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Abstract

A new model of mechanism design with a boundedly rational agent is studied. A

speaker presents a request to a listener who would like to accept the request only if certain

conditions are met by the speaker’s true profile. This persuasion situation is modeled as a

leader-follower relationship. The listener first announces and commits to a persuasion rule,

i.e., a set of conditions to be satisfied by the profile in order for him to be persuaded. Then,

the speaker presents a profile, though not necessarily the true one. The speaker is

boundedly rational in the sense that his ability to come up with a persuasive profile is

limited and depends on the true profile and on the persuasion rule and the way in which it is

framed. We fully characterize the circumstances under which the listener’s goal can be

achieved.
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1. Introduction

"I went to a bar and was told it was full. I asked the bar hostess by what time one should

arrive in order to get in. She said by 12 PM and that once the bar is full you can only get in

if you are meeting a friend who is already inside. So I lied and said that my friend was

already inside. Without having been told, I would not have known which of the possible

lies to tell in order to get in." (M.R. describing an actual experience at a Tel Aviv bar.)

In this episode, M.R. was trying to persuade the bar’s hostess to let him in. The hostess

revealed the conditions for her to be persuaded though she had no way of verifying whether

M.R. satisfies those conditions. Thus, her statement also guided M.R. how to lie effectively

in order to gain entrance to the bar.

Consider another example: A search committee would like to identify those candidates

who exhibit consistency in their preferences, in the sense that when asked to choose

between plans of action their preferences satisfy transitivity. The committee members view

a consistency of this form to be a desirable attribute for the job. Therefore, the candidates

are given the following test: An hypothetical scenario is described to them which involves

three possible plans of actions, denoted as a,b and c. Each candidate is then asked to

answer three questions of the form "Which plan do you prefer, x or y?" The candidate

responds to each question by saying either "I prefer x to y" (denoted as x  y ) or "I prefer y

to x" (denoted as y  x). Assume that the committee is required to inform the candidates of

the conditions that their answers must fulfill in order to pass the test. Suppose that the

committee announces the following set of conditions (hereafter referred to as a codex):

R1: If a  b and b  c, then a  c.

R2: If b  a and c  b, then c  a.

R3: If a  b and a  c, then c  b.

R4: If c  a and c  b, then a  b.

Notice that the codex is satisfied only by the four (transitive) orderings in which b is not

positioned in the middle.

If a candidate is fully rational he can come up with answers to the three questions that

satisfy all four conditions and thus pass the test, regardless of what his true preferences are.

However, this is no longer the case if the candidate’s ability to come up with a set of

answers that satisfies the codex is limited and depends on the individual’s true preferences,

which is the assumption of our analysis.
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Consider three candidates named Alice, Bob and Carol, who are all eager to get the job

and are willing to lie about their preferences in order to succeed.

Alice holds the ordering a  c  b and thus satisfies all four conditions. She can pass

the test by simply telling the truth.

Bob holds the ordering a  b  c. His ordering does not satisfy the codex since it

satisfies the antecedent of R3 but violates R3’s consequent. Bob can pass the test by telling

the truth about his preferences between a and b and between a and c (thus satisfying the

antecedent of R3) and lying about his preferences between b and c (such that the

consequent of R3 is also satisfied). In other words, R3 not only informs Bob that his true

preferences will be rejected but also guides him in how to lie in order to pass the test (i.e.,

by declaring the ordering a  c  b.

Carol holds the cyclical preferences a  b  c  a. The only antecedent she satisfies is

that of R1; however, she violates R1’s consequent. If she uses R1 as a guide in formulating

her answers she will declare the ordering a  b  c and will fail the test.

In short, all Alice has to do in order to pass the test is tell the truth. Bob and Carol, on

the other hand, will fail if they tell the truth. According to our main assumption and given

the codex described above, Bob can lie successfully but Carol cannot. The codex guides

Bob, who holds an ordering in which b is in the middle, to switch the positions of b and c

and, thus satisfy the codex. Carol, whose preferences are cyclical, is not guided to an

ordering in which b is in last place. Our assumption, presented formally in the next section,

is that when faced with such a codex, individuals are able to come up with successful

answers if and only if either their true preferences satisfy the codex (as in the case of Alice)

or they are guided by the codex to a set of answers that satisfy all the conditions (as in the

case of Bob). Under this assumption, only individuals with transitive preferences will be

able to pass the test, either by telling the truth or by lying successfully.

The above two scenarios are examples of persuasion situations. A persuasion situation

involves a speaker and a listener. The speaker attempts to persuade the listener to take a

certain action or to adopt a certain position. The interests of the two parties are not

necessarily identical and depend on the speaker’s "profile", i.e., a set of relevant

non-verfiable attributes (or facts) known only to the speaker. The speaker would like the

listener to choose his desired action regardless of his true profile, whereas the listener

wishes to be persuaded only if the speaker’s profile satisfies certain conditions (i.e.,

belongs to a certain set). In his attempt to persuade the listener, the speaker presents a
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"profile", which is not necessarily the true one. However, cheating effectively (i.e.,

presenting a persuasive false profile) may be difficult, since it requires the speaker to invent

a fictitious profile. The listener is aware of the fact that the speaker may be providing false

information that is not verifiable. He is also aware of the procedure used by the speaker to

come up with a persuasive false profile.

We model a persuasion situation as a leader-follower relationship. First, the listener

(leader) announces and commits to a persuasion rule (a codex), i.e., a set of conditions that

the profile presented by the speaker must satisfy in order for the listener to be persuaded.

Then, the speaker (follower) chooses a profile to present. In order to persuade the listener,

the speaker can present a false profile and this is where bounded rationality is introduced.

We assume that the speaker’s ability to come up with a persuasive profile is limited and

depends on his true profile, the content of the persuasion rule and the way in which the rule

is framed.

Modeling the idea that the speaker’s ability to cheat is limited, could have been carried

out in a framework similar to that of Green and Laffont (1986) (which was also the

approach taken in Glazer and Rubinstein (2004, 2006)). In this type of models, the set of

messages that the speaker had to choose from, is exogenously given and dependent on the

speaker’s profile. The novelty of the current paper lies in the assumption that not only is

cheating difficult, but also the speaker’s ability to cheat effectively depends on the way in

which the persuasion rule is framed. In such a case, the desirable persuasion rule should be

complex enough that a speaker whose profile should not be persuasive will not be able to

persuade the listener by manipulating the information but, at the same time, should be

simple enough that a speaker whose profile should be persuasive will indeed be able to

persuade the listener.

The reader may wonder under what circumstances mechanisms of the type discussed in

this paper will be relevant. We have in mind situations such as the following: a patient

trying to persuade a doctor to prescribe him a particular treatment; a parent trying to

persuade a school committee to transfer her child to another school; a taxpayer trying to

persuade the tax authorities that he has paid the right amount of tax; a crime suspect trying

to persuade his interrogators to set him free; and so on. In such situations, an agent is

required (by the principal) to answer some questions about facts he knows. The answers to

the questions (or at least to some of them) are not (easily) verifiable by the principal and the

agent’s objective is to come up with answers—not necessarily true ones—that will
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"persuade" the principal. The time available to the agent for coming up with persuasive

answers (or his ability to do so) is limited and he does not have access to expert advice. In

such cases, the agent will use some simple (and not necessarily fully rational) procedure in

order to provide convincing answers. It is reasonable to assume that the truth will play a

major role in such a procedure. If the principal is familiar with the speaker’s procedure, he

may be able to design the questions in such a way that only the requests of agents that

should be accepted by the principal will indeed be accepted.

In what follows, we introduce our new approach to modeling bounded rationality. After

presenting the model we define and explore two notions of implementation. The listener’s

goal is “implementable” if there exists a codex that enables the speaker to persuade the

listener (either by telling the truth or by cheating) if and only if the listener would want the

speaker’s true profile to be persuasive. The listener’s goal is “truthfully implementable” if

it is implementable and any speaker who is able to persuade the listener can do so without

lying. The main body of the analysis consists of a full characterization of the conditions

under which the listener’s goal is implementable and the conditions under which the

listener’s goal is truthfully implementable.

2. The Model

The set of profiles

Let V be a set of K ≥ 2 propositional variables denoted by v1, . . ,vK. Each variable can

take one of two truth values: "True" or "False". A profile is a truth assignment for each of

the variables. Denote by sv the truth value of the variable v in the profile s. We will

sometimes present a profile s as a K-vector s1, . . , sK of 0’s and 1’s, where sk  1means

that svk  T and sk  0means that svk  F.

Let S be the set of all profiles. We assume that all 2K profiles are logically possible,

namely that the content of the variables is such that the truth combination of some of the

variables does not exclude the truth combination of any of the others as would have been

the case, for example, if v1 was "being a female" and v2 was "being a male".

The speaker and the listener

There are two agents: a speaker and a listener. The speaker knows which profile is true

whereas the listener knows only the set S. The speaker wishes to persuade the listener to

accept a particular request regardless of the true profile. The listener can either accept or
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reject the request. He would like to accept the speaker’s request only if the profile belongs

to a given set A. Let R  S − A be the set of profiles for which the listener would like to

reject the speaker’s request.

We analyze the following leader-follower scenario: First, the listener announces and

commits to a codex, which is a set of conditions that the profile presented by the speaker

must satisfy in order for the speaker’s request to be accepted. Then, the speaker (who

knows the true profile) announces a profile which may or may not be the true one. The

listener is committed to applying the codex to the profile announced by the speaker.

Comment: We do not consider situations in which some profiles in S are "impossible".

Doing so would require specifying whether the speaker knows which profiles are

impossible. If the speaker does not know which profiles are impossible, then the listener’s

task becomes easier. There are two reasons for this: the listener will have less

"undeserving" profiles to worry about and in some cases he can expose an undeserving

speaker by guiding him to declare an impossible profile.

The codex

A codex is defined as a set of propositions in propositional logic that uses only the

variables in the set V. A proposition in the codex is referred to as a rule. Only a profile that

does not violate any of the propositions will "persuade" the listener. We impose two

restrictions on a codex:

1) Structure: Each rule  in the codex must have the structure ∧y∈W y → x where W is

a non-empty subset of V, x ∈ V − W and each v is either v or −v (the negation of v). For

example, the proposition v4 ∧ −v1 → v3 can be a rule in a codex but v1 → −v1 cannot. For

any given rule   ∧y∈I y → x, we denote a  ∧y∈I y (the antecedent of ) and

z  x (the consequent of ). We interpret a rule as a statement of the following form

made by the listener: "If your profile satisfies the antecedent of the rule, then it should also

satisfy the consequent."

2) Coherence: The codex cannot contain rules that conflict in the sense that there is no

pair of rules such that their antecedents do not conflict and their consequents do (one

consequent is v and the other is −v for the same variable v). Formally, a codex is coherent

if it does not contain two rules   ∧y∈W1 y → x and   ∧y∈W2 y → −x where for any

y ∈ W1 ∩W2 we have y  y. Thus, coherence does not only require that a codex not

contain the two rules v1 → v2 and v1 → −v2 but also that it will not contain the two rules
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v1 → v3 and v2 → −v3 (i.e., the antecedents do not conflict but the consequents do). In our

view, a codex containing these two rules is problematic: a speaker whose true profile, s, is

such that sv1  sv2  T will rightly complain that the codex imposes two conflicting

requirements on him, with regard to the variable v3.

To illustrate, in the second example that appeared in the introduction, the three

variables are v1  a  b, v2  b  c and v3  c  a, and the proposed codex consists of

the following four rules: v1 ∧ v2 → −v3, −v1 ∧ −v2 → v3, v1 ∧ −v3 → −v2, and

v3 ∧ −v2 → v1.

Given a codex , let T be the set of profiles that satisfy all propositions in . In

other words, T is the set of profiles which if announced by the speaker, will persuade

the listener. More precisely, using the notation s   for "proposition  is true in profile

s", T  s| s   for all  ∈ .

(Recall that s  ∧y∈I y → x unless:

(i) the antecedent of  is satisfied, i.e., for all y ∈ I we have sy  T if y  y and

sy  F if y  −y; and

(ii) the consequent of  is violated, i.e., either sx  T and x  −x or sx  F and

x  x.)

The Speaker’s Choice Procedure

The speaker can either state the true profile or make up a false one. A fully rational

speaker can come up with a profile that satisfies the codex regardless of what the true

profile is. We assume, however, that the speaker is boundedly rational in the sense that he

is limited in his ability to come up with a persuasive false profile. Essentially we assume

that the speaker applies the following procedure (a formal discussion will follow):

Step 1. Determine whether your true profile satisfies the codex.

If it does, then announce the true profile.

If it does not, then go to Step 2

Step 2. Find a rule (not considered in a previous round of Step 2) that is violated by

your true profile (i.e., your true profile satisfies the rule’s antecedent but violates its

consequent). Change the truth value of the variable that appears in the consequent of this

rule and determine whether the modified profile satisfies the codex.

If it does, announce the new profile.

If it does not, iterate Step 2.
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Step 3. If you are unable to come up with a modified profile that satisfies the codex in

Step 2, announce your true profile.

Guidance

We say that, given , the speaker is guided to s′ from s (denoted as s → s′) if for

every variable v for which s′v ≠ sv, there is a rule  ∈  such that:

(1) s  a and s′  a; and

(2) s′  z (that is, if z  v then s′v  T and if z  −v then s′v  F).

In other words, the speaker is guided from s to s′ if any switch from sv to s′v is

triggered by a rule that requires that the value of the variable v will be s′v and its

antecedent is satisfied at s and refers only to the variables that are kept unchanged. We

refer to the relation → as the guidance relation induced by .

The speaker may be guided from one profile to several others. For example, suppose

that K  4 and  contains the three rules v1 → −v3, v2 → −v4 and v2 ∧ v3 ∧ v4 → −v1.

Then, the speaker is guided by  from 1,1,1,1 to each of the profiles 1,1,1,1,

1,1,0,1, 1,1,1,0, 1,1,0,0 and 0,1,1,1.

Persuasion

Given a codex , we say that the speaker whose profile is s can persuade the listener if

s → s′ for some s′ ∈ T. Define P  s| s → s′ for some s′ ∈ T. That is, P

is the set of profiles for which the speaker can persuade the listener. Obviously

T ⊆ P. Note that it is possible for the speaker to be guided from the true profile to

profiles that are persuasive and others that are not. By our definition, the speaker is able to

persuade the listener if he is guided to at least one persuasive profile. Note also that we do

not allow the speaker to be guided sequentially, i.e., first from s to s′ and then from s′ to s′′.

Later on, we will comment on these two assumptions.

Implementation

The set A is implementable if there is a codex  such that P  A.

The set A is truthfully implementable if there is a codex  such that T  P  A.

Thus, if a codex implements A then the speaker is able to persuade the listener in all

profiles for which the listener should be persuaded and in none of the profiles for which he

should not. However, in some of the cases in which the listener should be persuaded, the
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speaker has to "alter the truth" in order to persuade the listener. If a codex truthfully

implements A, then a speaker whose profile should persuade the listener is able to do so by

simply telling the truth.

Note that the "revelation principle" does not hold in our framework and, as we will see

later, there are cases in which the set A is implementable but not truthfully implementable.

Comment: The following analogy may help clarify our concept of implementation.

Suppose that you manage a large network of agents around the globe. The location of each

agent is characterized by two coordinates. Suppose that you want to award a prize only to

those agents whose locations are in the set A. You don’t know who is located where but you

do know that all agents use the same program to solve systems of equations. Whether the

program will converge to a solution depends on the system and the initial conditions

inserted into the program. You also know that people tend to input their true coordinates as

the initial conditions. In such a case, you can try to come up with a system of equations

such that the program will converge to a solution within a specified time if and only if it

starts from a point in the set A. If you can find such a system of equations it will serve as a

mechanism for selecting the agents that you want to award. Note that a rule in our model is

actually an equation where the propositional variables are the unknowns while a codex is in

fact a system of equations.

The assumptions regarding the structure of the codex, as well as the speaker’s choice

procedure when facing such a codex, are to some extent arbitrary. Nevertheless, we believe

that they capture some realistic and important elements common to many persuasion

situations. the structure of the codex resembles that of many legal codes and the speaker’s

decision procedure captures procedural elements observed in the behavior of people in

response to such codes. In what follows, we discuss the generality of some of our

assumptions in more detail.

Structure of the codex: Our codex does not allow for rules in which the consequent is a

conjunction, such as v1 ∧ v2 → v3 ∧ v4. However, note that this rule is logically equivalent

to the two rules v1 ∧ v2 → v3 and v1 ∧ v2 → v4, which our codex does allow. Similarly,

rules with a disjunction in their consequent, such as v1 ∧ v2 → v3 ∨ v4, can be expressed in

our codex by the two rules v1 ∧ v2 ∧ −v3 → v4 and v1 ∧ v2 ∧ −v4 → v3.. Neither do we

allow the codex to have rules without any consequent, such as v1 ∧ v2 (formally, this is a

rule with an empty antecedent) since such a rule would provide the speaker (regardless of

Page 9 10/14/2012



his true profile) with all the information he needs to make a persuasive declaration with

respect to the variables v1 and v2 (recall the example of M.R. in the Introduction).

Disjunctions, such as v1 ∨ v2, can be represented in our codex by pairs of rules such as:

−v1 → v2 and −v2 → v1.

Coherence: It will become clear below that eliminating the requirement that a codex be

coherent will make the listener’s job much easier (more sets will then be implementable).

However, incoherent codexes are unintuitive and unrealistic. We interpret rules of the type

v1 ∧ v2 → −v3 as a declaration by the listener that "if your profile satisfies v1 and v2 then it

must not satisfy v3". Under such an interpretation, a non-coherent codex would require an

individual to have and, at the same time, not to have a particular characteristic, a feature

which is unacceptable.

The speaker’s choice procedure: The main feature of the speaker’s choice procedure is

that the speaker starts from the true profile (rather than from another prominent profile,

such as, for example, the "all-truth" profile) and moves from that profile in a "direction"

suggested to him by the codex. If that direction leads to an acceptable profile, it is assumed

that the speaker returns to the true profile and tries another direction. Note that if the

speaker’s behavior is completely independent of the true profile, then the listener is unable

to learn what he would like to about the speaker’s true profile.

An alternative assumption would be that the speaker does not return to his true profile

when he encounters a rule that his new profile violates. Rather he changes direction, as

suggested by the codex, and relates to the new profile as if it were the truth.

Implementation under this procedure (to be referred to as "iterative guidance") will be

examined in Proposition 4.

In this paper we do not explore the many other possible procedures that the speaker

could adopt, such as modifying his profile in order to violate the antecedent rather than to

satisfy the consequent of a rule that his profile violates.

The results of experiments we conducted (see section 7) support the key features of the

procedure studied in this paper. Nonetheless, we do not claim that the procedure precisely

describes behavior in such circumstances. The model should be viewed more as a prototype

for implementation models, in which the designer takes into account the bounded

rationality of the agents.
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3. Examples

Example 1: Assume that there are three "scenarios", numbered 1,2 and 3 and an

individual’s attitude towards each one can be either "positive" or "negative". A principal

would like to identify those individuals who are consistent in their attitude towards the

three scenarios, i.e., who have the same attitude towards all three. In order to do so, the

principal performs the following test: each individual is asked to state his attitude (positive

or negative) to each of the three scenarios. Let the variable vi stand for: "the individual’s

attitude to scenario i is positive" and therefore, A  1,1,1, 0,0,0.

Consider the following three codexes:

1: "The second and third answers should be the same as the first"

(1  v1 → v2, − v1 → −v2, v1 → v3, − v1 → −v3)

In this case, T1  A and P1  S since for any profile s1, s2, s3 we have

s1, s2, s3 →1 s1, s1, s1 ∈ T1.

2: "The second answer should be the same as the first and the third answer should be

the same as the second."

(2  v1 → v2, − v1 → −v2, v2 → v3,−v2 → −v3)

In this case, T2  A but P2  S − 1,0,0, 0,1,1 (since 1,0,0 is guided

only to 1,1,0).

3: The three scenarios are ordered clockwise. For every scenario i the codex requires

that if the answer regarding scenario i  1 (which follows scenario i) is different from the

answer regarding scenario i  2 (which follows i  1), then the answer regarding scenario i

should coincide with the answer regarding scenario i  2.

(3 contains the three rules vi ∧ vi1 → vi2 ∀i and the three rules vi ∧ −vi1 → −vi2

(∀i).)

3 truthfully implements A, since P3  T3  A.

Thus, although the three codexes are satisfied by the same set of profiles, only the third

codex implements the principal’s goal.

Example 2: A principal would like to select "decisive" individuals (regardless of the

opinions they hold) for a particular task. In order to do so he presents the candidates with a

dilemma and three possible exclusive solutions (denoted by 1, 2 and 3). He then asks each

candidate whether each of the three possible solutions is appropriate. The principal wishes

to identify those individuals who view exactly one solution to be appropriate (regardless of
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which one it is). Let vi stand for "solution i is appropriate" and therefore

A  1,0,0, 0,1,0, 0,0,1.

We will show that A is not implementable. Assume that  implements A.

Case (1): T  A. The profile 0,0,0 is not in T and hence there is a rule in 

that this profile violates; w.l.o.g. that rule is either −v1 → v3 or −v1 ∧ −v2 → v3 . If both

case 0,0,0 → 0,0,1 and hence 0,0,0 ∈ P although 0,0,0 ∉ A, a contradiction.

Case (2): One of the profiles in A, w.l.o.g. 0,0,1, is not in T. Then, there must be

another profile in A, w.l.o.g. 0,1,0, such that 0,0,1 → 0,1,0. This requires that

−v1 → v2 be in the codex. However, in that case, 0,0,0 → 0,1,0 ∈ T and therefore

0,0,0 ∈ P although 0,0,0 ∉ A, a contradiction.

Note that even though the above set is not implementable its complement is. Let

A ′  S − A. Consider the codex ′ that consists of the 3 rules vi → vj where j ≠ i  1

("3  1" is taken to be "1" ). Obviously, T′  all F, all T. The codex guides the

speaker to "all T" from every profile in R ′ except for "all F". For any s ∈ R ′ where there is

a unique vi for which svi  T, the speaker is guided from s only to profiles for which vi1

receives the value F and hence violates the codex. Thus, s ∉ P′.

Example 3: A certain individual (the listener) holds a positive opinion on K issues. He

would like to find out whether another individual (the speaker) shares his opinion on at

least m of those issues, where 0  m  K. Let Am  s| s receives the value T for at least m

variables where 0  m  K. We will show that Am is implementable.

Let  be the codex that consists of all rules Ry,W (where y is a variable and W is a set

of at most m variables which does not contain y), which states that if the variables in W

receive the value T and the variables in V − W − y receive the value F then y should also

get the value T. (Formally, Ry,W  ∧v∈W v ∧ ∧v∈X−W−y − v → y.) Obviously,

T  Am1 and P  Am. Thus, the speaker whose profile assigns the truth value T to

up to m variables is guided to "slightly exaggerate" and to claim that there is one more

variable that receives the value T. This codex will not guide speakers whose profiles have

less than m true variables to cheat effectively. In this case, the implementation is not

truthful, but as will be shown later in Proposition 3, Am is in fact truthfully implementable

for K  3 and m  2.
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4. Auxiliary concepts and results

Before characterizing the implementable sets, we need to introduce some auxiliary

concepts and results.

Properties of the relation →

Lemma 1:

(a) The relation → is reflexive and anti-symmetric (i.e., for any two distinct profiles s

and s′, if s → s′ then s′  s).

(b) If s is opposed to s′ (sv ≠ s′v for all v), then s  s′.

(c) If s → t and s′ is between s and t (that is sv ≠ s′v implies that s′v  tv),

then s → s′ and s′ → t.

Proof: Anti-symmetry follows from the assumption that the codex is coherent. The rest

of the Lemma follows immediately from the definition of the relation → . 

The next lemma shows that the guidance relation → fully conveys the information

about T, the set of profiles that satisfy the codex . Given a binary relation →, denote

T→  s | for no t ≠ s, s → t and P→  s | there is t ∈ T→ such that s → t.

Lemma 2:

(a) T  T→ 

(b) P  P→ 

Proof: (a) Assume that s ∉ T. Then there is a rule   ∧y∈I y → x in  such that

s   is not true, i.e., s satisfies the antecedent ∧y∈I y but not the consequent x. Thus,

s → s′ where s′ is the profile that differs from s only in the truth value of the variable x,

i.e., s ∉ T→ .

In the other direction, assume that s ∉ T→ . Then there is a profile t ≠ s such that

s → t. Thus, there is a variable x and a rule   ∧y∈I y → x such that s and t satisfy ’s

antecedent, tx ≠ sx, and t  . Hence, s does not satisfy  and therefore s ∉ T.

(b) The proof follows from (a) and the definitions

P  s | s → s′ for some s′ ∈ T

and P→   s | s → s′ for some s′ ∈ T→ . 

The neighborhood relation

A key element in the analysis is the neighborhood binary relation N on the set S.
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Define sNs′ to mean that s and s′ differ in the truth value of exactly one variable. The

relation N is symmetric and irreflexive. Define a distance function

ds, s′  |v |sv ≠ s′v|.

A path is a sequence of distinct profiles s1, . . . , sL such that s1Ns2N. . .NsL. If L  2

and sLNs1, then the path is a cycle. Any cycle must contain an even number of profiles. We

say that a cycle is a counting cycle (referred to in graph theory as a Hamiltonian Cycle) of

the set X if it contains all elements of X. Obviously, S has a counting cycle. A sequence

s0, s1, , , . . . , sL is a ray from s0 if sl1Nsl and dsl, s0   l.

Let Ns be the set of neighbors of s. If sNs′ then Ns ∩ Ns′  ∅. For any two profiles

s and s′, |Ns ∩ Ns′| is either 0 or 2. In particular, if rNsNt then there is a unique u such

that r, s, t,u is a cycle. Denote this u by Nr, s, t.

Complete rules

A complete rule is a proposition of the type ∧v∈V−x v → x. In other words, its

antecedent refers to K − 1 variables and the consequent to the remaining one. If a codex 

contains the complete rule ∧v∈V−x v → x, then s → s′ where s and s′ are the two

neighbors defined by s  ∧v∈V−x v ∧ −x and s′  ∧v∈V−x v ∧ x.

For any two neighbors s and s′, let s, s′ be the complete rule   ∧v∈V−x v → x.

Thus, s → s′ for any codex  that contains .

The last Lemma in this section demonstrates that the language we use for codexes does

not limit the sets that can be specified, that is, it allows the specification of any subset

X ⊆ S:

Lemma 3: For every set X ⊆ S, there is a codex  such that T  X.

Proof: Let s1, , , . . . , sL be a counting cycle of S. The set   sl, sl1 | sl ∉ X is

coherent and thus  is a codex. Obviously, T  X. 

A Canonical Codex

A particular type of codexes, to be termed canonical, will play a central role in our

analysis. A codex is canonical if:

(i) It consists of complete rules.

(ii) For every s, there is at most one t ≠ s such that s → t.

(iii) For every s ∈ P − T, there is r ∈ S − P such that r → s.
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Thus, a canonical codex that implements the set A is a set of complete rules such that

(a) for every profile r ∈ R the codex contains a unique rule that is violated by r and (b) a

profile s ∈ A violates the codex only if the codex contains a rule that is violated by some

r ∈ R and guides the speaker to s.

A canonical codex is analytically simple, although it does not necessarily have a natural

interpretation. If it implements the set A, then the number of rules it contains is at least

equal to the number of profiles in R and thus can be very large. A canonical codex makes

the speaker’s task relatively simple since by (ii) it guides the speaker to at most one

alternative profile. Condition (iii) is relevant only in the case of non-truthful

implementation and it requires that a profile in A not be rejected by the codex unless the

listener uses that particular profile to "deal" with some other profiles in R that the listener

would like to block.

5. Truthful Implementation

In this section, we fully characterize the truthfully implementable sets. In particular, we

show that when a set A is truthfully implementable, implementation can be achieved by a

canonical codex that consists of |R| complete rules, each of which guides a distinct profile s

in R to a neighboring profile in R.

Proposition 1: If the set A is truthfully implementable, then it is truthfully

implementable by a canonical codex.

Proof: Let  be a codex such that T  P  A.

By Lemma 2, T  T→  and thus for every s ∈ R there is a profile t ≠ s such that

s → t. Let ns be some neighbor of s that is between s and t. By Lemma 1, we have

s → ns → t and therefore ns ∉ T. The canonical codex ′  s,ns |s ∈ R

truthfully implements A. 

We say that a set of profiles C is connected if for any two profiles s, s′ ∈ C there is a

path of elements in C connecting s and s′. The set C is a connected component of R if it is

a maximal connected subset of R.

The next proposition states that a set A is truthfully implementable if and only if the set

R is a union of connected components, each of which contains a cycle. Truthful

implementation is accomplished by means of a codex that traps all "undeserving" speakers

(i.e., speakers whose profile should not be accepted) in a "circle of lies." In other words, an

undeserving speaker is (mis)guided by the codex to pretend to be a neighboring
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undeserving speaker whose profile is rejected by the codex and who, in turn, is guided by

the codex to pretend to be a third neighboring undeserving speaker whose profile is rejected

and so on. Eventually this chain creates a cycle.

Proposition 2: The set A is truthfully implementable if and only if every connected

component of R contains a cycle.

Proof: Assume that A is truthfully implementable. By Proposition 1, the set is

implementable by a canonical codex . Then, for every s ∈ R there is a unique profile

ns ∈ R such that sNns and s → ns. Let s1 be an arbitrary profile in R . Define

sl1  nsl. By the finiteness of R we have sL  sL′ for some L′  L. Thus, s1 is

connected in R to a cycle in R.

In the other direction, assume that any connected component of R has a cycle . Define

the binary relation → on R as follows: Let C be a connected component of R. Select a

subset of profiles in C that form a cycle s1Ns2N. . ,NsLNs1. For any l, add sl → sl1 to the

relation (L  1 is taken to be 1). For any element s ∈ C − s1. . . , sL, choose one of the

shortest paths t1Nt2. . ,NtN of profiles in C where t1  s and tN is in the cycle and add

t1 → t2 to the relation. Let   s, s′ | s → s′. Obviously, the relation → is

anti-symmetric and thus  is coherent. The relation → is identical to → and

P  T  A. 

The following proposition describes families of sets that are truthfully implementable.

The first family consists of all sets that are "small" in the sense that they contain no more

than K − 1 profiles. Each of the sets in the second family consists of all profiles for which

the number of variables that are true exceeds a certain threshold. The sets belonging to the

third family have the property that a particular variable is true (or false) for all profiles

included in the set. The forth family consists of all sets for which there are two variables,

such that the inclusion of a profile in the set is independent of their truth values. These two

"degenerate" variables are used in the codex merely to "confuse" the undeserving speaker.

Proposition 3: For K ≥ 3, any set A that satisfies at least one of the following

conditions is truthfully implementable:

(1) A is "small" with at most K − 1 profiles.

(2) The number of true variables must exceed a threshold: there exists a number m ≥ 3,

such that A  Am  s| at least m variables receive the value T at s.
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(3) There is a particular variable whose value must be true (or false): there exists a

variable v such that A ⊆ Tv (or T−v) where Tv is the set of all profiles in which v

receives the value T.

(4) There are two irrelevant variables v ′ and v ′′ such that if s ∈ A, then so is any profile

s′ for which sv  s′v for all v other than v ′ and v ′′.

Proof: By Proposition 2, it is sufficient to show that every s ∈ R is connected by a path

in R to a cycle in R.

(1) First, we show that the set R is connected. It is well known that for any two profiles

s and t in R that are not neighbors, there are K "disjoint" paths connecting s and t. Since A

contains at most K − 1 elements, at least one of the paths contains only elements of R. Thus,

R is connected.

Second, we show that R contains a cycle. Otherwise, let s1Ns2N. . . .NsL be a longest

path of distinct elements in R. Since R contains more than half of the profiles, there must

be two opposing profiles belonging to R and thus L ≥ K  1 ≥ 4.

Since s3 ∈ Ns2 ∩ Ns4 there is another profile x such that s2NxNs4. The profile x

must be in A since otherwise s2, s3, s4,x forms a cycle in R. The profile x is not a neighbor

of s1 since s1 is a neighbor of s2. The set Ns1 consists of s2 ∈ R and K − 1 other profiles.

It is impossible that all of them are in A since x is not one of them. Thus, Ns1 contains

another element in R (in addition to s2) and we can extend the path.

(2) R is connected since each profile in R is connected to the "all F" profile. The set R

contains the 2K-element cycle:

1,0, . . . , 0, 1,1,0, . . . , 0, 0,1,0, . . . , 0, 0,1,1,0, . . . , 0, . . . , 0,0, . . . , 1, 1,0, . . . , 0, 1

(3) Since A ⊆ Tv the set T−v ⊆ R and it has a counting cycle. Any element in R is

either in T−v or is a neighbor of a profile in T−v. Thus, R is connected and contains a

cycle.

(4) Any s ∈ R belongs to a cycle consisting of the four profiles in the set t| tv  sv

for any v ∉ v ′,v ′′. By assumption these four profiles are in R. 

An alternative interpretation of truthful implementation: Let K  3 and let

  v1 → v2, v2 → v3. Then, 1,0,0 → 1,1,0 and 1,1,0 → 1,1,1. However,

by our assumptions, the speaker is not guided iteratively and thus is not guided from

1,0,0 to the persuasive profile 1,1,1. Had we allowed the speaker to be guided

iteratively, the following alternative definition of implementation would have applied:
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We say that A is implementable in the alternative sense if there exists a codex  such

that:

(i) for every s ∈ A there is a chain s  s1 → s2. . . .→ sL where sL ∈ T.

(ii) for no s ∈ R does there exist a chain s  s1 → s2. . . .→ sL where sL ∈ T.

Proposition 4: The set A is implementable in the alternative sense if and only if it is

truthfully implementable.

Proof: If A is truthfully implementable, then the canonical codex built in the proof of

Proposition 2 implements A in the alternative sense.

On the other hand, assume that  implements the set A in the alternative sense. By (ii),

there is no member of R in T and thus by Lemma 2 for any s ∈ R there exists some s′

such that s → s′ and by Lemma 3 we can assume w.l.o.g. that s′Ns. Had s′ been in A, then

by (i) there would have been a chain s′  s1 → s2. . . .→ sL with sL ∈ T and then we

would have s → s1 → s2. . . .→ sL, contradicting (ii). Thus, s′ ∈ R. Consider the codex

′  s, s′ | s ∈ R. Then, P′  T′  A. 

6. Implementation (not necessarily truthful)

The main two goals of this section are to show that implementation can be achieved by

using a canonical codex (Proposition 6) and to characterize the class of implementable sets

(Proposition 7). We start with an auxiliary claim:

Proposition 5: A set A is implementable by a canonical codex if and only if there is a

reflexive binary relation → satisfying:

(1) Anti-symmety.

(2) P→  A.

(3) If s → s′ and s ≠ s′, then sNs′.

(4) for every s there is at most one s′ such that s → s′.

(5) for every s ∈ P→ − T→, there is t ∈ R such that t → s.

Proof: Assume that A is implementable by a canonical codex . The relation →

satisfies properties (1,2,3,4,5) since the coherence of the codex implies (1), the

implementability of A by the codex is equivalent to (2) and the fact that the codex is

canonical implies (3,4,5).

On the other hand, given a relation → that satisfies (1,2,3,4,5), consider
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  s, s′ | s ≠ s′ and s → s′. (1) implies that the codex is coherent. The relation →

is equal to → and using (2) we have P  P→   P→  A. (3,4,5) imply that the

codex is canonical. 

Proposition 6: If the set A is implementable, then it is implementable by a canonical

codex.

Proof: Let  be a codex that implements A. We start with the relation → and modify

it to become a relation satisfying the five properties in Proposition 5.

The relation → is reflexive, satisfies (1,2) and in addition has the following property:

(6) Betweenness: If s → s′ and t is a profile "between" s and s′, then s → t → s′.

First, define a new reflexive relation → as follows:

(a) For every s ∈ A − T, choose one profile s′ ∈ T such that s → s′ and define

s → s′.

(b) For every s ∈ R, choose one profile s′ ≠ s for which s → s′. Since → satisfies

(6), we can assume that s′Ns. Since s ∉ P, s′ ∉ T. Define s → s′.

The relation → satisfies (1,2,4) and:

(7) If s ∈ R then there is a unique s′ such that s → s′ and s′ ∉ T→ and s′Ns. If s ∈ A

and s → s′, then s′ ∈ T→ and all profiles between s and s′ are in A.

We now modify the relation → recursively as follows:

(i) For every s ∈ A − T→ such that the set Ns ∩ T→ ≠ ∅ and s → x for

x ∉ Ns, divert the relation from s → x to s → y for some y ∈ Ns ∩ T→.

(ii) Let s ∈ A be such that s → s′ and s′ ∉ Ns. Let s′′ be a neighbor of s between s and

s′. By (7), s′′ ∈ A and by (2) there exists s′′′ ∈ T→ such that s′′ → s′′′. Delete s′′ → s′′′

and s → s′ from the relation and add s → s′′. If there is a profile r → s′′, then r ∈ R and by

(7), s′′ and r are neighbors. Both s and r are neighbors of s′′ and let t  Ns, s′′, r (the other

joint neighbor of s and r). By (i), t ∉ T→. If t ∈ A, then add r → t. If t ∈ R, then delete

t → t ′ (t ′ can be r!) and add r → t and t → s. The new relation satisfies (1), (2), (4) and (7)

but with one less element in A, which goes to a non-neighbor.

Go back to (i). Following a finite number of iterations we obtain a relation satisfying

(1,2,3,4).

Finally, for every s ∈ A for which s → t and there is no r → s for some r ∈ R, we can

omit the arrow s → t to obtain a relation that satisfies 5 as well. 
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Proposition 7: The set A is implementable if and only if every connected component of

R contains (i) a cycle or (ii) a profile r such that there are two profiles s, t ∈ A and rNsNt.

Proof: Assume that A is implementable. By Proposition 6, it is implementable by a

canonical codex  and by Proposition 5 there is a binary relation → satisfying (1,2,3,4,5).

Consider a connected component Y of R. By (2,3), every r ∈ Y has a neighbor sr such

that r → sr. If for every r ∈ Y the profile sr ∈ R, then Y must contain a cycle.

Otherwise, there is an r ∈ Y with r → s and s ∈ A. Then, by (2), it must be that

s ∈ P→ − T→ and thus there must be some t ∈ T→ ⊆ A such that s → t and by (3)

rNsNt.

In the other direction, let Y1, . . ,YN be a sequence of all connected components of R. If

N  0, the set A  S is truthfully implementable (Proposition 3(1)). If N  0, we

inductively construct a relation → which at the end of stage n − 1 will satisfy (1,3,4,5) and

P→  S − Y1 . . .Yn−1 as well as P→ − T→ ⊆ A (and thus Yn . . .YN ⊆ T→).

At the end of stage n  N , we obtain a relation satisfying (1,2,3,4,5) and by Proposition 5

the set A is implementable.

We now describe the n’th stage of the inductive construction of →:

(i) The modification of → for the case in which Yn contains a cycle is straightforward

(following the construction in Proposition 2).

(ii) If there exists r ∈ Yn that is a neighbor of s ∈ P→ − T→, then we can extend the

relation → by adding r → s and x → y | x ∈ YN and y is a neighbor of x on the path from x

to r (there is only one path from x to r since Yn does not contain a cycle).

We can now concentrate on the case in which there is r∗ ∈ Yn such that r∗Ns∗Nt∗ and

s∗, t∗ ∈ A and there is no r ∈ Yn that has a neighbor s ∈ P→ − T→.

(iii) Next, we show that it can be assumed that there is no s such that s → s∗.

If there is a profile s such that s → s∗, then s ∉ R since if s ∈ R it must be that

s∗ ∈ P→ − T→, a situation already covered in (ii). Therefore, assume that s → s∗ and

s ∈ A. By property (5) of →, there is r ∈ R such that r → s. The profile

x  Nr∗, s∗, s ∉ R since if x ∈ R it must belong to Yn and xNs, a case already covered in

(ii). Also, x ∉ P→ − T→ since r∗Nx. Thus, x ∈ T→ and we can delete s → s∗ and add

s → x.

(iv) We are left with the situation in which r∗Ns∗Nt∗, s∗, t∗ ∈ A, s∗ ∈ T→ and there is
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no s → s∗.

If s∗ has a neighbor x in A ∩ T→, then we can extend the relation → such that

r∗ → s∗ → x and for any other r ∈ YN we can add r → s where r, s, . . , r∗ is the path from r

to r∗ in YN.

Otherwise, t∗, which is in A, is not in T→ and by (5) there are some profiles in R

which are directed to t∗.

For every r such that r → t∗, let xr  Nr, t∗, s∗. We have already dealt with the case

in which for at least one r we have xr ∈ A ∩ T→. We are left with two possibilities to

consider:

(a) If xr ∈ P→ − T→, i.e., there is y ∈ A such that xr → y, we can redirect

r → xr.

(b) If xr ∈ R it must be in Y1 . . .Yn−1 since xrNr and r ∈ Y1 . . .Yn−1. Then, for

each such r redirect r → xr and xr → s∗.

There are no remaining profiles directed to t∗ and as before we can extend the relation

such that r∗ → s∗ → t∗ and r → s | r ∈ Yn and r, s, . . , r∗ is the path from r to r∗ in YN. 

Corollary: (1) If there exists s∗ ∈ R such that A ⊇ Ns∗ and for any x ∈ Ns∗ we

have Nx ⊆ R, then A is not implementable.

(2) If all connected components of A are singletons and A is not truthfully

implementable, then A is not implementable.

The set A  0,1,0,0, 0,0,1,0, 0,0,0,1, 1,1,1,0, 1,1,0,1, 1,0,1,1 is an

example of a set satisfying (2) but not (1) (the set 0,0,0,0, 1,0,0,0, 1,1,0,0 is a

connected component of R which does not have a cycle).

Using the above characterization, Proposition 8 presents three families of

implementable sets. In the first, each set A has the property that the truth of a particular

variable in a profile guarantees that the profile is in A. The second consists of all sets A ,

each of which contains all but at most K profiles. The third consists of all sets A that have

the property that if a profile s is in A then any other profile that agrees with s on the

variables for which sv  T is also in A. (For example: the set of all profiles in which

v1 ∧ v2 ∨ v3 ∧ v4 ∧ v5 is satisfied.)
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Proposition 8: For K ≥ 3, any set A that satisfies at least one of the following

conditions is implementable:

(1) A ⊇ Tv for some variable v (recall that Tv is the set of all profiles in which the

variable v receives the value T).

(2) |R|≤ K.

(3) A is monotonic in the following sense: if s ∈ A and s′ is a profile such that, for every

variable v, whenever sv  T also s′v  T, then s′ ∈ A.

Proof:

(1) Every profile s ∈ R assigns the truth value F to the variable v and is a neighbor of a

profile in Tv, which has another neighbor in Tv.

(2) If |R|≤ K, then any r ∈ R has a neighbor s in A and if s does not have K neighbors in

R it must have a neighbor in A. If R  Ns∗, then given K ≥ 3 there for is a ray

s∗, r,nr,n2r and nr and n2r are in A.

(3) The case A  alltruth is dealt with in Proposition 3(1). Otherwise A is a

connected set (all profiles are connected to alltruth) which is not a singleton. The set R is

connected (since if it is not empty all profiles are connected to allfalse). There must be a

profile in R which is a neighbor of a profile in A which in turn is a neighbor of another

profile in A. 

7. Discussion

7.1. Experimental Evidence

We obviously do not view the bounded rationality element in our model as an exact

description of reality. Nevertheless, we believe that it captures some elements of real life.

The following series of experiments provides some supporting evidence. Subjects from

more than 30 countries who had all taken a game theory course and had registered on the

site gametheory.tau.ac.il were asked to participate in a short web-based experiment. The

subjects were first asked the following three questions:

1) On most days, do you go to bed before midnight or after midnight?

2) Which of the following do you prefer: cheese cake or chocolate cake?

3) Were you born on an odd or even day of the month?

After answering the three questions, the subjects were presented with a new screen:

"Assume now that as part of a marketing campaign you have been offered the chance to
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participate in a lottery. The winner of the lottery will be awarded one million dollars (in

this experiment the prize is only $100). In order to be eligible to participate, you must

answer three questions about yourself and your answers must not violate any of the

following six restrictions [the restrictions were presented in random order]:

R1: If you usually go to bed before midnight and you prefer chocolate cake,

then you must have been born on an even day of the month.

R2: If you prefer chocolate cake and you were born on an odd day of the month,

then you must usually go to bed before midnight.

R3: If you usually go to bed after midnight and you prefer cheese cake,

then you must have been born on an odd day of the month.

R4: If you usually go to bed after midnight and you prefer chocolate cake,

then you must have been born on an odd day of the month.

R5: If you prefer cheese cake and you were born on an even day of the month,

then you must usually go to bed after midnight .

R6: If you usually go to bed before midnight and you were born on an even day of the

month,

then you must prefer cheese cake.

Assume that you very much want to participate in the lottery and you know that the

organizers have no way of verifying whether your answers are true. How would you answer

the following three questions in this case?

1) Do you usually go to bed before or after midnight?

2) Which of the following do you prefer: cheese cake or chocolate cake?

3) Were you born on an odd or even day of the month?"

Letting v1 "before midnight", v2  "cheese cake" and v3"odd day of the month", the

codex above, denoted by 1, consists of six rules: v1 ∧ −v2 → −v3, −v2 ∧ v3 → v1,

−v1 ∧ v2 → v3, −v1 ∧ −v2 → v3, v2 ∧ v3 → −v1 and v1 ∧ −v3 → v2. The induced guidance

relation is: 111 →1 011, 100 →1 110, 010 →1 011,

101 →1 100, 001 →1 101 and 000 →1 001. Thus, T1  011, 110 and

P1  T1  111, 100, 010.

We partitioned the subjects into three groups T  T1, P  P1 − T1 and

R  R1, according to their "declared profile" on the first screen. Each row in the

following table refers to one of these groups. The first column presents the proportion of

Page 23 10/14/2012



subjects in each group whose answers in the second screen belong to T. The second

column, denoted by "Honest", presents the proportion of subjects in each group who

submitted the same profile in the second screen as in the first. (Notice that 9% of the

subjects in T answered successfully by reporting the profile in T on the second screen,

which is not the one they declared initially.) The third column, denoted by "Other",

presents the proportion of subjects in each group whose answer was neither in T nor honest.

1 Success Rate Honest Other N

T 80% 71% 20% 104

P 54% 29% 17% 180

R 36% 34% 30% 261

Following are our main observations:

1) The results support our basic assumption that the ability of a subject to come up with

a persuasive profile strongly depends on his true profile. While 80% of the subjects in T

submitted a persuasive profile, the success rate dropped to 54% among the subjects in P

and to 36% among the subjects in R.

2) The median response time of successful subjects increased from 125s for subjects in

T to 157s for subjects in P and even more dramatically to 317s for subjects in R. This

supports our assumption that subjects in R find it more difficult to come up with a

persuasive profile than subjects in P and T.

3) According to 1, each of the three profiles in P is guided by the codex to a single

profile in T (two are guided to 011 and one to 110). Indeed, of the 97 subjects in P who

submitted a persuasive profile, 68% followed the guide. This result supports our main

assumption that subjects use the codex as a guide in coming up with a persuasive profile

using their true profile as a starting point.

4) The choices of the 251 subjects in P  R who failed to submit a persuasive profile

are far from being random. 56% of these subjects were honest while 35% chose a profile

that is confirmed by a rule in the codex, in the sense that the profile satisfies both its

antecedent and its consequent (100, 101 or 001). Only 9% chose a profile that was not

confirmed by any of the rules (111, 010 or 000).

5) One could suggest an alternative model of bounded rationality according to which a

subject considers only his true profile and the (three) neighboring ones. However, the
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results do not support this hypothesis. First, note that for subjects with the true profiles 111

and 010, the two persuasive profiles are neighboring ones. However, they are guided by

the codex only to 011 (and not to 110). Indeed, 75% of the 72 subjects who submitted a

persuasive profile followed the guide and chose 011. Second, the success rate of the 001

subjects (37%) who had a neighboring profile in T was no different than those for the other

two R profiles (101 and 000), which do not have a neighboring profile in T (37% and 33%,

respectively).

An alternative explanation for the popularity of 011 among the 111 and 010 subjects is

that 011 is confirmed by two rules. Therefore, we conducted a second experiment with a

modified codex, denoted by 2, whose guidance relation is 111 →2 011,

100 →2 110, 010 →2 110, 001 →2 011, 101 →2 100 and 000 →2 001. For this

codex, T2  T1 but P2 − T2 consists of four profiles: 111 and 001 (guided by

the codex to 011) and 100 and 010 (guided to 110). The following table summarizes the

main results:

2 Success Rate Honest Other N

T 88% 75% 12% 52

P 63% 27% 10% 123

R 45% 15% 40% 65

Once again, we observe a strong dependence of the success rate on the subject’s true

profile. Almost all T profiles, 63% of the P profiles and only 45% of the R profiles came up

with a persuasive profile. Particularly interesting is the group of 123 subjects whose profile

is in P. Each of the four profiles in P is guided by the codex to a unique profile in T. Of

the 78 successful subjects in P, 51 subjects (65%) seem to have been guided by the codex.

We believe that this result strongly supports our main assumption that individuals first

determine whether their true profile satisfies the codex and if it does not then they consider

a profile to which they are guided by the codex.

Finally, we also tried another codex, denoted by 3, which truthfully implements

110, 011. The induced guidance relation is 111 →3 101 100 →3 101 010 →3 000,

101 →3 100 001 →3 101 and 000 →3 001. The following table summarizes the

results:
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3 T Honest Other N

T 81% 77% 19% 26

R 34% 44% 22% 100

Once again, there is a dramatic difference between the success rates of the T’s (81%)

and the R’s (34%). The R’s success rate and their median response time (332s) are similar

to those of the R’s in the previous experiments and only one R subject chose a profile not

confirmed by any of the rules in the codex.

7.2. Related Literature

The idea that cheating is difficult is, of course, not a new one. Within the economic

literature, it appears in Kamien and Zemel (unpublished, 1990) among others. They

reinterpreted Cook’s Theorem (see Cook (1971)), which proves the NP completeness of

deciding whether a given Boolean formula in conjunctive normal form has an assignment

that makes the formula true.

Kartik (2009) analyzed a model of persuasion in which a speaker incurs a cost if he

chooses to misrepresent his private information. Inflated language naturally arises in this

environment.

The idea that the framing of a mechanism may also provide some guidance to the

participants appeared in Glazer and Rubinstein (1996). In that paper, we introduced the

concept of "implementation via guided iterative elimination of dominated strategies in a

normal form game" and showed that it is equivalent to "implementation using a subgame

perfect equilibrium of an extensive game with perfect information".

The idea that the mechanism itself can affect agents’ preferences and thus the

implementability of social outcomes appears in Glazer and Rubinstein (1998). In that

paper, a number of experts receive noisy signals regarding a public decision. Two

“cultures” were compared: In the first, the experts are driven only by the public motive to

increase the probability that the desirable action will be taken. In the second, each expert is

also driven by a private motive to have his recommendation adopted. We show that only

the second culture gives rise to a mechanism whose unique equilibrium outcome achieves

the public target.

A model of implementation with boundedly rational agents was presented by Eliaz

Page 26 10/14/2012



(2002) who investigated the implementation problem when some of the agents are "faulty",

in the sense that they fail to act optimally. Eliaz (2002) introduces a solution concept called

"fault-tolerant implementation", which requires robustness to deviations from equilibrium,

and shows that under symmetric information any choice rule that satisfies certain properties

can be implemented if the number of faulty players is sufficiently small. In Cabrales and

Serrano (2011), there must exist a mechanism that induces players’ actions to converge to

the desired outcome when they follow best-response dynamics in order for a social choice

function to be implementable. De Clippel (2011) expands standard implementation theory

by assuming that agents’ decisions are determined by choice functions that are not

necessarily rationalizable.

7.3. Conclusion

The model presented here facilitates the analysis of some basic considerations used by a

principal in attempting to elicit information from an agent who may have an incentive to

cheat. The principal would like the mechanism to be complex enough that an agent, whose

interests clash with his own, will not be guided by the mechanism itself to successfully

distort the information he is conveying. At the same time, the principal would like the

mechanism to be simple enough that an agent whose interests coincide with his own will be

able to persuade him.

Following are some of our main insights:

(1) In some cases, it is optimal for the listener to use a codex that will help the speaker

to "alter the truth", that is, present a false but persuasive profile. This result is consistent

with the casual observation that some exaggeration is sometimes viewed as necessary in

real-life situations (see Kartik, Ottaviani and Squintani (2007)).

(2) If the circumstances under which the listener should (from his point of view) accept

the speaker’s request are rare, then truthful implementation is easy. This will be

accomplished by means of a codex that will trap all "undeserving" speakers (i.e., speakers

whose profile should not be accepted) in a "circle of lies." In other words, an undeserving

speaker is (mis)guided by the codex to pretend to be another undeserving speaker whose

profile is rejected by the codex and who, in turn, is guided by the codex to pretend to be a

third undeserving speaker whose profile is rejected and so on. This procedure continues

until one of the undeserving speakers is guided by the codex to present a profile that

appears previously in the chain.
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(3) If the circumstances under which the listener should reject the speaker’s request are

rare, then the optimal mechanism requires the speaker, in some circumstances, to cheat

successfully. This occurs because the codex sometimes guides a speaker with an

undeserving profile to pretend to be a speaker with a deserving one, who himself is rejected

by the codex but is guided to another profile which is accepted.

Most importantly, the paper suggests a new direction for the study of mechanism design

with boundedly rational agents.
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