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Abstract

We introduce a new type of agent whom we refer to as a "problem solver" (PS). The

PS interacts with conventional players and wishes to respond optimally to their moves.

The PS has only partial information about the moves of the other players. Unlike a

regular player, the PS does not "put himself in the shoes" of other players and does

not form beliefs about their moves. Rather, he treats the data as a logic puzzle: he

calculates the set of possible configurations of moves that are consistent with the data

he observes and responds to it. We insert such a problem solver into a simple model

of competition for attention and analyze its equilibria. We demonstrate a novel feature

of equilibrium in the model, whereby even though the PS always succeeds in his task,

he may be uncertain that he will do so.
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1. Introduction

We introduce a new type of economic agent, called a problem solver (PS), into

various economic interactions. The PS interacts with conventional agents and wishes

to respond optimally to their moves. He does not observe the other agents’ moves,

about which he has only partial information. In contrast to a regular player, the PS

does not "put himself in the shoes" of other players and does not form beliefs about

the moves that led to the data he observes. Rather, he calculates the set of possible

configurations of moves that are consistent with the data and chooses a best

response to the uniform distribution over that set. For the PS, finding all configurations

of moves that are consistent with what he observes is similar to solving a logic puzzle.

In order to demonstrate some of the implications of introducing problem solvers into

economic interactions, we use a simple model of competition for attention in which

such an agent is inserted. There are n regular players, each of them seeks the

attention of an observer. The players simultaneously choose a position, which is an

entry in a large matrix. We assume that there are more available positions than agents

and therefore some of the positions will remain vacant. The observer has only partial

information regarding which positions are occupied and which are vacant. More

precisely, he observes only the number of players located in each row and in each

column of the matrix. The observer’s objective is to pick an occupied position while

each player’s objective is to be the one picked by him. We consider two variants of the

model: In the first, no two players can occupy the same position; in the second,

multiple players can share the same position.

One possibility would be to analyze the situation as a two-stage game. In the first

stage, the n players simultaneously choose a position while, in the second, the

observer (who is now thought of as a regular player) chooses a position, after having

observed the data regarding the n players’ choices. This game has trivial Nash

equilibria, some of which do not make much sense. In fact, every profile of n positions

from which the observer chooses one position with probability 1 is consistent with a

sequential equilibrium.

A more realistic approach is to view the observer as if he is solving a puzzle. Once

he has received the data, he then calculates the configurations of occupied positions

that are consistent with it. He then chooses a position with the largest number of

configurations that are consistent with the data and in which that position is occupied.
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We analyze the interaction between the strategic players that is induced by the

observer’s behavior.

The equilibrium of the model in the presence of a problem solver differs significantly

from that of a game in which the observer behaves like a regular player. We show that

in all equilibria of either of the two variants, the PS finds an occupied position with

certainty. However, in the first variant, an interesting phenomenon emerges. There

exist equilibria in which the PS chooses a position which he believes might be vacant

even though it is occupied with certainty. If the PS were just a regular player, such a

phenomenon would not arise in equilibrium.

2. The model

There are n players competing for the attention of an observer. Each player chooses

a position, which is a pair of characteristics in the set A  B (where A and B are disjoint

sets). For simplicity, assume that both A and B contain at least n elements. We will

often refer to the elements of A as columns and to the elements of B as rows. A

product set of columns and rows is called a box. Initially, we assume that no two

players can occupy the same position. An outcome of the n players’ choice is a matrix

M  Ma,b, where Ma,b ∈ 0,1, with n 1’s. Ma,b  1 signifies that the position a,b is

occupied and Ma,b  0 signifies that it is vacant.

The observer chooses one entry with the objective of choosing an occupied one.

The observer does not observe the matrix but only the number of occupied entries in

each column and each row. That is, the observer knows only the data vector

dM  dMxx∈AB where dMx is the number of players occupying entries with a

characteristic x in the matrix M (i.e., dMa   lMal and dMb   kMkb). A vector d

is consistent if there is a matrix M such that d  dM. By definition, the observer

observes only consistent data vectors. We refer to da  db as the score of the entry

a,b.

The observer is not a "conventional" player in the sense that he does not "put

himself in the shoes" of the other players. In other words, he does not think

strategically. We will refer to him as the problem solver (PS). The PS assumes that all

matrixes consistent with the data he observes are equally likely and he picks one entry

from the set of entries with the highest probability of being occupied, at random.
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Formally, a matrix M is said to be d-consistent if dM  d. Let d,x be the

proportion of matrixes consistent with d , in which x is occupied. If d,x  1, we say

that x is revealed to be occupied by d. If d,x  0, we say that x is revealed to be

vacant by d (hereafter, we use the term "revealed" to mean "revealed to be occupied").

We say that the matrix M is revealed if it is the only matrix consistent with dM.

Denote by CM  x | dM,x is maximal the set of all entries with the highest

probability of being occupied, given dM. The probability that the PS picks x is M,x

 1/|CM| for each x ∈ CM and M,x  0 for each x ∉ CM. In other words, CM

is the PS’ choice set given that he observes dM (and thus depends on dM only).

An agent’s objective is to maximize the probability of being picked by the PS. An

equilibrium is a matrix M such that no player can increase his probability of being

picked by moving to a vacant entry. Let Mx → y be the matrix derived from M after

switching the values of entries x and y. The matrix M is an equilibrium if, for each

occupied entry x, M,x ≥ Mx → y,y for any entry y that is not occupied in M.

Thus, the equilibrium concept is the standard Nash Equilibrium of the game in which

players simultaneously choose positions, the payoff from exclusively occupying a

position is the probability of being chosen by the PS and the payoff from sharing a

position with other players is negative.

Example 1: Consider the following matrixes with n  5 (when describing a matrix,

our convention will be that vacant rows and columns are not depicted).

M1 
1∗ 1 1

1 0∗∗ 0

1 0 0

M2 
1∗ 1 1

1 1 0

0 0∗∗ 0

M3  1∗ 1 1 1 1

∗ ∗ ∗ ∗ ∗

The matrix M1 is revealed. Thus, the probability of each occupied entry being picked

is 1/5. However, M1 is not an equilibrium. If the occupier of ∗ moves to ∗ ∗, the new

data vector will be: 2,2,1, 2,2,1, which is consistent with 5 matrixes, such that

each of the four entries a,b for which da,db  2,2 is occupied in 4 of the 5

matrixes. Each of the 4 entries a,b for which da,db is 2,1 or 1,2 is occupied

in 2 of the 5 matrices. The unique entry a,b, for which da,db  1,1, is

occupied in only one of the d-consistent matrixes. Thus, by moving from ∗ to ∗ ∗ the

mover increases his probability of being picked from 1/5 to 1/4.

The matrix M2 is revealed but is not an equilibrium since the agent who occupies ∗
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can increase his probability of being picked from 1/5 to 1/3 by moving to ∗ ∗.

The matrix M3 is revealed and is an equilibrium. If the agent at ∗ moves to an entry

such as ∗ ∗ (which does not share any characteristics with the other four occupied

entries), then the new data vector will be consistent with 5 matrixes and in only one of

them is ∗ ∗ occupied. Each of the other occupied entries is occupied in 4 of the 5

matrices consistent with the new data and thus the mover reduces his probability of

being picked from 1/5 to 0. If the occupier of ∗ moves to an entry such as ∗ ∗ ∗ (which

shares one characteristic with one other occupied entry), then the new matrix will also

be revealed and the agent gains nothing from moving.

3. The Problem Solver’s Behavior

In this section, we present some properties of the set of matrixes which are

consistent with a given data set. These properties determine the Problem Solver’s

"response function". In particular, we will show that either:

(1) The set of entries that are revealed to be occupied forms a step set and the PS

randomly picks one of these entries (every other entry has a strictly lower score than

at least one revealed entry);

or

(2) No entry is revealed to be occupied and the PS randomly picks one of the entries

with the maximal score.

Claim 1: Let d be a consistent data vector such that d1  d2, where 1 and 2 are

elements of A. Then, for any b ∈ B, d, 1,b ≥ d, 2,b. Furthermore, if there is a

d-consistent matrix M such that M1,b  1 and M2,b  0, then the inequality is strict.

Proof: Let b ∈ B. Fix the values for all entries other than those in columns 1 and 2.

Partition the class of all d-consistent matrixes with these fixed values outside columns

1 and 2 into (up to) four cells, denoted by M,,  ∈ 0,1 , ∈ 0,1 , such that

M, is the cell in this partition that consists of the matrixes for which M1,b   and

M2,b  . We will show that for each class |M1,0|≥ |M0,1| and if M1,0 is not

empty, then the inequality is strict. This is sufficient to prove the claim since If there is

a d-consistent matrix M such that M1,b  1 and M2,b  0, then for at least one set of
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entries in columns B − 1,2 we have M1,0 ≠ ∅.

We first show that if M1,0  ∅, then M0,1  ∅. If M0,1 is not empty, then there

is a d −consistent matrix M with M1,b  0 and M2,b  1. By d1  d2, there is a row b′

where M1,b′  1 and M2,b′  0. Switching all values in 1,2  b,b′, we get another

d-consistent matrix which is in M1,0. Therefore, if M1,0 is empty, then the number

of matrixes in this class in which M1,b  1 is the same as the number of matrixes in the

class in which M2,b  1.

We next show that if M1,0 ≠ ∅, then the number of elements in M0,1 is strictly

smaller than in M1,0. Define L1,1 to be the set of rows in which the data regarding the

rows implies that the missing values in columns 1 and 2 are 1,1, and define L0,0 in a

similar manner. For the rows in B − L11 − L00, the data dictates that the missing values

in columns 1 and 2 be either 0,1 or 1,0. It must be that in any 1  d1 − |L1,1| of

these rows the values in the two columns are 1,0 and in the other 2  d2 − |L1,1|

rows the values must be 0,1. Thus,

|M1,0| C1 − 1,1  2 − 1  |M0,1| C1,1  2 − 1 where the strict

inequality follows from the fact that 1  2. 

Claim 2: Let d be a consistent data set. Assume that a∗ and b∗ maximize d over A

and B, respectively. If, for some a, da∗  da and 1  d, a∗,b∗  0, then

d, a∗,b∗  d, a,b∗.

Proof: By claim 1, it is sufficient to show that there exists a matrix M consistent with

d, such that Ma∗,b∗  1 and Ma,b∗  0.

Since 1  d, a∗,b∗, there exists a d-consistent matrix M with Ma∗,b∗  0.

If Ma,b∗  1, then since da∗  da, there must be some b ∈ B with Ma∗,b  1 and

Ma,b  0. By switching the values in the four entries a∗,a  b∗,b, we obtain a

d-consistent M′ with Ma∗,b∗
′  1 and Ma,b∗

′  0.

b∗ 0 1

b 1 0

a∗ a

If Ma,b∗  0, then by da∗  da there exists a row b with Ma∗,b  1 and Ma,b  0.
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However, since b∗ maximizes d over B, there also exists an a′ such that Ma′,b∗  1 and

Ma′,b  0. By switching the values in a∗,a′  b∗,b, we obtain a d-consistent matrix

M′ with Ma∗,b∗
′  1 and Ma,b∗

′  0.

b∗ 0 0 1

b 1 0 0

a∗ a a′



Claim 3: Let M∗ be a matrix such that the box C  R is occupied and the "dual" box

Cc  Rc is vacant. Then, each element in C  R is revealed to be occupied and each

element in the dual box is revealed to be vacant.

R 1 1 1 ? ?

R 1 1 1 ? ?

? ? ? 0 0

? ? ? 0 0

? ? ? 0 0

C C C

Proof: Given a data vector d and a set E of rows or columns, let dE  ∑e∈E de. It

must be that dM∗Cc  dM∗Rc  |C||R| n. On the other hand, for every matrix M

such that Ma,b  0 for some a,b ∈ C  R, it must be that dMCc  dMRc

|C||R| n and thus M is inconsistent with dM∗. An analogous argument can be used

to show that the positions in the dual box are revealed to be vacant. 

From Claim 1, it follows that the set of revealed entries is a "step set". That is, there

are two sequences of sets B1 ⊃ B2 ⊃. . .⊃ BI and A1 ⊂ A2 ⊂. . .⊂ AI such

that the set of revealed (to be occupied) entries is Ai  Bi (in the figure below it

is the set A1  B1  a1,a2  b1,b2,b3,b4,b5,

A2  B2  a1,a2,a3  b1,b2,b3,b4, etc.) and the d-value of any element in Ai

(Bi) is larger than the d-value of any element in Aj (Bj) where j  i.
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b1 Y Y Y Y Y Y X

b2 Y Y Y Y Y X Z

b3 Y Y Y Y Y X Z

b4 Y Y Y X X Z Z

b5 Y Y X Z Z Z Z

b6 X X Z Z Z Z Z

b7 X X Z Z Z Z Z

a1 a2 a3 a4 a5 a6 a7

In what follows, we denote the step set of revealed entries by Y  Ai  Bi, the

dual step set by Z  Aic  Bic and the union of the boxes between Y and Z by

X  Ai − Ai−1  Bi−1 − Bi.

Claim 4: Let d be a consistent data vector. Assume that the set of revealed

elements Y  Ai  Bi is not empty. Then, any element in the dual set

Z  Aic  Bic is revealed to be vacant.

Proof: Given a consistent data vector d, the Gale-Ryser algorithm (see Ryser

(1963) and Kraus (1996)) ends with a d-consistent matrix. The algorithm is sequential

and starts with a certain initial matrix. In each step of the algorithm, a permissible pair

of entries that are positioned in the same row – one occupied (the one with the higher

d) and the other vacant – is selected and their values are swapped. An important

property of the algorithm is that any choice of a chain of permissible pairs leads to a

d-consistent matrix.

In order to describe the algorithm precisely, order the elements in the set A

according to their d-values a1, . . . ,a |A| and order the elements in B according to their

d-values b1, . . . ,b |B|. The algorithm starts with a matrix M0 in which, for any row b, 1’s

are assigned to the db entries in this row at the columns a1, . . . ,adb. For M0, the

number of 1’s in column ak is zk  |b | the number db ≥ k|. Obviously, (a)

∑ i1,..,k
zi ≥ ∑ i1,..,k

dai for all k and (b) if∑ i1,..,k
zi  ∑ i1,..,k

dai, then in any

d-consistent matrix all entries in a1, . . ,ak  b1, . . ,bzk are occupied and all entries in

ak1, . . . ,a |A|  bzk1, . . . ,b |B| are vacant. In each step of the algorithm, a "1" in the

lowest index column for which the number of 1′s is strictly greater than da is moved

to the first column a′ in which the number of 1′s is strictly less than da′.
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In his proof that the algorithm ends with a d-consistent matrix, Kraus (1996) shows

that the algorithm works by starting with any matrix having the following two

properties: (i) The number of 1’s in each b ∈ B is db and (ii) for each k, the sum of

the 1’s in the first k columns is at least as large as∑ i1,..,k
dai.

To prove Claim 4, it is sufficient to show that, for all l,∑ i1,..,|Al| zi  ∑ i1,..,|Al| dai.

Assume not. Then, for some l we have∑ i1,..,|Al| zi  ∑ i1,..,|Al| dai. Let k∗ be the

lowest k  |Al| for which∑ i1,..,k
zi  ∑ i1,..,k

dai. It must be that db |Bl|  k∗;

otherwise, by (b) above, the set Al would be larger. Now start the Gale -Ryser

algorithm from a matrix that modifies M0 by moving a single "1" from the entry

a |Al|,b |Bl| to the entry in the same row in column k∗. The matrix satisfies properties

(i) and (ii) above and the algorithm leads to a d-consistent matrix in which one of the

first |Al| entries in row b |Bl| is 0, violating the assumption that this entry is revealed to

be occupied.

4. Equilibrium

In this section, we analyze the equilibria of the n −player game induced by the PS’

behavior. We find that in all equilibria the PS picks an occupied entry with probability 1

(Proposition 1). However, in some equilibria, the PS assigns a strictly positive

probability to the possibility that the occupied position he is picking is vacant. We also

classify the structure of all equilibria (Proposition 2).

Proposition 1: In equilibrium the PS picks an occupied entry with probability 1.

Proof: Let M be an equilibrium. If there are revealed positions, then the PS

obviously chooses one of them. If no entry is revealed, then, by Claim 2, CM is the

box of all entries that maximize the dM score. It is left to show that all entries in CM

are occupied.

If an entry a,b outside CM is occupied and a∗,b∗ ∈ CM is vacant, then the

move from a,b to a∗,b∗ is beneficial: the score of a∗,b∗ in Ma,b → a∗,b∗

increases by at least 1 relative to the score in M and the score of any other entry

increases by at most 1. Thus, a∗,b∗ maximizes the score after the move, and hence

it will be picked with a positive probability.
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If all the occupied entries are in CM and CM contains a vacant entry, then any

vertical move from an occupied entry a∗,b to a vacant entry a∗,b∗ is beneficial

since (i) a∗,b∗ maximizes the score after the move, (ii) CMa∗,b → a∗,b∗

⊆ CM and (iii) the entry a∗,b is excluded from CMa∗,b → a∗,b∗. 

Proposition 2: If M is an equilibrium, it must have one of the following three

structures:

(1) The matrix M is revealed and forms a "step set". The PS picks one of the

occupied positions.

(2) There is a "step set" of entries that are revealed as occupied and the PS picks

one of them. The "dual step set" is revealed to be vacant. Each box lying between

these two sets contains at least three occupied entries that are not picked by the PS.

(3) None of the positions are revealed to be occupied. All positions with maximal

score are occupied and the PS picks one of them.

Proof: The fact that the set of revealed entries forms a step set follows from Claim

1. By Claim 4, the dual step set is revealed to be vacant.

Assume that M is an equilibrium in which some, but not all, occupied entries are

revealed. We will show that any box A ′  B ′ in area X (i.e., the area consisting of all the

positions between Y, the set of entries that are revealed as occupied, and Z, the set of

entries that are revealed to be vacant) contains at least three occupied entries that do

not share any characteristic (namely, they are positioned in three different rows and

three different columns). If A ′  B ′ is entirely vacant, then a move from an unrevealed

occupied entry into this empty box will be beneficial to the mover since it will reveal

this entry to be occupied (by Claim 3). It is impossible that all occupied entries in this

box lie in the same row or the same column since (again, by Claim 3) they would then

be revealed. It is also impossible that in equilibrium all occupied entries in this box lie

in exactly two rows (or two columns) since if a1,b1 and a2,b2 are occupied then a

move from a1,b1 to a1,b2 is beneficial since the deviator will be revealed (once

again), by Claim 3).

Finally, if none of the positions are revealed as occupied, then, by claim 2, CM

contains all of the positions with the highest score and, by the proof of Proposition 1,

all of the entries in CM must be occupied. 
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One of the most interesting features of the model is that, although in equilibrium the

PS always picks an occupied position, there are equilibria in which he may not know

that the position is occupied. Such a phenomenon could not occur under the

conventional equilibrium assumption but may emerge in equilibria of the third

structure. The matrix M3 demonstrates such an equilibrium for n  10. The example

can be extended to any n  10 by "extending" the "arms of the L". In M3, the PS

chooses the top-left position and assigns a probability of about 85% to this entry being

occupied (since it is occupied in 2400 of the 2850 matrixes that are consistent with the

data that the PS observes). M3 

1 1 1 1 0 0 0

1 0 0 0 0 0 0

1 0 0 0 0 0 0

1 0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

To summarize:

Proposition 3: For n ≥ 10 there exists an equilibrium in which the PS picks an

occupied entry although the probability he assigns to this entry being occupied is

strictly less than one.

5. Equilibrium when players can share entries

In this section, we study a variant of the model in which players are not restricted to

choosing an unoccupied entry. We assume n  2. In this case, a matrix is an

assignment of non-negative integers (not necessarily zeros or ones) to all entries,

such that the sum of the numbers in all entries is n. For each row (column), the PS

receives information about the total number of players occupying this row (column).

The PS identifies the matrixes that are consistent with the data. He then picks, at
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random, an entry with the largest number of consistent matrixes in which this entry is

occupied (by at least one player). If the chosen entry is populated by more than one

player, the PS picks one of the players randomly. For example, the data

da1  db1  3 and da2  db2  1 is consistent with two matrixes:

2 1

1 0
and 3 0

0 1
.

Given the data d, only the entry a1,b1 is occupied in both matrices and therefore it

is picked by the PS.

Obviously, any matrix in which the n players occupy n entries in one row or in one

column is an equilibrium (since the move of a player to another occupied entry

reduces his probability of being picked from 1/n to 1/2n − 2).

Proposition 4: In every equilibrium, the n players occupy the same row or the same

column and each player occupies a different entry.

Proof: Let M be an equilibrium and let d  dM. If all players are located in the

same row (or column), then it must be that each occupies an exclusive entry since

otherwise he could increase his probability of being picked by moving to a vacant entry

in the same row.

Assume, by contradiction, that M is an equilibrium in which the occupied entries are

located in at least two rows and at least two columns.

Step 1: There are entries in M that are not revealed.

Proof: There must be two entries a1,b1 and a2,b2 such that a1 ≠ a2 and b1 ≠ b2

and Ma1,b1 ≥ Ma2,b2  0. The matrix obtained by starting from M and subtracting the

number Ma2,b2 from the entries a1,b1 and a2,b2 and adding Ma2,b2 to the entries

a1,b2 and a2,b1 is also consistent with d, although a2,b2 is not occupied. Thus,

a2,b2 is not revealed.

Step 2: Let M be a matrix such that Ma,b  0, dMa  0 and dMb  0. Then

there is a matrix M′, consistent with dM, for which Ma,b
′  1.
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Proof: There must be a′ and b′ such that Ma′,b  0 and Ma,b′  0. The matrix M′

obtained by substructing 1 from Ma′,b and Ma,b′  0 and adding 1 to Ma,b and Ma′,b′ is

consistent with d. Thus a,b is not revealed as vacant.

Step 3: Assume that da1  da2. Let b1 be a row. If a2,b is revealed to be

occupied then so is a1,b.

Proof: Assume that there is a matrix M′ consistent with dM such that Ma1,b
′  0.

Since da1  da2, there is a set of rows B such that∑b∈B Ma1,b
′  Ma2,b1

′  m  0.

Construct another matrix M
′′

where Ma2,b1

′′  0, Ma1,b1

′′  m, Ma1,b
′′  Ma1,b

′ − mb,

Ma2,b
′′  Ma2,b

′  mb and∑mb  m. The new matrix is consistent with dM,

contradicting the assumption that a2,b is revealed.

Step 4: Assume that da1  da2. Let b1 be a row. Then, either both a1,b1 and

a2,b1 are revealed to be occupied or d, a1,b1  d, a2,b1.

Proof: If a2,b1 is revealed, then by Step 3 so is a1,b1. If not, notice first that by

Step 2 there is a dM −consistent matrix where a2,b1 is vacant and a1,b1 is

occupied.

Consider any assignment of values to the elements in A − a1,a2  B which can

be extended to a d-consistent matrix. These assigned values determine, for every row

b, the number nb of players that should occupy the entries a1,b and a2,b. Let

K  nb1 . The number of d-consistent matrixes in which a2,b1 is occupied by K players

and a1,b1 is vacant is equal to the number of vectors xbb≠b1 of non-negative

numbers that sum to da2 − K, such that xb ≤ nb for all b ≠ b1. This number is the

coefficient of xda2−K in the polynomial b≠b11  x  x2 . . .xnb (which is a product of

|B|−1 polynomials). Similarly, the number of matrixes that are consistent with a1,b1

being occupied by K agents and a2,b1 being vacant is the coefficient of xda1−K in this

polynomial. As shown in Stanley (1989), the sequence of this polynomials’ coefficients

is symmetric around the "center" (∑b≠b1
nb/2 which must be positive since

da1  da2), strictly increasing to the left of it and strictly decreasing to the right of it.

Since∑b≠b1
nb  da1 − K  da2 and since da1  da2, it must be that da1 − K is
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closer to the center ( da1 − K  da2/2 than da2 − K.

Step 5: Each occupied position in M is picked with positive probability.

Suppose not. Then a player who is located at a position that is not picked with

positive probability can switch to a position with a maximum score and, by steps 3 and

4, will be picked with positive probability.

Step 6: Deriving the contradiction.

By steps 1 and 5, no occupied positions are revealed. By step 4, the PS picks, with

equal probability, any one of the positions in the box of entries that maximizes the

score. By Step 5, all players are positioned inside the box. Not all positions in the box

are occupied since then the set would be revealed. Thus, there is a vacant entry a,b

inside the box. There is a player whose probability of winning is strictly less than 1/n

(since a,b is picked as well). This player’s move to the vacant entry will either reveal

him and increase his probability of being picked to at least 1/n or it will make him the

sole maximizer of the rank and therefore he will be picked with probability 1.
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