A note on sequences witnessing singularity - following Magidor-Sinapova.

Moti Gitik

July 16, 2015

Abstract

We address some question raised in Magidor-Sinapova [7] paper.

Suppose $V \subseteq W$, κ is regular in V, but change its cofinality in W. Are there "nice" witnesses for such change? This is a basic question and a lot of work was done around it (probably the most prominent are - Prikry forcing, Jensen and Dodd-Jensen Covering Lemmas, Mitchell Covering Lemmas). Some ZFC results were proved in Dzamonia-Shelah [1] and in [2]. Recently, Magidor and Sinapova [7] studied a supercompact version of it. In this note we address some question raised in this paper.

Let us start with the following:

Theorem 0.1 Suppose that

1.
$$V \subseteq W$$
.

2. κ is a regular uncountable cardinal in V.

- 3. $\mu > \kappa$ is a cardinal in V.
- 4. In V, $2^{\mu} = \mu^+$.
- 5. $(\mu^+)^V = \bigcup_{n < \omega} Q_n$, for some sequence $\langle Q_n \mid n < \omega \rangle$ of elements of $\mathcal{P}_{\kappa}(\mu^+)$ of V.
- 6. In W, $(\mu^+)^V \ge ((2^{\omega})^+)^W$.
- 7. In W, $(\mu^{++})^V$ is a cardinal.

Let $\langle D_{\alpha} \mid \alpha < (\mu^{++})^V \rangle \in V$ be a sequence of clubs in $\mathcal{P}_{\kappa}(\mu^+)$ of V. Then there is an increasing sequence $\langle P_n \mid n < \omega \rangle$ such that for every $\alpha < (\mu^{++})^V$, for all but finitely many $n < \omega$, $P_n \in D_{\alpha}$.

Proof. Without loss of generality we can assume that for every $\alpha < \beta < (\mu^{++})^V$ there is $\gamma(\alpha, \beta) < (\mu^{+})^V$ such that $D_{\beta} \cap \{P \in \mathcal{P}_{\kappa}(\mu^{+}) \mid \gamma(\alpha, \beta) \in P\} \subseteq D_{\alpha}$.

Let D be a club $\mathcal{P}_{\kappa}(\mu^{+})$ in V. Then the set $C_{D} := \{\delta < \mu^{+} | D \cap \mathcal{P}_{\kappa}(\delta) \text{ is a club } \}$ is a club in μ^{+} .

Let $\delta < \mu^+$. By the assumption, we have that in V,

 $|\{f\mid f: [\delta]^{<\omega}\rightarrow [\delta]^{<\kappa}\}|=(\mu^+)^\mu=\mu^+.$

So, there only μ^+ clubs in $\mathcal{P}_{\kappa}(\delta)$ in V. Also, we have $(\mu^+)^V = \bigcup_{n < \omega} Q_n$, for some sequence $\langle Q_n \mid n < \omega \rangle$ of elements of $\mathcal{P}_{\kappa}(\mu^+)$ of V. Hence, there is a decreasing sequence of clubs (each of them in V) $\langle E_{\delta}^n \mid n < \omega \rangle$ of $(\mathcal{P}_{\kappa}(\delta))^V$, such that

for every $E \subseteq (\mathcal{P}_{\kappa}(\delta))^{V}$ a club in V there is $n_{E} < \omega$ such that for every $n, n_{E} \leq n < \omega$, we have $E_{\delta}^{n} \subseteq E$.

Pick, for every $n < \omega$ an element R^n_{δ} in E^n_{δ} (take them to be an increasing sequence, as well). Then,

for every $E \subseteq (\mathcal{P}_{\kappa}(\delta))^{V}$ a club in V, for every $n, n_{E} \leq n < \omega$, we will have $R_{\delta}^{n} \in E$.

By Dzamonia-Shelah [1] or by [2], there is a sequence $\langle \eta_n \mid n < \omega \rangle$ such that for every $H \in \{C_{D_\alpha} \mid \alpha < (\mu^{++})^V\}$ there is n_H such that for every $n, n_H \leq n < \omega, \eta_n \in H$.

For every $\alpha < (\mu^{++})^V$, define a function $f_\alpha : \omega \to \omega \times \omega$.

Pick some $k_0 \ge n_{C_{D_{\alpha}}}$ and then some $s_0 \ge \max(n_{D_{\alpha} \cap \mathcal{P}_{\kappa}(\eta_{k_0}}, k_0))$. Set $f_{\alpha}(0) = (k_0, s_0)$. Then, $R_{\eta_{k_0}}^{s_0} \in D_{\alpha}$ and for every $s, s_0 \le s < \omega$, $R_{\eta_{k_0}}^s \in D_{\alpha}$, as well.

Suppose now that $f_{\alpha}(n)$ is defined. Define $f_{\alpha}(n+1)$. Pick first some $k_{n+1} > \max(f_{\alpha}(n))$ such that $Q_n \in \mathcal{P}_{\kappa}(\eta_{k_{n+1}})$. Let $s_{n+1} \ge \max(n_{D_{\alpha} \cap \mathcal{P}_{\kappa}(\eta_{k_{n+1}}), \max(f_{\alpha}(n)))$ be such that $R_{\eta_{k_{n+1}}}^{s_{n+1}} \supseteq R_{\eta_{k_n}}^{f_{\alpha}(n)} \cup Q_n$.

Set $f_{\alpha}(n+1) = (k_{n+1}, s_{n+1}).$

Then, $R_{\eta_{k_{n+1}}}^{s_{n+1}} \in D_{\alpha}$ and for every $s, s_{n+1} \leq s < \omega, R_{\eta_{k_{n+1}}}^s \in D_{\alpha}$, as well.

By the assumption $\kappa \ge ((2^{\omega})^+)^W$. Hence, there are a stationary $S \subseteq (\mu^{++})^V = (\kappa^+)^W$ and $f: \omega \to \omega \times \omega$ such that $f_{\alpha} = f$, for every $\alpha \in S$.

Define now an increasing sequence $\langle P_n \mid n < \omega \rangle$ as follows:

 $P_n = R_{\eta_{f(n)_0}}^{f(n)_1}$, where $f(n) = (f(n)_0, f(n)_1)$.

Let us argue that the sequence $\langle P_n \mid n < \omega \rangle$ is as desired.

Let first $\alpha < (\mu^{++})^V$ be in S. Consider $C_{D_{\alpha}}$. For every $n, n_{C_{D_{\alpha}}} \leq n < \omega, \eta_n \in C_{D_{\alpha}}$.

Now, we have $f = f_{\alpha}$ and $f_{\alpha}(0)_0 \ge n_{C_{D_{\alpha}}}$. Then, $R^s_{\eta_{f(n)_0}} \in D_{\alpha}$, for every $s, (f(n))_1 \le s < \omega$. In particular, $P_n \in D_{\alpha}$ for every n, and we are done.

Let $\alpha < (\mu^{++})^V$ be arbitrary now. Pick $\beta \in S \setminus \alpha$. Then, $P_n \in D_\beta$, for every $n < \omega$. There is $n^*, n(\beta) \leq n^* < \omega$ such that $\gamma(\alpha, \beta) \in P_n$, for every $n, n^* \leq n < \omega$, since $(\mu^+)^V = (\mu^+)^V = (\mu^+)^V$. $\bigcup_{n < \omega} Q_n = \bigcup_{n < \omega} P_n. \text{ Recall that we have } D_\beta \cap \{P \in \mathcal{P}_{\kappa}(\mu^+) \mid \gamma(\alpha, \beta) \in P\} \subseteq D_\alpha. \text{ Hence,}$ $P_n \in D_\alpha, \text{ for every } n, n^* \leq n < \omega.$

The next result has the same proof:

Theorem 0.2 Suppose that

- 1. $V \subseteq W$.
- 2. κ is a regular uncountable cardinal in V.
- 3. $\mu > \kappa$ is a regular cardinal in V.
- 4. In V, $\mu^{<\mu} = \mu$.
- 5. $\mu = \bigcup_{n < \omega} Q_n$, for some sequence $\langle Q_n \mid n < \omega \rangle$ of elements of $\mathcal{P}_{\kappa}(\mu)$ of V.
- 6. $\mu \ge ((2^{\omega})^+)^W$.
- 7. In W, $(\mu^+)^V$ is a cardinal.

Let $\langle D_{\alpha} \mid \alpha < (\mu^{+})^{V} \rangle \in V$ be a sequence of clubs in $\mathcal{P}_{\kappa}(\mu)$ of V. Then there is an increasing sequence $\langle P_{n} \mid n < \omega \rangle$ such that for every $\alpha < (\mu^{+})^{V}$, for all but finitely many $n < \omega$, $P_{n} \in D_{\alpha}$.

Remark 0.3 Note that if $W \supseteq V$, κ is a regular cardinal in V and for some $\mu \ge \kappa$ we have $\mu = \bigcup_{n < \omega} Q_n$, for a sequence $\langle Q_n \mid n < \omega \rangle$ of elements of $\mathcal{P}_{\kappa}(\mu)$ of V, then all V-regular cardinals in the interval $[\kappa, \mu]$ change their cofinality to ω in W.

Thus, first we can assume that the sequence $\langle Q_n \mid n < \omega \rangle$ is increasing. Let $\eta \in [\kappa, \mu]$ be a regular cardinal in V. Then $\eta = \bigcup_{n < \omega} (Q_n \cap \eta)$. Set $\eta_n = \sup(Q_n \cap \eta)$, for every $n < \omega$. Then the sequence $\langle \eta_n \mid n < \omega \rangle$ will be cofinal in η .

Proposition 0.4 Suppose that

- 1. $V \subseteq W$,
- 2. κ is a regular cardinal in V,
- 3. $\mu > \kappa$ is a cardinal in V,
- 4. $\operatorname{cof}^V(\mu) < \kappa$,

5. in V, $\forall \tau < \kappa(\tau^{\operatorname{cof}(\mu)} \leq \mu)$,

6. $(\mu^+)^V$ is a cardinal in W.

Then there is a sequence $\langle D_{\alpha} \mid \alpha < (\mu^{+})^{V} \rangle \in V$ of clubs in $\mathcal{P}_{\kappa}(\mu)$ of V. such that for any sequence $\langle P_{n} \mid n < \omega \rangle$ of elements of $(\mathcal{P}_{\kappa}(\mu))^{V}$ there is $\alpha < (\mu^{+})^{V}$ such that for infinitely many $n < \omega$, $P_{n} \notin D_{\alpha}$.

Proof. Pick in V a set $\mathfrak{a} \subseteq \mu$ of regular cardinals unbounded in μ and of cardinality $\operatorname{cof}(\mu)$ such that $\operatorname{tcf}(\prod \mathfrak{a}, J^{bd}) = \mu^+$, as witnessed by a sequence of functions $\langle f_{\xi} | \xi < \mu^+ \rangle$ in $\prod \mathfrak{a}$.

Consider $\{\operatorname{ran}(f_{\xi}) \mid \xi < \mu^+\}$. Set $D_{\xi} = \{P \in \mathcal{P}_{\kappa}(\mu) \mid P \supseteq \operatorname{ran}(f_{\xi})\}$, for every $\xi < \mu^+$. Suppose for a moment that there is a sequence $\langle P_n \mid n < \omega \rangle$ of elements of $\mathcal{P}_{\kappa}(\mu)$ of V such that for every $\alpha < (\mu^+)^V$, for all but finitely many $n < \omega$, $P_n \in D_{\alpha}$.

Then there is $i < \omega$ such that $A := \{\xi \mid \operatorname{ran} f_{\xi} \subseteq P_i\}$ has cardinality μ^+ . But $A \in V$ and, in V, $|P_i|^{\operatorname{cof}(\mu)} < \mu^+$, which is impossible. Contradiction.

Remark 0.5 Note that the forcing of [3] provides an example of such situation. In the model of [3] we have $\mu = \bigcup_{i < \omega} x_i$, for some $x_i \in (\mathcal{P}_{\kappa}(\mu))^V$ bounded in μ .

The next proposition shows that it is quite a general phenomena.

Also, this model provides an example of the situation in which μ can be presented as a countable union of members of $(\mathcal{P}_{\kappa}(\mu))^{V}$, but there is a sequence $\langle D_{\alpha} \mid \alpha < (\mu^{+})^{V} \rangle \in V$ of clubs in $\mathcal{P}_{\kappa}(\mu)$ of V. such that for any sequence $\langle P_{n} \mid n < \omega \rangle$ of elements of $(\mathcal{P}_{\kappa}(\mu))^{V}$ there is $\alpha < (\mu^{+})^{V}$ such that for infinitely many $n < \omega$, $P_{n} \notin D_{\alpha}$.

Proposition 0.6 Let $V \subseteq W$, $\kappa \leq \mu$ are cardinals in V and $\mu < (\kappa^{+\omega_1})^V$. Assume that all regular cardinals of the interval $[\kappa, \mu]$ change their cofinality to ω in W. Then every $\eta \in [\kappa, \mu]$ can be presented as a union of countably many elements of $(\mathcal{P}_{\kappa}(\eta))^V$.

Proof. It is enough to proof the statement for V-cardinals η only. Proceed by induction. Suppose that $\eta = \bigcup_{i < \omega} x_i^{\eta}, x_i^{\eta} \in (\mathcal{P}_{\kappa}(\eta))^V$. Turn to $(\eta^+)^V$. Its cofinality in W is ω . Fix a witnessing cofinal sequence $\langle \tau_n \mid n < \omega \rangle$. For every $n < \omega$, let $f_n : \eta \leftrightarrow \tau_n, f_n \in V$. Set $x_n^{(\eta^+)^V} = \bigcup_{m \le n} f_m''(\bigcup_{k \le m} x_k^{\eta})$.

If η is a limit cardinal, then by the assumption its cofinality is countable (in V). Let a cofinal sequence $\langle \eta_n \mid n < \omega \rangle \in V$. By induction, for every $n < \omega$ we have $\eta_n = \bigcup_{i < \omega} x_i^{\eta_n}, x_i^{\eta_n} \in (\mathcal{P}_{\kappa}(\eta))^V$. Now set $x_n^{\eta} = \bigcup_{m \leq n} (x_0^{\eta_m} \cup \ldots \cup x_m^{\eta_m})$. \Box Actually a bit more general statement is true:

Proposition 0.7 Let $V \subseteq W$, $\kappa \leq \mu$ be cardinals in V, $\delta \in [\kappa, \mu]$, δ is a union of countably many elements of $(\mathcal{P}_{\kappa}(\eta))^{V}$ and $\mu < (\delta^{+\omega_{1}})^{V}$. Assume that all regular cardinals of the interval $[\delta, \mu]$ change their cofinality to ω in W. Then every $\eta \in [\kappa, \mu]$ can be presented as a union of countably many elements of $(\mathcal{P}_{\kappa}(\eta))^{V}$.

The proof repeats basically the proof of the previous proposition.

Let us construct a model in which cardinals between κ and μ are collapsed and regular there change cofinality to ω , but μ cannot be presented as a union of countably many members of $(\mathcal{P}_{\kappa}(\mu))^{V}$.

Suppose that μ is limit of an increasing sequence $\langle \mu_i \mid i < \omega_1 \rangle$ of measurable cardinals and $\delta > \mu$ is a Woodin cardinal. Force first with the Magidor iteration and add one element Prikry sequence μ_i^* to each μ_i . Then for every $X \subseteq \mu$ in V of cardinality less than κ (or even less then $\bigcup_{n < \omega} \mu_n$), we will have that $X \cap \{\mu_i^* \mid i < \omega_1\}$ is finite.

Collapse now all the cardinals of the intervals (μ_i, μ_{i+1}) and (κ, μ_0) . Denote by V_1 such extension of V. Clearly, δ remains Woodin in V_1 . Use now the Woodin Stationary Tower forcing (see [5])to change cofinality of κ and each of μ_i 's to ω and preserving κ as a cardinal. Let W be such extension of V_1 .

Then $\{\mu_i^* \mid i < \omega_1\}$ will witness the desired conclusion between V and W.

By using first collapses over V and then forcing with positive sets it is possible to arrange $V_1, V \subseteq V_1 \subseteq W$, in which $\mu = (\kappa^{+\omega_1})^{V_1}$ and it cannot be presented in W as a union of countably many elements of $(\mathcal{P}_{\kappa}(\mu))^{V_1}$.

Proposition 0.8 Let $V \subseteq W$, κ be a cardinal in V, $\delta > \kappa$. Suppose that $(\operatorname{cof}(\delta))^V \ge \kappa$ and $(\operatorname{cof}(\delta))^W > \aleph_0$. Then no $\mu \ge \delta$ can be presented as a union of countably many elements of $(\mathcal{P}_{\kappa}(\mu))^V$.

Proof. Suppose otherwise. Let $\mu = \bigcup_{n < \omega} Q_n$, for some sequence $\langle Q_n \mid n < \omega \rangle$ of elements of $\mathcal{P}_{\kappa}(\mu)$ of V. Then $\delta = \bigcup_{n < \omega} (Q_n \cap \delta)$. Now, $(\operatorname{cof}(\delta))^V \ge \kappa$ implies that $\sup(Q_n \cap \delta) < \delta$, for every $n < \omega$. Hence, $\langle \sup(Q_n \cap \delta) \mid n < \omega \rangle$ is cofinal in δ , which is impossible, since $(\operatorname{cof}(\delta))^W > \aleph_0$. Contradiction.

Remark 0.9 The Namba forcing is a typical example of a situation above. Thus, let $\kappa = \aleph_2, \delta = \aleph_3$. Force with the Namba forcing. Then κ will change its cofinality to ω , δ to ω_1

and both will be collapsed to \aleph_1 . So, no $\mu \geq \delta$ can be presented as a union of countably many elements of $(\mathcal{P}_{\kappa}(\mu))^V$.

The Woodin tower forcing P_{δ} provides other examples of this situation.

Let us give now an application of 0.1.

Theorem 0.10 Suppose that κ is λ -strongly compact, $2^{\lambda} = \lambda^{+}$ and $\lambda^{\omega} = \lambda$. Then there is a Q-point ultrafilter over $\mathcal{P}_{\kappa}(\lambda)$, i.e. a fine κ -complete ultrafilter over $\mathcal{P}_{\kappa}(\lambda)$ which contains all closed unbounded subsets of $\mathcal{P}_{\kappa}(\lambda)$.

Remark 0.11 1.Note that if we allow more strong compactness (say κ is 2^{λ} -strongly compact), then it is trivial to find a fine κ -complete ultrafilter over $\mathcal{P}_{\kappa}(\lambda)$ which contains all clubs on $\mathcal{P}_{\kappa}(\lambda)$. Just the club filter on $\mathcal{P}_{\kappa}(\lambda)$ is generated by $\leq 2^{\lambda}$ -many sets, and so it can be extended to a fine κ -complete ultrafilter over $\mathcal{P}_{\kappa}(\lambda)$ which contains all clubs on $\mathcal{P}_{\kappa}(\lambda)$. 2. By classical result of M. Magidor [6], it is possible to have λ -strongly compact cardinal κ which is the least measurable. In a sense, the theorem shows that some reminiscence of normality always remains.

Proof. Fix a fine κ -complete ultrafilter U over $\mathcal{P}_{\kappa}(\lambda)$.

Let \mathcal{P} be the tree Prikry forcing with U. Force with \mathcal{P} . Let $G(\mathcal{P}) \subseteq \mathcal{P}$ be generic. Then, by 0.1, in $V[G(\mathcal{P}]]$, there is an increasing sequence $\langle P_n \mid n < \omega \rangle$ such that for every club $D \subseteq \mathcal{P}_{\kappa}(\lambda)$ in V, for all but finitely many $n < \omega$, $P_n \in D$.

Now back in V, we pick a name $\langle \mathcal{P}_n \mid n < \omega \rangle$ such that $(\langle \rangle, [\lambda]^{<\omega})$ forces above. By the properties of \mathcal{P} , there is a condition $(\langle \rangle, T) \in \mathcal{P}$ and an increasing sequence $\langle m_n \mid n < \omega \rangle$ of natural numbers such that

• for every $n < \omega, t \in T, |t| \ge m_n$ we have $(t, T_t) \parallel P_n$.

Also, for every club C in $\mathcal{P}_{\kappa}(\lambda)$ there are $n_C < \omega$ and a tree T_C such that

- 1. $(\langle \rangle, T_C) \geq^* (\langle \rangle, T),$
- 2. for every $t \in T_C$ with $|t| \ge m_{n_C}$ we have $(t, (T_C)_t \Vdash P_{n_C} \in \check{C}$.

Set $[\alpha] = \{ P \in \mathcal{P}_{\kappa}(\lambda) \mid \alpha \in P \}$, for every $\alpha < \lambda$.

There is $n^* < \omega$ and $A \subseteq \lambda$ of cardinality λ such that for every $\alpha \in A$ we have $n_{[\alpha]} = n^*$. Pick an enumeration $\langle C_{\gamma} | \gamma < \lambda^+ \rangle$ of clubs of $\mathcal{P}_{\kappa}(A)$, so that for every $\beta < \gamma < \lambda^+$, there is $\delta(\beta, \gamma) \in A$ such that for every $Q \in C_{\gamma}$, if $\delta(\beta, \gamma) \in Q$, then $Q \in C_{\beta}$ Let for $C \subseteq \mathcal{P}_{\kappa}(A)$, C^{λ} denotes the set $\{P \in \mathcal{P}_{\kappa}(\lambda) \mid P \cap A \in C\}$. Then, by Menas (see [4], 8.27), if $C \subseteq \mathcal{P}_{\kappa}(A)$ is a club then C^{λ} is a club in $\mathcal{P}_{\kappa}(\lambda)$.

Find a stationary $S \subseteq \lambda^+$ and $n^{**} \ge n^*$ such that for every $\gamma \in S$, $n_{C^{\lambda}_{\gamma}} = n^{**}$.

Consider $U^{m_{n^{**}}}$ (i.e. the product U with itself $m_{n^{**}}$ -many times). Then for every condition $(\langle \rangle, R) \in \mathcal{P}, R \upharpoonright m_{n^{**}} \in U^{m_{n^{**}}}$.

Define a projection map $F : [\mathcal{P}_{\kappa}(\lambda)]^{m_{n^{**}}} \to \mathcal{P}_{\kappa}(\lambda)$ as follows:

$$F(t) = \begin{cases} \emptyset, & \text{if } t \notin T; \\ P, & \text{if } t \in T \text{ and } (t, T_t) \Vdash \underbrace{P}_{n^{**}} = \check{P} \end{cases}$$

Set

$$\mathcal{V} = \{ X \subseteq \mathcal{P}_{\kappa}(\lambda) \mid F^{-1} X \in U^{m_n * *} \}.$$

Lemma 0.12 For every $\alpha \in A$, $[\alpha] \in \mathcal{V}$.

Proof. Suppose otherwise. Then $X := \{P \in \mathcal{P}_{\kappa}(\lambda) \mid \alpha \notin P\} \in \mathcal{V}$. Set $Y = F^{-1''}X$. Then $Y \in U^{m_{n^{**}}}$. Recall that we have a tree $T_{[\alpha]}$ such that for every $t \in T_{[\alpha]}$ with $|t| \geq m_{n_{[\alpha]}}$ we have $(t, (T_{[\alpha]})_t \Vdash \mathcal{P}_{n_{[\alpha]}} \in [\alpha]$. Which means that $(t, (T_{[\alpha]})_t \Vdash \alpha \in \mathcal{P}_{n_{[\alpha]}}$. The sequence $\langle P_n \mid n < \omega \rangle$ is forced to be increasing, hence, for every $n, n_{[\alpha]} \leq n < \omega, (t, (T_{[\alpha]})_t \Vdash \alpha \in \mathcal{P}_n, \alpha \in \mathcal{P}_n, \alpha \in \mathcal{P}_n)$.

Now, let us shrink the tree $T_{[\alpha]}$ to a tree T' by replacing $T_{[\alpha]} \upharpoonright m_{n^{**}}$ with $T_{[\alpha]} \upharpoonright m_{n^{**}} \cap Y$. Note that both members of this intersection are in $U^{m_{n^{**}}}$. Hence, $(\langle \rangle, T')$ will be a condition in \mathcal{P} and will be stronger than $\langle \rangle, T_{[\alpha]}$.

Pick some $t \in T_{[\alpha]}$ with $|t| = m_{n^{**}}$.

Let F(t) = P, for some P. t belongs to Y, hence $\alpha \notin P$. However, we have $(t, T_t) \Vdash \mathcal{P}_{n^{**}} = \check{P}$. Hence a stronger condition (t, T'_t) forces the same. Recall that $n^{**} \geq n^* = n_{[\alpha]}$. So, $(t, (T_{[\alpha]})_t \Vdash \check{\alpha} \in \mathcal{P}_{n^{**}}$. Then, also, $(t, T'_t) \Vdash \check{\alpha} \in \mathcal{P}_{n^{**}}$. But then, α must belong to P which is impossible. Contradiction.

 \Box of the lemma.

The next lemma is similar.

Lemma 0.13 For every $\gamma \in S$, $C_{\gamma}^{\lambda} \in \mathcal{V}$.

Consider now

$$\mathcal{V}^* = \{ X \upharpoonright A \mid X \in \mathcal{V} \},\$$

where $X \upharpoonright A = \{P \cap A \mid P \in X\}.$

Lemma 0.14 \mathcal{V}^* is a fine κ -complete ultrafilter over $\mathcal{P}_{\kappa}(A)$ which includes all club subsets of $\mathcal{P}_{\kappa}(A)$.

Proof. For every $\alpha \in A$, $[\alpha] \in \mathcal{V}$, by Lemma 0.12. Then $[\alpha] \upharpoonright A = \{P \cap A \mid \alpha \in P\} \in \mathcal{V}^*$. But $\{P \cap A \mid \alpha \in P\} = \{Q \in \mathcal{P}_{\kappa}(A) \mid \alpha \in Q\}$. So, \mathcal{V}^* is fine.

Let now $C \subseteq \mathcal{P}_{\kappa}(A)$ be a club. We like to show that $C \in \mathcal{V}^*$. Then there are $\gamma \in S$ and $\delta \in A$ such that for every $Q \in C_{\gamma}$, if $\delta \in Q$, then $Q \in C$. So, $C_{\gamma} \cap [\delta] \upharpoonright A \subseteq C$. Hence, it is enough to show that $C_{\gamma} \in \mathcal{V}^*$. But this follows from Lemma 0.13.

```
\Box of the lemma.
```

Now it is easy to finish the proof of the theorem. Just pick an injection $\sigma : A \longleftrightarrow \lambda$ and move using it \mathcal{V}^* from $\mathcal{P}_{\kappa}(A)$ to $\mathcal{P}_{\kappa}(\lambda)$. Namely let \mathcal{V}^{**} be defined as follows: $X \in \mathcal{V}^{**}$ iff $\sigma^{-1}X \in \mathcal{V}^*$, where $\sigma^{-1}X = \{\sigma^{-1} P \mid P \in X\}$. \Box

Let us conclude with the following: **Conjecture.** Suppose that

- 1. $V \subseteq W$ models of ZFC with same ordinals,
- 2. κ is a regular cardinal in V,
- 3. $\operatorname{cof}(\kappa) = \omega$ in W,

4.
$$\aleph_1^V = \aleph_1^W$$
,

5. V, W agree about a final segment of cardinals.

Then there is a subclass V' of V which is a model of ZFC, agree with V about a final segment of cardinals, and there is a sequence witnessing singularity of κ (in W) which is generic over V' for either Namba, Woodin tower or Prikry type forcing.

References

- [1] M. Dzamonia and S. Shelah,
- [2] M. Gitik, Some results on the nonstationary ideal II,
- [3] M. Gitik and A. Sharon,
- [4] T. Jech, Set Theory

- [5] P. Larson, The stationary tower
- [6] M. Magidor,
- [7] M. Magidor and D. Sinapova,