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We examine a sequential mechanism which is a simple modification of the normal
form mechanism introduced by Abreu and Matsushima (1992). We show that almost any
social choice function can be virtually implemented via a finite sequential game of perfect
information. The solution concept assumed is backwards induction. In particular, any social
choice function that is virtually implementable via the Abreu–Matsushima mechanism is
also virtually implementable by a sequential mechanism.Journal of Economic Literature
Classification Number: C72. © 1996 Academic Press, Inc.

INTRODUCTION

Implementation theory has come a long way since the pioneering contribu-
tions of Hurwicz (1972), Gibbard (1973), Satterthwaite (1975), Maskin (1977),
and others. The fundamental question addressed in this literature is that of which
social choice functions are implementable and under what assumptions. While
the first results in this area were mostly negative (e.g., Satterthwaite, 1975,
and Gibbard, 1973, for implementation in dominant strategies), research has
taken a somewhat different and more positive direction in recent years. Starting
with Maskin (1977), who gave necessary and sufficient conditions for Nash im-
plementation, researchers have studied implementation problems under various
solution concepts. See Moore (1991) and Repullo (1990) for a comprehensive
survey of this literature.

However, most of the mechanisms suggested by the literature were very com-
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plicated and relied on unlikely actions taken by the agents. It was recognized
early on that if implementation theory was to have any relevance in real-life
applications, researchers would have to focus their efforts, looking for mecha-
nisms that are simple and, at the same time, supported by a convincing solution
concept. (See, for example, Jackson (1992).)

In a recent stimulating paper, Abreu and Matsushima (1992) made an impor-
tant step in this direction. They showed that almost any social choice function
is virtually implementable (see also Abreu and Sen, 1991, for earlier results on
this issue). Moreover, the mechanism they suggested, hereafter referred to as the
A–M mechanism, was very simple and utilized a very strong solution concept,
iterative elimination of strictly dominated strategies. Thus, by moving from ex-
act to virtual implementation, a relatively minor loss, the mechanism is both
simplified and strengthened significantly.

Our paper goes one step further in simplifying the mechanism and strength-
ening the solution concept. In Abreu and Matsushima (1992) it is essential that
players do not observe each other’s reports upon submitting their own reports.
Thus, players must move simultaneously. We examine which social choice func-
tions can be virtually implemented when players cannot make simultaneous
moves. In other words, we analyze a finite game of perfect information in which
players’ reports cannot be hidden. (These mechanisms are sometimes referred
to as sequential mechanisms.)

We show that almost any social choice function can be virtually implemented
via a sequential mechanism, where the solution concept assumed is subgame
perfect equilibrium. (Note. We use the terms “subgame perfect equilibrium”
and “backwards induction” interchangeably.) In particular, any social choice
function that is virtually implementable via the A–M mechanism is also virtually
implementable by a sequential mechanism.

Sequential mechanisms are interesting for several reasons. First and foremost,
sequential mechanisms, with backwards induction as their solution concept,
seem to be more intuitive and simpler to understand than their simultaneous
counterparts. Second, most of the mechanisms in which players are asked to
submit their reports simultaneously will not work if, instead, some of the players
move sequentially, each getting to observe all reports of all the agents preceding
him, before submitting his own report to the planner. In many real-life situations,
it is difficult for the planner to ensure “secrecy” (especially in cases where it is in
the players’ interest to reveal their information). On the other hand, the planner
can always commit to asking the players to submit their report sequentially and
to reveal each report’s content upon its arrival.

Finally, on a theoretical level, one may ask whether the restriction of allowable
mechanisms to sequential ones reduces the set of social choice functions that
can be implemented and, if so, to what extent.

The sequential mechanism we suggest is a simple modification of the normal
form mechanism introduced by Abreu and Matsushima (1992). Although we
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have attempted to keep our model self-contained, we would encourage the reader
who has not yet done so to first read their paper before studying ours.

SETUP

Let N = {1, 2, . . . ,n} denote the set of players and denote by9i a finite set
of types for playeri , i ∈ N. The set of pure social alternatives is denoted byA,
and1(A) denotes the set of all probability distributions overA. In this context,
a ∈ A denotes a pure social alternative andl ∈ 1(A) denotes a lottery onA.

The utility function of playeri over the setA is denoted byui : 9i × A→ R,
whereui (ψi ,a) specifies the utility of playeri from the social alternativea,
when he is of typeψi . Playeri ’s utility from a lottery l ∈ 1(A) is Ui (ψi , l ) =
El [ui (ψi ,a)]. We assume thatui is not a constant function and that for any
ψ ′i , ψ

′′
i ∈ 9i , ψ ′i 6= ψ ′′i , ui (ψ

′
i , ·) is not a linear transformation ofui (ψ

′′
i , ·).

A social choice function is a mappingX: 9 → 1(A), where9 = 91×92×
· · · ×9n.

For simplicity we assume a full domain of preferences. Assume that the pref-
erences profileψ ∈ 9 is common knowledge among the players. A sequential
mechanism is a complete information game form, denoted by(0, g), whereg
assigns to each strategy profile in the tree0 a probability distributionl ∈ 1(A).

THEOREM. Suppose that n> 2. Then, for any social choice function X
andε > 0, there exists a sequential mechanism for which the unique subgame
perfect equilibrium is such that for every profile of typesψ , the alternative X(ψ)
is chosen with probability of at least1− ε.

Proof. Assume some social choice functionX and someε > 0. The propo-
sition is proved by construction of a mechanism.

To simplify the exposition we assume that the planner can fine every playeri ,
i ∈ N by an amountti ∈ R, whereti ≤ t̄ , for somet̄ > 0. We also assume that
playeri ’s VNM utility from a transferti and a lotteryl ∈ 1(A) isUi (ψi , l , ti ) =
El [ui (ψi ,a)]− ti . We restrict ourselves to mechanisms in which the only money
transfers allowed are from the players to the planner. The introduction of fines
is made for the sake of simplicity. We shall return to this point after presenting
the mechanism. It is important to notice that we make no assumption about the
size oft̄ , except that it is greater than zero.

A sequential mechanism, in this setup, is a complete information game form
(0, g), whereg assigns to each strategy profile in0 a pair(l , t), wherel ∈ 1(A),
t = (t1, t2, . . . , tn), and 0≤ ti ≤ t̄ .

The Sequential Mechanism. The game is played inK +1 stages. In each stage
h, h = 1, . . . , K , each of then players announces a vectormh

i ∈ 9, which is a
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profile of types for then players. In stageK + 1 each playeri announces only
a type for himself,mK+1

i ∈ 9i . Let mK+1 = (mK+1
1 ,mK+1

2 , . . . ,mK+1
n ), be the

profile obtained from the messages in stageK + 1. In each of theK + 1 stages
the players movesequentially, player 1 moves first, player 2 moves second,
etc. Each player is aware of all previous announcements of all players (i.e.,
all announcements made in previous stages as well as those made by previous
players in the current stage). Thus, this is a game ofperfect information.

We can now discuss the planner’s choice of alternative and fines given a play
of the game. The planner’s decision is similar to the one in the A–M mechanism
with two modifications, (i) there exists onlyonetype of punishment (instead of
the two as in A–M), and (ii) thelast player to disagree with the profile obtained
from the(K +1)-st announcement is punished (instead of the first one in A–M).

For each playeri ∈ N, construct a functionfi : 9i → 1(A) such that for all
ψi ∈ 9i ,

Ui (ψi , fi (ψi ))−Ui (ψi , fi (ψ
′
i )) > 0 for allψ ′i 6= ψi .

Such a function always exists, in this setup, as was shown by Abreu and Mat-
sushima (1992).

Choose some1 so that

0< 1 < Ui (ψi , fi (ψi ))−Ui (ψi , fi (ψ
′
i )) for all i, ψi andψ ′i 6= ψi .

Let

ξ = max
i∈N;ψi∈9i ;ψ ′,ψ∈9

[Ui (ψi , X(ψ))−Ui (ψi , X(ψ ′))],

Choose an integerK and a fineδ > 0 such that

ξ /K < δ < min{ε1/n, t̄}.
We are now ready to specify the functiong that assigns for each strategy profile
in 0 a pair(1, t). For each stageh, h = 1, . . . , K , a probability of(1− ε)/K is
assigned toX(ψ) if mh

i = ψ , for at leastn− 1 players; otherwise a probability
of (1− ε)/K is assigned to some arbitrarily chosen alternativeb. In addition, for
i = 1, . . . ,n, a probability ofε/n is assigned tofi (m

K+1
i ).

Finally, the mechanism fines at most one player: If playeri is the last one to
disagree with the profile obtained in stageK +1, then playeri is fined byδ, i.e.,
if and only if, for someh ∈ 1, . . . , K andi ∈ N mh

i 6= mK+1 but mh
j = mK+1,

for all j > i , and forK ≥ h′ > h, mh
j = mK+1 for j = 1, . . . ,n, thenti = δ.

IMPLEMENTATION

Let ψ be the true profile of types. First note that if in each stageh, h =
1, . . . , K , each of then players announces the true vector,mh

i = ψ , thenX(ψ)
is implemented with probability of at least 1− ε.
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Next, we will show that truth telling is the unique subgame perfect equilibrium
strategy in this game. Consider playern’s choice in stageK + 1, and note that
this is the last move in the game tree0. Announcing anymK+1

n 6= ψn will cost
him at leastε1/n (in terms of reducing his expected utility) and will save him at
mostδ. Sinceδ < ε1/n, truth telling is the best move for playern at this stage.
Having proved this for playern, we can move backwards and prove by induction
that the same holds for everyi 6= n at stageK +1. We have thus established that
in any subgame perfect equilibrium, the profileψ is obtained in stageK + 1.

Consider now playernth decision in stageK . Let h′ = max{h | mh
n 6= 9} if

for someh, mh
n 6= 9, otherwise, leth′ = 0.

There are three cases to examine:

(i) for all i, j 6∈ n mK
i = mK

j ;
(ii) there exist i, j, h 6∈ n such that mK

i 6= mK
j 6= mK

h 6= mK
i , and

(iii) there exists somej 6= n such that for alli, h 6= j andi, h 6= n mK
i =

mK
h 6= mK

j .

In the first two cases (i) and (ii), playern’s choice at stageK will not affect
the social alternative chosen in this stage. Let us consider each of the three cases
separately.

Case(i). If h′ = 0, orh′ > 0 but for someh′ < h ≤ K mh
i 6= ψ for i 6= n,

playern will be finedδ if at this stagemK
n 6= ψ . If, instead,mK

n = ψ , playern
will not be fined. On the other hand, ifh′ > 0 and for allh > h′, mh

i = ψ , then
playern is fined byδ, regardless of his report. Consequently, he is just indifferent
betweenmK

n = ψ andmK
n 6= ψ .

Case(ii ). Playern will be finedδ if he reportsmK
n 6= ψ ; he will not be fined

at all if he reportsmK
n = ψ .

Case(iii ). In this case,n’s choice may determine the alternative selected at
this stage. Given what we know about stageK + 1, announcingmK

n 6= ψ will
cost himδ, while his maximum potential gain isξ /K . Sinceξ /K < δ announcing
the truth is the dominant move for playern in stageK .

We conclude, therefore, that at stageK there are only two possibilities for
playern; if he is not the last one to lie along the history up to this point, he is
strictly better off telling the truth, and otherwise, he is indifferent between telling
the truth and lying.

We can now complete the proof by inducting on alli ∈ N, i 6= n in stageK ,
and then on all stagesh, h < K , using exactly the same arguments. Note that
at the empty history (before the beginning of the game), playeri ∈ N has not
lied, therefore, at stageh = 1, and given the continuation of the game, he is not
indifferent between telling the truth and lying, and the only best response for
him is to tell the truth.
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Finally, we discuss how our mechanism can be modified to fit into the initial
environment where monetary fines are not allowed. We shall only present the
basic idea; for a complete proof the reader is referred to Abreu and Matsushima
(1992). Notice first that in the mechanism above, the only payments made were
from the agents to the planner and furthermore the size of these payments could
be made arbitrarily small, since we only required thatt̄ be greater than zero.
When monetary fines are not possible, the planner can punish the players by
reducing the probability he assigned to the alternative “chosen” at stageK + 1.
That is, in each case in which some playeri was fined by some amountti in the
above mechanism, he will now be fined by reducing the probability the planner
assigns to the alternativefi (m

K+1
i ), instead. It can be shown that the size of these

punishments can be adjusted so as to be as effective as the monetary fines in the
original mechanism.
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