σ ∈ B, gives an isomorphism of transformation

groups (X(B), B) ∼= (X × B,B), where B acts on X × B by multiplication from the

right on the second factor. Define the map α1: X(B)→ X(A) by α1(xσ) = α′1(x)
α0(σ).

It extends α′1 and α: B→ A is a morphism of weak Γ-structures. The rest of the lemma

follows from Definitions 1.1 and 1.2.

The following lemma shows that each finite weak Γ-structure A has a unique

minimal cover Â which is a finite Γ-structure.

Lemma 2.8: Let A = 〈A,X, d〉 be a finite weak Γ-structure. Then there exists a finite

Γ-structure Â = 〈A, X̂, d̂〉 and a cover π: Â → A such that for every (epi)morphism

α: B → A from a Γ-structure B there exists an (epi)morphism α̂: B → Â such that

π ◦ α̂ = α.

Proof: Let X0 be a system of representatives for the A-orbits of X. Since X0 is finite,

Lemma 2.6 gives a Γ-structure Â = 〈A, X̂, d̂〉 such that X̂ ∼= X0 × A, X0 is a closed

system of representatives for the A-orbits of X̂ and d̂(x0) = d(x0) for each x0 ∈ X0.

The map id: A→ A and the map X0 ×A→ X given by (x0, σ) 7→ xσ0 , for x0 ∈ X0 and

σ ∈ A define a cover π: Â → A (Lemma 2.7). In particular d(π(x)) = d̂(x) for each

x ∈ X̂.

Let now B be a Γ-structure and α: B→ A a morphism. By Corollary 2.5, X(B)

has a closed system Y0 of representatives for its B-orbits. Choose a map ρ: α(Y0)→ X̂

such that π(ρ(x)) = x for each x ∈ α(Y0). Since α(Y0) is finite, ρ is continuous.

Denote the restriction of α: X(B) → X(A) to Y0 by α′1 and let α̂′1 = ρ ◦ α′1. Then

d̂(α̂′1(y0)) = α ◦ d(y0) for each y0 ∈ Y0. By Lemma 2.7, α′1: Y0 → X and α: B → A

extend to a morphism α̂: B→ A such that π ◦ α̂ = α.
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3. The Γ-structure ΓΓΓe,m.

For integers 0 ≤ e ≤ m take e copies Γ1, . . . ,Γe of Γ. Let

(1) Γe,m = Γ1 ∗ · · · ∗ Γe ∗ F̂m−e

be the free product (in the category of profinite groups) of Γ1, . . . ,Γe and the free

profinite group F̂m−e of rank m− e. We view Γ1, . . . ,Γe and F̂m−e as closed subgroups

of Γe,m. Each (e + 1)-tuple (γ1, . . . , γe, γe+1) of homomorphisms of Γ1, . . . ,Γe, F̂m−e,

respectively, into a profinite groupG uniquely extends to a homomorphism γ: Γe,m → G.

The results about projectivity obtained in Sections 4 and 5 depend on the following

assumptions on Γ and Γe,m.

Assumption 3.1: The profinite group Γ satisfies the following conditions:

(a) Γ is finitely generated and nontrivial.

(b) The center of Γ is trivial.

(c) Suppose that closed subgroups H, H ′ of Γe,m are isomorphic to Γ. Then

(c1) H is conjugate to one of the groups Γ1, . . . ,Γe;

(c2) if σ ∈ Γe,m satisfies Hσ = H, then σ ∈ H; and

(c3) if H ′ 6= H, then H ′ ∩H = 1.

(d) Γ has a finite quotient Γ with the following property: if a closed subgroup H of

Γe,m is a quotient of Γ and has Γ as a quotient, then H ∼= Γ (hence, by (c), H is

conjugate to one of the subgroups Γ1, . . . ,Γe).

Definition 3.2: We call a quotient H of Γ large if Γ is a quotient of H. Assumption

3.1(d) says that any closed subgroup of Γe,m which is a large quotient of Γ is isomorphic

to Γ.

Lemma 3.3: The subgroups Γ1, . . . ,Γe of Γe,m are mutually nonconjugate. The cen-

tralizer of Γi in Γe,m, is trivial, i = 1, . . . , e.

Proof: The identity maps Γi → Γi, i = 1, . . . , e and the trivial map F̂m−e → 1 give a

homomorphism ϕ of Γe,m onto the direct product Γ1×· · ·×Γe. Since Γ 6= 1 (Assumption

3.1(a)), Γ1, . . . ,Γe are mutually nonconjugate as subgroups of Γ1×· · ·×Γe. Hence they
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are mutually nonconjugate as subgroups of Γe,m. The assertion about the centralizer

follows from 3.1(b) and 3.1(c2).

Remark 3.4: Assumption 3.1(c) does not hold for arbitrary Γ. For example, let Γ =

Zp, e = m = 2. Then Γ2,2 is the free product of subgroups 〈a〉 and 〈b〉, each isomorphic

to Zp. Consider the map α: Γ2.2 → Zp × Zp defined by a 7→ (1, 0) and b 7→ (0, 1).

Then α(ab) = (1, 1) generates a group isomorphic to Zp but conjugate to none of the

components of Zp × Zp. Hence, the subgroup 〈ab〉 of Γ2,2 contains a subgroup which is

isomorhic to Zp but conjugate to neither 〈a〉 nor 〈b〉. Thus Assumption 3.1(c1) is not

fulfilled. Herfort and Ribes [Thm. B’ of HR] prove Assumptions 3.1(c2) and 3.1(c3)

for arbitrary Γ by group theoretic methods. We however verify Assumption 3.1 for

Γ ∼= G(Qp), the only case we need, by field theoretic methods (Proposition 12.10).

Lemma 3.5: Let 0 ≤ e ≤ m be integers. In the above notation choose for each i,

1 ≤ i ≤ m, an isomorphism ψi: Γ → Γi. Let X = {ψσi | i = 1, . . . , e; σ ∈ Γe,m} and let

d: X → Hom(Γ,Γe,m) be the inclusion map. Then

(a) ΓΓΓe,m = 〈Γe,m, X, d〉 is a Γ-structure (Definition 1.1);

(b) the elements of X are embeddings of Γ into Γe,m;

(c)
{D(x)| x ∈ X} = {Γσi | i = 1, . . . , e; σ ∈ Γe,m}

= {H ≤ Γe,m|H is a large quotient of Γ};

and

(d) for x, y ∈ X, D(x) = D(y) if and only if there exists σ ∈ D(x) such that y = xσ;

if D(x) 6= D(y) then D(x) ∩D(y) = 1.

Proof: To prove (a) it suffices to check the regularity of the action of Γe,m on X. Indeed,

if ψσi = ψi for some i, 1 ≤ i ≤ n and σ ∈ Γe,m, then σ belongs to the centralizer of Γi in

Γe,m. Therefore Assumptions 3.1(c2) and 3.1(b) imply that σ = 1. Assertion (c) follows

from Assumption 3.1(d). Finally assertion (d) is a combination of (c), Assumption

3.1(c2) and Assumption 3.1(d).

Corollary 3.6: Let B be a finite weak Γ-structure. Then, for suitable 0 ≤ e ≤ m,
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there exists a cover β: ΓΓΓe,m → B.

Proof: Let x1, . . . , xe represent the B-orbits of X(B) and let m = e+ rank(B). Define

an epimorphism β: Γe,m → B such that its restriction to Γi is d(xi) ◦ ψ−1
i , i = 1, . . . , e

(in the notation of Lemma 3.5) and its restriction to F̂m−e maps this group onto B. Now

define a surjective map β: X → X(B) by β(ψσi ) = x
β(σ)
i , for σ ∈ Γe,m and i = 1, . . . , e.

Then β: ΓΓΓe,m → B is a cover (Definition 1.2).

4. Γ-projective groups.

Let G be a profinite group. A conjugacy domain of subgroups of G is a collection of

closed subgroups of G which is closed under conjugation by elements of G. In particular,

the collection of all subgroups of G which are isomorphic to Γ is a conjugacy domain. We

denote it by D(G). Since Γ is finitely generated each ψ ∈ Hom(Γ, G) with ψ(Γ) ∈ D(G)

is an embedding [R, p. 69]. We say that a conjugacy domain of subgroups of G is

closed if it is a closed subset of the Boolean space Subg(G) (Section 1).

Definition 4.1: Let D be a closed conjugacy domain of subgroups of a profinite group

G which are isomorphic to Γ. A D-embedding problem for G is a diagram

(1)

Gyϕ
B

α−→ A

(abbreviated ”(ϕ, α)”), where α is an epimorphism of profinite groups, ϕ is a homo-

morphism and for each H ∈ D there exists a homomorphism γH : H → B such that

α ◦ γH = ResHϕ. The problem is finite if B is a finite group. A solution to (1) is a

homomorphism γ: G→ B such that α ◦ γ = ϕ. We say that G is D-projective if every

finite D-embedding problem for G is solvable.

We say that G is Γ-projective if D(G) is topologically closed in Subg(G) and

if G is D(G)-projective. In this case we refer to a D(G)-embedding problem also as a

Γ-embedding problem.

The condition on G to be D-projective may be considered as a local-global prin-

ciple. Thus (1) is solvable if for each H ∈ D the local problem associated to H is

solvable.
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Remark 4.2: Note that if X is a subset of Hom(Γ, G) such that {ψ(Γ)| ψ ∈ X} = D,

then each ψ ∈ X is an embedding. Thus (1) is a D-embedding problem if and only if

for each ψ ∈ X there exists ρ ∈ Hom(Γ, B) such that α ◦ ρ = ϕ ◦ ψ.

Example 4.3: For each e and m, 1 ≤ e ≤ m, Γe,m is a Γ-projective group. Indeed

let (1) with G = Γe,m be a finite embedding problem for Γe,m. Then for each i,

1 ≤ i ≤ e, there exists a homomorphism γi: Γi → B such that α ◦ γi = ResΓi
ϕ. Also,

as a free profinite group F̂m−e is projective. Therefore there exists a homomorphism

γe+1: F̂m−e → B such that α◦γe+1 is the restriction of ϕ to F̂m−e. Combine γ1, . . . , γe+1

to a solution γ of (1).

Lemma 4.4: In the notation of Definition 4.1, if G is D-projective, then every D-

embedding problem (1) in which A is finite and rank(B) ≤ ℵ0 [J3, Sec.1] has a solution.

Proof: There exists a descending sequence Ker(α) = N0 ≥ N1 ≥ N2 ≥ · · · of open

normal subgroups of B with a trivial intersection. Identify A with B/N0 and let ϕ0 = ϕ

and α0 = α. For each i and j, j ≥ i ≥ 0, let αi: B → B/Ni and αji: B/Nj → B/Ni be

the quotient maps.

Claim: Let i ≥ 0 and let ϕi: G → B/Ni be a homomorphism such that (ϕi, αi) is

a D-embedding problem for G. Then there exists ϕi+1 ∈ Hom(G,B/Ni+1) such that

αi+1,i ◦ ϕi+1 = ϕi and (ϕi+1, αi+1) is a D-embedding problem for G.

Use the claim to inductively construct ϕi+1 ∈ Hom(G,B/Ni+1) such that αi+1,i ◦

ϕi+1 = ϕi. The maps ϕi define γ ∈ Hom(G,B) such that α ◦ γ = ϕ.

Without loss prove the claim for i = 0. For each j the pair (ϕ, αj0) is a D-

embedding problem for G. For each β ∈ Hom(G,B/Nj) let β ◦Hom(Γ, G) = {β ◦ψ|ψ ∈

Hom(Γ, G)}. It is a subset of the finite set Hom(Γ, B/Nj). Thus, since G is D-projective,

the finite collection of sets

Zj = {β ◦Hom(Γ, G)| β ∈ Hom(G,B/Nj), αj0 ◦ β = ϕ}

is nonempty. The map β ◦ Hom(Γ, G) 7→ αj+1,j ◦ β ◦ Hom(Γ, G) maps Zj+1 into Zj .

It follows that lim←−Zj 6= ∅, i.e., there exist homomorphisms βj : G → B/Nj such that

αj0 ◦ βj = ϕ and

(2) αj+1,j ◦ βj+1 ◦Hom(Γ, G) = βj ◦Hom(Γ, G), j = 0, 1, 2, ... .
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In particular αj0 ◦ β1 = ϕ. Apply Remark 4.2 to show that (β1, α1) is a D-embedding

problem for G. Indeed, let ψ1 ∈ Hom(Γ, G) and use (2) to inductively construct ψj ∈

Hom(Γ, G) such that αj+1,j◦βj+1◦ψj+1 = βj◦ψj , j = 1, 2, 3, . . . . The maps βj◦ψj : Γ→

B/Nj define ρ ∈ Hom(Γ, B) such that α1 ◦ ρ = β1 ◦ψ1. This concludes the proof of the

claim for i = 0.

Lemma 4.5: In the notation of Definition 4.1 suppose that G is a D-projective group.

Then

(a) if H1 ≤ G is a large quotient of Γ (Definition 3.2), then H1 ∈ D; therefore

D = D(G), G is Γ-projective and D(G) is topologically closed in Subg(G));

(b) if H,H ′ ∈ D and H 6= H ′, then H ∩H ′ = 1; and

(c) if H2 ∈ D and σ ∈ G satisfies Hσ
2 = H2, then σ ∈ H2.

Proof: Let H1 ≤ G be a large quotient of Γ, let H,H ′,H2 ∈ D and let σ ∈ G such

that H 6= H ′ and Hσ
2 = H2. Since D is closed in Subg(G) = lim←−Subg(G/N), where N

ranges over all open normal subgroups of G, there is N such that, with A = G/N , the

quotient map ϕ: G→ A satisfies

(3a) ϕ(H1), ϕ(H), ϕ(H ′) and ϕ(H2) are large quotients of Γ;

(3b) ϕ(H1) /∈ ϕ(D) if H1 /∈ D;

(3c) ϕ(H) 6= ϕ(H ′); and

(3d) ϕ(σ) /∈ ϕ(H2) if σ /∈ H2.

Let α1, . . . , αe be a listing of all α ∈ Hom(Γ, A) such that α(Γ) ∈ ϕ(D). With Γ1 = · · · =

Γe = Γ the maps αi: Γi → A together with a suitable epimorphism αe+1: F̂m−e → A

(for some m ≥ e) define an epimorphism α of Γe,m = Γ1 ∗ · · · ∗ Γe ∗ F̂m−e onto A such

that (ϕ, α) is a D-embedding problem. By Lemma 4.4 there exists a homomorphism

γ: G→ Γe,m such that α ◦ γ = ϕ.

From (3a) and Assumption 3.1(d), γ(H1), γ(H), γ(H ′) and γ(H2) are isomorphic

to Γ. By Assumption 3.1(c1), each of the groups γ(H1), γ(H), γ(H ′), and γ(H2) is

conjugate to some Γi, i = 1, . . . , e. Therefore ϕ(H1) ∈ ϕ(D). Conclude from (3b) that

H1 ∈ D. This proves (a).
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From (3c), γ(H) 6= γ(H ′). By Assumption 3.1(c3), γ(H) ∩ γ(H ′) = 1. Now note

that since γ(H) ∼= H ∼= Γ, the restriction of γ to H is injective. Therefore H ∩H ′ = 1.

Finally observe for (c) that since γ(H2)γ(σ) = γ(H2), Assumption 3.1(c2) implies

that γ(σ) ∈ γ(H2). Hence ϕ(σ) ∈ ϕ(H2). Conclude from (3d) that σ ∈ H2.

Remark 4.6: The group Aut(Γ) of all automorphisms of Γ is profinite [Sm, Thm. 1.3].

It acts on Hom(Γ, G) by the following rule:

ψω = ψ ◦ ω, ψ ∈ Hom(Γ, G), and ω ∈ Aut(Γ).

Note that the actions of Aut(Γ) and G on Hom(Γ, G) commute. Also, let ψ,ψ′ ∈

Hom(Γ, G).

(a) If ψ(Γ) = ψ′(Γ) and ψ is an embedding, then there exists ω ∈ Aut(Γ) such that

ψ′ = ψω.

(b) For g ∈ Γ let [g] be the inner automorphism of Γ determined by g. Then ψ[g] =

ψψ(g). Thus there exists g ∈ Γ such that ψ′ = ψ[g] if and only if there exists

σ ∈ ψ(Γ) such that ψ′ = ψσ.

Lemma 4.7: Suppose that a profinite groupG is Γ-projective. Then there exists a closed

subset X of Hom(Γ, G), closed under the action of G, such that {ψ(Γ)|ψ ∈ X} = D(G)

and for each ψ,ψ′ ∈ X,

(4) ψ(Γ) = ψ′(Γ) if and only if there exists σ ∈ ψ(Γ) such that ψ′ = ψσ.

Proof: The set Y = {ψ ∈ Hom(Γ, G)| ψ(Γ) ∈ D(G)} is closed under the actions of

G and Aut(Γ) on Hom(Γ, G). By Lemma 4.5(a) the collection D(G) is topologically

closed in Subg(G). Since Im: Hom(Γ, G)→ Subg(G) is continuous (beginning of Section

1), Y is topologically closed in Hom(Γ, G). The quotient space Y/G is Boolean [HJ,

Section 1]. Since the actions of G and Aut(Γ) on Y commute, Aut(Γ) acts on Y/G. By

Remark 4.6(b), the group of inner automorphisms Inn(Γ) of Γ, acts trivially on Y/G.

Hence Aut(Γ)/Inn(Γ) acts on Y/G. We claim that this action is regular (Definition 1.1).

Indeed, if for ψ ∈ Y , ω ∈ Aut(Γ) and σ ∈ G we have ψω = ψσ, then ψ(Γ) = ψ(Γ)σ.

Hence σ ∈ ψ(Γ) (Lemma 4.5(c)). Thus σ = ψ(g), with g ∈ Γ. By Remark 4.6(b),

ψω = ψ[g]. But since ψ is an embedding, ω = [g], which proves our claim.
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By Lemma 2.4(b) there exists a closed system of representatives X for the

Aut(Γ)/Inn(Γ)-orbits of Y/G. Let X be the preimage of X under the map Y → Y/G.

Then {ψ(Γ)| ψ ∈ X} = D(G). If ψ,ψ′ ∈ X and ψ(Γ) = ψ′(Γ), then there exists

ω ∈ Aut(Γ) such that ψ′ = ψω (Remark 4.6(a)). By the definition of X there ex-

ists σ ∈ G such that ψ′ = ψσ. Lemma 4.5(c) implies that σ ∈ ψ(Γ). The converse

implication of (4) is trivial.

Lemma 4.8: Suppose that G is a Γ-projective profinite group. Let X be as in Lemma

4.7 and let G = 〈G,X, inclusion〉 be the corresponding weak Γ-structure. Consider an

epimorphism α: B → A of finite weak Γ-structures, a morphism ϕ: G → A and an

open normal subgroup N0 of G. Then there exists a commutative diagram

(5)

Gyϕ̂
B̂ α̂−→ Â ϕyπ′ yπ
B̂ α−→ Â

in which α̂ is an epimorphism of weak Γ-structures with injective forgetful maps (inclu-

sion, for simplicity), such that Ker(ϕ̂) ≤ N0;

(a) for each λ ∈ X(B̂), Ker(α̂)∩λ(Γ) = 1 (i.e., the restriction of α̂ to λ(Γ) is injective);

(b) if ρ, ρ′ ∈ X(Â) and there exists ω ∈ Aut(Γ) such that ρ′ = ρω, then there exists

g ∈ Γ such that π ◦ ρ′ = π ◦ ρ[g]; and

(c) for each ψ ∈ X the group ϕ̂(ψ(Γ)) is a large quotient of Γ (Definition 3.2).

Proof: By Corollary 3.6 there exists an epimorphism β: Γe,m → B for suitable e,m.

Since the forgetful map of Γe,m is injective, β induces an epimorphism β̄ of a finite weak

Γ-structure B1 with an injective forgetful map onto B (Lemma 1.4). Replace B by B1

and α by α ◦ β̄, if necessary, to assume that the forgetful map of B is injective.

Let N be an open normal subgroup of G which is contained in N0 ∩ Ker(ϕ) and

denote the quotient map G → G/N by ϕ̂. Then Â = GN = 〈G/N, {ϕ̂ ◦ ψ| ψ ∈

X}, inclusion〉 is a finite weak Γ-structure. Lemma 1.4 implies that if N is sufficiently

small, then the map G/N → A defined by ϕ can be completed to a morphism π: Â→ A
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such that ϕ = π ◦ ϕ̂. With B̂ = B×A Â (Section 2), we obtain a commutative diagram

(5). Since the injective maps of both B and Â are injective so is the injective map of

B̂ (Section 2). Our aim now is to choose N sufficiently small such that (a), (b) and (c)

hold.

To achieve (a) let ∆ be the intersection of all Ker(λ) with λ ∈ X(B̂). Since Γ is

finitely generated, ∆ is an open normal subgroup of Γ. For each open normal subgroup

M of G let Z(M) = {ψ ∈ X| ψ−1(M) ≤ ∆}. If ψ ∈ Z(M) and ψ′ ∈ X coincides with

ψ modulo M , then ψ′ ∈ Z(M). Thus Z(M) is open in X. For each ψ ∈ X there exists

M such that ψ(Γ) ∩M ≤ ψ(∆). Since ψ is an embedding, ψ−1(M) ≤ ∆ and therefore

ψ ∈ Z(M). Thus the collection of all Z(M)’s covers X. By compactness there exist

open normal subgroups M1, . . . ,Mm of G such that X = Z(M1)∪· · ·∪Z(Mm). Choose

N ≤ M1 ∩ · · · ∩Mm. Then Ker(ϕ̂ ◦ ψ) = ψ−1(N) ≤ ∆ ≤ Ker(λ) for every ψ ∈ X

and λ ∈ X(B̂). Now, for each λ ∈ X(B̂), α̂ ◦ λ is an element of X(Â). Thus there

exists ψ ∈ X such that α̂ ◦ λ = ϕ̂ ◦ ψ. Conclude that Ker(α̂ ◦ λ) ≤ Ker(π′ ◦ λ), i.e.,

π′(λ(Γ) ∩Ker(α̂)) = 1. Hence, by Lemma 2.1(c) 1. we get that Ker(α̂) ∩ λ(Γ) = 1.

To achieve (b) let Y1, . . . , Yn be the distinct Inn(Γ)-orbits of X(A). Then Xi =

ϕ−1(Yi) = {ψ ∈ X| ϕ ◦ ψ ∈ Yi}, i = 1, . . . , n, are open-closed subsets of X. If ψi ∈ Xi

and ψj ∈ Xj , for i 6= j, then ψi and ψj are not in the same Inn(Γ)-orbit. From Remark

4.6(b) there exists no σ ∈ ψi(Γ) such that ψj = ψσi . Hence by (4), ψi(Γ) 6= ψj(Γ) and

therefore ψi and ψj are not in the same Aut(Γ)-orbit. That is, the closed subsets ψ
Aut(Γ)
i

and ψ
Aut(Γ)
j of X are disjoint. Hence, if N is sufficiently small, ϕ̂ ◦ ψAut(Γ)

i is disjoint

from ϕ̂ ◦ψAut(Γ)
j . Obviously, if ψ′i and ψ′j coincide with ψi and ψj , respectively, modulo

N , then ϕ̂ ◦ ψ′i
Aut(Γ)

is disjoint from ϕ̂ ◦ ψ′j
Aut(Γ)

. Use the compactness of Xi ×Xj to

find an N such that ϕ̂ ◦ ψAut(Γ)
i ∩ ϕ̂ ◦ ψAut(Γ)

j = ∅ for all i 6= j and each ψi ∈ Xi and

ψj ∈ Xj .

If ρ, ρ′ ∈ X(Â) and ρ′ = ρω for some ω ∈ Aut(Γ), then there exists ψ,ψ′ ∈ X

such that ρ = ϕ̂ ◦ ψ and ρ′ = ϕ̂ ◦ ψ′. By the choice of N , ψ and ψ′ lie in the same Xi.

Hence π ◦ ρ = ϕ ◦ ψ and π ◦ ρ′ = ϕ ◦ ψ′ belong to the same Yi. Conclude that there

exists g ∈ Γ such that π ◦ ρ′ = π ◦ ρ[g]. This proves (b).

Finally, to achieve (c), note that for each ψ ∈ X the group ψ(Γ) is isomorphic to
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Γ. Therefore ϕ̂(ψ(Γ)) is a large quotient of Γ if N is sufficiently small. The same holds

for ψ′ ∈ X if ϕ̂ ◦ ψ′ = ϕ̂ ◦ ψ, i.e., if ψ′ lies near ψ. Use the compactness of X to choose

N such that ϕ̂(ψ(Γ)) is a large quotient of Γ for each ψ ∈ X.

5. Projective Γ-structures.

We define projective Γ-structure and prove that the underlying group of each of them

is Γ-projective. Conversely we show that the Γ-structure associated in Lemma 4.8 with

a Γ-projective group is projective.

Definition 5.1: Let G be a Γ-structure. A diagram

(1)

Gyϕ
B

α−→ A

(abbreviated by ”(ϕ, α)”) where ϕ is a morphism and α is an epimorphism of weak Γ-

structures is called a weak embedding problem for G. If A and B are Γ-structures

and α is a cover, we call (ϕ, α) an embedding problem for G. The problem is finite

if B is finite. A solution to (ϕ, α) is a morphism γ: G→ B such that α ◦ γ = ϕ. The

structure G is projective if every finite weak embedding problem for G has a solution.

Lemma 5.2: If G is a projective Γ-structure, then every embedding problem for G has

a solution.

Proof: Consider embedding problem (1) for G. Let K = Ker(α) and assume without

loss that A = B/K and α is the quotient map (Section 1). Divide the rest of the proof

into two parts.

Part A: K is finite. Then there exists an open normal subgroup N0 of B such that

N0∩K = 1. By Lemma 1.3 there exists an epimorphism β of B onto a finite Γ-structure

B0 such that Ker(β) ≤ N0. Now use Lemma 2.3 to construct a cartesian diagram of

epimorphisms of Γ-structures
B α−→ Ayβ yα1

B0
α0−→ A0
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in which α0 is a cover. By assumption there exists a morphism γ0: G → B0 such that

α0 ◦ γ0 = α1 ◦ϕ. Thus, Lemma 2.1(b) gives a morphism γ: G→ B such that α ◦ γ = ϕ.

Part B: The general case. Let Λ be the family of pairs (L, λ), where L is a closed

normal subgroup of B contained in K and λ: G→ B/L is a morphism such that

G
λ

{{ww
ww

ww
ww

w
ϕ

��
B/L

αL

// B/K

commutes (αL is the cover induced by L ≤ K). Partially order Λ by letting (L′, λ′) ≥

(L, λ) mean that L′ ≤ L and

(2) G

λ′

uullllllllllllllll

λ}}{{
{{

{{
{{

B/L′ // B/L

commutes. Then Λ is inductive and by Zorn’s Lemma it has a maximal element (L, λ).

If L 6= 1, there is an open normal subgroup N in B such that L 6≤ N ; hence L′ = N ∩L

is a proper open normal subgroup of L. Since L/L′ is finite Part A gives a morphism

λ′: G → B/L′ such that (2) commutes. Then (L′, λ′) ∈ Λ and (L′, λ′) > (L, λ), a

contradiction. Conclude that L = 1, as required.

Lemma 5.3: Each projective Γ-structure G has the following properties.

(a) the forgetful map d: X(G)→ Hom(Γ, G) is injective;

(b) for each x ∈ X(G) the map d(x): Γ→ G is injective (therefore D(x) ∼= Γ);

(c) if H ≤ G is a large quotient of Γ (Definition 3.2), then H ∼= Γ and there exists

x ∈ X(G) such that D(x) = H (Definition 1.1);

(d) if x, y ∈ X(G) ,then D(x) = D(y) if and only if there exists σ ∈ D(x) such that

y = xσ; if D(x) 6= D(y), then D(x) ∩D(y) = 1; and

(e) the set D(G) = {H ≤ G| H ∼= Γ} is closed in Subg(G) and possesses a closed

system of representatives for the conjugacy classes.
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Proof: Let ϕ be an epimorphism of G onto a finite Γ-structure A. By Corollary 3.6

there exists a cover α: Γe,m → A, for some e and m, 0 ≤ e ≤ m. Since G is projective,

there exists a morphism γ: G → Γe,m such that α ◦ γ = ϕ. Recall that G is the

inverse limit of finite Γ-structures (Lemma 1.3). Since ΓΓΓe,m has properties (a)-(e) above

(Lemma 3.5), a suitable choice of A will imply these properties for G.

Proof of (a): Suppose that x, x′ ∈ X(G) and x 6= x′. Choose ϕ such that ϕ(x) 6= ϕ(x′).

Then γ(x) 6= γ(x′). Hence d(γ(x)) 6= d(γ(x′)). It follows that γ(d(x)) 6= γ(d(x′)).

Therefore d(x) 6= d(x′).

Proof of (b): The right hand side of γ ◦ d(x) = d(γ(x)) is injective. Hence d(x) is

injective.

Proof of (c): Choose A such that ϕ(H) is a large quotient of Γ. Then γ(H) is a large

quotient of Γ. It follows that γ(H) ∼= Γ. SinceH is also a quotient of Γ, H ∼= Γ [R, p. 69].

Now the map D: X(G)→ Subg(G) is continuous (Section 1). Since X(G) is compact,

{D(x)|x ∈ X(G)} is closed in Subg(G) and it is the inverse limit of {D(a)| a ∈ X(A)},

where A ranges over all finite quotients of G. If H 6= D(x) for all x ∈ X(G), then we

may choose A such that ϕ(H) 6= D(a) for all a ∈ X(A). Therefore γ(H) 6= D(y) for all

y ∈ X(ΓΓΓe,m). Since γ(H) ∼= Γ, this is impossible.

Proof of (d): Obviously, if y = xσ with σ ∈ D(x), then D(x) = D(y). Conversely if

D(x) = D(y), then D(γ(x)) = D(γ(y)). Hence γ(x) and γ(y) lie in the same Γe,m-

orbit. Therefore ϕ(x) and ϕ(y) lie in the same A-orbit. Since this holds for each A and

since the G-orbit of x is closed, x and y lie in the same G-orbit. Finally suppose that

D(x) 6= D(y). Choose A such that D(ϕ(x)) 6= D(ϕ(y)). Then D(γ(x)) 6= D(γ(y)).

Hence γ(D(x)) ∩ γ(D(y)) = 1. Since the restriction of γ to D(x) is injective (by (b)),

D(x) ∩D(y) = 1.

Proof of (e): By (b) and (c), D(G) = {D(x)| x ∈ X(G)}. Hence D(G) is closed

in Subg(G). Now let X0 be a closed system of representatives for the G-orbits of

X(G) (Corollary 2.5). Then (d) implies that {D(x)| x ∈ X0} is a closed system of

representatives for the conjugacy classes of D(G).
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Proposition 5.4: (a) If G is a projective Γ-structure, then G is a Γ-projective group.

(b) Conversely, let G be a Γ-projective group. Then there exists a closed subset X of

Hom(Γ, G), closed under the action of G such that D(G) = {ψ(Γ)| ψ ∈ X} and

for all ψ,ψ′ ∈ X, ψ(Γ) = ψ′(Γ) if and only if there exists σ ∈ ψ(Γ) such that

ψσ = ψ′. For each such X, G = 〈G,X, inclusion〉 is a projective Γ-structure.

Proof of (a): From Lemma 5.3, D(G) is topologically closed in Subg(G) and we may

assume that the forgetful map of G is an inclusion. Choose a closed system X0 of

representatives for the G-orbits of X(G) (Corollary 2.5). As in (1) of Definition 4.1

let (ϕ, α) be a finite D(G)-embedding problem for G. Then Y 0 = {ϕ ◦ ψ| ψ ∈ X0}, as

a subset of Hom(Γ, A), is finite, and for each ρ̄ ∈ Y 0 we may choose ρ ∈ Hom(Γ, B)

such that α ◦ ρ = ρ̄. Let Y0 = {ρ| ρ̄ ∈ Y 0}. Define regular actions of A and B on

Y 0 × A and Y0 × B by (ρ̄, a)a
′

= (ρ̄, aa′) and (ρ, b)b
′

= (ρ, bb′), respectively. Define

maps dA: Y 0 × A → Hom(Γ, A) and dB : Y0 × B → Hom(Γ, B) by dA(ρ̄, a) = ρ̄a and

dB(ρ, b) = ρb, respectively. Then A = 〈A, Y 0×A, dA〉 and B = 〈B, Y0×B, dB〉 are finite

Γ-structures. Since (X(G), G) and (X0×G,G) are isomorphic as transformation groups,

the map ψσ 7→ (ϕ ◦ ψ,ϕ(σ)) for ψ ∈ X0 and σ ∈ G together with the homomorphism

ϕ: G→ A is a morphism ϕ: G→ A. Similarly the map (ρ, b) 7→ (ρ̄, α(b)) gives together

with the homomorphism α: B → A an epimorphism α: B→ A. Since G is projective,

there exists a morphism γ: G→ B such that α◦γ = ϕ. The underlying homomorphism

γ: G→ B solves the Γ-embedding problem for G.

Proof of (b): The existence of X is the content of Lemma 4.7. So we only have to prove

that G is a projective Γ-structure. Note first that the action of G on X is regular.

Indeed, suppose that ψ = ψσ for some ψ ∈ X and σ ∈ G. Since ψ(Γ) ∈ D(G), Lemma

4.5(c) implies that σ ∈ ψ(Γ). But then σ belongs to the center of ψ(Γ) ∼= Γ. Conclude

from Assumption 3.1(b) that σ = 1. Thus G is a Γ-structure.

To prove that G is projective we solve each finite weak embedding problem (ϕ, α)

as in Definition 5.1. Replace α: B→ A by α̂: B→ Â and ϕ by ϕ̂ of (5) of Lemma 4.8

to assume that the forgetful maps of A and B are embeddings and

(3) for each λ ∈ X(B), α is injective on λ(Γ).
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Apply Lemma 4.8 again to obtain a commutative diagram (5) of finite weak Γ-structures

with injective forgetful maps such that

(4) for ρ, ρ′ ∈ X(Â), if there exists ω ∈ Aut(Γ) such that ρ′ = ρω, then there exists

g ∈ Γ such that π ◦ ρ′ = π ◦ ρ[g]; and

(5) ϕ̂(ψ(Γ)) is a large quotient of Γ for each ψ ∈ X.

Choose for suitable e,m an epimorphism β̂: ΓΓΓe,m → B̂ (Corollary 3.6). Then (ϕ̂, α̂ ◦ β̂)

is a Γ-embedding problem for G. Indeed if H ∈ D(G), then there exists ψ ∈ X such

that ψ(Γ) = H. Since α̂ ◦ β̂: X(ΓΓΓe,m) → X(Â) is surjective and ϕ̂ ◦ ψ ∈ X(Â) there

exists δ ∈ X(ΓΓΓe,m) such that α̂◦ β̂ ◦δ = ϕ̂◦ψ. As ψ is injective, there is an isomorphism

θ: H → Γ such that ψ ◦θ = id. Thus α̂◦ β̂ ◦ δ ◦θ = ResH ϕ̂. Now, since G is Γ-projective

there exists γ′ ∈ Hom(G,Γe,m) such that α̂ ◦ β̂ ◦ γ′ = ϕ̂ (Lemma 4.4). Let γ̂ = β̂ ◦ γ′

and γ = π′ ◦ γ̂. To show that γ defines a solution to the embedding problem (ϕ, α) of

Γ-structures it suffices now to prove for each ψ ∈ X that γ ◦ ψ ∈ X(B).

Indeed, by (5), (γ′ ◦ ψ)(Γ) is a large quotient of Γ. Hence by Lemma 3.5(c) there

exists λ′ ∈ X(ΓΓΓe,m) such that λ′(Γ) = (γ′◦ψ)(Γ). Moreover λ′ and γ′◦ψ are embeddings.

Hence there exists ω ∈ Aut(Γ) such that γ′ ◦ψ = λ′ ◦ω. Both α̂ ◦ β̂ ◦ γ′ ◦ψ = ϕ̂ ◦ψ and

α̂◦ β̂ ◦λ′ belong to X(Â) and α̂◦ β̂ ◦γ′ ◦ψ = α̂◦ β̂ ◦λ′ ◦ω. Thus (4) gives g ∈ Γ such that

π ◦ α̂ ◦ β̂ ◦γ′ ◦ψ = π ◦ α̂ ◦ β̂ ◦ (λ′)[g]. Rewrite this as α ◦π′ ◦ β̂ ◦γ′ ◦ψ = α ◦π′ ◦ β̂ ◦ (λ′)[g].

Since π′ ◦ β̂ ◦ (λ′)[g] ∈ X(B), (3) implies that α is injective on (π′ ◦ β̂ ◦ γ′ ◦ ψ)(Γ) =

(π′ ◦ β̂ ◦ (λ′)[g])(Γ). Hence γ ◦ ψ = π′ ◦ β̂ ◦ γ′ ◦ ψ = π′ ◦ β̂ ◦ (λ′)[g] ∈ X(B), as required.

Definition 5.5: We call a morphism ϕ: G → H of Γ-structures rigid if for each

x ∈ X(G) we have Ker(d(x)) = Ker(d(ϕ(x)). This condition is equivalent to Ker(ϕ) ∩

D(x) = 1 and also to “ϕ induces an isomorphism of D(x) onto D(ϕ(x))”. It is satisfied

if D(y) ∼= Γ for each y ∈ X(H).

Lemma 5.6: Let ϕ: G → H be a rigid morphism of Γ-structures. Then each open

normal subgroup M of G contains an open normal subgroup K of G such that the

induced morphism ϕ̂: G/K → H/ϕ(K) is rigid.
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Proof: Let x ∈ X(G) and y = ϕ(x) ∈ X(H). Denote the collection of all open normal

subgroups N of G contained in M by N . For each N ∈ N let xN ∈ X(G)/N and

yN ∈ X(H)/ϕ(N) be the respective images of x and y. Note that d(xN ) is the composed

map Γ
d(x)−→G→ G/N and d(yN ) is the composed map Γ

d(y)−→H → H/ϕ(N). Therefore

⋂
N∈N

Ker(d(yN )) = Ker(d(y)) = Ker(d(x)) ≤ Ker(d(xM )).

Since the latter group is open in Γ there exists N ∈ N such that

(6) Ker(d(yN )) ≤ Ker(d(xM )).

As Hom(Γ, G/M) and Hom(Γ,H/ϕ(N)) are finite, there exists an open neighborhood

U of x in X(G) such that for each x′ ∈ U and y′ = ϕ(x′), d(x′M ) = d(xM ) and

d(y′N ) = d(yN ). Thus (6) holds also for x′ and y′. Use the compactness of X(G) to

assume that (6) holds for all x ∈ X(G).

Let K = M∩ϕ−1(ϕ(N)). Then K ∈ N , N ⊆ K ⊆ ϕ−1(ϕ(N)) and ϕ(K) = ϕ(N).

Thus for each x ∈ X(G) and y = ϕ(x) we have yK = yN . By (6)

Ker(d(xK)) = d(x)−1(K) = d(x)−1(M) ∩ d(x)−1(ϕ−1(ϕ(N)))

= d(x)−1(M) ∩ d(y)−1(ϕ(N)) = Ker(d(xM )) ∩Ker(d(yN )) = Ker(d(yK)).

This means that ϕ: G/K → H/ϕ(K) is rigid.
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Part B. The G(Qp)-structure associated with Galois extension.

For the rest of this work we fix a prime p. In Section 11 we characterize the p-adic clo-

sures of Q as algebraic extensions of Q whose absolute Galois groups are large quotients

of G(Qp). Since G(Qp) is finitely generated we may speak about G(Qp)-structures. To

each field K of characteristic 0 we associate its absolute G(Qp)-structure G(K). The

elements of the space of sites of G(K) are essentially the p-adic closures of K. If L

is a Galois extension of K, then the relative G(Qp)-structure G(L/K) is the quotient

structure G(K)/G(L). Most of Part B (Sections 7, 8, 9 and 10) is dedicated to describe

the elements of the space of sites, X(L/K), of G(L/K) in terms of L/K. The orbit of

each site in X(L/K) is uniquely determined by the following data: a field L0 between

K and L (the decomposition field), a place π0: L0 → Qp ∪ {∞} and a homomorphism

ϕ0: L×0 → lim←−Q×
p /(Q×

p )m. It satisfies the following conditions: the place π0 is trivial

on Q, it does not extend to a Qp-valued place of a proper extension of L0 in L, and

π0(u) 6= 0,∞ implies π0(u) = ϕ0(u). In Section 12 we define pseudo p-adically closed

fields and realize each Γe,m as the absolute Galois group of a pseudo p-adically closed

field, algebraic over Q. We combine this with the results of Section 11 to conclude that

Γ = G(Qp) satisfies Assumption 3.1.

6. p-adically closed fields.

A valued field is a pair (K, v), where K is a field and v is a valuation of K. The

valuation v is called p-adic if the residue field is Fp and v(p) is the smallest positive

element of the value group v(K×). A field K which admits a p-adic valuation is for-

mally p-adic; it must be of characteristic 0. As with formally real fields, the existence

of a p-adic valuation can be expressed in terms of the field. The p-adic substitution for

the square operator X2 is the Kochen operator

(1) γ(X) =
1
p

Xp −X
(Xp −X)2 − 1

Lemma 6.1: If (K, v) is a p-adically valued field, then γ(x) is defined for each x ∈

K and v(γ(x)) ≥ 0. Conversely, let K be a field of characteristic 0. If ap−1 6=
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f(γ(x1), . . . , γ(xn)) for each a ∈ Z, a 6= 0 relatively prime to p, for each polynomial

f ∈ Z[X1, . . . , Xn] and each x1, . . . , xn ∈ K, then K is formally p-adic.

Proof: [PR, pp. 95 and 99].

A p-adically valued field (K, v) which has no proper p-adically valued algebraic

extension is p-adically closed. Zorn’s Lemma implies that each p-adically valued field

(K, v) has an algebraic extension (K, v̄) which is p-adically closed. This is a p-adic

closure of (K, v). Its isomorphism type over K is determined by the following theorem

of Macintyre [M].

Proposition 6.2: Let (K, v) be a p-adically valued field. Two p-adic closures (L1, v1)

and (L2, v2) of (K, v) are isomorphic over K if and only if for each n ∈ N, Ln1 ∩K =

Ln2 ∩K.

Proof: [PR, p. 57].

The p-adically closed fields are characterized among all p-adically valued fields

by the following result. Recall that a Z-group is an ordered abelian group A with a

smallest positive integer 1 such that (A : nA) = n for each n ∈ N.

Proposition 6.3: Let (K, v) be a p-adically valued field. Then (K, v) is p-adically

closed if and only if (K, v) is Henselian and v(K×) is a Z-group. In particular, if (K, v)

is p-adically closed, then v is the unique p-adic valuation of K.

Proof: [PR, pp. 34 and 37].

Let (K, v) be a p-adically closed field. Using the uniqueness of v we also refer to

K as p-adically closed.

Proposition 6.4: Let (K, v) be a p-adically closed field that extends a p-adically

valued field (K0, v0).

(a) If K0 is algebraically closed in K, then (K0, v0) is p-adically closed.

(b) If (K0, v0) is p-adically closed, then K is an elementary extension of K0.

(c) Let V be an absolutely irreducible variety defined over K. A necessary and suf-

ficient condition for v to extend to the function field of V is that Vsim(K) 6= ∅

(Vsim(K) is the set of K-rational simple points of V ).
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Proof: [PR, pp. 38, 86 and 145].

The field Q admits a unique p-adic valuation vp. The p-adic closure of Q coincides

with its Henselization with respect to vp. Hence it is unique up to isomorphism. We

denote it by Qp,alg and consider Qp,alg as the algebraic part of the field Qp of p-adic

numbers.

Proposition 6.5: G(Qp) is finitely generated and has a trivial center.

Proof: Jannsen and Wingberg [JW] and [W] give for p 6= 2 a presentation of G(Qp)

by 4 generators and relations. For p = 2, Diekert [Di] presents an open subgroup of

G(Q2) of index 2 by 5 generators and relations. Thus G(Q2) is generated by at most 6

elements.

That G(Qp) has trivial center follows from the basic results of local class field

theory (e.g., [I, p. 7]).

For each field K of characteristic 0 let Kalg = Q̃ ∩K.

Corollary 6.6: Let K be a p-adically closed field. Then Kalg
∼= Qp,alg, Q̃K = K̃ and

G(K) ∼= G(Qp).

Proof: By Proposition 6.4, Kalg is p-adically closed. Since its unique p-adic valuation

extends vp, Kalg
∼= Qp,alg. Without loss identify Kalg with Qp,alg. By Proposition 6.5,

Qp has for each n ∈ N only finitely many extensions of degree ≤ n (see also [L2, p. 64]).

Since Qp and K are elementary extension of Qp,alg (Proposition 6.4(b)), Qp,alg and K

have for each n only finitely many extensions of degree ≤ n. Moreover, each extension

of K of degree ≤ n is the compositum of K with an extension of Qp,alg of degree ≤ n.

Thus Q̃K = K̃. It follows that G(K) ∼= G(Qp,alg) ∼= G(Qp).

It is convenient to shift our point of view from p-adic valuations to the corre-

sponding coarse valuations [PR, p. 25] or rather to their associated Qp-valued places.

We do not distinguish between equivalent p-adic valuations (i.e., p-adic valuations with

the same valuation ring).

Lemma 6.7: Let K be a field. There is a canonical bijection v 7→ πv between p-adic

valuations v of K and places π: K → Qp∪{∞}. A p-adically valued field (L,w) extends
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(K, v) if and only if (L, πw) extends (K,πv).

Proof: Let v be a p-adic valuation of K, with a valuation ring Ov. Each element a ∈ Ov
can be uniquely written as a = a0 + b1p, with 0 ≤ a0 < p and b1 ∈ Ov. Thus, a

defines by induction a sequence a0, a1, a2, . . . of integers between 0 and p− 1 such that

a ≡ a0+a1p+· · ·+anpn mod pn+1Ov, m ∈ N. This gives a homomorphism πv: Ov → Zp,

πv(a) =
∑∞
n=0 anp

n, with Ker(πv) =
⋂∞
n=1 p

nOv. The local ring Ov̇ of Ov at Ker(πv),

as an overring of a valuation ring, is a valuation ring. Hence πv uniquely extends to

a place πv: K → Qp ∪ {∞} with Ov̇ as the valuation ring. Obviously the restriction

of πv to Q and hence to Kalg is an embedding into Qp. Observe that if v and v′ are

equivalent p-adic valuations, then πv = πv′ .

Note that Ov = {x ∈ Ov̇| πv(x) ∈ Zp}. Indeed, if x belongs to the right hand

side but x /∈ Ov, then x−1 ∈ pOv. Hence 1 = πv(x−1)πv(x) ∈ pZp, a contradiction. It

follows that the map v 7→ πv is injective. We show that it is also surjective.

Let π: K → Qp ∪ {∞} be a place with a valuation ring Ȯ. Then O = {x ∈

Ȯ| π(x) ∈ Zp} is a valuation ring with pO as the maximal ideal. Since π is the identity

map on Q, we have Ker(ResOπ) =
⋂∞
n=1 p

nO. Denote the corresponding valuation by

v. Then O/pO ∼= Zp/pZp ∼= Fp and v(p) is the smallest positive integer of v(K×).

Thus v is a p-adic valuation. Moreover, each x ∈ O has for each n ∈ N a unique

representation x ≡ x0 + x1p + · · · + xnp
n mod pn+1O, with 0 ≤ xi < p, i = 0, . . . , n.

Hence π(x) ≡ πv(x) mod pn+1Zp, n = 1, 2, 3, . . . . Conclude that π coincides with πv

on O and therefore on the valuation ring Ov̇. It follows that O = Ov̇ and π = πv.

To prove the second assertion of the lemma check that K ∩Ow = Ov if and only

if K ∩Oẇ = Ov̇.

The following lemma gives information about the multiplicative group Q×
p and its

profinite completion Φ = lim←−Q×
p /(Q×

p )n.

Lemma 6.8: (a) The canonical map Q×
p → Φ is injective; we consider Q×

p as a subgroup

of Φ.

(b) For each n ∈ N

(b1) Q×(Q×
p )n = Q×

p ;
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(b2) Q×
p,alg ∩ Φn = (Q×

p,alg)
n and Q×

p,algΦ
n = Φ; and

(b3) ζ ∈ Φ and ζn = 1 implies ζ ∈ Q×
p,alg.

Proof of (a): The multiplicative group Q×
p of Qp has a canonical decomposition Q×

p =

〈p〉×Z×p . The discrete group 〈p〉 generated by p is isomorphic to Z. The group of units

Z×p of Qp, is compact and isomorphic to Z/(p− 1)Z× Zp if p 6= 2 and to Z/2Z× Z2 if

p = 2. It follows that
⋂
n∈N(Q×

p )n = 1. Hence the canonical map x 7→ (x(Q×
p )n)n∈N of

Q×
p into Φ is injective. We identify x with its image in Φ.

Proof of (b1): Let n ∈ N. From the proof of (a) it suffices to show that each x ∈ Z×p
belongs to Q×(Q×

p )n. Indeed x = a + p2vp(n)+1b with a ∈ Z, a 6= 0 and b ∈ Zp. By

the Hensel-Rychlik-Newton Lemma c = 1 + p2vp(n)+1a−1b ∈ (Q×
p )n. Hence x = ac ∈

Q×(Q×
p )n.

Proof of (b2): The group Φn is the closure of (Q×
p )n in Φ. From [L2, p. 47] (Q×

p )n is a

closed subgroup of Q×
p of finite index. Therefore (Q×

p )n is open in Q×
p . It follows that

Q×
p ∩Φn = (Q×

p )n. Obviously Q×
p,alg∩(Q×

p )n = (Q×
p,alg)

n. Hence Q×
p,alg∩Φn = (Q×

p,alg)
n.

Also, Q×
p Φn = Φ. Therefore Q×

p,algΦ
n = Φ follows from (b1).

Proof of (b3): From (a), Φ ∼= Ẑ × Z×p . Since Ẑ is torsion free, each ζ ∈ Φ with ζn = 1

belongs to Z×p , hence to Q×
p,alg.
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7. F -closed fields.

In Section 6 we have associated a place π: K → Qp ∪ {∞} to each p-adically closed

field (K, v). The results we achieve depend only on char(Qp) = 0. Also, in Section

9 we consider places into the algebraic closure of Qp. Thus, to gain more clarity and

generality, we replace Qp by some fixed field F of characteristic 0 and consider pairs

(K,π) where π: K → F ∪ {∞} is a place. Call each such pair an F -valued placed

field. Let Oπ = {x ∈ K| π(x) ∈ F} be the valuation ring of π. Denote the group

{u ∈ K| π(u) ∈ F×} of π-units of K by Uπ and denote the residue field of π by π(K).

Let (K ′, π′) be an F -valued placed field that extends (K,π). Take valuations v and v′ of

K and K ′, corresponding to π and π′ respectively such that v′ extends v. We say that

(K ′, π′) is an unramified extension of (K,π) if v(K×) = v(K ′×). Lemmas 7.1-7.3

give information on the existence and uniqueness of extensions of F -valued placed fields.

Lemma 7.1: Let (K,π) be an F -valued placed field. Denote the valuation of K that

corresponds to π by v. Let α be an element of the divisible closure Q ⊗ v(K×) of

v(K×) and let n be the smallest positive integer such that nα ∈ v(K×). Choose an

element a ∈ K× such that v(a) = nα, let x = a1/n and L = K(x). Then π uniquely

extends to an F -valued place π′ of L with v′ the corresponding valuation such that

[L : K] = (v(L×) : v′(K×)) = n.

Proof: Extend π to an F̃ -valued place π′ of L and let v′ be the corresponding valuation

that extends v. Then v′(x) = α and

n ≤ (〈v(K×), α〉 : v(K×)) ≤ (v′(L×) : v(K×)) ≤ [L : K] ≤ n.

Hence

(1) (v′(L×) : v(K×)) = [L : K] = n.

Now let v′1, . . . , v
′
g be all extensions of v to L, and let L′1, . . . , L

′
g be their residue

fields. Then, for the residue field K ′ of v we have [Ri, p. 228]

(2)
g∑
i=1

(v′i(L×) : v(K×))[L′i : K ′] ≤ [L : K].

33



Conclude from (1) and (2) that g = 1, v′ is the unique extension of v to L and the

residue field of v′ is K ′. Thus π′ is F -valued. If π′′ is another extension of π to L, then

π′′ is equivalent to π′. That is, there exists an automorphism σ of K ′ (which is the

residue field of both π′ and π′′) such that π′′ = σ ◦π′. For each x′ ∈ K ′ take x ∈ K such

that π(x) = x′. Then σ(x′) = σ(π′(x)) = π′′(x) = x′. Conclude that π′′ = π′.

Lemma 7.2: Let π: K → F ∪ {∞} be a place and let K ′ = π(K) be its residue field.

If K ′ is algebraically closed in F , then π maps Kalg isomorphically onto Falg. Now

suppose that L′ is an algebraic extension of K ′ contained in F . Then π extends to a

place ρ: L → F ∪ {∞} such that L′ = ρ(L) and (L, ρ) is an unramified extension of

(K,π).

Proof: Note that the restriction of π to Kalg is an embedding into Falg. If K̃ ′∩F = K ′,

then Q̃ ∩ F = Q̃ ∩ π(K) = π(Q̃ ∩K). Thus π maps Kalg isomorphically onto Falg.

Next suppose that L′/K ′ is algebraic and L′ ⊆ F . Use Zorn’s lemma to reduce

the existence of ρ to the case where L′/K ′ is finite, say of degree n. Choose a primitive

element z′ for L′/K ′ and let f ′ = irr(z′,K ′). Take a monic polynomial f ∈ Oπ[X] with

deg(f) = deg(f ′) such that π(f) = f ′. Let z be a root of f and let L = K(z). Extend

π to a place ρ1: L→ K̃ ′. Then z′1 = ρ1(z) is a root of f ′. Hence

n = [K ′(z′1) : K ′] ≤ [ρ1(L) : K ′] ≤ [L : K] ≤ n.

It follows that [L : K] = n and f is irreducible. Thus π extends to a place π′ of L such

that π′(z) = z′. Since L′ ⊆ π′(L) we have n = [L′ : K ′] ≤ [π′(L) : K ′] ≤ [L : K] = n.

Thus L′ = π′(L) and π′ is an F -valued place. Also, (2) implies that (L, π′)/(K,π) is

unramified.

Lemma 7.3: Let π: K → F ∪ {∞} be a place and let π0 = ResKalgπ. Consider an

algebraic extension L0 of Kalg and an extension π′0: L0 → F . Then for L = L0K

there exists a unique place π′: L→ F ∪ {∞} which extends both π and π′0. Moreover,

(L, π′)/(K,π) is an unramified extension. In particular, if (K,π) has no unramified

extension to a proper algebraic extension of K, then π maps Kalg isomorphically onto

Falg.
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Proof: Let O be the valuation ring of π. Since char(F ) = 0, π′0 is an embedding of fields.

Without loss assume that L0/Kalg is a finite extension with a primitive element z. Since

L0 is linearly disjoint from K over Kalg there exists a homomorphism π′: O[z] → F

which extends both π′0 and π. The discriminant of z over K is a nonzero element of

Kalg, hence a unit of O. Therefore, since O is integrally closed, O[z] is the integral

closure of O in L [ZS, p. 264]. It follows that the local ring of O[z] with respect to

Ker(π′) is a valuation ring [L3, p. 18]. Conclude that π uniquely extends to a place

π′: L→ F ∪ {∞} such that ResL0π
′ = π′0.

To prove the second assertion of the lemma consider f = irr(z,Kalg). Let π(f) =

f1 · · · fr be a factorization into irreducible factors overK ′ = π(K). For each i, 1 ≤ i ≤ r,

take a root z′i of fi and extend π to a place ρi of L such that ρi(z) = z′i. Then

deg(fi) ≤ [ρi(L) : K ′]. Since the restriction of π to Kalg is injective f1, . . . , fr are

distinct. Therefore ρ1(L), . . . , ρr(L) are mutually nonisomorphic over K ′ and ρ1, . . . , ρr

are nonequivalent places. Let v be a valuation of K that corresponds to v. Let wi be a

valuation of L that corresponds to ρi, i = 1, . . . , r. From (2)

[L : K] = [L0 : Kalg] = deg(f) =
r∑
i=1

deg(fi)

≤
r∑
i=1

(wi(L×) : v(K×))[ρi(L) : K ′] ≤ [L : K].

Hence ρ1, . . . , ρr represent all equivalent classes of places of L that extend π. Also

wi(L×) = v(K×), that is, ρi is unramified over K, i = 1, . . . , r. In particular, π′, which

is equivalent to one of the ρi’s, is unramified over K.

To prove the last assertion note that if π0(Kalg) is properly contained in Falg, then

π0 extends to an embedding π′0 of a proper algebraic extension L0 into F . Then use the

two first parts of the lemma.

Call an F -valued placed field (K,π), F -closed if π does not extend to a place

π′: K ′ → F ∪ {∞} of a proper algebraic extension K ′ of K. If in addition (K,π) is an

extension of an F -valued field (K0, π0) and K is algebraic over K0, then (K,π) is an

F -closure of (K0, π0). The existence of an F -closure of a given F -valued field (K0, π0)

is a straightforward application of Zorn’s lemma.
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Remark 7.4: From Lemma 6.7, a p-adically valued field (K, v) is p-adically closed if

and only if the corresponding Qp-placed field (K,πv) is Qp-closed.

The following characterization of F -closed placed fields overlaps with [PR, Thm.

3.1].

Lemma 7.5: Let (K,π) be an F -valued placed field and let v be the valuation of K

that corresponds to π. The following three conditions are equivalent:

(3) (K,π) is F -closed;

(4a) every proper algebraic extension (K ′, π′) of (K,π) to an F -valued placed field is

ramified (i.e., v(K×) is a proper subgroup of v(K ′×)); and

(4b) v(K×) is a divisible group;

and

(5a) the residue field K0 = π(K) is algebraically closed in F ;

(5b) (K, v) is Henselian; and

(5c) v(K×) is a divisible group.

Proof that (3) implies (4): Condition (3) implies that (K,π) has no proper algebraic

extensions to F -valued placed fields. Thus (4a) is trivially fulfilled and (4b) follows from

Lemma 7.1.

Proof that (4) implies (5): Condition (5a) follows from (4a) by Lemma 7.2. Since in

the transfer from (K, v) to its Henselian closure neither the residue field nor the value

group are changed (4a) implies that (K, v) is Henselian.

Proof that (5) implies (3): Let (L, ρ) be an F -valued finite extension of (K,π) and

let w be the unique (by (5b)) extension of v to L. By (5a), π(K) = ρ(L). Since

L/K is algebraic w(L×) is contained in the divisible hull of v(K×). Hence, by (5c),

v(K×) = w(L×). As char(F ) = 0 and K is Henselian, [L : K] = [ρ(L) : π(K)][w(L×) :

v(K×)] = 1 [A2, Prop. 15]. Conclude that (K,π) is F -closed.

Lemma 7.6: Let (K,π) be an F -closed placed field.

(a) The place π maps Kalg isomorphically onto Falg.

(b) Suppose that for a positive integerm, F×alg(F
×)m = F×. ThenK×

alg(K
×)m = K×.
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Proof: Lemma 7.5(5a) and Lemma 7.2 imply (a). To prove (b) let x ∈ K×. Denote the

valuation of K that corresponds to π by v. By Lemma 7.5(5c) there exists y ∈ K× such

that mv(y) = v(x). Then, for z = xy−m we have v(z) = 0 and therefore π(z) ∈ F×.

By assumption there exist b ∈ F×alg and c ∈ F× such that π(z) = bcm. Choose u ∈ Kalg

such that π(u) = b. Observe that c solves the equation π(u)Tm = π(z). Apply Hensel’s

lemma (Lemma 7.5(5b)) to the polynomial uTm−z to conclude the existence of t ∈ K×

such that utm = z. Thus x = u(ty)m ∈ K×
alg(K

×)m.

Lemma 7.7: Let π: K → F ∪ {∞} be a place, with v the corresponding valuation such

that the value group v(K×) is divisible. Let (K1, π1) and (K2, π2) be F -closures of

(K,π). Then there exists a unique K-isomorphism σ: K1 → K2 such that π1 = π2 ◦ σ.

Proof: For i = 1, 2 let vi be the valuation of Ki corresponding to πi. Since (Ki, vi) is

Henselian (by (5b)), it contains a Henselization (Kh
i , v

h
i ) of (K, v). The residue field K ′

of K with respect to v is the residue field of Kh
i with respect to vhi . Extend πi to a place

π̃i of K̃ with residue field K̃ ′ and let ṽi be the corresponding valuation. Since ṽi(K̃×) is

the divisible hull of v(K×) [Ri, p.256] it coincides with v(K×), i.e., ṽi is unramified over

K. In addition, since char(K ′) = 0, the extension (K̃, ṽi)/(K, v) is defectless. Therefore

the inertia subgroup I(ṽi) = {κ ∈ G(Ki)| π̃i ◦κ = π̃i} of ṽi/v is trivial [E, p.184] and the

map L 7→ π̃i(L) is a bijective correspondence between the set of algebraic extensions of

Kh
i and the algebraic extensions of K ′ [E, p.162].

Suppose now that σ, τ : K1 → K2 are K-isomorphisms such that π2◦σ = π1 = π2◦

τ . Extend σ, τ to σ̃, τ̃ ∈ G(K). Then there exists ρ̃ ∈ G(K1) such that π̃2 ◦ σ̃ ◦ ρ̃ = π̃2 ◦ τ̃

[L1, p. 247]. Therefore σ̃ρ̃ · (τ̃)−1 belongs to I(ṽ2). Thus σ̃ρ̃(τ̃)−1 = 1. Restrict this

equality to K2 to conclude that σ = τ . This proves the uniqueness of σ.

To prove the existence of σ note first that there exists a K-isomorphism σh: Kh
1 →

Kh
2 such that vh1 = vh2 ◦ σh [Ri, p. 176]. Hence there exists an automorphism ρ of K ′

such that ρ ◦ πh1 = πh2 ◦ σh. Apply both sides on the elements of Ov to conclude that

ρ = 1. Extend σh further to σ̃ ∈ G(K) such that π̃1 = π̃2 ◦ σ̃ [L1, p. 247]. By (5a)

π̃2(σ̃K1) = π1(K1) = K̃ ′ ∩ F = π2(K2) = π̃2(K2).

Since both σ̃K1 and K2 are algebraic extensions of Kh
2 the first paragraph of the proof
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implies that σ̃K1 = K2. Let σ be the restriction of σ̃ to K1 and obtain π1 = π2 ◦ σ.

8. Sites.

Let K be a p-adic closure of a formally p-adic field. Proposition 6.2 characterizes K

up to K-isomorphism by the sequence K ∩ Kn
, n = 1, 2, 3, ... . For each n ∈ N,

K× ∩ Kn
is the kernel of the canonical homomorphism K× → K

×
/(K

×
)n. Observe

that K×
alg∩(K×)n = (K×

alg)
n. Since Q×

p,alg(Q×
p )m = Q×

p (Lemma 6.8(b1)) Lemma 7.6(b)

with F = Qp implies that K×
alg(K

×)n = K×. Thus, by Lemma 7.6(a)

K
×
/(K

×
)n ∼= K

×
alg/(K

×
alg)

n ∼= Q×
p,alg/(Q

×
p,alg)

n ∼= Q×
p /(Q×

p )n.

Therefore K induces a compatible sequence of homomorphims ϕn: K× → Q×
p /(Q×

p )n,

such that K ∩ Kn
= Ker(ϕn), n = 1, 2, 3, ... . It defines a homomorphism ϕ: K× →

lim←−Q×
p /(Q×

p )n.

As in Section 7 we replace Qp by a field F of characteristic 0 and lim←−Q×
p /(Q×

p )n

by a group Φ. The properties (a)-(d) of Lemma 6.8 that Qp and Q×
p /(Q×

p )n have are

made here as assumptions on F and Φ.

Assumption 8.1: (a) F× is a subgroup of Φ.

(b) For each n ∈ N

(b1) F×alg(F
×)n = F×;

(b2) F×alg ∩ Φn = (F×alg)
n and F×algΦ

n = Φ; and

(b3) ζ ∈ Φ and ζn = 1 implies ζ ∈ F×alg.

Note that Lemma 6.8(b1) is somewhat stronger for F = Qp than Assumption

8.1(b1). We denote the set theoretic union F ∪ {∞} ∪ Φ by Θ.

Definition 8.2: Let K be a field of characteristic 0, π: K → F ∪ {∞} a place

and ϕ: K× → Φ a homomorphism. We say that the pair (π, ϕ) is a Θ-site of K if

ϕ(u) = π(u) for every u ∈ Uπ (see Notation).

Let θ = (π, ϕ) and θ′ = (π′, ϕ′) be Θ-sites of fields K and K ′, respectively. We

say that (K ′, θ′) extends (K, θ) if K ⊆ K ′,π′ extends π and ϕ′ extends ϕ. If σ is an

isomorphism of a field K0 onto K, then θ ◦ σ = (π ◦ σ, ϕ ◦ σ) is a Θ-site of K0.
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Remark 8.3: Most of this section and Sections 9 and 10 holds if we replace Assumption

8.1(a) by a weaker assumption saying that there exists a homomorphism η: F× → Φ.

The connection between π and ϕ in a Θ-site has to be modified to ϕ(u) = η(π(u)) for

each u ∈ Uπ.

In this version ordered fields may also be viewed as Θ-sites. Here F = R, Φ = {±1}

and η: R× → Φ is the sign function. Then the obvious modification of Assumption 8.1(b)

is true. If (K,≤) is an ordered field, then the ring of “finite elements” O = {x ∈ K|∃r ∈

Q: |x| ≤ r} is a valuation ring of K. The corresponding place π defined for x ∈ O by

π(x) = sup{r ∈ Q| r < x} maps K into R ∪ {∞}. The homomorphism ϕ: K× → Φ is

defined by ϕ(x) = 1 if and only if x > 0. If π(u) ∈ R×, then 0 < r < |u| < s for some

r, s ∈ Q, hence r ≤ |π(u)| < s and therefore ϕ(u) = η(π(u)). Thus (π, ϕ) is a Θ-site.

Conversely, if (π, ϕ) is a Θ-site, then “x > 0 if and only if ϕ(x) = 1” defines an ordering

of K.

Lemma 8.4: Let θ = (π, ϕ) be a Θ-site of K and v the valuation corresponding to π.

Let α be an element of the divisible hull of v(K×) and let n be the smallest positive

integer such that nα ∈ v(K×). Choose a ∈ K× such that v(a) = nα, let x = a1/n and

let L = K(x). Suppose that there exists ω ∈ Φ such that ωn = ϕ(a). Then θ extends

to a unique Θ-site θ′ = (π′, ϕ′) of L such that ϕ′(x) = ω.

Proof: By Lemma 7.1 it suffices to prove only the existence and uniqueness of ϕ′. Write

each y ∈ L× in the form y =
∑n−1
i=0 bix

i with bi ∈ K. Let v′ be the valuation of L that

corresponds to π′. If 0 ≤ i < j < n, then, since v′(x) = α, v′(bixi) 6= v′(bjxj). Hence

there exists i ∈ Z and b ∈ K× such that v′(y) = v′(bxi). In particular π′(yb−1x−i) ∈ F×.

Define ϕ′(y) = ϕ(b)ωiπ′(yb−1x−i). If also j ∈ Z and c ∈ K× are elements such that

v′(y) = v′(cxj), then n divides j − i and hence u = bc−1xi−j ∈ Uπ. It follows that

ϕ(c)ωjπ′(yc−1x−j) = ϕ(c)ωiωj−iπ(u)π′(yb−1x−i)

= ϕ(c)ωiϕ(a(j−i)/n)ϕ(u)π′(yb−1x−i)

= ϕ(c)ωiϕ(bc−1)π′(yb−1x−i) = ϕ(b)ωiπ′(yb−1x−i).

Thus, ϕ′ is well defined. Moreover, one easily checks that ϕ′ is a homomorphism of L×

into Φ and that it extends ϕ.
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If (π′, ϕ′′) is another Θ-site which extends θ such that ϕ′′(x) = ω, and y is as

above, then apply ϕ′′ on the identity y = bxi · yb−1x−i to obtain

ϕ′′(y) = ϕ(b)ωiϕ′′(yb−1x−i) = ϕ(b)ωiπ′(yb−1x−i) = ϕ′(y).

This proves the uniqueness of θ′.

Lemma 8.5: Let θ = (π, ϕ) be a Θ-site of K and let L an algebraic extension of K.

Let π′ be an F -place of L, unramified over K and which extends π. Then ϕ uniquely

extends to a homomorphism ϕ′: L× → Φ such that (π′, ϕ′) is a Θ-site. Moreover

(1) ϕ′(L×) ⊆ ϕ′(K×) · π′(L)×.

Proof: Let v′ be a valuation of L that corresponds to π′. By assumption v′(L×) =

v′(K×). Hence, for each y ∈ L× there exists b ∈ K× such that v′(y) = v′(b) and

therefore π′(yb−1) ∈ F×. Define ϕ′(y) = ϕ(b)π′(yb−1). As in the proof of Lemma 8.4

this definition is independent of b, it is unique and gives the desired extension (π′, ϕ′)

of θ such that (1) holds.

Let θ = (π, ϕ) be a Θ-site of a field K. We say that (K, θ) is Θ-closed if θ does

not extend to a Θ-site of a proper algebraic extension of K. If in addition (K, θ) is

an extension of a Θ-site (K0, θ0) and K/K0 is algebraic, then (K, θ) is a Θ-closure of

(K0, θ0). Note that if (K,π) is F -closed, then (K, θ) is Θ-closed. The converse of this

is less obvious but equally true.

Lemma 8.6: Let θ = (π, ϕ) be a Θ-site of K such that (K, θ) is Θ-closed. Then (K,π)

is F -closed.

Proof: By Lemma 8.5, π has no unramified extension to an F -place of a proper algebraic

extension of K. Hence, by Lemma 7.3, π maps Kalg isomorphically onto Falg. Let v be

the valuation of K corresponding to π. By Lemma 7.5 it suffices to show that v(K×)

is divisible.

Let α be an element of the divisible hull of v(K×) and let n be the smallest positive

integer such that nα = v(a) with a ∈ K×. By Assumption 8.1(b2), there exists u0 ∈ F×alg
and ω ∈ Φ such that u0 = ϕ(a)ω−n. Let a0 be the element of K×

alg such that π(a0) = u0.
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Then ϕ(a0) = π(a0) = ϕ(a)ω−n. Thus ϕ(aa−1
0 ) = ωn and, since v(a0) = 0, n is the

smallest positive integer such that v(aa−1
0 ) = nα. By Lemma 8.4, θ extends to a Θ-site

of L = K((aa−1
0 )1/n). But then L = K and therefore α = v((aa−1

0 )1/n) ∈ v(K×). Thus

v(K×) is divisible.

Proposition 8.7: Let θ = (π, ϕ) be a Θ-site of a field K. Then (K, θ) has a Θ-

closure (K, θ̄). If (K ′, θ′) is another Θ-closure of (K, θ), then there exists a unique

K-isomorphism σ: K → K ′ such that θ̄ = θ′ ◦ σ.

Proof: The existence of (K, θ̄) follows from Zorn’s lemma. To prove the existence and

uniqueness of σ apply Zorn’s lemma again to construct a maximal extension (K1, θ1)

of (K, θ) such that (K, θ̄) extends (K1, θ1) and for which there exists a unique K-

embedding σ: K1 → K ′ such that θ′ = θ◦σ on K1. If we show that (K1, θ1) is Θ-closed,

then so will be (σ(K1), θ1 ◦ σ) and therefore σ(K1) = K ′.

Without loss assume that σ is the identity. Otherwise extend σ to an automor-

phism of K̃, replace (K1, θ1) by (σ(K1), θ1 ◦ σ) and (K, θ̄) by (σ(K), θ̄ ◦ σ). Further,

replace (K, θ) by (K1, θ1) to assume that (K, θ) has no proper extension (K2, θ2) for

which there exists a unique K-embedding σ: K2 → K ′ such that θ′ = θ ◦ σ on K2. We

have to show that K = K.

Let θ = (π, ϕ), θ̄ = (π̄, ϕ̄) and θ′ = (π′, ϕ′). Denote the valuation of K (resp., K,

K ′) that corresponds to π (resp, π̄, π′) by v (resp., v̄, v′). We divide the rest of the

proof into three parts.

Part A: Kalg = Kalg and π maps Kalg isomorphically onto Falg. By Lemma 8.6

(K, π̄) and (K ′, π′) are F -closed. Therefore, by Lemmas 7.5(5a) and 7.2, π̄ (resp., π′)

maps Kalg (resp., K ′
alg) isomorphically onto Falg. Thus there exists a unique Kalg-

isomorphism σ0: Kalg → K ′
alg such that π̄ = π′ ◦ σ0 on Kalg. Since Kalg and K

are linearly disjoint over Kalg , σ0 uniquely extends to a K-isomorphism σ: KalgK →

K ′
algK. By Lemma 7.3, π̄ = π̄′ ◦ σ on KalgK. Moreover, the restriction of π̄ to KalgK

is an unramified extension of π. Hence, by Lemma 8.5, ϕ̄ = ϕ′ ◦ σ on KalgK. Thus

θ̄ = θ′ ◦ σ on KalgK. Conclude that KalgK = K, Kalg = Kalg and π maps Kalg

isomorphically onto Falg.
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Part B: v(K×) is divisible. Let α be an element of the divisible hull of v(K×).

Let n be the smallest positive integer such that nα ∈ v(K×). As in the proof of

Lemma 8.6 (use Part A instead of Lemma 7.3) find a ∈ K× and ω ∈ Φ such that

v(a) = nα and ϕ(a) = ωn. By Assumption 8.1(b1) and Lemma 7.6 K
×
alg(K

×
)n = K

×
.

Hence there exists b ∈ K×
alg such that ab ∈ (K

×
)n. Thus ϕ(b) ∈ Φn. By Assumption

8.1(b2), ϕ(b) ∈ (F×alg)
n. Hence, by Part A, b ∈ (K

×
alg)

n. Conclude that there exists

y ∈ K×
such that yn = a. Apply ϕ̄ to obtain ϕ̄(y)n = ϕ(a) = ωn. From Assumption

8.1(b3), ϕ̄(y)ω−1 ∈ F×alg. Hence Part A gives an nth root of unity z ∈ Kalg such that

ϕ(z) = ϕ̄(y)ω−1. Thus x = yz−1 satisfies xn = a and ϕ̄(x) = ω. If x1 ∈ K
×

also

satisfies xn1 = a and ϕ̄(x1) = ω, then (xx−1
1 )n = 1. In particular xx−1

1 ∈ K
×
alg and

ϕ̄(xx−1
1 ) = 1. From Part A x = x1.

Similarly there exists a unique x′ ∈ K ′ such that (x′)n = a and ϕ′(x′) = ω. By

Lemma 7.1, the polynomial Xn − a is irreducible over K. Hence there exists a unique

K-embedding σ: K(x)→ K ′ such that σ(x) = x′. By Lemma 7.1, π̄ = π′ ◦ σ on K(x).

Since ϕ′(σ(x)) = ϕ′(x′) = ω = ϕ̄(x), Lemma 8.4 implies that ϕ̄ = ϕ′ ◦ σ on K(x).

Finally observe that if σ′: K(x) → K ′ is a K-embedding such that θ̄ = θ′ ◦ σ′, then

ϕ′(σ′(x)) = ϕ̄(x) = ω and σ′(x)n = σ′(a) = a. Thus the uniqueness of x′ implies that

σ′(x) = x′ and σ′ = σ. Conclude that K(x) = K and therefore n = 1.

Part C: Conclusion. By Part B and Lemma 7.7 there exists a unique K-embedding

σ: K → K ′ such that π̄ = π′ ◦σ. From Lemma 8.5, ϕ̄′ ◦σ. Conclude that K = K. That

is, (K,π) is F -closed.

Lemma 8.8: Let θ = (π, ϕ) and θ′ = (π′, ϕ′) be Θ-sites of a field K. Then

(a) π(x) = 0 if and only if ϕ(1 + x) = ϕ(1− x) = 1; and

(b) ϕ = ϕ′ implies π = π′.

Proof of (a): If π(x) = 0, then ϕ(1± x) = π(1± x) = 1. If π(x) =∞, then π(x−1) = 0,

hence ϕ(1±x−1) = 1. Therefore ϕ(1+x) = ϕ(x) and ϕ(1−x) = ϕ(−x) = π(−1)ϕ(x) =

−ϕ(x) 6= ϕ(1 + x). If π(x) = −1, then ϕ(1 − x) = π(1 − x) = 2 6= 1. Finally if

π(x) 6= −1, 0,∞, then π(1 + x) 6= 0, 1,∞, hence ϕ(1 + x) = π(1 + x) 6= 1.
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Proof of (b): Apply (a) to x ∈ K×:

π(x) = 0 ⇐⇒ ϕ′(1± x) = ϕ(1± x) = 1 ⇐⇒ π′(x) = 0

π(x) =∞ ⇐⇒ π(x−1) = 0 ⇐⇒ π′(x−1) = 0 ⇐⇒ π′(x) =∞.

It follows that Uπ = Uπ′ . For x ∈ Uπ we have π(x) = ϕ(x) = ϕ′(x) = π′(x). Conclude

that π = π′.

The following result is restricted to the case F = Qp and Φ = lim←−Q×
p /(Q×

p )n.

Proposition 8.9: Let (K,π) be a Qp-closed placed field.

(a) There exists a unique homomorphism ϕ: K× → Φ which is the identity on Q×.

Moreover, (π, ϕ) is a Θ-site.

(b) π is the only Qp-place of K.

(c) If K/K0 is an algebraic extension, then Aut(K/K0) = 1.

Proof of (a): Let x ∈ K× and n ∈ N. By Lemma 6.8(b1) there exists an ∈ Q×

such that x ∈ an(K×)n. If b is another element of Q× such that x ∈ b(K×)n, then

anb
−1 ∈ Q∩(K×

alg)
n. Hence anb

−1 = π(anb−1) ∈ (Q×
p )n. Therefore an is unique modulo

(Q×
p )n. This implies for m|n that an ∈ am(Q×

p )m. Thus there is a unique ϕ(x) ∈ Φ

such that ϕ(x) ∈ anΦn for each n ∈ N. Obviously ϕ: K× → Φ is a homomorhism with

ϕ(x) = x for each x ∈ Q×.

If ψ: K× → Φ is another homomorhism which is the identity on Q×, then

ϕ(x)ψ(x)−1 = (ϕ(x)a−1
n )(anψ(x)−1) ∈ Φn for each n ∈ N. Therefore ϕ(x) = ψ(x).

If x ∈ Uπ, then, since also an ∈ Uπ, so is xa−1
n . Hence π(x)a−1

n = π(xa−1
n ) ∈

(Q×
p )n. Conclude that π(x) = ϕ(x) and that (π, ϕ) is a Θ-site.

Proof of (b): If π′ is a Qp-place of K, then, by (a), (π′, ϕ) is a Θ-site of K. Conclude

from Lemma 8.8 that π′ = π.

Proof of (c): Let θ = (π, ϕ) and θ0 = ResK0θ. Then (K, θ) is a Θ-closure of (K0, θ0).

By (a) and (b) each σ ∈ Aut(K/K0) satisfies θ = θ ◦ σ. Conclude from Proposition 8.7

that σ = 1.
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Corollary 8.10: For each Qp-place π of a field K there exists a homomorphism

ϕ: K× → Φ such that (π, ϕ) is a Θ-site.

Proof: Let (K, π̄) be a Qp-closure of (K,π). By Proposition 8.9(a) K has a Θ-site

(π̄, ϕ̄). Then (π,ResK/K ϕ̄) is a Θ-site of K.

Remark: Note that Proposition 8.7 implies Macintyre’s result (Proposition 6.2). In-

deed in the notation of Proposition 6.2 let πi be the Qp-place that corresponds to vi.

Let ϕi be the unique homomorphism ϕi: L×i → Φ such that (πi, ϕi) is a Θ-site, i = 1, 2

(Proposition 8.9). Suppose that K ∩ Ln1 = K ∩ Ln2 for n = 1, 2, 3, ... . For each n ∈ N

and each x ∈ L×i there exists a ∈ Q× such that ϕ1(x) ≡ a mod Φn (Lemma 6.8). By

Lemma 6.8 there exists b ∈ Q× such that xa−1b−1 ∈ Φn. Then b ∈ Q ∩ Φn ⊆ Qn
p . It

follows that ϕ2(x) ≡ a mod Φn. Hence ϕ1(x) ≡ ϕ2(x) mod Φn. Since this is true for

each n we have ϕ1(x) = ϕ2(x). Conclude from Proposition 8.7 that L1
∼=K L2.

9. Θ̃-sites.

Each F -place π of a field K extends to an F̃ -place of K̃. An analogue of this holds for

sites. For each algebraic extension E of F define a group

ΦE = E× × Φ/{(a−1, a)| a ∈ F×}.

For x ∈ E× and ω ∈ Φ define the class of (x, ω) modulo the subgroup {(a−1, a)|a ∈ F×}

to be [x,w]. In particular [x, ω] = [xa−1, ωa] for every a ∈ F×. Both E× and Φ can be

embedded in ΦE by x 7→ [x, 1] and ω 7→ [1, ω], respectively. These embeddings coincide

on F×.

The case E = F̃ deserves special attention. We write Φ̃ for Φ
F̃
. Note that Φ̃ is

the union
⋃

ΦE where E ranges over all finite extensions of F .

Lemma 9.1: The group Φ̃ is divisible.

Proof: Let n be a positive integer. For x ∈ F̃× and ω ∈ Φ choose b ∈ F×alg and

ω1 ∈ Φ such that ωb = ωn1 (Assumption 8.1(b2)). Let y ∈ F̃× satisfies x = byn. Then

[x, ω] = [xb−1, ωb] = [y, ω1]n.

Lemma 9.2: F̃ and Φ̃ satisfy Assumption 8.1.
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Proof: Since F̃ ∩Q̃ = Q̃ and (F̃×)n = F̃× Assumption 8.1(b1) is trivial and (b2) follows

from Lemma 9.1. Thus we have only to prove Assumption 8.1(b3).

Let [x, ω] ∈ Φ̃ with [x, ω]n = 1. Then there exists t ∈ F× such that xn = t−1 and

ωn = t. By Assumption 8.1(b1), there exist a ∈ F×alg and s ∈ F× such that atsn = 1.

By Assumption 8.1(b2), a ∈ F×alg ∩ Φn = (F×alg)
n. Let b ∈ F×alg such that bn = a. Then

(ωsb)n = 1 and by Assumption 8.1(b3) c = ωsb ∈ F×alg. Conclude that (xs−1b−1c)n = 1

and [x, ω] = [xs−1b−1c, ωsbc−1] = [xs−1b−1c, 1] ∈ F̃×. Since [x, ω]n = 1 we have

[x, ω] = F̃×alg.

We abbreviate E ∪ {∞} ∪ ΦE by ΘE and write Θ̃ for Θ
F̃
. A Θ̃-site of a field

L is a pair θ = (π, ϕ), where π: L → F̃ ∪ {∞} is a place and ϕ: L× → Φ̃ is a

homomorphism such that ϕ(u) = π(u) for each u ∈ Uπ. For a subfield K of L, ResKθ =

(ResK(π),ResK×(ϕ)) is a Θ̃-site of K. Write θ(L) ⊆ Θ if π(L) ⊆ F ∪{∞} and ϕ(L×) ⊆

Φ. In this case ResKθ is a Θ-site of K. Lemma 9.2 implies that the results of Section

8 except Proposition 8.9 may be applied to Θ̃-sites.

Proposition 9.3: Let θ0 be a Θ-site of a field K and let L be a Galois extension of

K. Then

(a) θ0 extends to a Θ̃-site θ of L;

(b) if another Θ̃-site θ′ of L extends θ0, then there exists a unique σ ∈ G(L/K) such

that θ = θ′ ◦ σ.

Proof: Consider θ0 as a Θ̃-site. Use Lemma 9.2 and apply Proposition 8.7 on (K, θ0)

to obtain a Θ̃-closure (K, θ̄), with θ̄ = (π̄, ϕ̄). In particular (K, π̄) is F̃ -closed (Lemma

8.6). Hence K = K̃. Then θ = ResLθ̄ is an extension of θ0 to L. This proves (a).

To prove (b) extend θ′ as above to a Θ̃-site θ̄′ of K̃. By Proposition 8.7 there

exists a unique τ ∈ G(K) such that θ̄ = θ̄′ ◦ τ . Hence θ = θ′ ◦ ResLτ .

Define an action of G(F ) on Φ̃:

g[x, ω] = [g(x), ω], g ∈ G(F ), x ∈ F̃× and ω ∈ Φ.

If E is an algebraic extension of F and [x, ω] ∈ Φ̃ is fixed under the action of G(E),

then for each g ∈ G(E) there exists a ∈ F× such that (g(x), ω) = (x, ω)(a−1, a). Hence

45



a = 1 and g(x) = x. Thus ΦE is the fixed subgroup of Φ̃ under G(E). Since G(F ) acts

on F̃ , this defines an action of G(F ) on Θ̃. The fixed subset of Θ̃ under G(E) is ΘE .

For a Θ̃-site θ = (π, ϕ) of a field L and g ∈ G(F ) we define g ◦ θ to be (g ◦ π, g ◦ ϕ).

Then g ◦ θ is also a Θ̃-site of L. Also, for x ∈ L×, we write θ(x) for (π(x), ϕ(x)).

Definition 9.4: Let L/K be a Galois extension and θ a Θ̃-site of L such that θ(K) ⊆

Θ. For each g ∈ G(F ) we have ResK(g ◦ θ) = ResK(θ). Thus Proposition 9.3(b)

gives a unique element dθ(g) ∈ G(L/K) such that g ◦ θ = θ ◦ dθ(g). We call D(θ) =

{dθ(g)| g ∈ G(F )} the decomposition group of θ. The fixed field in L of D(θ) is the

decomposition field of θ.

Lemma 9.5: Let L/K be a Galois extension and let θ be a Θ̃-site of L such that

θ(K) ⊆ Θ.

(a) If L′/K ′ is a Galois extension such that K ⊆ K ′ and L ⊆ L′, and θ′ is a Θ̃-site

of L′ that extends θ such that θ′(K ′) ⊆ Θ, then dθ(g) = resL(dθ′(g)) for each

g ∈ G(F ) and therefore D(θ) = resLD(θ′).

(b) The decomposition field L0 of θ (Definition 9.4) is the unique maximal field such

that K ⊆ L0 ⊆ L and θ(L0) ⊆ Θ. If L = K̃, then (L0,ResL0θ) is Θ-closed.

(c) For each finite extension K ′ of K which is contained in L there exists a finite

extension F ′ of F such that [F ′ : F ] ≤ [K ′ : K] and θ(K ′) ⊆ ΘF ′ .

(d) The map dθ: G(F )→ G(L/K) is a continuous homomorphism.

(e) For each σ ∈ G(L/K) and each g ∈ G(F ) we have dθ◦σ(g) = σ−1dθ(g)σ.

Proof of (a): Restrict g ◦θ′ = θ′ ◦dθ′(g) to L to obtain g ◦θ = θ ◦ resL(dθ′(g)). Conclude

that resL(dθ′(g)) = dθ(g).

Proof of (b): If x ∈ L×0 , then g(θ(x)) = θ(dθ(g)(x)) = θ(x), for all g ∈ G(F ). Hence

θ(x) ∈ Θ. Conversely, let M be a field between K and L such that θ(M) ⊆ Θ. For each

g ∈ G(F ) we have ResM (θ ◦ dθ(g)) = ResM (g ◦ θ) = ResM (θ). The existence part of

Proposition 9.3(b) for L/M gives τ ∈ G(L/M) such that θ◦dθ(g) = θ◦τ . The uniqueness

part of Proposition 9.3(b) implies that dθ(g) = τ . It follows that G(L/L0) ≤ G(L/M)

and therefore M ⊆ L0.
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Proof of (c): Extend θ to a Θ̃-site, also denoted θ = (π, ϕ), of K̃. Let K be the

decomposition field of θ. By (b), (K,ResKθ) is Θ-closed, and by Lemma 8.6, (K,ResKπ)

is F -closed. In particular ResKπ is unramified in K ′K (Lemma 7.5(5c)). Let F ′ =

π(K ′K). Then [F ′ : F ] ≤ [K ′K : K] ≤ [K ′ : K]. By Lemma 8.5, ϕ((K ′)×) ⊆

ϕ((K ′K)×) ⊆ ϕ(K
×

)(F ′)× ⊆ ΦF ′ . Therefore θ(K ′) ⊆ ΘF ′ .

Proof of (d): The multiplicativity of dθ is an immediate consequence of the definition

of dθ(g). To prove its continuity let K ′ be a finite Galois extension of K contained in

L. By (c) there exists a finite extension F ′ of F such that θ(K ′) ⊆ ΘF ′ . Then for each

g ∈ G(F ′) we have θ ◦dθ(g) = g ◦θ = θ on K ′. Apply the uniqueness part of Lemma 9.3

to the extension K ′/K to conclude that ResK′dθ(g) = 1. Thus dθ(G(F ′)) ≤ G(L/K ′).

Conclude that dθ is continuous.

Proof of (e): By definition θ ◦ σ ◦ dθ◦σ(g) = g ◦ θ ◦ σ = θ ◦ dθ(g) ◦ σ = θ ◦ σ ◦ σ−1dθ(g)σ.

The uniqueness of dθ◦σ implies dθ◦σ = σ−1dθ(g)σ.
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10. The space of sites of a Galois extension.

From now on we consider only the case F = Qp and Φ = lim←−Q×
p /(Q×

p )n. Thus Θ =

Qp ∪ {∞}∪Φ and Θ̃ = Q̃p ∪ {∞}∪ Φ̃. The goal of this section is to associate a G(Qp)-

structure G(L/K) with each Galois extension L/K. The space of sites of G(L/K) is

the collection of all Θ̃-site θ of L such that θ(K) ⊆ Θ. The forgetful map maps θ onto

dθ (Definition 9.4).

Endow Q̃×
p with the p-adic (locally compact) topology. Observe that Φ, as a

profinite group, is compact. Equip Φ̃ = (Q̃×
p ×Φ)/{(a, a−1)| a ∈ Q×

p } with the quotient

topology of the product topology of

Then the canonical embeddings of Q̃×
p and Φ into Φ̃ (Section 9) are continuous.

Since the action of G(Qp) on Q̃×
p is continuous so is the action of G(Qp) on Φ̃.

Lemma 10.1: If a topological group G has an open subgroup H of finite index and H

is profinite, then so is G.

Proof: G is a union of finitely many disjoint cosets modulo H. Each coset gH is a

Boolean space (Section 1). Therefore so is G. It follows that G is a profinite group [R,

p. 16].

Lemma 10.2: Let E be a finite extension of Qp. Then the subgroup ΦE of Φ̃ is profinite.

Proof: Let t be a prime element of E, U the group of units of E and e the ramification

index of E over Qp. Then V = 〈te〉 × U = 〈p〉 × U is an open subgroup of E×

of finite index which contains Q×
p . By Lemma 10.1 it suffices to prove that W =

(V × Φ)/{(a, a−1)| a ∈ Q×
p } is profinite. Indeed, use Q×

p = {pnu| n ∈ Z, u ∈ Z×p } and

Φ = {pmv|m ∈ Ẑ×, v ∈ Z×p } to define a continuous open homomorphism V ×Φ→ Ẑ×U

by (pnu, pmv) 7→ (pn+m, uv), for n ∈ Z, u ∈ U , m ∈ Ẑ and v ∈ Z×p . The kernel is

{(a, a−1)| a ∈ Q×
p }. Thus W ∼= Ẑ× U . Since U is compact [L2, p.46] so is W .

For a Galois extension L/K we denote the set of all Θ̃-sites θ = (π, ϕ) of L such

that θ(K) ⊆ Θ by X(L/K). Since π: L→ Q̃p∪{∞} and ϕ: L× → Φ̃ are maps, consider

X(L/K) as a subset of Y = (Q̃p ∪ {∞})L × Φ̃L
×
. Equip Q̃p ∪ {∞} with the topology

of one point compactification. Then Y and X(L/K) are topological spaces.

If L′/K ′ is another Galois extension such that K ⊆ K ′ and L ⊆ L′, then the
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obvious restriction map ResL′/L: X(L′/K ′)→ X(L/K) is continuous. Moreover

(1) X(L/K) ∼= lim←−X(L0/K),

where L0/K ranges over all finite Galois subextensions of L/K.

Let K ⊆ K ′ ⊆ L and θ ∈ X(L/K), and suppose that D(θ) ≤ G(L/K ′) (Definition

9.4). Then θ(K ′) ⊆ Θ (Lemma 9.5(b)). Conclude that

(2) X(L/K ′) = {θ ∈ X(L/K)|D(θ) ≤ G(L/K ′)}.

Lemma 10.3: (a) For each Galois extension L/K, X(L/K) is a Boolean space.

(b) The collection of sets

(3) {(π, ϕ) ∈ X(L/K)| ϕ(y) ∈ V },

where y ranges over L× and V ranges through a basis of Φ̃, is a subbasis for the

topology of X(L/K).

Proof of (a): By (1), it suffices to consider the case where L/K is finite. Denote the

compositum of all extensions of Qp of degree ≤ [L : K] by E. It is a finite extension

of Qp (Proposition 6.5). By Lemma 9.5(c), θ(L) ⊆ ΘE for each θ ∈ X(L/K). Thus

X(L/K) is a subspace of YE = (E ∪ {∞})L × ΦL
×

E . Since generalized addition and

multiplication in E ∪ {∞} are continuous, X(L/K) is closed in YE . As E is a locally

compact totally disconnected Hausdorff space, E ∪ {∞} is Boolean. By Lemma 10.2,

so is ΦE . Hence the product space YE is Boolean and therefore so is X(L/K).

Proof of (b): The map (π, ϕ) 7→ ϕ of X(L/K) into Φ̃L
×

is injective, by Lemma 8.8(b).

By (a) it is a homomorphism of X(L/K) onto its image in Φ̃L
×
.

If L/K is a finite extension, E is the compositum of all finite extensions of Qp of

degree at most [L : K], then θ(L×) ⊆ ΘE for each θ ∈ X(L/K) (Lemma 9.5(c)). Hence,

in order to get a subbasis of X(L/K), it suffices to allow V in (3) to run through a basis

of ΦE .
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Remark 10.4: The action of G(L/K) on X(L/K). Define the action of G(L/K) on

X(L/K) by θσ = θ ◦ σ. Each σ ∈ G(L/K) maps the set (3) onto the set

{(π, ϕ) ∈ X(L/K)| ϕ(σ−1V ) ∈ V }.

Moreover θ ◦ σ = θ implies σ = 1 (Proposition 9.3(b)). Hence this action is contin-

uous and regular and (X(L/K),G(L/K)) is a profinite transformation group (Lemma

10.3). If L′/K ′ is another Galois extension such that K ⊆ K ′ and L ⊆ L′, then

ResL′/L: (X(L′/K ′),G(L′/K ′))→ (X(L/K),G(L/K)) is a morphism of transformation

groups.

Remark 10.5: The space X(K). We write X(K) for X(K/K), the set of all Θ-sites

of K. The subbasis for its topology given by

{(π, ϕ) ∈ X(K)| ϕ(a) ≡ ω mod Φm}, a ∈ K×, ω ∈ Φ and m ∈ N,

(Lemma 10.3(b)) consists of open-closed sets.

By Lemma 10.3(a) each open-closed subset H of X(K) is compact. Hence it is a

finite union of finite intersections of subbasis sets

(4) H =
k⋃
i=1

l(i)⋂
j=1

{(π, ϕ) ∈ X(K)| ϕ(aij) ≡ ωij mod Φmij}

with aij ∈ K×, ωij ∈ Φ and mij ∈ N. Let m be a common multiple of all mij ’s.

Since Φmij/Φm ∼= (Q×
p )mij/(Q×

p )m is finite, we may enlarge each l(i), if necessary,

to assume that mij = m for each i and j. Lemma 6.8 gives bij ∈ Q× such that

bij ≡ ωij mod Φm, i = 1, . . . , k and j = 1, . . . , l(i). Then ϕ(bij) = π(bij) = bij . Replace

aij by b−1
ij aij if necessary and use De-Morgan laws to change the order of the union and

intersection in (4) and add trivial conditions if necessary like ϕ(1) ∈ Φm to represent H

as

H =
r⋂
i=1

n⋃
j=1

{(π, ϕ) ∈ X(K)| ϕ(aij) ∈ Φm}.

Again, let L/K be a Galois extension. Define a map

d: X(L/K)→ Hom(G(Qp),G(L/K))
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by d(θ) = dθ, where dθ: Γ→ G(L/K) is the unique homomorphism for which θ◦dθ(g) =

g ◦ θ for every g ∈ G(Qp) (Definition 9.4). For each σ ∈ G(L/K)

θσ ◦ dθσ (g) = g ◦ θσ = g ◦ θ ◦ σ = θ ◦ σ ◦ σ−1 ◦ dθ(g) ◦ σ = θσ ◦ dθ(g)σ.

Hence d(θ)σ = d(θσ). Continuity of d is a consequence of the next result which is a

version of Krasner’s lemma.

Lemma 10.6: Let L/K be a finite Galois extension and let θ ∈ X(L/K). Then θ has

an open neighborhood Vθ such that dθ = dθ′ for each θ′ ∈ Vθ.

Proof: We first fix an element g ∈ G(Qp) and construct an open neighborhood Vθ,g of

θ = (π, ϕ) such that dθ(g) = dθ′(g) for each θ′ ∈ Vθ,g.

Indeed let σ = dθ(g). Let τ ∈ G(L/K), τ 6= σ. Proposition 9.3(b) implies that

θ ◦ τ 6= θ ◦ σ. Hence ϕ ◦ τ 6= ϕ ◦ σ (Lemma 8.8(b)). Choose aτ ∈ L× such that

(ϕ ◦ τ)(aτ ) 6= (ϕ ◦ σ)(aτ ).

Let E be the compositum of all finite extensions of Qp of degree at most [L : K]. E

is a finite extension of Qp (Proposition 6.5) and ϕ′(L×) ⊆ ΦE for each (π′, ϕ′) ∈ X(L/K)

(Lemma 9.5(c)).

Since L/K is finite and ΦE is profinite (Lemma 10.2) ΦE has an open subgroup

U such that

(9) (ϕ ◦ τ)(aτ ) 6≡ (ϕ ◦ σ)(aτ ) modU for each τ ∈ G(L/K), τ 6= σ.

Replace U , if necessary, by
⋂
h∈G(E/Qp) h(U) to assume that g(U) = U .

Now define Vθ,g to be the set of all θ′ = (π′, ϕ′) ∈ X(L/K) such that

(10) (ϕ′ ◦ κ)(aτ ) ≡ (ϕ ◦ κ)(aτ ) modU for all κ, τ ∈ G(L/K).

It is an open neighborhood of θ. In particular, for κ = 1, ϕ′(aτ ) ≡ ϕ(aτ ) modU , and

therefore (g ◦ ϕ′)(aτ ) ≡ (g ◦ ϕ)(aτ ) modU for all τ ∈ G(L/K). Thus

(11) (ϕ′ ◦ dθ′(g))(aτ ) ≡ (ϕ ◦ σ)(aτ ) modU for every τ ∈ G(L/K).

Substitute κ = dθ′(g) in (10) to obtain

(12) (ϕ′ ◦ dθ′(g))(aτ ) ≡ (ϕ ◦ dθ′(g))(aτ ) modU for every τ ∈ G(L/K).
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It follows from (11) and (12) that

(13) (ϕ ◦ dθ′(g))(aτ ) ≡ (ϕ ◦ σ)(aτ ) modU for every τ ∈ G(L/K).

Thus (9) and (13) imply that dθ′(g) = σ = dθ(g).

Finally let Vθ =
⋂
g Vθ,g, where g ranges over a finite set G0 of generators of G(Qp)

(Proposition 6.5). Then Vθ is an open neighborhood of θ such that for each θ′ ∈ Vθ and

each g ∈ G0 we have dθ(g) = dθ′(g). Since dθ and dθ′ are continuous homomorphisms

(Lemma 9.5(d)) dθ = dθ′ .

Proposition 10.7: Let L/K be a Galois extension. Then

(a) G(L/K) = 〈G(L/K), X(L/K), d〉 is a G(Qp)-structure;

(b) if L0/K0 is a Galois extension such that K0 ⊆ K and L0 ⊆ L, then

ResL/L0 : G(L/K)→ G(L0/K0)

is a morphism of G(Qp)-structures;

(c) in particular if K0 = K, then ResL/L0 is a cover of G(Qp)-structures.

Proof: By Lemma 9.5(a) and in the notation of (b), the following diagram commutes:

(10)

X(L/K) d−→ Hom(G(Qp),G(L/K))yResL/L0

yResL/L0

X(L0/K0)
d−→ Hom(G(Qp),G(L0/K0))

Since X(L/K) = lim←−X(L0/K) (by (1)) and

Hom(G(Qp),G(L/K)) = lim←−Hom(G(Qp),G(L0/K))

where L0/K ranges over all finite Galois subextensions of L/K (Section (1)), the map

d: X(L/K) → Hom(G(Qp),G(L/K)) is the inverse limit of the maps d: X(L0/K) →

Hom(G(Qp),G(L0/K)). By Lemma 10.6, d is continuous. Combine this with Remark

10.4 to conclude that G(L/K) is a G(Qp)-structure. Similarly conclude (b). Assertion

(c) follows from Proposition 9.3.

If L = K̃ we write G(K) for G(K̃/K) and call G(K) the absolute G(Qp)-

structure of K.
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Lemma 10.8: Let K be a field and let θ, θ′ ∈ X(K̃/K). Denote the decomposition

field of θ (resp., θ′) by M (resp., M ′). Then

(a) M is p-adically closed;

(b) the map dθ: G(Qp)→ G(K) is injective, MQ̃ = M̃ and G(M) ∼= G(Qp);

(c) M = M ′ if and only if there exists σ ∈ G(M) such that θ′ = θ ◦ σ;

(d) the forgetful map d: X(K̃/K)→ Hom(G(Qp), G(K)) of G(K) is injective; and

(e) every p-adically closed field L, with K ⊆ L ⊆ K̃ is the decomposition field of some

θ ∈ X(K̃/K).

Proof of (a): Combine Lemma 8.6 with Lemma 9.5(c). By Lemma 9.5(b), (M,ResMθ)

is Θ-closed. Hence, with θ = (π, ϕ), (M,ResMπ) is Qp-closed. That is, M is p-adically

closed (Remark 7.4).

Proof of (b): By (a) and Corollary 6.6, G(M) ∼= G(Qp) and MQ̃ = M̃ . Since

dθ: G(Qp) → G(M) is surjective and G(Qp) is finitely generated (Proposition 6.5),

dθ is injective.

Proof of (c): If M = M ′, then, by (3), θ, θ′ ∈ X(K̃/M). By (a) and Proposition

8.9, resMθ = resMθ′. Hence, by Proposition 9.3(b), there exists σ ∈ G(M) such that

θ′ = θ ◦ σ. Conversely, if the latter condition holds, then dθ′(g) = σ−1dθ(g)σ for each

g ∈ G(Qp) (Lemma 9.5(e)). Hence M = M ′.

Proof of (d): If dθ′ = dθ, then, from the proof of (c), σ belongs to the center of G(M).

Since the latter is trivial ((b) and Proposition 6.5) σ = 1. Thus θ′ = θ.

Proof of (e): By Proposition 8.9, L has a (unique) Θ-site θ0. Let θ ∈ X(K̃/L) ⊆

X(K̃/K) be an extension of θ0 (Proposition 9.3(a)). Since (L, θ0) is Θ-closed, L is the

decomposition field of θ (Lemma 9.5(b)).
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11. Characterization of Qp,alg by a large quotient of G(Qp).

J. Neukirch proves in [N2] that if K is an algebraic extension of Q and G(K) ∼= G(Qp),

then K ∼= Qp,alg. The main result of this section generalizes this to the case where

G(K) is a priori only a quotient of G(Qp) which maps surjectively onto a “large” finite

quotient of G(Qp). Throughout this section we use l (resp., p) to denote a prime number

and ζl (resp., ζp) to denote primitive lth (resp., pth) root of unity.

For a prime l and a profinite group G denote the maximal pro-l quotient of G by

G(l) and let ranklG = rank(G(l)) = dimFl
Hom(G,Z/lZ).

Lemma 11.1: Every finitely generated profinite group G has an open normal subgroup

G0 such that G/G0 is an l-group and for each open normal subgroup N of G contained

in G0, ranklG/N = ranklG.

Proof: There are only finitely many homomorphisms of G into Z/lZ. Take G0 to be

the intersection of the kernels of these homomorphisms.

Lemma 11.2: Let G be a finitely generated profinite group. Suppose that G(l) is not

a free pro-l-group. Then G has an open normal subgroup G0 with G/G0 an l-group

such that if G1 is a closed normal subgroup of G and G1 ≤ G0, then G/G1 is not a free

pro-l-group.

Proof: Choose G0 such that G/G0 is an l-group and rank(G/G0) = rank(G(l)) (Lemma

11.1). Let G1 ≤ G0 be a closed normal subgroup of G. If G/G1 is a free pro-l-group,

then it is a quotient of G(l), on one hand, and has G/G0 as a quotient on the other

hand. Hence rank(G/G1) = rank(G(l)). Conclude that G(l) is also a free pro-l-group

[R, p. 69], a contradiction.

The l-ranks are well known for G = G(E), where E is an algebraic extension of

Qp such that l∞ 6 |[E : Qp] [N2, Satz 4]:

(1) ranklG(E) =


1 if l 6= p and ζl /∈ E
2 if l 6= p and ζl ∈ E
1 + [E : Qp] if l = p and ζp /∈ E
2 + [E : Qp] if l = p and ζp ∈ E.

In what follows we denote the Brauer group of a field L by Br(L) = H2(G(L), L×s ).
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Let Br(L)l = {a ∈ Br(L)| la = 0} be its lth torsion part. All groups are assumed to

operate trivially on Z/lZ.

Lemma 11.3: Let L be an algebraic extension of Q which contains ζl (resp.,
√
−1 ∈ L

if l = 2). If Br(L)l 6= 0, then Br(L′)l 6= 0 for each finite extension L′ of L.

Proof: Consider the following short exact sequence

1 −→ Ul −→ Q̃× l−→Q̃× −→ 1,

where l means raising to the lth power. It induces a four term exact sequence,

(2) H1(G(L), Q̃×) −→ H2(G(L), Ul) −→ H2(G(L), Q̃×) l−→H2(G(L), Q̃×).

By Hilbert’s Theorem 90 the first term of (2) is trivial. Since Ul ⊆ L, the second

term is isomorphic to H2(G(L),Z/lZ). Thus, (2) turns to be

0 −→ H2(G(L),Z/lZ) −→ Br(L) l−→Br(L).

It follows that

(3) Br(L)l ∼= H2(G(L),Z/lZ).

Consider now the induced module A = IndG(L)
G(L′)Z/lZ and an appropriate short

exact sequence

1 −→ A1 −→ A
π−→Z/lZ −→ 0

of trivial G(L)-modules. It induces an exact sequence of cohomology groups

H2(G(L), A) π̄−→H2(G(L),Z/lZ) −→ H3(G(L), A1).

Since cdlL ≤ 2 [R, p. 303], the right term in this sequence is 0. Therefore π̄ is surjective.

Hence, by (3), H2(G(L), A) 6= 0. By Shapiro’s lemma [R, p. 146], H2(G(L), A) ∼=

H2(G(L′),Z/lZ). Conclude from (3), with L′ replacing L, that Br(L′)l 6= 0.

Lemma 11.4 (F.K. Schmidt): (a) A field K which is not separably closed can be

Henselian with respect to at most one 1-rank valuation.
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(b) Let L/K be a Galois extension of fields. If L is Henselian with respect to a rank-1

valuation v and L is not separably closed, then K is Henselian with respect to

ResKv.

Proof: See Engler [En, pp. 5 and 7] for a generalization to higher rank valuations.

Proposition 11.5: For each prime p there exists a finite Galois extension E of Qp

with this property: if K is an algebraic extension of Q and there exist epimorphisms

ϕ: G(Qp)→ G(K) and ψ: G(K)→ G(E/Qp), then K ∼= Qp,alg.

Proof: Choose a prime p′ /∈ {2, 3, p} and let S = {p, p′}. Denote the compositum of all

extensions of Qp with degree at most max{p− 1, p′ − 1} by E0. This is a finite Galois

extension of Qp. Since [Qp(ζl) : Qp] ≤ l − 1, it contains ζl for each l ∈ S.

By Proposition 6.5 and Lemma 11.1, E0 has a finite extension E1 such that for

each l ∈ S and for each Galois extension E′1 of E0 which contains E1

(4) ranklG(E′1/E0) = ranklG(E0).

Since for each l ∈ S, ζl ∈ E0, the maximal l-quotient of G(E0) is not l-free [Se, p. II-30].

Therefore, by Lemma 11.2, E0 has a proper finite Galois l-extension El such that for

each Galois extension E′l of E0 which contains El the group G(E′l/E0) is not a free

pro-l-group.

Let E be the compositum of all finite extensions of Qp of degree at most m =

max{[E1 : Qp], [Ep : Qp], [Ep′ : Qp]}. It is a finite Galois extension of Qp. Let K be as in

the theorem and denote the fixed field in Q̃p of Ker(ϕ) by N . Then G(N/Qp) ∼= G(K).

Also, for the fixed field E′ of Ker(ψ ◦ ϕ), we have G(E′/Qp) ∼= G(E/Qp). Therefore E′

is a compositum of extensions of Qp of degree at most m. Hence E′ ⊆ E. Since both

fields have the same degree over Qp, E′ = E. Thus, since Ker(ϕ) ≤ Ker(ψ ◦ ϕ), we

have E ⊆ N . We prove in two parts that K ∼= Qp,alg.

Part A: K is a Henselian field. By construction, each l ∈ S divides [N : E0]. Let

E
(l)
0 be the maximal l-extension of E0. Then El ⊆ N ∩E(l)

0 . Hence, the maximal pro-l

quotient G(N ∩ E(l)
0 /E0) of G(N/E0), is not l-free. It follows [R, p. 255] that

(5) cdlG(N/E0) > 1.
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Let L0 be the fixed field in Q̃ of ϕ(G(E0)). It is a finite Galois extension of K,

G(L0) ∼= G(N/E0) and G(E0/Qp) ∼= G(L0/K). In particular L0 contains every finite

extension of K of degree ≤ l − 1. Since [K(ζl) : K] ≤ l − 1, we have ζl ∈ L0. Since

p′ − 1 ≥ 2, we have
√
−1 ∈ L0. By (5), cdlG(L0) > 1. Hence [R, p. 261] L0 has a finite

extension Ll such that

(6) Br(Ll)l 6= 0.

Let L1 be a finite Galois extension of K that contains both Lp and Lp′ . By

Lemma 11.3, Br(L1)l 6= 0 for l = p, p′. Also, since G(L1) is isomorphic to a subgroup

of G(N/Qp), G(L1) is prosolvable. Thus, Neukirch’s Satz 1 of [N1] asserts that L1 is

Henselian. Now apply Lemma 11.4 to the Galois extension L1/K and conclude that K

is Henselian.

Part B: K ∼= Qp,alg. Denote the characteristic of the residue field of K with respect

to its Henselian valuation by q. Then K contains an isomorphic copy of Qq,alg. Assume

without loss that Qq,alg ⊆ K. By (6), Br(Lp)p 6= 0. Hence p∞ 6 |[Lp : Qq,alg] [R, p. 291]

and therefore

(7) p∞ 6 |[L0 : Qq,alg].

On one hand (4) and (1) give

(8) rankpG(L0) = rankpG(N/E0) = rankpG(E0) = 2 + [E0 : Qp].

On the other hand (1) implies

(9) rankpG(L0) =
{

2 if p 6= q
2 + [L0 : Qq,alg] if p = q.

Clearly, (8) and (9) can be reconciled only if p = q and [E0 : Qp] = [L0 : Qq,alg]. But

[E0 : Qp] = [L0 : K], so necessarily K = Qp,alg.
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12. Pseudo p-adically closed fields.

We call a field extension E/K totally p-adic if the map ResE/K : X(E) → X(K)

(Section 10) is surjective.

Lemma 12.1:

(a) A regular extension E/K is totally p-adic if and only if the Res
Ẽ/K̃

: X(Ẽ/E)→

X(K̃/K) is a surjective map.

(b) A regular extension E/K is totally p-adic if and only if for each p-adic closure K

of K, KE/K is totally p-adic.

(c) Let V be an absolutely irreducible variety defined over K and let E be its function

field. Then E/K is totally p-adic if and only if Vsim(K) 6= ∅ for each p-adic closure

K of K.

Proof of (a): Suppose that ResE/K : X(E) → X(K) is surjective. Let θ̃ ∈ X(K̃/K).

Take θ1 ∈ X(E) that extends θ = Res
K̃/K

θ̃ and extend it to θ′1 ∈ X(Ẽ/E) (Proposition

9.3(a)). Let θ′ = Res
Ẽ/K̃

θ′1. Since Res
K̃/K

θ̃ = Res
K̃/K

θ′ Proposition 9.3(b) gives

σ ∈ G(K) such that θ′ = θ̃σ. Since E/K is regular σ extends to τ ∈ G(E). Then θ̃1 =

(θ′1)
τ−1 ∈ X(Ẽ/E) and extends θ̃. Thus Res

Ẽ/K̃
: X(Ẽ/E) → X(K̃/K) is surjective.

The converse is trivial.

Proof of (b): We use (a). Suppose first that E/K is totally p-adic, let K be a p-adic

closure of K and let θ ∈ X(K̃/K). Extend θ to θ′ ∈ X(Ẽ/E). Then Res
K̃
D(θ′) =

D(θ) ≤ G(K) (Lemma 9.5(a)). Hence D(θ′) ≤ G(KE). By (3) of section 10, θ′ ∈

X(KE/K).

The converse holds, since each θ ∈ X(K̃/K) belongs to X(K̃/K), where K is the

decomposition field of θ.

Proof of (c): By (b) we may assume that K is p-adically closed. Suppose first that

Vsim(K) 6= ∅. Let (π, ϕ) be the unique Θ-site of K (Proposition 8.9). Then π extends

to a Qp-place π′ of E (Proposition 6.4(c) and Lemma 6.7). By Corollary 8.10, E has a

Θ-site (π′, ϕ′). Since (π,ResE/K(ϕ′)) is a Θ-site of K, the uniqueness of ϕ̄ implies that

ϕ = ResE/K(ϕ′). Conversely, if (π, ϕ) extends to a Θ-site of E, then Proposition 6.4(c)

implies that Vsim(K) 6= ∅.
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Definition 12.2: We call a field K of characteristic 0 pseudo p-adically closed

(PpC) if every absolutely irreducible variety V defined over K has a K-rational point,

provided that the function field of V is totally p-adic over K (i.e., Vsim(K) 6= ∅ for every

p-adic closure K of K).

Note that we do not assume that K has a p-adic valuation; a PpC with no p-adic

valuation is pseudo algebraically closed.

We shall construct a class of PpC fields contained in Q̃ with finitely many p-adic

valuations. Since the p-adic closure of a formally p-adic number field is its Henselization,

i.e., an isomorphic copy of Qp,alg, we may use the results of Heinemann and Prestel [HP]

to simplify the definition of algebraic PpC fields.

Lemma 12.3: let K be a subfield of Q̃ and let Qσ1
p,alg, . . . ,Q

σe

p,alg be p-adic closures of

K. Suppose that every absolutely irreducible polynomial f ∈ K[X,Y ] has a K-rational

zero, provided that for each i, 1 ≤ i ≤ e, there exist a, b ∈ Qσi

p,alg such that f(a, b) = 0

and ∂f
∂Y (a, b) 6= 0. Then K is PpC and its only p-adic valuations are those induced from

Qσ1
p,alg, . . . ,Q

σe

p,alg.

Proof: Let f ∈ K[X,Y ] be an absolutely irreducible polynomial that admits a Qσi

p,alg-

rational simple point for i = 1, . . . , e. After a linear transformation of the coordinates,

we may assume that for each i, 1 ≤ i ≤ e, there exist a, b ∈ Qσi

p,alg such that f(a, b) = 0

and ∂f
∂Y (a, b) 6= 0. By assumption, f has a K-rational zero. It follows from [HP, Thm.

1.8] that K is PpC, and from [HP, Lemma 1.6] that the only p-adic valuations on K are

those induced from Qσ1
p,alg, . . . ,Q

σe

p,alg.

Fix integers 0 ≤ e ≤ m. For each σσσ = (σ1, . . . , σm) ∈ G(Q)m let

Qσσσ = Qσ1
p,alg ∩ · · · ∩Qσe

p,alg ∩ Q̃(σe+1) ∩ · · · ∩ Q̃(σm).

Also, for σσσ,λλλ ∈ G(Q)m write σσσλλλ for (σ1λ1, . . . , σmλm). In the following result we use

the term “almost all” in the sense of the Haar measure of G(Q)m.

Lemma 12.4: Let τττ ∈ G(Q)m and let L ⊆ Qτττ be a finite extension of Q. Then

almost all λλλ ∈ G(L)m have this property: if f ∈ L[X,Y ] is an absolutely irreducible

polynomial and for each 1 ≤ i ≤ e there exist a0i, b0i ∈ Qτi

p,alg such that f(a0i, b0i) = 0

and ∂f
∂Y (a0i, b0i) 6= 0, then f has a Qτττλλλ-rational zero.
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Proof: Let n = degY f . Without loss assume that for some d between 1 and e,

Qτ1
p,alg, . . . ,Q

τd

p,alg represent the L-isomorphism classes of the set {Qτ1
p,alg, . . . ,Q

τe

p,alg}. In

particular Qτ1
p,alg, . . . ,Q

τd

p,alg induce distinct p-adic valuations on L.

Since L is Hilbertian we may use [G, Lemma 3.4] to inductively find a1, a2, a3, . . . ∈

L and b1, b2, b3, . . . ∈ Q̃ such that for each j ≥ 1

(1a) aj lies near a0i in Qτi

p,alg, i = 1, . . . , d;

(1b) f(aj , Y ) is irreducible over L of degree n, and f(aj , bj) = 0; and

(1c) for Lj = L(bj), the sequence L1, L2, L3, . . . is linearly disjoint over L.

Condition (1a) and f(a0i, b0i) = 0 imply by Krasner’s lemma [Ri, p. 190] that

f(aj , Y ) has a root in Qτi

p,alg, i = 1, . . . , d. By the choice of d this also holds for

i = d+ 1, . . . , e. Thus, by (1b), there exist λj1, . . . , λje ∈ G(L) such that L
λji

j ⊆ Qτi

p,alg,

i = 1, . . . , e. Let λji = τi for i = e+ 1, . . . ,m and λλλj = (λj1, . . . , λjm).

Condition (1c) implies by [J1, Lemma 6.3] that for almost all λλλ ∈ G(L)m there

exists j ≥ 1 such that resLjλλλ
−1 = resLjλλλj . But then L

λ−1
i
j = L

λji

j ⊆ Qτi

p,alg, hence Lj ⊆

Qτiλi

p,alg, i = 1, . . . , e. Also, resLj
λ−1
i = resLj

τi, hence Lj ⊆ Q̃(τiλi), i = e + 1, . . . ,m.

Conclude that Lj ⊆ Qτττλλλ. Thus (aj , bj) is a Qτττλλλ-rational zero of f .

Lemma 12.5: For almost all σσσ ∈ G(Q)m the field Qσσσ is PpC and has at most e distinct

p-adic valuations.

Proof: Fix a countable dense subset T of G(Q)m. Let σσσ ∈ G(Q)m and consider an

absolutely irreducible polynomial f ∈ Qσσσ[X,Y ] which has a Qσi

p,alg-rational zero (ai, bi)

such that ∂f
∂Y (ai, bi) 6= 0 for i = 1, . . . , e. Let L ⊆ Qσ be a finite extension of Q that

contains the coefficients of f . Consider τττ ∈ T ∩ σσσG(L)m. Since Qτi

p,alg is isomorphic

to Qσi

p,alg over L, f has a Qτi

p,alg-rational zero (a′i, b′i) such that ∂f
∂Y (a′i, b′i) 6= 0, i =

1, . . . , e. Hence, by Lemma 12.4, f has a Qσσσ-rational point, unless σ belongs to a zero

subset of τττG(L)m. Use that a countable union of zero sets is again a zero set to exclude

such a case. Conclude from Lemma 12.3 that Qσσσ is PpC and has at most e distinct

p-adic valuations.

Remark 12.6: Regular action. A regular action of a finite group on a finite set X is

unique up to a permutation of X. More precisely, if two groups G and G′ act regularly
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on X (Definition 1.1) and there exists an isomorphism ϕ: G → G′, then there exists a

permutation s of X such that

(2) xϕ(g)s = xsg, for g ∈ G and x ∈ X.

Indeed, letX0 be a system of representatives for theG-orbits ofX. Then each x ∈ X can

be uniquely written as x = xg0 with x0 ∈ X0 and g ∈ G. It follows that |X0| = |X|/|G|.

Similarly, a system X ′
0 of representatives for the G′-orbits of X has |X|/|G′| elements.

Thus there exists a bijective map s: X ′
0 → X0. Extend s to a permutation of X by the

rule xϕ(g)s
0 = xsg0 , for x0 ∈ X ′

0 and g ∈ G. Obviously, it satisfies (2).

Notation 12.7: Let Γe,m = Γ1 ∗ · · · ∗Γe ∗ F̂m−e be the free product in the category of

profinite groups of e copies Γ1, . . . ,Γe of G(Qp), and F̂m−e, the free profinite group on

m− e generators (c.f., (1) of Section 3).

Lemma 12.8: For almost all σσσ ∈ G(Q)m

(3) G(Qσ) ∼= Γe,m.

Proof: We follow Geyer’s proof [G] for the case e = m. The case e = 0 is treated in

[J2, Thm. 5.1]. So assume e ≥ 1. Since both sides of (3) are finitely generated, it

suffices to prove that they have the same finite quotients. But G(Qσ), being generated

by G(Qσi

p,alg) ∼= G(Qp), i = 1, . . . , e, and 〈σe+1, . . . , σm〉 is a quotient of Γe,m. Thus it

suffices to consider finite groups of the form G = 〈G1, . . . , Ge+1〉 where Gi ∼= G(E/Qp),

i = 1, . . . , e, the field E is a finite Galois extension of Qp, and Ge+1 is generated by

m− e elements, and to prove that G is a quotient of G(Qσ) for almost all σσσ ∈ G(Q)m.

Let x1 be a primitive element for the extension E/Qp and let x1, . . . , xs be the

conjugates of x1 over Qp. Note that n = |G| is a multiple of s = |Gi|, i = 1, . . . , e.

Take integers k1, . . . , kn/s such that xi + kj 6= xr + kt if (i, j) 6= (r, t). Then f(X) =∏s
i=1

∏n/s
j=1(X − xi − kj) is a monic polynomial with coefficients in Qp with n = deg(f)

distinct roots. Each of the roots is a primitive element for E/Qp. Hence G(E/Qp) acts

regularly on them.
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Use Hilbert irreducibility theorem and [G, Lemma 3.4] to inductively construct

a sequence f1, f2, f3, . . . of monic polynomials in Q[X] of degree n and a sequence

L1, L2, L3, . . . of Galois extensions of Q such that for each j ≥ 1

( 4a) Lj is the splitting field of fj over Q, and G(Lj/Q) ∼= Sn;

( 4b) fj is p-adically close to f ; and

( 4c) L1, L2, L3, . . . are linearly disjoint over Q.

(cf. the proof of [J1, Lemma 2.2]).

Condition (4b) implies by Krasner’s lemma [Ri, pp. 190-197] that the splitting

field of fj over Qp coincides with that of f , namely with E. Moreover each of the

roots of fj is p-adically close to a root of f and therefore generates E over Qp. Thus

G(Lj/Lj ∩Qp) ∼= G(E/Qp) regularly acts on the set of roots Rj of fj , and |Rj | = n. On

the other hand G acts regularly on itself by multiplication from the right. So identify G

as a subgroup of G(Lj/Q), which is by (4a) the full permutation group of Rj . Denote the

image of Gi under this identification by Gji, i = 1, . . . , e + 1. Choose an isomorphism

ϕji: Gji → G(Lj/Lj ∩ Qp). By Remark 12.6 there exists σji ∈ G(Lj/Q) such that

xϕji(g)σji = xσjig for each x ∈ Rj and g ∈ Gji. Thus σ−1
ji ϕji(g)σji = g for each g ∈ Gji.

It follows that Gji = G(Lj/Lj∩Qp)σji . Also, let σj,e+1, . . . , σjm be generators of Gj,e+1.

By [J2, Lemma 4.1], for almost all σσσ ∈ G(Q)m there exists j ≥ 1 such that the

restriction of σσσ to Lj is (σj1, . . . , σjm). Therefore

G(LjQσ/Qσ) ∼= G(Lj/Lj ∩Qσ)

= 〈G(Lj/Lj ∩Qp)σj1 , . . . ,G(Lj/Lj ∩Qp)σje , σj,e+1, . . . , σj,m〉

= 〈Gj1, . . . , Gje, Gj,e+1〉 = G.

Thus G is a quotient of G(Qσ).

Proposition 12.9: The following statements hold for almost all σσσ ∈ G(Q)m:

(a) Qσ is a PpC field;

(b) G(Qσ) = G(Qσ1
p,alg) ∗ · · · ∗G(Qσe

p,alg) ∗ 〈σe+1, . . . , σm〉 ∼= Γe,m;

(c) Qσ has exactly e p-adic valuations; they are induced by the p-adic Henselizations

Qσ1
p,alg, . . . ,Q

σe

p,alg of Qσ; and
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(d) if M and M ′ are two distinct p-adic Henselizations of Qσ, then MM ′ = Q̃.

Proof of (a): See Lemma 12.5.

Proof of (b): The isomorphisms G(Qp) → G(Qσi

p,alg), i = 1, . . . , e, and F̂m−e →

〈σe+1, . . . , σm〉 combine to an epimorphism ϕ: Γe,m → G(Qσ). Since, by Lemma 12.8,

both groups are finitely generated and isomorphic, ϕ̄ is an isomorphism [R, p. 69].

Proof of (c): Map G(Qσ) homomorphically onto the direct product G(Qσ1
p,alg) × · · · ×

G(Qσe

p,alg) to conclude that G(Qσ1
p,alg), . . . , G(Qσe

p,alg) are pairwise nonconjugate in G(Qσ).

Thus Qσ1
p,alg, . . . ,Q

σe

p,alg induce e distinct p-adic valuations v1, . . . , ve on Qσ. Since Qσ

has at most e p-adic valuations (Lemma 12.5), v1, . . . , ve are all of them.

Proof of (d): Extend the p-adic valuations v of M and v′ of M ′ to Q̃. Since M and

M ′ are the respective decomposition fields of v and v′, these valuations are distinct on

Q̃ and therefore on MM ′. Thus MM ′ is Henselian with respect to two distinct 1-rank

valuations. Use Lemma 11.4 to conclude that MM ′ = Q̃.

We conclude this section by a proposition that allows us to apply the results of

Sections 3, 4 and 5 to Γ = G(Qp).

Proposition 12.10: The group Γ = G(Qp) satisfies Assumption 3.1.

Proof: Proposition 6.5 says that G(Qp) satisfies conditions (a) and (b) of Assumption

3.1. As to the other conditions let σσσ be an element of G(Q)m that satisfies the con-

clusions of Proposition 12.9. In particular G(Qσ) ∼= Γe,m. Let E be the finite Galois

extension of Qp mentioned in Proposition 11.5. Consider a closed subgroup H of G(Qσ).

Suppose that H is a quotient of G(Qp) and has G(E/Qp) as its quotient (i.e., H is a

large quotient of G(Qp)). Then Q̃(H) ∼= Qp,alg. Hence H ∼= G(Qp) (this gives As-

sumption 3.1(d)). Also, Q̃(H) induces p-adic valuation on Qσ. By Proposition 12.9, it

coincides with the valuation induced by some Qσi

p,alg. Therefore Q̃(H) is Qσ-isomorphic

to Qσi

p,alg, and H is conjugate to G(Qσi

p,alg). Thus Assumption 3.1(c1) holds. Assumption

3.1(c2) follows from Proposition 8.9(c). Finally Proposition 12.9(d) implies Assumption

3.1(c3).
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Part C. Projective G(Qp)-structures as absolute G(Qp)-Galois structures.

From now on we replace the term “G(Qp)-projective group” by “p-adically projective

group”. The absolute G(Qp)-structure G(K) of a PpC field K is projective and the

absolute Galois group of K is p-adically projective (Theorem 15.1). Most of Part C

proves the converse. For each projective G(Qp)-structure G there exists a PpC field K

such that G ∼= G(K) (Theorem 15.3) and for each p-adically projective group G there

exists a PpC field K such that G ∼= G(K) (Theorem 15.4). Section 13 prepares the

proof by showing the existence of continuous sections to the maps ResF/L: X(F/E)→

X(L/K) in various cases. In particular Proposition 13.11 asserts that for each Boolean

space X there exists a PpC field K such that X ∼= X(K). In Section 14 we prove that

for each p-adic structure G (not necessarily projective) there exists a Galois extension

F/E, with E PpC, such that G ∼= G(F/E).

13. Restriction maps of spaces of sites.

The restriction map ResL′/L: X(L′/K ′) → X(L/K) for two Galois extensions L′/K ′

and L/K with K ⊆ K ′ and L ⊆ L′ is continuous (Section 10). Since spaces of sites

are compact and Hausdorff, ResL′/L is a closed map. In this section we prove openness

results and investigate the existence of continuous sections for these maps.

Lemma 13.1: Let E/K be a finite extension. Then ResE/K : X(E) → X(K) is an

open map. Moreover, X(E) has a partition {Vi}ni=1 such that for each i, 1 ≤ i ≤ n,

ResE/K : Vi → ResE/K(Vi) is a homeomorphism.

Proof: By compactness, it suffices to find for each θ ∈ X(E) an open-closed neighbor-

hood V on which ResE/K is injective and such that ResE/K(V ) is open-closed.

Indeed let L be a finite Galois extension of K that contains E. Consider the

following commutative diagram

X(L/E) i−→ X(L/K)yResL/E

yResL/K

X(E) −→
ResE/K

X(K)

Here i is the inclusion map. By (2) of Section 10, X(L/E) consists of all θ ∈ X(L/K)

such that D(θ) ≤ G(L/E). Since D: X(L/K) → Subg(G(L/K)) is continuous and
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G(L/K) is finite, X(L/E) is open in X(L/K). Hence i is open. The vertical maps

are quotient maps by G(L/E) and G(L/K), respectively, and therefore open [HJ, Claim

1.6]. Conclude for each open subset V of X(E) that ResE/K(V ) = ResL/K(Res−1
L/E(V ))

is open in X(K).

Now extend θ to θ′ ∈ X(L/E). Since (θ′)σ 6= θ′ for each σ, 1 6= σ ∈ G(L/K)

(Proposition 9.3(b)), θ′ has an open-closed neighborhood V ′ ⊆ X(L/E) such that θ′ /∈

(V ′)σ for each σ, 1 6= σ ∈ G(L/K). Replace V ′ by V ′ −
⋂
σ 6=1(V

′)σ to assume that

V ′ ∩ (V ′)σ = ∅ for each σ 6= 1. It follows that ResL/K is injective on V ′ (Proposition

9.3(b)). Hence ResE/K is injective on the open-closed neighborhood V = ResL/E(V ′)

of θ.

Lemma 13.2: Let L/K be a Galois extension, T an ordered set of algebraically indepen-

dent elements over L and ε a function from T into {±1}. Consider E = K(T ), F = L(T )

and for each t ∈ T let Lt = L(t0 ∈ T | t0 < t). Then each θ ∈ X(L/K) uniquely extends

to θT = (πT , ϕT ) ∈ X(F/E) such that

(1) πT (at) = 0 for all a ∈ Lt and ϕT (t) = ε(t).

Moreover, for each t ∈ T and each f ∈ Lt[X] with f(0) 6= 0

(2) ϕT (f(t)) = ϕT (f(0)).

Finally, the map θ 7→ θT is a continuous section of ResF/L: X(F/E)→ X(L/K).

Proof: Replace T if necessary by {ε(t)t| t ∈ T} to assume that ε(t) = 1 for all t ∈ T .

The uniqueness part of the Lemma reduces the infinite case to the finite case. The latter

follows by induction on |T | from the case |T | = 1. So assume that T = {t}.

Each element a ∈ F× has a unique presentation,

a = a0t
m 1 + b1t+ · · ·+ bkt

k

1 + c1t+ · · ·+ cltl
,

where a0 ∈ L×, m ∈ Z and 1 + b1t + · · · + bkt
k and 1 + c1t + · · · + clt

l are relatively

prime polynomials in L[t].
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Let θ = (π, ϕ) ∈ X(L/K) and let θ′ = (π′, ϕ′) ∈ X(F/E) be an extension of θ

which satisfies (1). Then

(3) π′(1 + b1t+ · · ·+ bkt
k) = π′(1 + c1t+ · · ·+ clt

l) = 1.

Hence

(4) π′(a) = π′(a0t
m) =

{ 0 if m > 0
π(a0) if m = 0
∞ if m < 0.

By (3), ϕ′(1 + b1t+ · · ·+ bkt
k) = ϕ′(1 + c1t+ · · ·+ clt

l) = 1. Hence

(5) ϕ′(a) = ϕ(a0).

This proves the uniqueness of θ′ and (2).

To prove the existence, use (4) and (5) as definitions for π′ and ϕ′ and check that

indeed θ′ = (π′, ϕ′) ∈ X(F/E).

The continuity of the map θ 7→ θ′ follows from (4) and (5) by (1) of Section 10.

Definition 13.3: Let ε(t) = 1 for all t ∈ T . We call θT ∈ X(F/E) of Lemma 13.2 the

infinitesimal extension of θ to X(F/E) with respect to T .

Proposition 13.4: Let E/K be a finitely generated extension and let HE be an open-

closed subset of X(E). Then HK = ResE/K(HE) is open-closed in X(K) and the

restriction map ResE/K : HE → HK has a continuous section.

Proof: First note that if K ⊆ K ′ ⊆ E, HK′ = ResE/K′(HE) and the proposition holds

for the maps ResE/K′ : HE → HK′ and ResK′/K : HK′ → HK , then it also holds for

their composition ResE/K : HE → HK . This reduces the proposition to the case where

E/K is a simple extension. Also, by compactness, it suffices to find for each θ ∈ HK

an open-closed neighborhood V in HK and a continuous map s: V → HE such that for

each θ ∈ V , s(θ) extends θ. If E/K is finite this follows from Lemma 13.1. So, assume

that E = K(t) and t is transcendental over K.

Let θ0 = (π0, ϕ0) ∈ HK and let θ′0 = (π′0, ϕ
′
0) ∈ HE be an extension of θ0 to E.

By Remark 10.5, θ′0 has an open-closed neighborhood H ′
E ⊆ HE of the form

H ′
E = {(π′, ϕ′) ∈ X(E)| ϕ′(fi(t)) ∈ Φm, i = 1, . . . , r}
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where f1(t), . . . , fr(t) ∈ E×, and m ∈ N. Let fi(t) = gi(t)/g0(t), with g0(t), . . . , gr(t) ∈

K[t]. Replace fi(t) if necessary by fi(t)g0(t)m−1 to assume that fi(t) ∈ K[T ], i =

1, . . . , r. The rest of the proof splits into two parts.

Part A: A special case. Suppose first that there exists a ∈ K such that

fi(a) 6= 0 and ϕ′0(fi(a)) ∈ Φm, i = 1, . . . , r.

Replace t if necessary by t−a to assume that a = 0. By Lemma 13.2 ResE/K : X(E)→

X(K) has a continuous section s such that each (π′, ϕ′) ∈ s(X(K)) satisfies ϕ′(fi(t)) =

ϕ(fi(0)), i = 1, . . . , r. In particular s maps the open-closed neighborhood of θ0,

V = {(π, ϕ) ∈ X(K)| ϕ(fi(0)) ∈ Φm, i = 1, . . . , r}

into HE .

Part B: Reduction of the general case to the case of Part A. Let (E, θ̄0), with

θ̄0 = (π̄0, ϕ̄0) be a Θ-closure of (E, θ′0) (Proposition 8.7). Then E is Qp-closed (Lemma

8.6), so E is p-adically closed (Remark 7.4). By Lemma 7.6 and Lemma 6.8(b), ϕ̄0

induces an isomorphism of E
×
/(E

×
)m onto Φ/Φm. Since ϕ̄0(fi(t)) ∈ Φm there exists

zi ∈ E
×

such that fi(t) = zmi , i = 1, . . . , r.

The field K = K̃ ∩ E is p-adically closed (Proposition 6.4(a)). Hence, E is an

elementary extension of K (Proposition 6.4(b)). In particular there exist a ∈ K and

c1, . . . , cr ∈ K
×

such that fi(a) = cmi for i = 1, . . . , r. Let L = K(a, c1, . . . , cr),

F = L(t), θ′1 = (π′1, ϕ
′
1) = ResF θ̄0, θ1 = ResLθ′1,

H ′
F = Res−1

F/E(H ′
E) = {(π′, ϕ′) ∈ X(F )| ϕ′(fi(t)) ∈ Φm, i = 1, . . . , r}

and H ′
L = ResF/L(H ′

F ). Then ResL/K(H ′
L) ⊆ HK . By Part A, θ1 has an open-

closed neighborhood V1 and there exists a continuous map s1: V1 → H ′
F such that

s1(θ) extends θ for each θ ∈ V1. Since L/K is finite, the beginning of the proof implies

that V = ResL/K(V1) is an open-closed neighborhood of θ0 and ResL/K : V1 → V has a

continuous section s0. Clearly s = ResF/E ◦ s1 ◦ s0: V → HE is a continuous map and

s(θ) extends θ for each θ ∈ V .
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Lemma 13.5: Let K be a field and let H be an open-closed subset of X(K). Then

there exists a finitely generated regular extension E of K such that ResE/KX(E) = H.

Proof: We divide the proof into three parts.

Part A: Construction of E. Write H in the form

H =
r⋂
i=1

n⋃
j=1

{(π, ϕ) ∈ X(K)| ϕ(aij) ∈ Φm},

with aij ∈ K× and m ∈ N (Remark 10.5). Let S ⊆ Z be a finite set of representatives

for Q×
p /(Q×

p )m (Lemma 6.8(b1)). By Lemma 7.6(b), S represents M×/(M×)m for every

p-adically closed field M . Choose k ∈ N such that

(6) k > 2vp(m) + 2vp(s) for all s ∈ S.

Consider the algebraic subset V of the affine space Å(n+2)r defined by the system

of equations

(7) (Y mi1 − ai1) · · · (Y min − ain) = ai1 · · · ainpkn(γ(Xi1) + γ(Xi2)), i = 1, . . . , r,

where γ(X) is the Kochen operator ((1) of Section 6). By a theorem of Schinzel [Sc], each

of the equations in (7) is absolutely irreducible. Since the equations are algebraically

independent, V is an absolutely irreducible variety defined over K. Its function field E

is a finitely generated regular extension of K.

Part B: ResE/KX(E) ⊆ H. Let θ = (π, ϕ) ∈ X(E). As in Part B of the proof of

Proposition 13.4, let (E, θ̄), with θ̄ = (π̄, ϕ̄), be a Θ-closure of (E, θ). By construction

there exist yi1, . . . , yin ∈ E× and xi1, xi2 ∈ E such that

(8) (ymi1 − ai1) · · · (ymin − ain) = ai1 · · · ainpkn(γ(xi1) + γ(xi2)), i = 1, . . . , r.

For each i and j take bij ∈ E
×

and sij ∈ S such that aij = bmij sij . Let zij = yij/bij .

Divide (8) by bmi1 · · · bmin to obtain

(9) (zmi1 − si1) · · · (zmin − sin) = si1 · · · sinpkn(γ(xi1) + γ(xi2)), i = 1, . . . , r.
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Apply the p-adic valuation v̄ of E associated with π̄ on (9) and use Lemma 6.1:

(10)
n∑
j=1

v̄(zmij − sij) ≥
n∑
j=1

(vp(sij) + k), i = 1, . . . , r.

For each i, 1 ≤ i ≤ r, (10) gives j = j(i) such that

(11) v̄(zmij − sij) ≥ v̄(sij) + k > v̄(sij).

Therefore v̄(zmij ) = v̄(sij). Hence, by (6) and (11),

v̄(mzm−1
ij ) = v̄(m) +

m− 1
m

v̄(zmij ) ≤ v̄(m) + v̄(sij) <
1
2
k ≤ 1

2
v̄(zmij − sij).

Since E is Henselian with respect to v̄ (Lemmas 8.6 and 7.5) we may apply the Hensel-

Rychlik lemma to Zm − sij and obtain cij ∈ E
×

such that cmij = sij , i = 1, . . . , r. It

follows that ϕ(aij) = ϕ̄(bijcij)m ∈ Φm. This means that ResE/Kθ ∈ H.

Part C: H ⊆ ResE/KX(E). Let θ = (π, ϕ) ∈ H. Extend (K, θ) to a Θ-closure

(K, θ̄), with θ̄ = (π̄, ϕ̄) (Proposition 8.7). By Lemma 8.6, K is p-adically closed. Hence

ϕ̄ induces an isomorphism of K
×
/(K

×
)m onto Φ/Φm (Lemma 7.6 and Lemma 6.8(c)).

In particular, for each i, 1 ≤ i ≤ r, there exist j(i), 1 ≤ j(i) ≤ n, and yi,j(i) ∈ K
×

such that ymi,j(i) = ai,j(i). Let yij = 0 for each j 6= j(i) and xi1 = xi2 = 0. Then

{(yi1, . . . , yin, xi1, xi2)| i = 1, . . . , r)} is a K-rational simple point of V . Extend π̄ to a

Qp-place π1 of KE (Proposition 6.4(c)). The p-adic closure (E, π̄) of (KE, π1) has a

unique Θ-site θ′ whose restriction to K is the unique Θ-site θ̄ of K (Proposition 8.9).

The p-adic closure (E, π̄) of (KE, π̄1) has a unique Θ-site θ′ whose restriction to K is

the unique Θ-site θ̄ of K (Proposition 8.9). Conclude that θ = ResE/K(ResE/Eθ
′) ∈

ResE/KX(E).

Lemma 13.6: Let K be a field and let C be a closed subset of X(K). Then there exists

a regular extension E of K such that ResE/KX(E) = C, and ResE/K : X(E) → C has

a continuous section.

Proof: The set C is the intersection of open-closed sets, C =
⋂
λ<mHλ, where λ ranges

over all ordinals smaller than some cardinal number m. For each µ ≤ m let Cµ =
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⋂
λ<µHλ. Thus C0 = X(K) and Cm = C. If λ < λ′ ≤ m, then Cλ′ ⊆ Cλ. Denote the

inclusion map Cλ′ → Cλ by iλ′,λ. Finally let E0 = K and let s0 be the identity map of

X(K).

Let µ ≤ m. Suppose, by transfinite induction, that for each λ < µ we have

constructed

(12a) a regular extension Eλ of K such that ResEλ/KX(Eλ) = Cλ; and

(12b) a continuous section sλ: Cλ → X(Eλ) of ResEλ/K ;

such that for every λ ≤ λ′ < µ

(13) Eλ ⊆ Eλ′ and ResEλ′/Eλ
◦ sλ′ = sλ ◦ iλ′,λ.

If µ is a limit ordinal, let Eµ =
⋃
λ<µEλ. Then Eµ/K is regular and X(Eµ) =

lim←
λ<µ

X(Eλ). Hence ResEµ/KX(Eµ) =
⋂
λ<µ Cλ = Cµ. Also, the maps sλ ◦ iµ,λ, with

λ < µ, define a section sµ: Cµ → X(Eµ) of ResEµ/K such that ResEµ/Eλ
◦sµ = sλ ◦ iµ,λ,

for every λ < µ.

If µ = λ+ 1, then Cµ = Cλ ∩Hλ. Hence C ′µ = Res−1
Eλ/K

(Cµ) = Res−1
Eλ/K

(Hλ) is

an open-closed subset of X(Eλ) and sλ(Cµ) ⊆ C ′µ. By Lemma 13.5, Eλ has a finitely

generated regular extension Eµ such that ResEµ/Eλ
X(Eµ) = C ′µ. By Proposition 13.4,

ResEµ/Eλ
: X(Eµ) → C ′µ has a continuous section s′µ: C ′µ → X(Eµ). Obviously

ResEµ/KX(Eµ) = Cµ and the map sµ = s′µ ◦ sλ ◦ iµ,λ is a continuous section of

ResEµ/K : X(Eµ)→ Cµ such that ResEµ/Eλ
◦ sµ = sλ ◦ iµ,λ. Thus Eµ and sµ satisfy the

induction hypothesis.

Let E = Em and s = sm. Then ResE/KX(K) = Cm = C and s: C → X(E) is a

continuous section of ResE/K .

Lemma 13.7: Let K be a field and let C be a closed subset of X(K). Then K has a

regular extension E such that ResE/K maps X(E) homeomorphically onto C.

Proof: Let E0 = K and C0 = C. Suppose by induction that for n ∈ N there ex-

ists a tower E0 ⊆ E1 ⊆ · · · ⊆ En of regular extensions and for each i, 1 ≤ i ≤ n,

ResEi/Ei−1(X(Ei)) = Ci−1 and X(Ei) has a closed subset Ci which ResEi/Ei−1 maps

homeomorphically onto Ci−1. By Lemma 13.6, En has a regular extension En+1 such
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that ResEn+1/En
(X(En+1)) = Cn and ResEn+1/En

: X(En+1) → Cn has a continuous

section sn. Then Cn+1 = sn(Cn) is a closed subset of X(En+1), and ResEn+1/En
maps

Cn+1 homeomorphically onto Cn.

Now let E =
⋃∞
n=1En. Then X(E) = lim←−Cn. Conclude that for each n, ResE/En

maps X(E) homeomorphically onto Cn.

Definition 13.8: Recall that an extension of fields E/K is totally p-adic if

ResE/K : X(E)→ X(K)

is surjective (Section 12). We say that E/K is exactly p-adic if ResE/K : X(E) →

X(K) is a homeomorphism.

The field K is existentially closed in E if each formula without quantifiers in

the language of fields with coefficients in K which is satisfiable in E is satisfiable in K.

Lemma 13.9: Let K be a field.

(a) If K is PpC (Definition 12.2), then K is existentially closed in every regular totally

p-adic extension.

(b) If K is existentially closed in every regular exactly p-adic extension, then K is

PpC.

Proof of (a): Let E be a regular totally p-adic extension of K. We have to show that if

f1, . . . , fr, g1, . . . , gs ∈ K[X1, . . . , Xn] and the system

(14) fi(X) = 0, i = 1, . . . , r; gj(X) 6= 0, j = 1, . . . , s

has a solution x ∈ En, then it also has a solution inKn. Replace gj(X) 6= 0, j = 1, . . . , s,

if necessary, by the equation g1(X) · · · gs(X)Xn+1 − 1 = 0 to assume that s = 0. Since

K(x)/K is a regular extension, x generates over K an absolutely irreducible variety V .

Since K(x)/K is totally p-adic, Lemma 12.1(c) implies that Vsim(K) 6= ∅ for each p-adic

closure K of K. Conclude from K being PpC that V has a K-rational point x′. This

point solves (14).

Proof of (b): Let V be an absolutely irreducible variety defined over K. Denote the

function field of V by E and assume that E/K is totally p-adic. By Proposition 13.4,
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the surjective map ResE/K : X(E) → X(K) has a continuous section s. Its image

s(X(K)) is closed in X(E). By Lemma 13.7, E has a regular extension F such that

ResF/E maps X(F ) homeomorphically onto s(X(K)). Hence ResF/K : X(F ) → X(K)

is a homeomorphism. Thus F/K is a regular exactly p-adic extension. It follows that

K is existentially closed in F . Since V has an F -rational point it also has a K-rational

point.

Proposition 13.10: Let L/K be a Galois extension and let C be a closed subset

of X(L/K) which is closed under the action of G(L/K). Then there exists a Ga-

lois extension F/E such that E is a regular PpC extension of K, LE = F , the map

ResF/L: G(F/E)→ G(L/K) is an isomorphism, and ResF/L maps X(F/E) homeomor-

phically onto C.

Proof: Let C0 = ResL/K(C). Lemma 13.6 gives a regular extension K ′ of K such that

ResK′/K maps X(K ′) homeomorphically onto C0. Denote the class of regular exactly

p-adic extensions of K ′ by E . Clearly, E is closed under union of chains. Hence E has a

member E which is existentially closed in each E′ ∈ E that contains E [D, p. 28]. If E′′

is an exactly p-adic extension of E, then E′′ is an exactly p-adic extension of K ′. Hence

E′′ ∈ E and therefore E is existentially closed in E′′. Conclude from Lemma 13.9(b)

that E is PpC. By construction E is a regular extension of K and ResE/K maps X(E)

homeomorphically onto C0. In particular, for F = LE, ResF/L: G(F/E)→ G(L/K) is

an isomorphism.

If θ′ ∈ X(F/E), then ResL/K(ResF/Lθ′) = ResE/K(ResF/Eθ′) ∈ C0. Since

ResL/K : G(L/K) → G(K/K) is a cover and C is closed under the action of G(L/K),

we have ResF/Lθ′ ∈ C. Conversely, if θ ∈ C, then there exists θ′0 ∈ X(E) such

that ResL/Kθ = ResE/Kθ′0. Extend θ′0 to θ′′ ∈ X(F/E). Then ResL/K(ResF/Lθ′′) =

ResL/K(θ). Hence there exists σ ∈ G(L/K) such that (ResF/Lθ′′)σ = θ. Extend σ

to σ′ ∈ G(F/E). Then ResF/L maps (θ′′)σ
′

onto θ. If ResF/L maps θ′1, θ
′
2 ∈ X(F/E)

onto the same element θ ∈ X(L/K), then, since ResE/K : X(E) → X(K) is injective,

there exists σ′ ∈ G(F/E) such that θ′2 = (θ′1)
σ′ . Hence, θ = θσ, where σ = ResF/Lσ′.

Since the action of G(L/K) on X(L/K) is regular, σ = 1. Hence σ′ = 1. Thus

ResF/L: X(F/K)→ C is a bijective continuous map. Conclude that it is a homeomor-
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phism.

The following Proposition is the p-adic analogue of a result of Craven [C, Thm 5]

for spaces of orderings.

Proposition 13.11: For every Boolean space X there exists a PpC field E such that

X(E) is homeomorphic to X.

Proof: By Proposition 13.10 it suffices to construct a field K and an embedding of X

into X(K). Since every Boolean space is homeomorphic to a closed subset of the space

{±1}T , for a suitable set T [HJ, Definition 1.1], we may assume that X = {±1}T .

Assume without loss that T is an ordered set of algebraically independent elements

over Q and let E = Q(T ). Denote the unique Θ-site of Q by θ. For each ε ∈ X (i.e.,

ε: T → {±1}) let θε = (πε, ϕε) ∈ X(E) be the unique extension of θ to E such that

πε(at) = 0 for each t ∈ T and each a ∈ Q(t0| t0 < t), and ϕε(t) = ε(t)t (Lemma 13.2).

The map ε 7→ θε from X into X(E) is obviously injective. To show that it is

continuous consider a1, . . . , an ∈ E. Let T0 be a finite subset of T such that a1, . . . , an ∈

Q(T0). If two elements ε, ε′ ∈ X coincide on T0, then ϕε(t) = ϕε′(t) for each t ∈ T0.

By the uniqueness part of Lemma 13.2, θε = θε′ . Conclude from Lemma 10.5 that the

map ε 7→ θε is continuous.
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14. Realization of G(Qp)-structures as G(F/E).

Proposition 14.1: Let L/K be a Galois extension, G a G(Qp)-structure and α: G→

G(L/K) an epimorphism. Then there exists a Galois extension F/E such that E is

a regular PpC totally p-adic extension of K, L ⊆ F and there exists a commutative

diagram

(1) G
ρ //

α
##GGGGGGGGG G(F/E)

ResF/L
rrr

r

xxrrr
r

G(L/K)

in which ρ is an epimorphism of G(Qp)-structures and the underlying map of groups

ρ: G → G(F/E) is an isomorphism. Moreover, if the forgetful map of G is injective,

then ρ: G→ G(F/E) is an isomorphism.

Proof: It suffices to prove the existence of a commutative diagram (1) such that E is

a regular extension of K, F/E is Galois, L ⊆ F , ρ: G → G(F/E) is a morphism and

ρ: G→ G(F/E) is an isomorphism. Indeed, use Proposition 13.10 to construct a Galois

extension F ′/E′ such that E′ is a regular PpC extension of E, FE′ = F ′ and

ResF ′/F : 〈G(F ′/E′), X(F ′/E′), d〉 −→ 〈G(F/E), ρ(X(G)), d〉

is an isomorphism of G(Qp)-structures. Then replace ρ, E and F in (1), respectively,

by ρ′ = Res−1
F ′/F ◦ ρ, E

′ and F ′ to obtain a commutative diagram with the required

conditions. Note that since α is an epimorphism, so is resF/L: X(E) → X(K). Hence

E′/K is a totally p-adic extension. Also, if the forgetful map of G is injective and for

x, x′ ∈ X(G), ρ′(x) = ρ′(x′), then ρ′ ◦d(x) = ρ′ ◦d(x′). Hence d(x) = d(x′) and x = x′.

Thus in this case ρ′ is an isomorphism of G(Qp)-structures.

The rest of the proof splits into five parts.

Part A: Reduction to the case where α is rigid (Definition 5.5). Let L′ be a Galois

extension of K that contains L such that D(θ) ∼= G(Qp) for each θ ∈ X(L′/K). For

example, by Lemma 10.8(b), this is the case for L′ = K̃. Construct a cartesian square
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(Lemma 2.1):

G′ α′−→ G(L′/K)yπ yResL′/L

G α−→ G(L/K)

Then α′ is a rigid morphism (i.e., α′: D(y′)→ D(α′(y′)) is an isomorphism for each y′ ∈

X(G′)). Suppose that there is a Galois extension F ′/E such that E is a regular extension

of K, L′ ⊆ F ′, and there is a morphism ρ′: G′ → G(F ′/E) such that ρ′: G′ → G(F ′/E)

is an isomorphism of groups, and the upper face of the following diagram commutes:

G′

π

��

α′
HHH

H

$$HHH
H

ρ′ // G(F ′/E)

ResF ′/L′
lllll

uulllll

ResF ′/F

��

G(L′/K)

ResL′/L

��

G
ρ //

α

$$HH
HH

HH
HH

HH
G(F/E)

ResF/L
lllll

uulllll

G(L/K)

Since ResL′/L: G(L′/K) → G(L/K) is a cover, so is π (Lemma 2.2). Let F be the

fixed field of ρ′(Ker(π)). Then ρ′ induces a morphism ρ such that the back face of (2)

commutes. Also

ResF ′/L(G(F ′/F )) = ResL′/L ◦ ResF ′/L′ ◦ ρ′(Ker(π))

= ResL′/L ◦ α′(Ker(π)) = α ◦ π(Ker(π)) = 1.

Hence L ⊆ F and the right face of (2) commutes. Conclude from the surjectivity of π

that the lower face of (2) commutes.

So we may assume that α is a rigid morphism.

Part B: Definition of E and F . Let N be the family of open normal subgroups N

of G for which the induced morphism αN : G/N → G(L/K)/α(N) is rigid. By Lemma

5.6, N is a basis for the open neighborhoods of 1 in G. For each N ∈ N choose aN ∈ L
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such that K(aN ) is the fixed field of α(N) in L. Thus αN : G/N → G(K(aN )/K) is a

rigid morphism.

Let C = {Nσ|N ∈ N , σ ∈ G} and let T = {tC | C ∈ C} be a set of algebraically

independent elements over L. Define an action of G on F = L(T ) by the following rules:{
zσ = zα(σ), z ∈ L and σ ∈ G; and
(tC)σ = tCσ C ∈ C and σ ∈ G.

Then G acts faithfully on T and therefore also on F . The stabilizer of z ∈ L is

α−1(G(L/K(z))) and the stabilizer of tNσ is N . Both are open subgroups of G. Hence

the stabilizer of each element of F is open in G.

Let E be the fixed field of G in F . By [W, Thm. 1] there exists an isomorphism

ρ: G → G(F/E) compatible with the action on F . In particular the following diagram

of groups commutes: Since G acts on L as G(L/K), we have L ∩ E = K. Since F/L is

a purely transcendental extension EL/L is regular. Hence E/K is also regular.

Part C: Purely transcendental extensions. Let x ∈ X(G). Denote the fixed field

of ρ(D(x)) (resp., α(D(x))) in F (resp., L) by M ′ (resp., M). We prove that M ′ is a

purely transcendental extension of M .

Indeed, the commutativity of (3) implies that ResF/L(ρ(D(x))) = α(D(x)), there-

foreM ⊆M ′. Since α is injective onD(x) and ρ is an isomorphism, ResF/L: G(F/M ′)→

G(F/M) is an isomorphism. Thus LM ′ = F and L ∩M ′ = M .

The group D(x) acts on T (as a subgroup of G). Let Tx be the collection of D(x)-

orbits of T . Each S ∈ Tx has the form S = {tNσδ| δ ∈ D(x)}, with N ∈ N and σ ∈ G.

Since N is the stabilizer of each element of S, |S| = (D(x) : D(x)∩N) = (D(x)N : N).

So, if δ1, . . . , δn ∈ D(x) representD(x)N/N , then S = {tNσδi
|i = 1, . . . , n} with n = |S|.

Let

(4) uS,j =
n∑
i=1

a
(j−1)δi

N tNσδi , j = 1, . . . , n.

Since N acts trivially on aN , the right hand side of (4) is independent of the choice of

δ1, . . . , δn. In particular D(x) acts trivially on uS,j . So uS,j ∈M ′, j = 1, . . . , n.

Since αN : G/N → G(K(aN )/K) is rigid (Part B), αN maps D(x)N/N injectively

into G(K(aN )/K). In particular aδ1N , . . . , a
δn

N are distinct. Hence the coefficients matrix
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(a(j−1)δi

N )ni,j=1 of the linear system (4), which is a Vandermonde matrix, is invertible. It

follows that

(5) L(uS,j | j = 1, . . . , n) = L(S).

Since S is a set of n algebraically independent elements over L, (5) implies that uS,j , j =

1, . . . , n, are also algebraically independent over L.

Let Ux = {uS,j | S ∈ Tx and j = 1, . . . , |S|}. Since L(S), S ∈ Tx, are free over

L, the elements of Ux are algebraically independent over L. Moreover, by (5), L(Ux) =

L(T ) = F . Hence, the linear disjointness of L and M ′ over M gives [M ′ : M(Ux)] =

[F : L(Ux)] = 1. Conclude that M ′ = M(Ux) is purely transcendental over M .

Part D: Definition of ρ: X(G) → X(F/E). Fix an ordering of F (as a set). For

each x ∈ X(G), it induces an ordering of Ux (We use the notation of Part C). By (2) of

Section 10, α(x) ∈ X(L/M). Define ρ(x) to be the infinitesimal extension of α(x) with

respect to Ux (Definition 13.3). Then ρ(x) ∈ X(L(Ux)/M(Ux)) = X(F/M ′) ⊆ X(F/E),

and ResF/L ◦ ρ(x) = α(x). The images of both homomorphisms ρ ◦ d(x) and d(ρ(x))

from G(Qp) into G(F/E) are contained in G(F/M ′). Moreover,

ResF/L ◦ ρ ◦ d(x) = α ◦ d(x) = d(α(x)) = d(ResF/L(ρ(x))) = ResF/L ◦ d(ρ(x)).

Since ResF/L is injective on G(F/M ′), we have ρ ◦ d(x) = d(ρ(x)).

Part E: Continuity of ρ: X(G) → X(F/E). Let x ∈ X(G). Each open neighbor-

hood of ρ(x) = (πx, ϕx) in X(F/E) contains a basic open neighborhood of the form

V = {(π, ϕ) ∈ X(F/E)| ϕ(ai) ∈ Vi, i = 1, . . . , k}

for some a1, . . . , ak ∈ F× and open subsets V1, . . . , Vk of Φ̃ (Lemma 10.3(b)). Since F =

L(Ux) there are ui = uS(i),j(i) ∈ Ux, i = 1, . . . , r, such that a1, . . . , ak ∈ L(u1, . . . , ur).

Let Ni be the stabilizer of the elements of S(i), i = 1, . . . , r. There exists an open

neighborhood W1 of x in X(G) such that for each z ∈ W1, D(x)Ni = D(z)Ni,

i = 1, . . . , r. Hence S(1), . . . , S(r) ∈ Tz and u1, . . . , ur ∈ Uz. Let F0 = L(u1, . . . , ur)

and E0 = K(u1, . . . , ur). The definition of ρ(x) and ρ(z) = (πz, ϕz) imply that
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ResF/F0(ρ(x)) and ResF/F0(ρ(z)) are respectively the infinitesimal extensions of α(x)

and α(z) to X(F0/E0) with respect to {u1, . . . , ur}. Since α and the infinitesimal exten-

sion map from X(L/K) into X(F0/E0) are continuous (Lemma 13.2) W1 contains an

open neighborhood W2 of x such that if z ∈ W2, then ϕz(ai) ∈ Vi, 1, . . . , k. Therefore

ρ(z) ∈ V . Conclude that ρ: X(G)→ X(F/E) is continuous.

Part F: Conclusion of the proof. We still have to ensure that ρ(xσ) = ρ(x)ρ(σ) for

all x ∈ X(G) and σ ∈ G. Unfortunately this need not be the case. So we have to modify

the definition of ρ: X(G) → X(F/E). By Lemma 2.5, X(G) has a closed system X

of representatives for the G-orbits. Denote the restriction of ρ: X(G) → X(F/E) and

α: X(G)→ X(L/K) toX by ρ0 and α0, respectively. By Part D, ResF/L◦ρ0(x) = α0(x)

and d(ρ0(x)) = ρ(d(x)) for each x ∈ X. Hence, by Lemma 2.7, ρ0 extends to a map of

X(G) into X(F/E) which, together with the group isomorphism ρ: G→ G(F/E), is a

morphism ρ: G → G(F/E) (this is the modified ρ). Moreover, both ResF/L ◦ ρ and α

coincide on X with ρ0 and on G with α0. Hence, by Lemma 2.7, ResF/L ◦ ρ = α.

The modified morphism ρ satisfies the requirements of the proposition.

Corollary 14.2: Let G be a G(Qp)-structure. Then there exists a PpC field E and

a Galois extension F of E such that G ∼= G(F/E).

Proof: The quotient space X(G)/G is Boolean. Hence, by Proposition 13.11, there

exists a PpC field K such that X(K) ∼= X(G)/G. This isomorphism defines a cover

α: G → G(K/K). By Proposition 14.1, K has a PpC extension E which has a Galois

extension F , and there exists an epimorphism ρ: G → G(F/E) with a trivial kernel

such that the diagram (1), with L = K, commutes. Since α is a cover, so is ρ. Hence ρ

is indeed an isomorphism.
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15. The main results.

We are finally able to characterize the p-adically projective groups as absolute Ga-

lois groups of PpC fields. An analogous characterization holds for projective G(Qp)-

structures.

Theorem 15.1: Let K be a PpC field. Then

(a) G(K) is a p-adically projective group; and

(b) G(K) is a projective G(Qp)-structure.

Proof: Let X = X(K̃/K) and let D be the collection of all subgroups G(M) of G(K)

where M is a p-adically closed field and K ⊆ M ⊆ K̃. By Lemma 10.8(d) and (e) the

forgetful map d: X → Hom(G(Qp), G(K)) is injective and D = {D(θ)| θ ∈ X} is the

collection of all decomposition groups of the elements of X. In particular D is a closed

conjugacy domain of subgroups of G(K). Also, for each θ, θ′ ∈ X, D(θ) = D(θ′) if and

only if there exists σ ∈ D(θ) such that θσ = θ′ (Lemma 10.8(c)). We show that G(K)

is D-projective (Definition 4.1).

Consider a finite embedding problem for G(K)

G(K)yres

B
α−→ G(L/K)

with L/K a finite Galois extension. Let X0 be a closed system of representatives

for the G(L/K)-orbits of X(L/K) (Corollary 2.5). Since G(L/K) is finite the subset

{d(θ)| θ ∈ X0} of Hom(G(Qp),G(L/K)) is finite. Let ψ1, . . . , ψn be a listing of its

elements. Choose θ̄i ∈ X0 such that d(θ̄i) = ψi and let θi ∈ X be an extension of

θ̄i, i = 1, . . . , n. By Remark 4.2 there exists ψi ∈ Hom(G(Qp), B) such that α ◦ ψi =

res ◦ d(θi) = ψi, i = 1, . . . , n (Remark 4.2). Define a map d0: X0 → Hom(G(Qp), B) by

the rule, d0(θ) = ψi if and only if d(θ) = ψ̄i. Since d is continuous, so is d0. By Lemma

2.6, there is a G(Qp)-structure B with B the underlying group, X0 a closed system of

representatives for the B-orbits of X(B), and such that the forgetful map extends d0.

The epimorphism α together with the identity map define a cover α: B → G(L/K)

(Lemma 2.7).
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Apply Proposition 14.1 to construct a Galois extension F/E such that E is a

regular totally p-adic extension of K and L ⊆ F , and a commutative diagram of groups

B

α

##FFFFFFFFF
ρ // G(F/E)

res
yyssssssssss

G(L/K)

such that ρ is an isomorphism. There will be no loss to assume that B = G(F/E) and

α = resF/L. Also, replace E and F , if necessary, by a sufficiently large finitely generated

subextensions of K and L, to assume that E is finitely generated over K.

Let z be a primitive element for F/E, let f = irr(z,E) and let c ∈ E be the

discriminant of f . Take an integrally closed domain R, finitely generated over K, which

contains c−1 and the coefficients of f , and such that E is the quotient field of R. By

definition of PpC field (Definition 12.2) there exists a K-homomorphism ψ: R → K.

Let S be the integral closure of R in F (and note that L ⊆ S). Extend ψ to an L-

homomorphism ψ: S → K̃. Let D(ψ) be the decomposition group of ψ in G(F/E) and

let M be the splitting field of the polynomial ψ(f) over K. Then L ⊆ M , and ψ(f)

has no multiple roots, since ψ(c) 6= 0. Then M/K is a Galois extension and ψ induces

an isomorphism ψ∗: D(ψ) → G(M/K) such that ψ(y)ψ∗(σ) = ψ(yσ) for each σ ∈ D(ψ)

and y ∈ S [L1, p. 248]. The homomorphism ψ−1
∗ ◦ res

K̃/M
: G(K)→ G(F/E) solves the

embedding problem. Thus G(K) is D-projective.

By Lemma 4.5(a), D is the collection D(G(K)) of all closed subgroups of G(K)

isomorphic to G(Qp). In particular G(K) is p-adically projective. For each θ, θ′ ∈

X, D(θ) = D(θ′) if and only if there exists σ ∈ G(K) such that θσ = θ′ (Lemma

10.8). Since the forgetful map of G(K) is injective, the last statement of Proposition

5.4 implies that G(K) is a projective G(Qp)-structure.

The proof of Theorem 15.1 gives an additional information on PpC fields.

Corollary 15.2: Let K be a PpC field. Then a closed subgroup H of G(K) is

isomorphic to G(Qp) if and only if its fixed field M is p-adically closed.

Now we prove the converse of Theorem 15.1.
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Theorem 15.3: Let G be a projective G(Qp)-structure. Let L/K be a Galois extension

and α: G→ G(L/K) an epimorphism. Then there exists a totally p-adic PpC extension

E of K and a commutative diagram

G
α

##FFFFFFFFF
ρ // G(E)

res
zzttttttttt

G(L/K)

in which ρ is an isomorphism.

Proof: The forgetful map of G is injective (Lemma 5.3(a)). Hence, Proposition 14.1

gives a totally p-adic PpC extension E1 of K, a Galois extension F1 of E1 that contains

L, and an isomorphism ρ1 such that the following diagram commutes

G

α
##GGGGGGGGG

ρ1 // G(E)

res
yyttttttttt

G(L/K)

Since res
Ẽ1/F1

: G(E1) → G(F1/E1) is a cover and G is projective, there exists a

morphism α1: G → G(E1) such that res
Ẽ1/F1

◦ α1 = ρ1 (Lemma 5.2). Since ρ1 is an

isomorphism, α1: G→ G(E1) and α1: X(G)→ X(Ẽ1/E1) are injective.

LetK1 be the fixed field of α1(G) in Ẽ1. Then α1(G) = G(K1). We prove also that

α1(X(G)) = X(K̃1/K1). Indeed, for each x ∈ X(G), D(α1(x)) = α1(D(x)) ≤ α1(G) =

G(K1). Hence, by (2) of Section 10, α1(x) ∈ X(K̃1/K1). Conversely, let θ ∈ X(K̃1/K1).

Take the unique closed subgroup H of G such that α1(H) = D(θ). Since H ∼= D(θ) ∼=

G(Qp) (Lemma 10.8(b)) and since G is G(Qp)-projective there exists x ∈ X(G) such

that D(x) = H (Lemma 5.3(c)). Thus D(θ) = α1(H) = D(α1(x)). Hence, by Lemma

5.3(d), there exists σ ∈ G such that θ = α1(x)α1(σ) = α1(xσ) ∈ α1(X(G)).

It follows that α1: G → G(K1) is an isomorphism and the following diagram

commutes
G α1−→ G(K1)yα ρ1

yres

G(L/K) ←−
res

G(F1/E1)
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We do not know if K1 is PpC. So we proceed as follows.

First observe that since α1 and ρ1 are isomorphisms, so is res
K̃1/F1

: G(K1) →

G(F1/E1). In particular K1 is totally p-adic over E1. Repeat the above construction

(with α1 instead of α) and use induction to obtain an ascending chain of fields K =

K0 ⊆ E1 ⊆ K1 ⊆ E2 ⊆ · · ·, and isomorphisms αi: G→ G(Ki), i = 1, 2, . . . such that

(2a) res
K̃i+1/Ki

◦ αi+1 = αi, i = 1, 2, . . .;

(2b) E1, E2, . . . are PpC fields; and

(2c) Ei/Ki−1 and Ki/Ei are totally p-adic extensions (therefore so is Ei+1/Ei), i =

1, 2, . . . .

Let E =
⋃∞
i=1Ei =

⋃∞
i=1Ki. The maps αi define an isomorphism ρ: G → G(E)

such that (1) commutes. In particular E/K is totally p-adic. Furthermore, E is PpC.

Indeed, let V be an absolutely irreducible variety defined over E with a function field

F , totally p-adic over E. Then there exists i ≥ 1 such that V is defined over Ei. By

(2c), F/Ei is totally p-adic. Hence, the function field of V over Ei (which is a subfield

of F ) is totally p-adic over Ei. Since, by (2b), Ei is PpC, V has an Ei-rational point.

This point is also E-rational. Conclude that E is PpC.

Theorem 15.4: For each G(Qp)-projective group G there exists a PpC field E such

that G(E) ∼= G.

Proof: By Proposition 5.4(b) there exists a G(Qp)-projective structure G with G as the

underlying group. Proposition 13.11 gives a field K such that X(G)/G ∼= X(K). This

isomorphism defines a cover α: G → G(K/K). Theorem 15.3 gives a PpC field E and

an isomorphism ρ: G→ G(E). In particular G(E) ∼= G.

A well known theorem of Artin-Schreier says that each field K with G(K) ∼= Z/2Z

is real closed. The p-adic analogue is unknown.

Problem 15.5: Is each field K with G(K) ∼= G(Qp) p-adically closed?

This question has an affirmative answer if K is algebraic over Q (Neukirch’s the-

orem [N2]) or K is algebraic over a PpC field (Corollary 15.2). L. Pop [P] generalizes

Neukirch’s theorem to the case where Q̃K = K̃.
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