Some constructions of ultrafilters over a measurable cardinal.

Moti Gitik*

May 3, 2017

Abstract

Some non-normal κ-complete ultrafilters over a measurable κ with special properties are constructed. Questions by A. Kanamori [4] about infinite Rudin-Frolik sequences, discreteness and products are answered.

1 Introduction.

We present here several constructions of κ-complete ultrafilters over a measurable cardinal κ and examine their consistency strength. Some questions of Aki Kanamori from [4] are answered.

Section 2 deals with Rudin-Frolik ordering and answers Question 5.11 from [4] about infinite increasing Rudin-Frolik sequences. In Section 3, an example of non-discrete family of ultrafilters is constructed, answering Question 5.12 from [4]. Also the strength of existence of such family is examined. Section 4 deals with products of ultrafilters. A negative answer to Question 5.8 from [4] given.

2 On Rudin-Frolik increasing sequences.

In [4], Aki Kanamori asked if there exists a κ-ultrafilter with an infinite number of RudinFrolik predecessors.

We show that starting with $o(\kappa)=2$ it is possible.

[^0]Assume GCH. Let

$$
\vec{U}=\left\langle U(\alpha, \beta) \mid(\alpha, \beta) \in \operatorname{dom}(\vec{U}), \alpha \leq \kappa, \beta<o^{\vec{U}}(\alpha)\right\rangle
$$

be a coherent sequence such that $o^{\vec{U}}(\kappa)=2$ and for every $\alpha<\kappa, o^{\vec{U}}(\alpha) \leq 1$. Let

$$
A=\{\alpha \mid \exists \beta(\alpha, \beta) \in \operatorname{dom}(\vec{U})\}
$$

Then for every $\alpha \in A, o^{\vec{U}}(\alpha)=1$ and $U(\alpha, 0)$ is a normal ultrafilter over α.
We force with Easton support iteration of the Prikry forcings with $U(\alpha, 0)$'s (and their extensions), $\alpha \in A$, as in [1] (a better presentation appears in [2]). Let G be a generic. Then for every increasing sequence t of ordinals less than κ, the normal ultrafilter $U(\kappa, 1)$ of V extends to a κ-complete ultrafilter $U(\kappa, 1, t)$ in $V[G]$, see [1], p.291.
Denote by b_{α} the Prikry sequence from G added to α, for every $\alpha \in A$. Then $U(\kappa, 1, t)$ concentrates on $\alpha \in A$ for which b_{α} starts from t, i.e. $b_{\alpha} \upharpoonright|t|=t$.

Let $\bar{U}(\kappa, 0)$ be the canonical extension of $U(\kappa, 0)$ to a normal ultrafilter in $V[G]$ defined as in [2] on page 290.
Denote $U(\kappa, 1,\langle \rangle)$ by $\bar{U}(\kappa, 1)$.
Lemma 2.1 For every $n, 0<n<\omega, \bar{U}(\kappa, 1)=\bar{U}(\kappa, 0)^{n}-\lim \left\langle U(\kappa, 1, t) \mid t \in[\kappa]^{n}\right\rangle$.

Proof. Recall the definition of $U(\kappa, 1, t), t \in[\kappa]^{m}, m<\omega$:
$X \in U(\kappa, 1, t)$ iff for some $r \in G, \gamma<\kappa^{+}, B \in \bar{U}(\kappa, 0)$, in $M_{U(\kappa, 1)}$ the following holds:

$$
r \cup\{\langle t, \underset{\sim}{B}\rangle\} \cup \underset{\sim}{p}{ }_{\gamma} \Vdash \kappa \in i_{U(\kappa, 1)}(\underset{\sim}{X}),
$$

where p_{γ} is the γ-th element of the canonical master sequence.
In particular, $X \in \bar{U}(\kappa, 1)$ iff for some $r \in G, \gamma<\kappa^{+}, B \in \bar{U}(\kappa, 0)$, in $M_{U(\kappa, 1)}$ the following holds:

$$
r \cup\left\{\langle\rangle, \underset{\sim}{B}\rangle\} \cup \underset{\sim}{p}{\underset{\sim}{p}} \Vdash \kappa \in i_{U(\kappa, 1)}(\underset{\sim}{X}) .\right.
$$

Then, for every $t \in[B]^{n}$, we will have

$$
r \cup\{\langle t, \underset{\sim}{B} \backslash \max (t)+1\rangle\} \cup \underset{\sim}{p}{ }_{\gamma} \Vdash \kappa \in i_{U(\kappa, 1)}(\underset{\sim}{X}) .
$$

So, $X \in U(\kappa, 1, t)$. But $[B]^{n} \in \bar{U}(\kappa, 0)^{n}$, hence $X \in \bar{U}(\kappa, 0)^{n}-\lim \left\langle U(\kappa, 1, t) \mid t \in[\kappa]^{n}\right\rangle$.
Hence we showed that $\bar{U}(\kappa, 1) \subseteq \bar{U}(\kappa, 0)^{n}-\lim \left\langle U(\kappa, 1, t) \mid t \in[\kappa]^{n}\right\rangle$. But this already implies the equality, since both $\bar{U}(\kappa, 1)$ and $\bar{U}(\kappa, 0)^{n}-\lim \left\langle U(\kappa, 1, t) \mid t \in[\kappa]^{n}\right\rangle$ are ultrafilters.

Lemma 2.2 The family $\left\langle U(\kappa, 1, t) \mid t \in[\kappa]^{n}\right\rangle$ is a discrete family of ultrafilters.
Proof. For each $t \in[\kappa]^{n}$ set

$$
A_{t}:=\left\{\alpha \in A \mid b_{\alpha} \upharpoonright n=t\right\} .
$$

Let $t, t^{\prime} \in[\kappa]^{n}$ be two different sequences, then, clearly, $A_{t} \cap A_{t^{\prime}}=\emptyset$.

Recall the following definition:
Definition 2.3 (Frolik and M.E. Rudin) Let U, D be ultrafilters over $I . U \geq_{R-F} D$ iff there is a discrete family $\left\{E_{i} \mid i \in I\right\}$ of ultrafilters over some J such that $U=D-\lim \left\{E_{i} \mid i \in I\right\}$.

So we obtain the following:
Theorem 2.4 $\bar{U}(\kappa, 1)$ has infinitely many predecessors in the Rudin-Frolik ordering.
Proof. For every $n, 0<n<\omega$, use a bijection between $[\kappa]^{n}$ and κ and transfer $\bar{U}(\kappa, 0)^{n}$ to κ. The rest follows by Lemmas 2.1, 2.2.

Note that for κ-complete ultrafilters U and D over $\kappa, U \geq_{R-F} D$ implies $U \geq_{R-K} D$. So, by [5], The existence of a κ-complete ultrafilter over κ with infinitely many predecessors in the Rudin-Frolik ordering implies by Kanamori [4], that 0^{\dagger} exists. Let us improve this in order to give the exact strength.

Theorem 2.5 The existence of a κ-complete ultrafilter over κ with infinitely many predecessors in the Rudin-Frolik ordering implies that $o(\kappa) \geq 2$ in the core model.

Proof. Note first that for κ-complete ultrafilters U and D over $\kappa, U \geq_{R-F} D$ implies $U \geq_{R-K} D$. So, by [5], the existence of a κ-complete ultrafilter over κ with infinitely many predecessors in the Rudin-Frolik ordering implies that $\exists \lambda o(\lambda) \geq 2$. Let us argue that actually $o(\kappa) \geq 2$ in the core model.
Suppose otherwise. So, $o(\kappa)=1$. Let $U(\kappa, 0)$ be the unique normal measure over κ in the core model \mathcal{K}.
Suppose that, in V, we have a κ-complete ultrafilter E over κ with infinitely many predecessors in the Rudin-Frolik ordering. Let $\left\langle E_{n} \mid n<\omega\right\rangle$ be a Rudin-Frolik increasing sequence of predecessors of E. Recall that by M.E. Rudin (see [4], 5.5) the predecessors of E are linearly ordered.

Consider $i:=i_{E} \upharpoonright \mathcal{K}$. Then, by [5], it is an iterated ultrapower of \mathcal{K} by its measures. The critical point of i_{E} is κ, hence $U(\kappa, 0)$ is applied first. Note that $U(\kappa, 0)$ (and its images) can be applied only finitely many times, since M_{E} is closed under countable (and even κ) sequences of its elements. Denote by k^{*} the number of such applications.
Let $n \leq \omega$. Similar, consider $i_{n}:=i_{E_{n}} \upharpoonright \mathcal{K}$. Again, the critical point of $i_{E_{n}}$ is κ, hence $U(\kappa, 0)$ is applied first. The number of applications of $U(\kappa, 0)$ (and its images)is finite. Denote by k_{n} the number of such applications.

Now let $n<m<\omega$. We have $E_{n}<_{R-F} E_{m}$. Hence, there is a discrete sequence $\left\langle E_{n m \alpha} \mid \alpha<\kappa\right\rangle$ of ultrafilters over κ such that

$$
E_{m}=E_{n}-\lim \left\langle E_{n m \alpha} \mid \alpha<\kappa\right\rangle .
$$

Then the ultrapower $M_{E_{m}}$ of V by E_{m} is $\operatorname{Ult}\left(M_{E_{n}}, E_{n m[i d]_{E_{n}}}^{\prime}\right)$, where $E_{n m[i d]_{E_{n}}}^{\prime}=i_{E_{n}}\left(\left\langle E_{n m \alpha}\right|\right.$ $\alpha<\kappa\rangle)\left([i d]_{E_{n}}\right)$ is an ultrafilter over $i_{E_{n}}(\kappa)$.
Now, in $i_{n}(\mathcal{K})$, the only normal ultrafilter over $i_{E_{n}}(\kappa)=i_{n}(\kappa)$ is $i_{n}(U(\kappa, 0))$. But this means that $i_{E_{m}}$ is obtained by more applications of $U(\kappa, 0)$ than $i_{E_{n}}$, i.e. $k_{n}<k_{m}$.
Similar, $k^{*}>k_{n}$, for every $n<\omega$. This means, in particular, that $k^{*} \geq \omega$, which is impossible. Contradiction.

Remark 2.6 Note that the situation with Rudin-Keisler order is different in this respect. Thus, by [3], starting with a measurable κ with $\{o(\kappa) \mid \alpha<\kappa\}$ unbounded in it, it is possible to construct a model with an increasing Rudin-Keisler sequence of the length κ^{+}.

A similar arguments can be used to produce long increasing Rudin-Frolik sequences. Let us show how to get a sequence of the length $\kappa+1^{1}$

Assume GCH. Let

$$
\vec{U}=\left\langle U(\alpha, \beta) \mid(\alpha, \beta) \in \operatorname{dom}(\vec{U}), \alpha \leq \kappa, \beta<o^{\vec{U}}(\alpha)\right\rangle
$$

be a coherent sequence such that $o^{\vec{U}}(\kappa)=\kappa+1$ and for every $\alpha<\kappa, o^{\vec{U}}(\alpha) \leq \kappa$. Let

$$
A=\{\alpha \mid \exists \beta(\alpha, \beta) \in \operatorname{dom}(\vec{U}) .
$$

Then for every $\alpha \in A, o^{\vec{U}}(\alpha) \leq \kappa$.

[^1]We force with Easton support iteration of the Prikry type forcings with extensions of $\left\langle U(\alpha, \beta) \mid \beta<o^{\vec{U}}(\alpha)\right\rangle$'s, $\alpha \in A$, as in [1]. Let G be a generic. Then, for every $\alpha \in A$ with $o^{\vec{U}}(\alpha)=1$ or being a regular uncountable cardinal, Prikry sequence or Magidor sequence of order type $o^{\vec{U}}(\alpha)$ is added by G (more sequences are added, see [1] for detailed descriptions, but be do not need them here). Denote such sequences by b_{α}.

Let $\bar{U}(\kappa, 0)$ be the canonical extension of $U(\kappa, 0)$ to a normal ultrafilter in $V[G]$ defined as in [2].
Denote by A^{\prime} the subset of A which consists of α^{\prime} s with $o^{\vec{U}}(\alpha)=1$ or being a regular uncountable cardinal.
For every $\delta, \alpha \in A^{\prime} \cup\{\kappa\}, \delta<\alpha$ we will use an extensions $U(\kappa, \alpha,\langle \rangle)$ and $U(\kappa, \alpha,\langle\delta\rangle)$ of $U(\kappa, \alpha)$. They were defined in [1] as follows:
$X \in U(\kappa, \alpha,\langle \rangle)$ iff for some $r \in G, \gamma<\kappa^{+}$and a tree T, in $M_{U(\kappa, 1)}$ the following holds:

$$
r \cup\left\{\langle\rangle, \underset{\sim}{T}\rangle\} \cup \underset{\sim}{p} \underset{\gamma}{ } \Vdash \kappa \in i_{U(\kappa, 1)}(\underset{\sim}{X}),\right.
$$

where p_{γ} is the γ-th element of the canonical master sequence.
$X \in U(\kappa, \alpha,\langle\delta\rangle)$ iff for some $r \in G, \gamma<\kappa^{+}$and a tree T, in $M_{U(\kappa, 1)}$ the following holds:

$$
r \cup\{\langle\langle\delta\rangle, \underset{\sim}{T}\rangle\} \cup \underset{\sim}{p}{ }_{\gamma} \Vdash \kappa \in i_{U(\kappa, 1)}(\underset{\sim}{X}),
$$

where p_{γ} is the γ-th element of the canonical master sequence.
Denote further $U(\kappa, \alpha,\langle \rangle)$ by $\bar{U}(\kappa, \alpha)$.
Notice that $U(\kappa, \alpha,\langle\delta\rangle)$ concentrates on ν 's with $o^{\vec{U}}(\nu)=\alpha, \delta \in b_{\nu}$ and $b_{\nu} \cap \delta=b_{\delta}$.
We have now the following analog of 2.1:
Lemma 2.7 For every $\alpha \in A^{\prime}, \bar{U}(\kappa, \kappa)=\bar{U}(\kappa, \alpha)-\lim \left\langle U(\kappa, \kappa,\langle\nu\rangle) \mid o^{\vec{U}}(\nu)=\alpha\right\rangle$.
Proof. $X \in \bar{U}(\kappa, \kappa)$ iff for some $r \in G, \gamma<\kappa^{+}, T$, in $M_{U(\kappa, \kappa)}$ the following holds:

$$
r \cup\left\{\langle\rangle, \underset{\sim}{T}\rangle\} \cup \underset{\sim}{p} \underset{\gamma}{ } \Vdash \kappa \in i_{U(\kappa, \kappa)}(\underset{\sim}{X}) .\right.
$$

Recall that T is a tree consisting of coherent sequences and $\operatorname{Suc}_{T}(\langle \rangle) \in \bar{U}(\kappa, \alpha)$. Then, for every $\nu \in \operatorname{Suc}_{T}(\langle \rangle)$ with $o^{\vec{U}}(\nu)=\alpha$, we will have

$$
r \cup\left\{\left\langle\langle\nu\rangle, T_{\langle\nu\rangle}\right\rangle\right\} \cup \underset{\sim}{p}{ }_{\gamma} \Vdash \kappa \in i_{U(\kappa, \kappa)}(\underset{\sim}{X}) .
$$

So, $X \in U(\kappa, \kappa,\langle\nu\rangle)$. But this holds for $\bar{U}(\kappa, \alpha)$-measure one many ν 's, hence $X \in \bar{U}(\kappa, \alpha)-$ $\lim \left\langle U(\kappa, \kappa,\langle\nu\rangle) \mid o^{\vec{U}}(\nu)=\alpha\right\rangle$.

Hence we showed that $\bar{U}(\kappa, \kappa) \subseteq \bar{U}(\kappa, \alpha)-\lim \left\langle U(\kappa, \kappa,\langle\nu\rangle) \mid o^{\vec{U}}(\nu)=\alpha\right\rangle$. But this already implies the equality, since both $\bar{U}(\kappa, \kappa)$ and $\bar{U}(\kappa, \alpha)-\lim \left\langle U(\kappa, \kappa,\langle\nu\rangle) \mid o^{\vec{U}}(\nu)=\alpha\right\rangle$ are ultrafilters.

The same argument shows the following:
Lemma 2.8 For every $\gamma, \alpha \in A^{\prime}, \alpha<\gamma, \bar{U}(\kappa, \gamma)=\bar{U}(\kappa, \alpha)-\lim \left\langle U(\kappa, \gamma,\langle\nu\rangle) \mid o^{\vec{U}}(\nu)=\alpha\right\rangle$.
Lemma 2.9 The family $\left\langle U(\kappa, \gamma,\langle\nu\rangle) \mid o^{\vec{U}}(\nu)=\alpha\right\rangle$ is a discrete family of ultrafilters, for every $\gamma, \alpha \in A^{\prime} \cup\{\kappa\}, \alpha<\gamma$.

Proof. Fix $\gamma, \alpha \in A^{\prime} \cup\{\kappa\}, \alpha<\gamma$. For each ν with $o^{\vec{U}}(\nu)=\alpha$ set

$$
A_{\nu}:=\left\{\xi \in A^{\prime} \mid o^{\vec{U}}(\xi)=\gamma, \nu \in b_{\gamma} \text { and } b_{\gamma} \cap \nu=b_{\nu}\right\} .
$$

Let $\nu, \nu^{\prime} \in A^{\prime}$ be two different elements with $o^{\vec{U}}(\nu)=o^{\vec{U}}\left(\nu^{\prime}\right)=\alpha$, then, clearly, $A_{\nu} \cap A_{\nu^{\prime}}=\emptyset$.

So, again as above, we obtain the following:
Theorem 2.10 $\bar{U}(\kappa, \kappa)$ has κ-many predecessors in the Rudin-Frolik ordering.
Proof. By Lemmas 2.7, 2.8, the sequence $\left\langle\bar{U}(\kappa, \gamma) \mid \gamma \in A^{\prime} \cup\{\kappa\}\right\rangle$ is R-F-increasing.

It follows now that:
Corollary 2.11 The consistency strength of existence of a κ-complete ultrafilter over κ with κ-many predecessors in the Rudin-Frolik ordering is is at least $\{o(\alpha) \mid \alpha<\kappa\}$ is unbounded in κ and at most $o(\kappa)=\kappa+1$.

3 Discrete families of ultrafilters.

Aki Kanamori asked in [4] the following natural question:
If $\left\{U_{\tau} \mid \tau<\kappa\right\}$ is a family of distinct κ-complete ultrafilters over κ and E is any κ-complete ultrafilter over κ, is there an $X \in E$ so that $\left\{U_{\tau} \mid \tau \in X\right\}$ is a discrete family?

We will give a negative answer to this question below.
Let us use the previous construction. We preserve all the notation made there.
Consider the family

$$
\left\{U(\kappa, \kappa,\langle\delta\rangle) \mid \delta, \alpha \in A^{\prime}, \delta<\alpha\right\}
$$

Lemma 3.1 The family $\left\{U(\kappa, \kappa,\langle\delta\rangle) \mid \delta \in A^{\prime}, \delta<\kappa\right\}$ consists of different ultrafilters.
Proof. Let $U(\kappa, \kappa,\langle\delta\rangle), U\left(\kappa, \kappa,\left\langle\delta^{\prime}\right\rangle\right)$ be two different members of the family. If $o^{\vec{U}}(\delta)=o^{\vec{U}}\left(\delta^{\prime}\right)$, then they are different by Lemma 2.9. Suppose that $o^{\vec{U}}(\delta)<o^{\vec{U}}\left(\delta^{\prime}\right)$. Then the set

$$
\left\{\nu<\kappa \mid o^{\vec{U}}(\nu)=\nu, \delta \in b_{\nu}, b_{\nu} \cap \delta=b_{\delta} \text { and } \delta^{\prime} \notin b_{\nu}\right\} \in U(\kappa, \kappa,\langle\delta\rangle) \backslash U\left(\kappa, \kappa,\left\langle\delta^{\prime}\right\rangle\right)
$$

So we are done.

Pick now a κ-complete (non-principal) ultrafilter D such that the set

$$
Z:=\{\alpha<\kappa \mid \alpha \text { is a regular uncountable cardinal }\} \in D .
$$

Define now a κ-complete ultrafilter E over $[\kappa]^{2}$ as follows:

$$
X \in E \text { iff }\{\alpha \in Z \mid\{\delta<\kappa \mid(\alpha, \delta) \in X\} \in U(\kappa, \alpha,\langle \rangle)\} \in D .
$$

I.e. $E=D-\Sigma_{\alpha} U(\kappa, \alpha,\langle \rangle)$. We can assume that if $(\alpha, \delta) \in X$, for a set $X \in E$, then $o^{\vec{U}}(\delta)=\alpha$, since $U(\kappa, \alpha)$ concentrates on such δ 's.
Now, for every pair (α, δ) with $o^{\vec{U}}(\delta)=\alpha$, define $U_{(\alpha, \delta)}=U(\kappa, \kappa,\langle\delta\rangle)$.
Lemma 3.2 For every $X \in E$, the family $\left\{U_{\tau} \mid \tau \in X\right\}$ is not discrete.
Proof. Let $X \in E$. Suppose that there is a separating sequence $\left\langle Y_{(\alpha, \delta)} \mid(\alpha, \delta) \in X\right\rangle$ for $\left\langle U_{(\alpha, \delta)} \mid(\alpha, \delta) \in X\right\rangle$. Pick some $\alpha, \alpha^{\prime} \in \operatorname{dom}(X), \alpha<\alpha^{\prime}$. Let

$$
A_{\alpha}=\{\delta<\kappa \mid(\alpha, \delta) \in X\}
$$

and

$$
A_{\alpha^{\prime}}=\left\{\delta<\kappa \mid\left(\alpha^{\prime}, \delta\right) \in X\right\}
$$

Then $A_{\alpha} \in U(\kappa, \alpha,\langle \rangle)$ and $A_{\alpha^{\prime}} \in U\left(\kappa, \alpha^{\prime},\langle \rangle\right)$. By shrinking X if necessary, assume that $\delta \in A_{\alpha}$ implies $o^{\vec{U}}(\delta)=\alpha$ and $\delta^{\prime} \in A_{\alpha^{\prime}}$ implies $o^{\vec{U}}\left(\delta^{\prime}\right)=\alpha^{\prime}$.
Consider the following set

$$
\left.B=\left\{\nu<\kappa \mid o^{\vec{U}}(\nu)=\nu \text { and (there are } \delta \in A_{\alpha}, \delta^{\prime} \in A_{\alpha^{\prime}} \text { such that } \delta<\delta^{\prime} \text { and } \delta, \delta^{\prime} \in b_{\nu}\right)\right\} .
$$

Then $B \in U(\kappa, \kappa,\langle \rangle)$. Just take the witnessing tree T_{B} (as in the definition of $U(\kappa, \kappa,\langle \rangle)$) with the first level

$$
A_{\alpha} \cup A_{\alpha^{\prime}} \cup\left(\kappa \backslash\left(A_{\alpha} \cup A_{\alpha^{\prime}}\right) .\right.
$$

Then for every $\delta \in A_{\alpha}, B \in U(\kappa, \kappa,\langle\delta\rangle)$. So, $B^{\prime}:=B \cap Y_{(\alpha, \delta)}$ is a subset of B in $U(\kappa, \kappa,\langle\delta\rangle)$. But then an extension of T_{B} will witness this. In particular there will be $\delta^{\prime} \in A_{\alpha^{\prime}}$ such that $B^{\prime} \in U\left(\kappa, \kappa,\left\langle\delta^{\prime}\right\rangle\right)$. This implies that both $Y_{(\alpha, \delta)}$ and $Y_{\left(\alpha^{\prime}, \delta^{\prime}\right)}$ are in $U\left(\kappa, \kappa,\left\langle\delta^{\prime}\right\rangle\right)=U_{\left(\alpha, \delta^{\prime}\right)}$. Hence, $Y_{(\alpha, \delta)} \cap Y_{\left(\alpha^{\prime}, \delta^{\prime}\right)} \neq \emptyset$. Contradiction.

Now combining Lemmas 3.1, 3.2 we obtain the following:
Theorem 3.3 In $V[G]$ there are a family $\left\{U_{\tau} \mid \tau<\kappa\right\}$ of distinct κ-complete ultrafilters over κ and a κ-complete ultrafilter E over κ, so that $\left\{U_{\tau} \mid \tau \in X\right\}$ is a not discrete family for any $X \in E$.

Corollary 3.4 The consistency strength of existence a family $\left\{U_{\tau} \mid \tau<\kappa\right\}$ of distinct κ-complete ultrafilters over κ and a κ-complete ultrafilter E over κ, so that $\left\{U_{\tau} \mid \tau \in X\right\}$ is a not discrete family for any $X \in E$, is at most $o(\kappa)=\kappa+1$.

Let us argue now that that $\{o(\alpha) \mid \alpha<\kappa\}$ is unbounded in κ is necessary for this.
Theorem 3.5 Suppose that there are a family $\left\{U_{\tau} \mid \tau<\kappa\right\}$ of distinct κ-complete ultrafilters over κ and a κ-complete ultrafilter E over κ, so that $\left\{U_{\tau} \mid \tau \in X\right\}$ is not a discrete family for any $X \in E$. Then $\{o(\alpha) \mid \alpha<\kappa\}$ is unbounded in κ in the Mitchell core model.

Proof. Suppose otherwise. Let $\left\{U_{\tau} \mid \tau<\kappa\right\}$ be a family of distinct κ-complete ultrafilters over κ and E be a κ-complete ultrafilter over κ, so that $\left\{U_{\tau} \mid \tau \in X\right\}$ is a discrete family for any $X \in E$.
Let \mathcal{K} be the Mitchell core model and $o(\kappa)=\eta<\kappa$.
For every $\tau<\kappa$, let j_{τ} be $i_{U_{\tau}} \upharpoonright \mathcal{K}$. Then, by [5], j_{τ} is an iterated ultrapower of \mathcal{K}. By [3], the are less than κ possibilities for $j_{\tau}(\kappa)$. By κ-completeness of E, we can assume that for every $\tau<\kappa, j_{\tau}(\kappa)$ has a fixed value θ. Denote by $G e n_{\tau}$ the set of generators of j_{τ}, i.e. the set of ordinals $\nu, \kappa \leq \nu<\theta$ such that for every $n<\omega, f:[\kappa]^{n} \rightarrow \kappa, f \in \mathcal{K}$ and $a \in[\nu]^{n}$, $\nu \neq j_{\tau}(f)(a)$. Let $G e n_{\tau}^{*}$ be the subset of $G e n_{\tau}$ consisting of all principle generators of j_{τ}, i.e. of all $\nu \in G e n_{\tau}$ such that for every $n<\omega, f:[\kappa]^{n} \rightarrow \kappa, f \in \mathcal{K}$ and $a \in[\nu]^{n}, \nu>j_{\tau}(f)(a)$. Again by [3], the are less than κ possibilities for $G e n_{\tau}^{*}$'s. So, by κ-completeness of E, we can assume that for every $\tau<\kappa, G e n_{\tau}^{*}=G e n^{*}$.
Suppose that $\nu \in G e n_{\tau}$ and ν is not a principle generator. Then there are finite set of generators $b \subseteq \nu$ and $f:[\kappa]^{|b|} \rightarrow \kappa, f \in \mathcal{K}$ such that $\nu<j_{\tau}(f)(b)$.
Set, following W. Mitchell,

$$
\alpha(\nu)=\min \left\{j_{\tau}(f)(b) \mid b \subseteq \nu\right. \text { is a finite set of generators, }
$$

$$
\left.f:[\kappa]^{|b|} \rightarrow \kappa, f \in \mathcal{K} \text { and } \nu<j_{\tau}(f)(b)\right\} .
$$

Let $b_{\nu} \subseteq \nu$ be the smallest finite set of generators such that for some $f:[\kappa]^{\left|b_{\nu}\right|} \rightarrow \kappa$, $f \in \mathcal{K}, \alpha(\nu)=j_{\tau}(f)\left(b_{\nu}\right)$.
Let us call a finite set of generators $a \subseteq G e n_{\tau}$ nice iff for each $\nu \in a$ either ν is a principle generator or it is not and then $b_{\nu} \subseteq a$.

Consider now $[i d]_{U_{\tau}}$. Find the smallest finite nice set of generators a_{τ} in $G e n_{\tau}$ such that for some $h_{\tau}:[\kappa]^{\left|a_{\tau}\right|} \rightarrow \kappa, h_{\tau} \in \mathcal{K}$ we have $[i d]_{U_{\tau}}=j_{\tau}\left(h_{\tau}\right)\left(a_{\tau}\right)$. We may assume, using κ-completeness of E, that $a_{\tau} \cap G e n^{*}$ has a constant value. Denote it by a^{*}.

Let us deal first with simpler particular cases.
Suppose first that $a^{*}=a_{\tau}$ and it consists only of κ itself, for every $\tau<\kappa$ (or on an E-measure one set). Then, for some $\theta<o(\kappa)$, each j_{τ} is just the ultrapower embedding $i_{U(\kappa, \theta)}$ by a normal measure $U(\kappa, \theta)$ from the sequence of \mathcal{K}.
Now the functions $h_{\tau}, \tau<\kappa$ represent ordinals between κ and $i_{U(\kappa, \theta)}(\kappa)$ in this ultrapower. Hence, they are one to one $\bmod U(\kappa, \theta)$. This means that each U_{τ} is equivalent to its normal measure as witnessed by h_{τ}. But such ultrafilters can be easily separated.

Suppose next that $a_{\tau}=a^{*}=\left\{\kappa, \kappa_{1}\right\}$, for every $\tau<\kappa$ (or on an E-measure one set). Assume that each j_{τ} is the second ultrapower embedding by a normal measure $U(\kappa, \theta)$ over κ in \mathcal{K}, where κ_{1} is the image of κ under $i_{U(\kappa, \theta)}(\kappa)$.
Denote $i_{U(\kappa, \theta)}$ by $i_{1}: \mathcal{K} \rightarrow \mathcal{K}_{1}$, the ultrapower embedding of \mathcal{K}_{1} by $i_{1}(U(\kappa, \theta)$ by $i_{1,2}=i_{i_{1}(U(\kappa, \theta))}: \mathcal{K}_{1} \rightarrow \mathcal{K}_{2}$ and the second ultrapower embedding (the one equal to j_{τ} 's) by $i_{2}=i_{1,2} \circ i_{1}: \mathcal{K} \rightarrow \mathcal{K}_{2}$. Let $\kappa_{2}=i_{2}(\kappa)$. Then we have $[i d]_{U_{\tau}}=i_{2}\left(h_{\tau}\right)\left(\kappa, \kappa_{1}\right) \in\left[\kappa_{1}, \kappa_{2}\right)$, for every $\tau<\kappa$.

Let us deal first with different $\bmod U(\kappa, \theta)^{2}$ functions among h_{τ} 's. So, let $Z \subseteq \kappa$ be a set of such functions, i.e. for every $\tau \neq \tau^{\prime}$ in $Z, h_{\tau} \neq h_{\tau^{\prime}} \bmod U(\kappa, \theta)^{2}$.
Our prime interest will be in $\left\langle\operatorname{rng}\left(h_{\tau}\right) \mid \tau \in Z\right\rangle$. We will argue that there is a set $C \in U(\kappa, \theta)^{2}$ such that $\left\langle h_{\tau}{ }^{\prime \prime}[C \backslash \tau+1]^{2} \mid \tau \in Z\right\rangle$ is a disjoint family, which in turn will witness that the family $\left\langle U_{\tau} \mid \tau \in Z\right\rangle$ is discrete.

Let $\tau \in Z$ and $\beta<\kappa$. Define $h_{\tau}^{\beta}: \beta \rightarrow \kappa \backslash \beta$ by setting $h_{\tau}^{\beta}(\alpha)=h_{\tau}(\alpha, \beta)$.
Consider $i_{1}\left(\left\langle h_{\tau}^{\beta} \mid \beta<\kappa\right\rangle\right)(\kappa): \kappa \rightarrow \kappa_{1} \backslash \kappa$. Denote it by h_{τ}^{\prime}.
Suppose for a moment that for some $\tau, \tau^{\prime} \in Z, \tau \neq \tau^{\prime}, h_{\tau}^{\prime}=h_{\tau^{\prime}}^{\prime} \bmod U(\kappa, \theta)$. Then there is a set $H \in U(\kappa, \theta)$ such that

$$
\left\{\beta<\kappa \mid h_{\tau}^{\beta} \upharpoonright H \cap \beta=h_{\tau^{\prime}}^{\beta} \upharpoonright H \cap \beta\right\} \in U(\kappa, \theta) .
$$

But then

$$
H \subseteq\left\{\alpha<\kappa \mid\left\{\beta<\kappa \mid h_{\tau}(\alpha, \beta)=h_{\tau^{\prime}}(\alpha, \beta)\right\} \in U(\kappa, \theta)\right\}
$$

. Hence,

$$
\left\{\alpha<\kappa \mid\left\{\beta<\kappa \mid h_{\tau}(\alpha, \beta)=h_{\tau^{\prime}}(\alpha, \beta)\right\} \in U(\kappa, \theta) .\right.
$$

Which is impossible.
Hence, $\tau, \tau^{\prime} \in Z, \tau \neq \tau^{\prime}$ implies $h_{\tau}^{\prime} \neq h_{\tau^{\prime}}^{\prime} \bmod U(\kappa, \theta)$.
Now, using normality of $U(\kappa, \theta)$ and covering by a set in \mathcal{K} of cardinality κ, it is easy to find $A \in U(\kappa, \theta)$ such that $\tau, \tau^{\prime} \in Z, \tau<\tau^{\prime}$ implies

$$
\operatorname{rng}\left(h_{\tau}^{\prime} \upharpoonright A \backslash \tau^{\prime}\right) \cap \operatorname{rng}\left(h_{\tau^{\prime}}^{\prime} \upharpoonright A \backslash \tau^{\prime}\right)=\emptyset
$$

This statement is true in \mathcal{K}_{1}, hence by elementarity,

$$
\left\{\beta<\kappa \mid \operatorname{rng}\left(h_{\tau}^{\beta} \upharpoonright(A \cap \beta) \backslash \tau^{\prime}\right) \cap \operatorname{rng}\left(h_{\tau^{\prime}}^{\beta} \upharpoonright(A \cap \beta) \backslash \tau^{\prime}\right)=\emptyset\right\} \in U(\kappa, \theta)
$$

Fix $\tau \in Z$. Let $\tau^{\prime} \in Z$ be different from τ. Set

$$
B_{\tau}^{\tau^{\prime}}=\left\{\beta<\kappa \mid \operatorname{rng}\left(h_{\tau}^{\beta} \upharpoonright(A \cap \beta) \backslash \tau^{\prime}\right) \cap \operatorname{rng}\left(h_{\tau^{\prime}}^{\beta} \upharpoonright(A \cap \beta) \backslash \tau^{\prime}\right)=\emptyset\right\}
$$

if $\tau<\tau^{\prime}$ and

$$
B_{\tau}^{\tau^{\prime}}=\left\{\beta<\kappa \mid \operatorname{rng}\left(h_{\tau}^{\beta} \upharpoonright(A \cap \beta) \backslash \tau\right) \cap \operatorname{rng}\left(h_{\tau^{\prime}}^{\beta} \upharpoonright(A \cap \beta) \backslash \tau\right)=\emptyset\right\},
$$

if $\tau^{\prime}<\tau$. Then $B_{\tau}^{\tau^{\prime}} \in U(\kappa, \theta)$. The set

$$
E_{\tau}=\left\{\beta<\kappa \mid \forall \alpha<\beta^{\prime}<\beta\left(h_{\tau}\left(\alpha, \beta^{\prime}\right)<\beta\right)\right\} \in U(\kappa, \theta) .
$$

Set $C_{\tau}=(A \backslash \tau) \cap E_{\tau} \cap \Delta_{\tau^{\prime} \in Z, \tau^{\prime} \neq \tau} B_{\tau}^{\tau^{\prime}}$. Then for every $\alpha, \alpha^{\prime}, \beta \in C_{\tau}$ with $\alpha, \alpha^{\prime}<\beta, \alpha \neq \alpha^{\prime}$ we have

$$
(*) h_{\tau}(\alpha, \beta) \neq h_{\tau^{\prime}}\left(\alpha^{\prime}, \beta\right),
$$

once $\tau^{\prime} \in Z, \tau^{\prime} \neq \tau$ and $\tau^{\prime}<\beta$.
Suppose now $\tau, \tau^{\prime} \in Z, \tau \neq \tau^{\prime},(\alpha, \beta),\left(\alpha^{\prime}, \beta^{\prime}\right) \in\left[C_{\tau}\right]^{2} \cap\left[C_{\tau^{\prime}}\right]^{2}$. Assume for a moment that $h_{\tau}(\alpha, \beta)=h_{\tau^{\prime}}\left(\alpha^{\prime}, \beta^{\prime}\right)$.
Note first that $\beta=\beta^{\prime}$, since $h_{\tau}(\alpha, \beta) \geq \beta, h_{\tau^{\prime}}\left(\alpha^{\prime}, \beta^{\prime}\right) \geq \beta^{\prime}$ and $\beta, \beta^{\prime} \in E_{\tau} \cap E_{\tau^{\prime}}$. But then

$$
h_{\tau}(\alpha, \beta) \neq h_{\tau^{\prime}}\left(\alpha^{\prime}, \beta\right),
$$

by the previous paragraph.
Finally let $C=\Delta_{\tau \in Z} C_{\tau}$. The sequence $\left\langle h_{\tau}{ }^{\prime \prime}[C \backslash \tau+1]^{2} \mid \tau \in Z\right\rangle$ will be as desired. Thus let $\tau<\tau^{\prime}, \tau, \tau^{\prime} \in Z$ and $(\alpha, \beta) \in[C \backslash \tau+1]^{2},\left(\alpha^{\prime}, \beta^{\prime}\right) \in\left[C \backslash \tau^{\prime}+1\right]^{2}$. If $\beta \leq \tau^{\prime}$, then
$h_{\tau}(\alpha, \beta)<\beta^{\prime} \leq h_{\tau^{\prime}}\left(\alpha^{\prime}, \beta^{\prime}\right)$, since $\beta^{\prime} \in C \backslash \tau^{\prime}+1$, and so, $\beta^{\prime} \in C_{\tau} \subseteq E_{\tau}$. If $\beta>\tau^{\prime}$, then $\beta \in C_{\tau^{\prime}}$. So, $\beta \neq \beta^{\prime}$, say $\beta>\beta^{\prime}$ will imply

$$
\beta^{\prime} \leq h_{\tau^{\prime}}\left(\alpha^{\prime}, \beta^{\prime}\right)<\beta \leq h_{\tau}(\alpha, \beta) .
$$

Suppose that $\beta=\beta^{\prime}$. But $\beta>\tau^{\prime}$, hence by $\left(^{*}\right)$ above $h_{\tau}(\alpha, \beta) \neq h_{\tau^{\prime}}\left(\alpha^{\prime}, \beta\right)$.
Let us deal now with ultrafilters from the sequence $\left\langle U_{\tau} \mid \tau<\kappa\right\rangle$ such that the ordinals $[i d]_{U_{\tau}}$'s are the same and of the form $i_{2}(h)\left(\kappa, \kappa_{1}\right)$, for some $h:[\kappa]^{2} \rightarrow \kappa, h \in \mathcal{K}$. Assume for simplicity that every $\tau<\kappa$ is like this.

Denote $h_{*} U(\kappa, \theta)^{2}$ by \mathcal{V}. We have then that for every $X \subseteq \kappa, X \in \mathcal{K}$,

$$
X \in \mathcal{V} \Leftrightarrow i_{2}(h)\left(\kappa, \kappa_{1}\right) \in i_{2}(X) \Leftrightarrow[i d]_{U_{\tau}} \in i_{2}(X) \Leftrightarrow[i d]_{U_{\tau}} \in i_{U_{\tau}}(X) \Leftrightarrow X \in U_{\tau} .
$$

So, $U_{\tau} \supseteq \mathcal{V}$, for every $\tau<\kappa$.
Let $\pi: \kappa \rightarrow \kappa, \pi \in \mathcal{K}$ be a projection of \mathcal{V} to the normal ultrafilter Rudin - Keisler below \mathcal{V}, i.e. to $U(\kappa, \theta)$. Assume that \mathcal{V} is Rudin-Keisler equivalent to $U(\kappa, \theta)^{2}$. The case $\mathcal{V}={ }_{R-K} U(\kappa, \theta)$ is similar and no other possibility can occur here. So,

$$
\kappa=[\pi]_{\mathcal{V}}=i_{2}(\pi)\left([i d]_{\mathcal{V}}\right)=i_{2}(\pi)\left(h\left(\kappa, \kappa_{1}\right)\right)=i_{2}(\pi)\left([i d]_{U_{\tau}}\right),
$$

for every $\tau<\kappa$. Which means that for every $\tau<\kappa, \pi$ is a projection of U_{τ} to its normal measure.

Now the conclusion follows by the following likely known lemma.
Lemma 3.6 Let $\left\langle E_{\alpha} \mid \alpha<\kappa\right\rangle$ be a family of pairwise different κ-complete ultrafilters over κ which have the same projection to their least normal measures. Then the family is discrete.

Proof. Denote by π this common projection.
Let $\alpha<\kappa$. For every $\beta<\kappa, \beta \neq \alpha$, pick $A_{\alpha}^{\beta} \in E_{\alpha} \backslash E_{\beta}$. Let

$$
B_{\alpha}=\{\nu<\kappa \mid \pi(\nu)>\alpha\} .
$$

Then $B_{\alpha} \in E_{\alpha}$, since $\pi_{*} E_{\alpha}$ is not principal ultrafilter. Set

$$
A_{\alpha}=\Delta_{\beta<\kappa, \beta \neq \alpha}^{*} A_{\alpha}^{\beta}=\left\{\nu<\kappa \mid \forall \beta<\pi(\nu)\left(\beta \neq \alpha \rightarrow \nu \in A_{\alpha}^{\beta}\right)\right\} .
$$

Then $A_{\alpha} \in E_{\alpha}$. Let

$$
A_{\alpha}^{*}=A_{\alpha} \cap B_{\alpha} \cap \bigcap_{\beta<\alpha}\left(\kappa \backslash A_{\beta}^{\alpha}\right) .
$$

Clearly, $A_{\alpha}^{*} \in E_{\alpha}$.
Let us argue that the sets $\left\langle A_{\alpha}^{*} \mid \alpha<\kappa\right\rangle$ are pairwise disjoint. So, let $\alpha<\alpha^{\prime}<\kappa$. Suppose that $\nu \in A_{\alpha}^{*} \cap A_{\alpha^{\prime}}^{*}$. Then $\nu \in B_{\alpha^{\prime}}$, and hence, $\pi(\nu)>\alpha^{\prime}>\alpha$. But then, $\nu \in A_{\alpha}$ implies that $\nu \in A_{\alpha}^{\alpha^{\prime}}$, which is impossible since $\nu \in A_{\alpha^{\prime}}^{*} \subseteq \kappa \backslash A_{\alpha}^{\alpha^{\prime}}$.

Let us turn now to the general case. So, we have for each $\tau<\kappa$, the smallest finite nice set of generators a_{τ} in Gen $_{\tau}$ and $h_{\tau}:[\kappa]^{\left|a_{\tau}\right|} \rightarrow \kappa, h_{\tau} \in \mathcal{K}$ such that $[i d]_{U_{\tau}}=j_{\tau}\left(h_{\tau}\right)\left(a_{\tau}\right)$. Also, $i_{U_{\tau}} \upharpoonright \mathcal{K}=j_{\tau}$ is an iterated ultrapower of \mathcal{K} by its measures.
If $a_{\tau}=a^{*}$ or just a_{τ} 's are the same, for most $(\bmod E) \tau$'s, then the previous arguments apply without much changes. Suppose that this does not happen, i.e. for an E-measure one set of $\tau, a_{\tau} \neq a^{*}$. Assume that this is true for every $\tau<\kappa$ and also that $\left|a_{\tau}\right|=\left|a_{\tau^{\prime}}\right|$, for every $\tau, \tau^{\prime}<\kappa$.
Then for every $\tau<\kappa$, let $\left\langle\mu_{\tau, k} \mid k<m\right\rangle$ be an increasing enumeration of $G e n_{\tau} \cap\left(a_{\tau} \backslash a^{*}\right)$. Then $\alpha\left(\mu_{\tau, 0}\right)>\mu_{\tau, 0}$. By the definition of $\alpha\left(\mu_{\tau, 0}\right)$, we have $b_{\mu_{\tau, 0}} \subseteq a^{*} \cap \mu_{\tau, 0}$ and $f_{\mu_{\tau, 0}} \in \mathcal{K}$ such that

$$
j_{\tau}\left(f_{\mu_{\tau, 0}}\right)\left(b_{\mu_{\tau, 0}}\right)=\alpha\left(\mu_{\tau, 0}\right) .
$$

Similar, for each $k, 0<k<m, \alpha\left(\mu_{\tau, k}\right)>\mu_{\tau, k}$ and there are $b_{\mu_{\tau, k}} \subseteq a_{\tau} \cap \mu_{\tau, k}$ and $f_{\mu_{\tau, k}} \in \mathcal{K}$ such that

$$
j_{\tau}\left(f_{\mu_{\tau, k}}\right)\left(b_{\mu_{\tau, k}}\right)=\alpha\left(\mu_{\tau, k}\right) .
$$

Note if $\mu_{\tau, k}<\mu_{\tau, k^{\prime}}$ and no generator of j_{τ} seats in between, then $\alpha\left(\mu_{\tau, k}\right) \geq \alpha\left(\mu_{\tau, k^{\prime}}\right)$.
Also note that if δ is of a form $\alpha\left(\mu_{\tau, k}\right)$, for some $\tau<\kappa$, then the number of generators with this δ bounded in κ, since the set $\{o(\eta) \mid \eta<\kappa\}$ is bounded in κ.

Using the κ-completeness of E, we can assume that all a_{τ} 's are generated in the same fashion over a^{*} with respect to the order and number and order of applications of the $\alpha(-), b_{-}$. Stating this more precisely the structures

$$
\mathcal{A}_{\tau}=\left\langle a_{\tau},<, a^{*}, \alpha(-), b_{-}, \ldots\right\rangle
$$

are isomorphic over a^{*}.
Let us deal with the following partial case, in the general one mainly the notation are more complicated.

Assume that there is a set $Z \subseteq \kappa$ of cardinality κ such that for some $a^{* *} \subseteq a^{*}$, for every $\tau \in Z$ there is $\mu_{\tau} \in a_{\tau} \backslash \max \left(a^{* *}\right)$ such that

1. $\alpha\left(\mu_{\tau}\right)=j_{\tau}\left(f_{\mu_{\tau}}\right)\left(a^{* *}\right)$,
2. $\mu_{\tau} \leq[i d]_{U_{\tau}}<\alpha\left(\mu_{\tau}\right)$,
3. if $\tau \neq \tau^{\prime}$ are in Z, then $\alpha\left(\mu_{\tau}\right) \neq \alpha\left(\mu_{\tau^{\prime}}\right)$.

Note that once $\alpha\left(\mu_{\tau}\right)$ is fixed, the number of possible $\mu_{\tau^{\prime}}$'s with $\alpha\left(\mu_{\tau}\right)=\alpha\left(\mu_{\tau^{\prime}}\right)$ is below κ, since $\{o(\xi) \mid \xi<\kappa\}$ is bounded in κ. So the condition 3 above is not really very restrictive.

Note also that if $\tau \neq \tau^{\prime}$ are in Z, then $\mu_{\tau}<\mu_{\tau^{\prime}}$ implies $\alpha\left(\mu_{\tau}\right)<\mu_{\tau^{\prime}}$ and $\mu_{\tau}>\mu_{\tau^{\prime}}$ implies $\alpha\left(\mu_{\tau^{\prime}}\right)<\mu_{\tau}$. Since $\mu_{\tau}, \mu_{\tau^{\prime}}$ are generators (indiscernibles) corresponding to different measurables $\alpha\left(\mu_{\tau}\right), \alpha\left(\mu_{\tau^{\prime}}\right)$ and this measurables depend (were generated by) on $a^{* *}$ only.

Now we would like to use the arguments similar to the previous considered case and split not only $\alpha\left(\mu_{\tau}\right)$'s but rather the intervals they generate.
First note that the set

$$
\left\{\alpha\left(\mu_{\tau^{\prime}}\right) \mid \tau^{\prime} \in Z \text { and } \mu_{\tau^{\prime}}<\mu_{\tau}\right\}
$$

is bounded below μ_{τ}, due to the cofinality considerations. So we can pick some $\alpha^{-}\left(\mu_{\tau}\right)$ of a form $j_{\tau}\left(f_{\mu_{\tau}}^{-}\right)\left(a^{* *}\right)$ in the interval $\left(\sup \left(\left\{\alpha\left(\mu_{\tau^{\prime}}\right) \mid \tau^{\prime} \in Z\right.\right.\right.$ and $\left.\left.\left.\mu_{\tau^{\prime}}<\mu_{\tau}\right\}\right), \mu_{\tau}\right)$.
Let

$$
\mathcal{U}=\left\{X \subseteq[\kappa]^{\left|a^{* *}\right|} \mid X \in \mathcal{K}, a^{* *} \in j_{\tau}(X)\right\} .
$$

Then it is a κ-complete ultrafilter over $[\kappa]^{\left|a^{* * \mid}\right|}$ in \mathcal{K} which is a product of finitely many normal measures over κ.
Our aim will be to find a set $C \subseteq[\kappa]^{\left|a^{* *}\right|}$ in \mathcal{K} such that

1. $a^{* *} \in j_{\tau}(C)$, for all $\tau \in Z$,
2. the intervals $\left[f_{\mu_{\tau}}^{-}(\vec{\nu}), f_{\mu_{\tau}}(\vec{\nu})\right],\left[f_{\mu_{\tau^{\prime}}}^{-}\left(\vec{\nu}^{\prime}\right), f_{\mu_{\tau^{\prime}}}\left(\vec{\nu}^{\prime}\right)\right]$ are disjoint whenever $\tau \neq \tau^{\prime}$ are in Z and $\vec{\nu} \in C, \min (\vec{\nu})>\tau, \vec{\nu}^{\prime} \in C, \min \left(\vec{\nu}^{\prime}\right)>\tau^{\prime}$.

Denote $\max \left(a^{* *}\right)$ by β and $a^{* *} \backslash\{\beta\}$ by $\vec{\alpha}$.
Let $U(\kappa, \theta)$ be the last measure of \mathcal{U}, i.e. $\mathcal{U}=\left(\mathcal{U} \upharpoonright[\kappa]^{\left|a^{* *}\right|-1}\right) \times U(\kappa, \theta)$.
Let $\tau \in Z$ and $\beta<\kappa$. Define $g_{\tau}^{\beta}: \beta \rightarrow \kappa \backslash \beta$ by setting $g_{\tau}^{\beta}(\vec{\alpha})=f_{\mu_{\tau}}(\vec{\alpha}, \beta)$ and $g_{\tau}^{-\beta}: \beta \rightarrow \kappa \backslash \beta$ by setting $g_{\tau}^{-\beta}(\vec{\alpha})=f_{\mu_{\tau}}^{-}(\vec{\alpha}, \beta)$.
Consider

$$
i_{U(\kappa, \theta)}\left(\left\langle g_{\tau}^{\beta} \mid \beta<\kappa\right\rangle\right)(\kappa):[\kappa]^{\left|a^{* * \mid}\right|-1} \rightarrow i_{U(\kappa, \theta)}(\kappa) \backslash \kappa .
$$

Denote it by g_{τ}^{\prime}. Similar let

$$
i_{U(\kappa, \theta)}\left(\left\langle g_{\tau}^{-\beta} \mid \beta<\kappa\right\rangle\right)(\kappa):[\kappa]^{\left|a^{* *}\right|-1} \rightarrow i_{U(\kappa, \theta)}(\kappa) \backslash \kappa .
$$

Denote it by g_{τ}^{-1}.
Suppose for a moment that for some $\tau, \tau^{\prime} \in Z, \tau \neq \tau^{\prime}, g_{\tau}^{-{ }^{\prime}}<g_{\tau^{\prime}}^{-\prime} \leq g_{\tau}^{\prime} \bmod \mathcal{U} \upharpoonright[\kappa]^{\left|a^{* * \mid}\right|-1}$. Then there is a set $H \in \mathcal{U} \upharpoonright[\kappa]^{\left|a^{* * \mid}\right|-1}$ such that for every $\vec{\alpha} \in H$, the set

$$
\left\{\beta<\kappa \mid g_{\tau}^{-\beta}(\vec{\alpha})<g_{\tau^{\prime}}^{-\beta}(\vec{\alpha}) \leq g_{\tau}^{\beta}(\vec{\alpha})\right\} \in U(\kappa, \theta)
$$

But then

$$
H \subseteq\left\{\vec{\alpha} \in[\kappa]^{\left|a^{* *}\right|-1} \mid\left\{\beta<\kappa \mid g_{\tau}^{-}(\vec{\alpha}, \beta)<g_{\tau^{\prime}}^{-}(\vec{\alpha}, \beta) \leq g_{\tau}(\alpha, \beta)\right\} \in U(\kappa, \theta)\right\}
$$

Hence,

$$
\left\{\vec{\alpha} \in[\kappa]^{\left|a^{* *}\right|-1} \mid\left\{\beta<\kappa \mid g_{\tau}^{-}(\vec{\alpha}, \beta)<g_{\tau^{\prime}}^{-}(\vec{\alpha}, \beta) \leq g_{\tau}(\alpha, \beta)\right\} \in U(\kappa, \theta)\right\} \in \mathcal{U} \upharpoonright[\kappa]^{\left|a^{* *}\right|-1} .
$$

Which is impossible.
Hence, $\tau, \tau^{\prime} \in Z, \tau \neq \tau^{\prime}$ implies $\neg\left(g_{\tau}^{-{ }^{\prime}}<g_{\tau^{\prime}}^{-^{\prime}} \leq g_{\tau}^{\prime}\right) \bmod \mathcal{U} \upharpoonright[\kappa]^{\left|a^{* * *}\right|-1}$. Which means, by switching between τ and τ^{\prime} is necessary, that $g_{\tau}^{\prime}<g_{\tau^{\prime}}^{-^{\prime}} \bmod \mathcal{U} \upharpoonright[\kappa]^{\left|a^{* * \mid}\right|-1}$ or $g_{\tau^{\prime}}^{\prime}<g_{\tau}^{-^{\prime}} \bmod$ $\mathcal{U} \upharpoonright[\kappa]^{\left|a^{* *}\right|-1}$.
Now, using induction, normality of components of $\mathcal{U} \upharpoonright[\kappa]^{\left|a^{* *}\right|-1}$ and covering the set $\left\{\left\{g_{\tau}^{-{ }^{\prime}}, g_{\tau}^{\prime}\right\} \mid \tau \in Z\right\}$ by a set in \mathcal{K} of cardinality κ, if necessary, we can find $A \in \mathcal{U} \upharpoonright[\kappa]^{\left|a^{* *}\right|-1}$ such that $\tau, \tau^{\prime} \in Z, \tau \neq \tau^{\prime}$ implies that for every $\vec{\nu}, \vec{\nu}^{\prime} \in A$ with $\min (\vec{\nu})>\tau, \min \left(\vec{\nu}^{\prime}\right)>\tau^{\prime}$ the intervals

$$
\left[g_{\tau}^{-^{\prime}}(\vec{\nu}), g_{\tau}^{\prime}(\vec{\nu})\right],\left[g_{\tau^{\prime}}^{-\prime}\left(\vec{\nu}^{\prime}\right), g_{\tau^{\prime}}^{\prime}\left(\vec{\nu}^{\prime}\right)\right] \text { are disjoint }
$$

Thus, we can assume that the functions $g_{\tau}^{-\prime}, g_{\tau}^{\prime}$ are not constant, just otherwise the set of relevant generators can be reduced to a smaller one.
Split into two cases according to the supremums of the ranges.

Case 1. Same supremum.

So assume for simplification of notation that for every $\tau \in Z$ the ranges of the functions $g_{\tau}^{-\prime}, g_{\tau}^{\prime}$ have the same supremum χ. Then χ has cofinality κ, and let $\left\langle\chi_{\gamma} \mid \gamma<\kappa\right\rangle$ be a cofinal sequence.
Now we proceed similar to what was done in the beginning with h_{τ}, only an induction on size of $a^{* *}$ should be used.

Case 1. Different supremums.

Then we deal with this different supremums and split them. This will provide the desired conclusion also for $g_{\tau}^{-^{\prime}}, g_{\tau}^{\prime}$'s.

Now, the statement that for every $\vec{\nu}, \vec{\nu}^{\prime} \in A$ with $\min (\vec{\nu})>\tau, \min \left(\vec{\nu}^{\prime}\right)>\tau^{\prime}$ the intervals

$$
\left[g_{\tau}^{-\prime}(\vec{\nu}), g_{\tau}^{\prime}(\vec{\nu})\right],\left[g_{\tau^{\prime}}^{-\prime}\left(\vec{\nu}^{\prime}\right), g_{\tau^{\prime}}^{\prime}\left(\vec{\nu}^{\prime}\right)\right] \text { are disjoint }
$$

is true in \mathcal{K}_{1}, hence by elementarity,

$$
\begin{gathered}
\left\{\beta<\kappa \mid \forall \vec{\nu}, \vec{\nu}^{\prime} \in A \cap[\beta]^{\left|a^{* *}\right|-1}\left(\min (\vec{\nu})>\tau \wedge \min \left(\vec{\nu}^{\prime}\right)>\tau^{\prime} \rightarrow\right.\right. \\
\left.\left.\left[g_{\tau}^{-\beta}(\vec{\nu}), g_{\tau}^{\beta}(\vec{\nu})\right] \cap\left[g_{\tau^{\prime}}^{-\beta}\left(\vec{\nu}^{\prime}\right), g_{\tau^{\prime}}^{\beta}\left(\vec{\nu}^{\prime}\right)\right]=\emptyset\right)\right\} \in U(\kappa, \theta) .
\end{gathered}
$$

Fix $\tau \in Z$. Let $\tau^{\prime} \in Z$ be different from τ. Set

$$
B_{\tau}^{\tau^{\prime}}=\left\{\beta<\kappa \mid \forall \vec{\nu}, \vec{\nu}^{\prime} \in A \cap\left[\beta \backslash \tau^{\prime}\right]^{\left|a^{* *}\right|-1}\left(\left[g_{\tau}^{-\beta}(\vec{\nu}), g_{\tau}^{\beta}(\vec{\nu})\right] \cap\left[g_{\tau^{\prime}}^{-\beta}\left(\vec{\nu}^{\prime}\right), g_{\tau^{\prime}}^{\beta}\left(\vec{\nu}^{\prime}\right)\right]=\emptyset\right)\right\},
$$

if $\tau<\tau^{\prime}$ and

$$
B_{\tau}^{\tau^{\prime}}=\left\{\beta<\kappa \mid \forall \vec{\nu}, \vec{\nu}^{\prime} \in A \cap[\beta \backslash \tau]^{\left|a^{* *}\right|-1}\left(\left[g_{\tau}^{-\beta}(\vec{\nu}), g_{\tau}^{\beta}(\vec{\nu})\right] \cap\left[g_{\tau^{\prime}}^{-\beta}\left(\vec{\nu}^{\prime}\right), g_{\tau^{\prime}}^{\beta}\left(\vec{\nu}^{\prime}\right)\right]=\emptyset\right)\right\},
$$

if $\tau^{\prime}<\tau$. Then $B_{\tau}^{\tau^{\prime}} \in U(\kappa, \theta)$. The set

$$
E_{\tau}=\left\{\beta<\kappa \mid \forall \vec{\alpha}<\beta^{\prime}<\beta\left(g_{\tau}\left(\vec{\alpha}, \beta^{\prime}\right)<\beta\right)\right\} \in U(\kappa, \theta) .
$$

Set $C_{\tau}=E_{\tau} \cap \Delta_{\tau^{\prime} \in Z, \tau^{\prime} \neq \tau} B_{\tau}^{\tau^{\prime}}$. Then for every $\vec{\alpha}, \vec{\alpha}^{\prime} \in(A \backslash \tau), \beta \in C_{\tau}$ with $\alpha, \alpha^{\prime}<\beta, \alpha \neq \alpha^{\prime}$ we have

$$
(* *)\left[g_{\tau}^{-}(\vec{\alpha}, \beta), g_{\tau}(\vec{\alpha}, \beta)\right] \cap\left[g_{\tau^{\prime}}^{-}\left(\vec{\alpha}^{\prime}, \beta\right), g_{\tau^{\prime}}\left(\vec{\alpha}^{\prime}, \beta\right)\right]=\emptyset
$$

once $\tau^{\prime} \in Z, \tau^{\prime} \neq \tau$ and $\tau^{\prime}<\beta$.
Suppose now $\tau, \tau^{\prime} \in Z, \tau \neq \tau^{\prime}, \vec{\alpha}, \vec{\alpha}^{\prime} \in(A \backslash \tau) \cap\left(A \backslash \tau^{\prime}\right), \beta \in C_{\tau}, \beta^{\prime} \in C_{\tau^{\prime}}$. Assume for a moment that

$$
\left[g_{\tau}^{-}(\vec{\alpha}, \beta), g_{\tau}(\vec{\alpha}, \beta)\right] \cap\left[g_{\tau^{\prime}}^{-}\left(\vec{\alpha}^{\prime}, \beta^{\prime}\right), g_{\tau^{\prime}}\left(\vec{\alpha}^{\prime}, \beta^{\prime}\right)\right] \neq \emptyset
$$

Note first that $\beta=\beta^{\prime}$, since $\beta \leq g_{\tau}^{-}(\vec{\alpha}, \beta) \leq g_{\tau}(\alpha, \beta), \beta^{\prime} \leq g_{\tau^{\prime}}^{-}\left(\vec{\alpha}^{\prime}, \beta^{\prime}\right) \leq g_{\tau^{\prime}}\left(\alpha^{\prime}, \beta^{\prime}\right)$ and $\beta, \beta^{\prime} \in E_{\tau} \cap E_{\tau^{\prime}}$. But then

$$
\left[g_{\tau}^{-}(\vec{\alpha}, \beta), g_{\tau}(\vec{\alpha}, \beta)\right] \cap\left[g_{\tau^{\prime}}^{-}\left(\vec{\alpha}^{\prime}, \beta^{\prime}\right), g_{\tau^{\prime}}\left(\vec{\alpha}^{\prime}, \beta^{\prime}\right)\right] \neq \emptyset
$$

by the previous paragraph.
Finally let $\tilde{C}=\Delta_{\tau \in Z} C_{\tau}$ and

$$
C=\{(\vec{\alpha}, \beta) \mid \vec{\alpha} \in A, \beta \in \tilde{C} \text { and } \beta>\max (\vec{\alpha})\}
$$

Such C will be as desired. Thus let $\tau<\tau^{\prime}, \tau, \tau^{\prime} \in Z$ and $(\vec{\alpha}, \beta) \in C \backslash \tau+1,\left(\vec{\alpha}^{\prime}, \beta^{\prime}\right) \in C \backslash \tau^{\prime}+1$. If $\beta \leq \tau^{\prime}$, then $g_{\tau}(\alpha, \beta)<\beta^{\prime} \leq g_{\tau^{\prime}}^{-}\left(\alpha^{\prime}, \beta^{\prime}\right)$, since $\left(\vec{\alpha}^{\prime}, \beta^{\prime}\right) \in C \backslash \tau^{\prime}+1$, and so, $\beta^{\prime} \in C_{\tau} \subseteq E_{\tau}$. If $\beta>\tau^{\prime}$, then $\beta \in C_{\tau^{\prime}}$. So, $\beta \neq \beta^{\prime}$, say $\beta>\beta^{\prime}$ will imply

$$
\beta^{\prime} \leq g_{\tau^{\prime}}\left(\vec{\alpha}^{\prime}, \beta^{\prime}\right)<\beta \leq g_{\tau}^{-}(\vec{\alpha}, \beta) .
$$

Suppose that $\beta=\beta^{\prime}$. But $\beta>\tau^{\prime}$, hence by $\left(^{(* *)}\right.$ above

$$
\left[g_{\tau}^{-}(\vec{\alpha}, \beta), g_{\tau}(\vec{\alpha}, \beta)\right] \cap\left[g_{\tau^{\prime}}^{-}\left(\vec{\alpha}^{\prime}, \beta\right), g_{\tau^{\prime}}\left(\vec{\alpha}^{\prime}, \beta\right)\right]=\emptyset
$$

4 Products of ultrafilters.

In [4], Aki Kanamori asked the following question (Question 5.8 there):
If \mathcal{U} and \mathcal{V} are κ-complete ultrafilters over κ such that $\mathcal{U} \times \mathcal{V} \leq_{R-K} \mathcal{V} \times \mathcal{U}$, is there a \mathcal{W} and integers n and m so that $\mathcal{U} \simeq \mathcal{W}^{n}$ and $\mathcal{V} \simeq \mathcal{W}^{m}$?

Solovay gave an affirmative answer once " $\mathcal{U} \times \mathcal{V} \leq_{R-K} \mathcal{V} \times \mathcal{U}$ " is replaced by " $\mathcal{U} \times \mathcal{V} \simeq$ $\mathcal{V} \times \mathcal{U}^{\prime \prime}$, and Kanamori once \mathcal{U} is a $p-$ point, see [4] 5.7, 5.9.

We would like to show that the negative answer is consistent assuming $o(\kappa)=\kappa$. Two examples will be produced. The following will be shown:

Theorem 4.1 Assume $o(\kappa)=\kappa$. Then in a cardinal preserving generic extension there are two κ-complete ultrafilters \mathcal{U} and \mathcal{V} over κ such that

1. $\mathcal{V}>_{R-K} \mathcal{U}$,
2. $\mathcal{V} \times \mathcal{U}>_{R-K} \mathcal{U} \times \mathcal{V}$.

Theorem 4.2 Assume $o(\kappa)=\kappa$. Then in a cardinal preserving generic extension there are two κ-complete ultrafilters \mathcal{U} and \mathcal{V} over κ such that

1. \mathcal{V} is a normal measure,
2. \mathcal{V} is the projection of \mathcal{U} to its least normal measure,
3. $\mathcal{V} \times \mathcal{U}>_{R-K} \mathcal{U} \times \mathcal{V}$.

Proof of the first theorem.
Let us keep the notation of the previous section.
So, we have κ-complete ultrafilters $U(\kappa, \alpha, t), \alpha<\kappa, t \in[\kappa]^{<\omega}$ which extend $U(\kappa, \alpha)$'s. Denote $U(\kappa, \alpha,\langle \rangle)$ by $\bar{U}(\kappa, \alpha)$.
Let $f: \kappa \rightarrow \kappa$. Define

$$
U_{f}=\{X \subseteq \kappa \mid\{\alpha<\kappa \mid X \in \bar{U}(\kappa, f(\alpha))\} \in \bar{U}(\kappa, 0)\}
$$

i.e.

$$
U_{f}=\bar{U}(\kappa, 0)-\lim _{\alpha<\kappa} \bar{U}(\kappa, f(\alpha)) .
$$

Then U_{f} is a κ-complete ultrafilter over κ.
It is noted in [3], that if $f \leq g \bmod \bar{U}(\kappa, 0)$, then $U_{f} \leq_{R-K} U_{g}$.
Our prime interest will be in $f=i d$ and $g=i d+1$.
Set $\mathcal{U}=U_{i d}$ and $\mathcal{V}=U_{i d+1}$.
We would like to argue that $\mathcal{U} \times \mathcal{V}<_{R-K} \mathcal{V} \times \mathcal{U}$.
Note that neither \mathcal{U} nor \mathcal{V} are of the form \mathcal{W}^{n}, for $n>1$, since the only ultrafilters RudinKeisler below \mathcal{U} are $\bar{U}(\kappa, \alpha), \alpha<\kappa$ and their finite powers, those below \mathcal{V} are $\bar{U}(\kappa, \alpha), \alpha<\kappa$, \mathcal{U} and their finite powers. Just examine the ultrapowers by \mathcal{U} nor \mathcal{V}.
In particular, $\mathcal{V} \neq \mathcal{U}^{n}, n<\omega$.
Suppose that $B \in \mathcal{U} \times \mathcal{V}$. Then

$$
\{\mu<\kappa \mid\{\xi<\kappa \mid(\mu, \xi) \in B\} \in \mathcal{V}\} \in \mathcal{U} .
$$

Denote

$$
A=\{\mu<\kappa \mid\{\xi<\kappa \mid(\mu, \xi) \in B\} \in \mathcal{V}\}
$$

and for each $\mu<\kappa$, let

$$
A_{\mu}=\{\xi<\kappa \mid(\mu, \xi) \in B\} .
$$

Recall that

$$
\mathcal{U}=\bar{U}(\kappa, 0)-\lim \langle\bar{U}(\kappa, \alpha) \mid \alpha<\kappa\rangle .
$$

Hence, there is $Z \in \bar{U}(\kappa, 0)$ such that for every $\alpha \in Z, A \in \bar{U}(\kappa, \alpha)$.
Similar,

$$
\mathcal{V}=\bar{U}(\kappa, 0)-\lim \langle\bar{U}(\kappa, \alpha+1) \mid \alpha<\kappa\rangle .
$$

Hence, for every $\mu \in A$, there is $Y_{\mu} \in \bar{U}(\kappa, 0)$ such that for every $\alpha \in Y_{\mu}, A_{\mu} \in \bar{U}(\kappa, \alpha+1)$.
Set

$$
X=Z \cap \Delta_{\mu \in A} Y_{\mu} .
$$

Then $X \in \bar{U}(\kappa, 0)$ and for every $\alpha \in X$ we have

$$
A \in \bar{U}(\kappa, \alpha) \text { and } \forall \mu \in A \cap \alpha\left(A_{\mu} \in \bar{U}(\kappa, \alpha+1)\right) .
$$

Then, by elementarity, in $M_{\mathcal{V}}$, for every $\alpha \in i_{\mathcal{V}}(X)$,

$$
i_{\mathcal{V}}(A) \in \bar{U}\left(i_{\mathcal{V}}(\kappa), \alpha\right) \text { and } \forall \mu \in i_{\mathcal{V}}(A) \cap \alpha\left(A_{\mu}^{\prime} \in \bar{U}\left(i_{\mathcal{V}}(\kappa), \alpha+1\right)\right),
$$

where $i_{\nu}\left(\left\langle A_{\mu} \mid \mu<\kappa\right\rangle\right)=\left\langle A_{\mu}^{\prime} \mid \mu<i_{\mathcal{V}}(\kappa)\right\rangle$.
Let $\rho^{\mathcal{U}}$ denotes $[i d]_{\mathcal{U}}$. Then $\rho^{\mathcal{U}} \in i_{\mathcal{U}}(A)$. We have a natural embedding $\sigma: M_{\mathcal{U}} \rightarrow M_{\mathcal{V}}$ and it does not move $\rho^{\mathcal{U}}$, since its critical point is $i_{\mathcal{U}}(\kappa)$.
Then,

$$
\rho^{\mathcal{U}}=\sigma\left(\rho^{\mathcal{U}}\right) \in \sigma\left(i_{\mathcal{U}}(A)\right)=i_{\mathcal{V}}(A) .
$$

Note that generators of $\bar{U}(\kappa, 0)$ appear unboundedly many times below $\rho_{\mathcal{V}}>\rho_{\mathcal{U}}$. Let α^{*} be, say, the least generator such generator above $\rho^{\mathcal{U}}$.
Then $\alpha^{*} \in i_{\mathcal{V}}(X) \backslash \rho^{\mathcal{U}}+1$. So,

$$
\forall \mu \in i_{\mathcal{V}}(A) \cap \alpha^{*}\left(A_{\mu}^{\prime} \in \bar{U}\left(i_{\mathcal{V}}(\kappa), \alpha^{*}+1\right)\right) .
$$

Now, $\left.\bar{U}\left(i_{\mathcal{V}}(\kappa), \alpha^{*}+1\right)\right)<_{R-K} U\left(i_{\mathcal{V}}(\kappa), i d\right)=i_{\mathcal{V}}(\mathcal{U})$. Let η represents a corresponding projection function in the ultrapower of $M_{\mathcal{V}}$ by $i_{\mathcal{V}}(\mathcal{U})$.
Then for all $\mu \in i_{\mathcal{V}}(A) \cap \alpha^{*}, \eta \in i_{i_{\mathcal{V}}(\mathcal{U})}\left(A_{\mu}^{\prime}\right)$.
Hence,

$$
\eta \in i_{i_{\nu}(\mathcal{U})}\left(A_{\rho^{u}}^{\prime}\right)
$$

So,

$$
\left(\rho^{\mathcal{U}}, \eta\right) \in i_{i_{\nu}(\mathcal{U})}(B) .
$$

We are done, since then

$$
\left\{E \subseteq[\kappa]^{2} \mid\left(\rho^{\mathcal{U}}, \eta\right) \in i_{i_{\mathcal{V}}(\mathcal{U})}(E)\right\} \supseteq \mathcal{U} \times \mathcal{V}
$$

but $\mathcal{U} \times \mathcal{V}$ is an ultrafilter, so

$$
\left\{E \subseteq[\kappa]^{2} \mid\left(\rho^{\mathcal{U}}, \eta\right) \in i_{i_{\mathcal{V}}(\mathcal{U})}(E)\right\}=\mathcal{U} \times \mathcal{V}
$$

which means that

$$
\mathcal{U} \times \mathcal{V}<_{R-K} \mathcal{V} \times \mathcal{U}
$$

The second theorem can be deduced from the first, but let us give a direct argument. Proof of the second theorem.
Let us show now that $\bar{U}(\kappa, 0) \times \mathcal{U}>_{R-K} \mathcal{U} \times \bar{U}(\kappa, 0)$.
Note that $\bar{U}(\kappa, 0)$ is normal. By Kanamori [4], it is impossible to have $\mathcal{V} \times \mathcal{U}>_{R-K} \mathcal{U} \times \mathcal{V}$ once \mathcal{U} is normal or even a P-point.

We have

$$
\mathcal{U}=\bar{U}(\kappa, 0)-\lim \langle\bar{U}(\kappa, \alpha) \mid \alpha<\kappa\rangle .
$$

So, the ultrapower with \mathcal{U} is obtained as follows. First $\bar{U}(\kappa, 0)$ is applied. We have

$$
i_{\bar{U}(\kappa, 0)}: V \rightarrow M_{\bar{U}(\kappa, 0)} .
$$

Next $\bar{U}\left(i_{\bar{U}(\kappa, 0)}(\kappa), \kappa\right)$ is applied over $M_{\bar{U}(\kappa, 0)}$. We have

$$
i_{\bar{U}\left(i_{\bar{U}(\kappa, 0)}(\kappa), \kappa\right)}: M_{\bar{U}(\kappa, 0)} \rightarrow M_{\bar{U}\left(i_{\bar{U}(\kappa, 0)}(\kappa), \kappa\right)} .
$$

The composition is the ultrapower embedding by \mathcal{U}, i.e.

$$
i_{\mathcal{U}}=i_{\bar{U}\left(i_{\bar{U}(\kappa, 0)}(\kappa), \kappa\right)} \circ i_{\bar{U}(\kappa, 0)}: V \rightarrow M_{\mathcal{U}}=M_{\bar{U}\left(i_{\bar{U}(\kappa, 0)}(\kappa), \kappa\right)} .
$$

Consider $\bar{U}(\kappa, 0) \times \mathcal{U}$.
So, we have $i_{\bar{U}(\kappa, 0)}: V \rightarrow M_{\bar{U}(\kappa, 0)}$ followed by $i_{\bar{U}(\kappa, 0)}(\mathcal{U})=U\left(i_{\bar{U}(\kappa, 0)}(\kappa), i d\right)$. The application of $U\left(i_{\bar{U}(\kappa, 0)}(\kappa), i d\right)$ to $M_{\bar{U}(\kappa, 0)}$ has the similar description to the one above.
Namely, $i_{\bar{U}(\kappa, 0)}(\bar{U}(\kappa, 0))$ is used first followed by

$$
\bar{U}\left(i_{i_{\bar{U}(\kappa, 0)}(\bar{U}(\kappa, 0))}\left(i_{\bar{U}(\kappa, 0)}(\kappa)\right), i_{\bar{U}(\kappa, 0)}(\kappa)\right) .
$$

In order to simplify the notation, let us denote $i_{\bar{U}(\kappa, 0)}$ by $i_{1}, M_{\bar{U}(\kappa, 0)}$ by $M_{1}, i_{\bar{U}(\kappa, 0)}(\kappa)$ by κ_{1}, the second ultrapower of $\bar{U}(\kappa, 0)$ by M_{2} and the image of κ_{1} there by κ_{2}.
Then $i_{\bar{U}(\kappa, 0) \times \mathcal{U}}: V \rightarrow M_{\bar{U}(\kappa, 0) \times \mathcal{U}}$ is $i_{1}: V \rightarrow M_{1}$ followed by $i_{\bar{U}\left(\kappa_{1}, 0\right)}: M_{1} \rightarrow M_{2}$ and then by $i_{\bar{U}\left(\kappa_{2}, \kappa_{1}\right)}: M_{2} \rightarrow M_{\bar{U}(\kappa, 0) \times u}$.
Note that in M_{2}, we have $\bar{U}\left(\kappa_{2}, \kappa_{1}\right)>_{R-K} \bar{U}\left(\kappa_{2}, \kappa\right)$ and even
$\bar{U}\left(\kappa_{2}, \kappa_{1}\right)>_{R-K} \bar{U}\left(\kappa_{2}, \kappa\right) \times \bar{U}\left(\kappa_{2}, 0\right)$.
Pick (η, ρ) which represents a corresponding projection function in the ultrapower of M_{2} by $\bar{U}\left(\kappa_{2}, \kappa_{1}\right)$.
Let us argue that

$$
\left\{E \subseteq[\kappa]^{2} \mid(\eta, \rho) \in i_{\bar{U}(\kappa, 0) \times \mathcal{U}}(E)\right\} \supseteq \mathcal{U} \times \bar{U}(\kappa, 0) .
$$

Let $A \in \mathcal{U}$, then

$$
[i d]_{\bar{U}\left(\kappa_{1}, \kappa\right)} \in i_{\mathcal{U}}(A)=i_{\bar{U}\left(\kappa_{1}, \kappa\right)}\left(i_{1}(A)\right) .
$$

Then, in M_{1},

$$
i_{1}(A) \in \bar{U}\left(\kappa_{1}, \kappa\right) .
$$

Apply the second ultrapower embedding $i_{\bar{U}\left(\kappa_{1}, 0\right)}$ to it. Note that its critical point is $\kappa_{1}>\kappa$. Then,

$$
i_{2}(A)=i_{\bar{U}\left(\kappa_{1}, 0\right)}\left(i_{1}(A)\right) \in i_{\bar{U}\left(\kappa_{1}, 0\right)}\left(\bar{U}\left(\kappa_{1}, \kappa\right)\right)=\bar{U}\left(\kappa_{2}, \kappa\right) .
$$

Next apply $i_{\bar{U}\left(\kappa_{2}, \kappa_{1}\right)}: M_{2} \rightarrow M_{\bar{U}(\kappa, 0) \times \mathcal{U}}$. So, by the choice of η,

$$
\eta \in i_{\bar{U}(\kappa, 0) \times \mathcal{U}}(A)=i_{\bar{U}\left(\kappa_{2}, \kappa_{1}\right)}\left(i_{2}(A)\right) .
$$

Suppose now that $B \in \mathcal{U} \times \bar{U}(\kappa, 0)$. Set

$$
A:=\{\mu<\kappa \mid\{\xi<\kappa \mid(\mu, \xi) \in B\} \in \bar{U}(\kappa, 0)\} .
$$

Then $A \in \mathcal{U}$ and for every $\mu \in A$ the set

$$
A_{\mu}:=\{\xi<\kappa \mid(\mu, \xi) \in B\} \in \bar{U}(\kappa, 0) .
$$

Apply i_{2}. Then, in M_{2},

$$
\forall \mu \in i_{2}(A)\left(A_{\mu} \in \bar{U}\left(\kappa_{2}, 0\right)\right) .
$$

But, by above, we have

$$
i_{2}(A) \in \bar{U}\left(\kappa_{2}, \kappa\right),
$$

hence,

$$
i_{2}(B) \in \bar{U}\left(\kappa_{2}, \kappa\right) \times \bar{U}\left(\kappa_{2}, 0\right)
$$

So,

$$
(\eta, \rho) \in i_{\bar{U}(\kappa, 0) \times \mathcal{U}}(B),
$$

and we are done.

Let us address now the strength issue.
Theorem 4.3 Suppose that there is no inner model in which κ is a measurable with $\{o(\alpha) \mid \alpha<\kappa\}$ unbounded in it. Then for any two κ-complete ultrafilters \mathcal{U} and \mathcal{V} over κ, if $\mathcal{V} \times \mathcal{U} \geq_{R-K} \mathcal{U} \times \mathcal{V}$, then there is an integer n such that $\mathcal{V}=_{R-K} \mathcal{U}^{n}$.

Proof. Suppose that there is no inner model in which κ is a measurable with $\{o(\alpha) \mid \alpha<\kappa\}$ unbounded in it. Then the separation holds and there are no κ non-RudinKeisler equivalent ultrafilters which are Rudin-Keisler below some κ-complete ultrafilter.

Let \mathcal{U} and \mathcal{V} be two κ-complete ultrafilters over κ and $\mathcal{V} \times \mathcal{U} \geq_{R-K} \mathcal{U} \times \mathcal{V}$. Let $(\rho, \eta) \in\left[i_{\mathcal{V} \times \mathcal{U}}(\kappa)\right]^{2}$ generates $\mathcal{U} \times \mathcal{V}$, i.e.

$$
\mathcal{U} \times \mathcal{V}=\left\{X \subseteq[\kappa]^{2} \mid(\rho, \eta) \in i_{\mathcal{V} \times \mathcal{U}}(X)\right\}
$$

Clearly, then $\eta>i_{\mathcal{V}}(\kappa)$. Consider in $M_{\mathcal{V}}$ an ultrafilter \mathcal{W} defined by η, i.e.

$$
\mathcal{W}:=\left\{Z \subseteq i_{\mathcal{V}}(\kappa) \mid \eta \in i_{i_{\mathcal{V}}(\mathcal{U})}(Z)\right\} .
$$

Clearly, $\mathcal{W} \leq_{R-K} i_{\mathcal{V}}(\mathcal{U})$. Find a sequence of ultrafilters $\left\langle\mathcal{W}_{\alpha} \mid \alpha<\kappa\right\rangle$ which represents \mathcal{W} in the ultrapower by \mathcal{V}, i.e.

$$
i_{\mathcal{V}}\left(\left\langle\mathcal{W}_{\alpha} \mid \alpha<\kappa\right\rangle\right)\left([i d]_{\mathcal{V}}\right)=\mathcal{W} .
$$

So, for most $(\bmod \mathcal{V}) \alpha ' s, \mathcal{W}_{\alpha} \leq_{R-K} \mathcal{U}$.
Note that

$$
\mathcal{V}=\mathcal{V}-\lim \left\langle\mathcal{W}_{\alpha} \mid \alpha<\kappa\right\rangle .
$$

Namely,

$$
\begin{gathered}
X \in \mathcal{V} \Leftrightarrow \eta \in i_{\mathcal{V} \times \mathcal{U}}(X) \Leftrightarrow i_{\mathcal{V}}(X) \in \mathcal{W} \\
\Leftrightarrow\left\{\alpha<\kappa \mid X \in \mathcal{W}_{\alpha}\right\} \in \mathcal{V} \Leftrightarrow X \in \mathcal{V}-\lim \left\langle\mathcal{W}_{\alpha} \mid \alpha<\kappa\right\rangle .
\end{gathered}
$$

The sequence $\left\langle\mathcal{W}_{\alpha} \mid \alpha<\kappa\right\rangle$ may contain same ultrafilters, but among them must be κ different. Just otherwise, $\bmod \mathcal{V}$ they will be the same. Let \mathcal{W}^{\prime} be this ultrafilter. Then, $\mathcal{V}=\mathcal{V}-\lim \left\langle\mathcal{W}_{\alpha} \mid \alpha<\kappa\right\rangle$, implies $\mathcal{V}=\mathcal{W}^{\prime}$. So, $\mathcal{V} \leq_{R-K} \mathcal{U}$.
Now, if $\rho<i_{\mathcal{V}}(\kappa)$, then $\mathcal{U} \leq_{R-K} \mathcal{V}$. Hence, $\mathcal{U}=_{R-K} \mathcal{V}$, which is impossible.
Assume for a while that $\rho<i_{\mathcal{V}}(\kappa)$.
Still among this different \mathcal{W}_{α} 's may be many which are Rudin-Keisler equivalent.
If the number of the equivalence classes has cardinality κ then we are done. Suppose otherwise. Then there is \mathcal{W}^{\prime} such that $\mathcal{W}_{\alpha}={ }_{R-K} \mathcal{W}^{\prime}$, for almost every $\alpha \bmod \mathcal{V}$.
Set $\alpha \sim \beta$ iff $\mathcal{W}_{\alpha}=\mathcal{W}_{\beta}$. Let $t: \kappa \rightarrow \kappa$ be a function which picks exactly one ultrafilter in such equivalence classes.

Set $\mathcal{V}^{\prime}=t_{*} \mathcal{V}$. Then

$$
\mathcal{V}=\mathcal{V}^{\prime}-\lim \left\langle\mathcal{W}_{\alpha} \mid \alpha<\kappa\right\rangle .
$$

Now, using the separation property, the ultrapower by \mathcal{V} is the ultrapower by \mathcal{V}^{\prime} followed by $\mathcal{W}_{[i d]_{V}}$.
But $\mathcal{W}_{[i d]_{\mathcal{V}^{\prime}}}={ }_{R-K} i_{\mathcal{V}^{\prime}}\left(\mathcal{W}^{\prime}\right)$, so its ultrapower is the same as those by $i_{\mathcal{V}^{\prime}}\left(\mathcal{W}^{\prime}\right)$. This means
that the iterated ultrapower is just $\mathcal{V}^{\prime} \times \mathcal{W}^{\prime}$.
So, $\mathcal{V}^{\prime} \times \mathcal{W}^{\prime}={ }_{R-K} \mathcal{V}$.
Then

$$
\mathcal{V} \leq_{R-K} \mathcal{V}^{\prime} \times \mathcal{U} \text { and } \mathcal{V}^{\prime}<_{R-K} \mathcal{V}
$$

Following Kanamori [4],5.9, we would like to argue that $\mathcal{U} \times \mathcal{V}^{\prime} \leq_{R-K} \mathcal{V}$ and then to apply induction to

$$
\mathcal{U} \times \mathcal{V}^{\prime} \leq_{R-K} \mathcal{V}^{\prime} \times \mathcal{U}
$$

I.e. there will be $n<\omega$ such that $\mathcal{V}^{\prime}={ }_{R-K} \mathcal{U}^{n}$, and then

$$
\mathcal{U} \times \mathcal{V}^{\prime} \leq_{R-K} \mathcal{V} \leq_{R-K} \mathcal{V}^{\prime} \times \mathcal{U}
$$

will imply that $\mathcal{V}={ }_{R-K} \mathcal{U}^{n+1}$. Denote $[t]_{\mathcal{V}}$ by ρ^{\prime}. By Kanamori [4],5.4, it is enough to show that for any not constant $\bmod \mathcal{V}$ function $g: \kappa \rightarrow \kappa$,

$$
\rho<i_{\mathcal{V} \times \mathcal{U}}(g)\left(\rho^{\prime}\right)
$$

Also, Kanamori $[4], 5.4$, we know that for any not constant $\bmod \mathcal{V}$ function $g: \kappa \rightarrow \kappa$,

$$
\rho<i_{\mathcal{V} \times \mathcal{U}}(g)(\eta)
$$

So it will be enough to show that there is $s: \kappa \rightarrow \kappa$ such that

$$
\rho^{\prime}=i_{\mathcal{V} \times \mathcal{U}}(s)(\eta)
$$

Define such s by using the separation property \mathcal{W}_{α} 's relatively to \mathcal{V}^{\prime}.
Thus let

$$
\left\langle A_{\alpha} \mid \alpha \in B\right\rangle
$$

be a disjoint family of sets, $B \in \mathcal{V}^{\prime}$ such that each $A_{\alpha} \in \mathcal{W}_{\alpha}$. Consider

$$
\left\langle A_{\alpha}^{\prime} \mid \alpha \in i_{\mathcal{V} \times \mathcal{U}}(B)\right\rangle=i_{\mathcal{V} \times \mathcal{U}}\left(\left\langle A_{\alpha} \mid \alpha \in B\right\rangle\right)
$$

Then $\eta \in A_{\rho^{\prime}}^{\prime}$, since η generates $W_{\rho^{\prime}}$ in $M_{\mathcal{V}}$.
So, define $s: \kappa \rightarrow \kappa$ by setting

$$
s(\mu)=\min \left(\left\{\alpha \mid \mu \in A_{\alpha}\right\}\right)
$$

Suppose now that $\rho \geq i_{\mathcal{V}}(\kappa)$. Then, as above, replacing η by (ρ, η), we will have in $M_{\mathcal{V}}$ an ultrafilter W defined by (ρ, η), i.e.

$$
W:=\left\{Z \subseteq\left[i_{\mathcal{V}}(\kappa)\right]^{2} \mid(\rho, \eta) \in i_{i_{\mathcal{V}}(\mathcal{U})}(Z)\right\}
$$

Clearly, $W \leq_{R-K} i_{\mathcal{V}}(\mathcal{U})$. Find a sequence of ultrafilters $\left\langle W_{\alpha} \mid \alpha<\kappa\right\rangle$ which represents W in the ultrapower by \mathcal{V}, i.e.

$$
i_{\mathcal{V}}\left(\left\langle W_{\alpha} \mid \alpha<\kappa\right\rangle\right)\left([i d]_{\mathcal{V}}\right)=W .
$$

So, for most $(\bmod \mathcal{V}) \alpha ' s, W_{\alpha} \leq_{R-K} \mathcal{U}$.
Note that

$$
\mathcal{U} \times \mathcal{V}=\mathcal{V}-\lim \left\langle W_{\alpha} \mid \alpha<\kappa\right\rangle
$$

Namely,

$$
\begin{gathered}
X \in \mathcal{U} \times \mathcal{V} \Leftrightarrow(\rho, \eta) \in i_{\mathcal{V} \times \mathcal{U}}(X) \Leftrightarrow i_{\mathcal{V}}(X) \in W \\
\Leftrightarrow\left\{\alpha<\kappa \mid X \in W_{\alpha}\right\} \in \mathcal{V} \Leftrightarrow X \in \mathcal{V}-\lim \left\langle W_{\alpha} \mid \alpha<\kappa\right\rangle .
\end{gathered}
$$

The sequence $\left\langle W_{\alpha} \mid \alpha<\kappa\right\rangle$ may contain same ultrafilters, but among them must be κ different. Just otherwise, $\bmod \mathcal{V}$ they will be the same. Let W^{\prime} be this ultrafilter. Then, $\mathcal{U} \times \mathcal{V}=\mathcal{V}-\lim \left\langle W_{\alpha} \mid \alpha<\kappa\right\rangle$, implies $\mathcal{U} \times \mathcal{V}=W^{\prime}$. So, $\mathcal{U} \times \mathcal{V} \leq_{R-K} \mathcal{U}$, which is impossible. Still among this different W_{α} 's may be many which are Rudin-Keisler equivalent.
If the number of the equivalence classes has cardinality κ then we are done. Suppose otherwise. Then there is W^{\prime} such that $W_{\alpha}={ }_{R-K} W^{\prime}$, for almost every $\alpha \bmod \mathcal{V}$.
Set $\alpha \sim \beta$ iff $W_{\alpha}=W_{\beta}$. Let $t: \kappa \rightarrow \kappa$ be a function which picks exactly one ultrafilter in such equivalence classes.
Set $\mathcal{V}^{\prime}=t_{*} \mathcal{V}$. Then

$$
\mathcal{U} \times \mathcal{V}=\mathcal{V}^{\prime}-\lim \left\langle W_{\alpha} \mid \alpha<\kappa\right\rangle
$$

Now, using the separation property, the ultrapower by $\mathcal{U} \times \mathcal{V}$ is the ultrapower by \mathcal{V}^{\prime} followed by $W_{[i d]_{V^{\prime}}}$.
But $W_{[i d]_{\mathcal{V}^{\prime}}}={ }_{R-K} i_{\nu^{\prime}}\left(W^{\prime}\right)$, so its ultrapower is the same as those by $i_{\mathcal{V}^{\prime}}\left(W^{\prime}\right)$. This means that the iterated ultrapower is just $\mathcal{V}^{\prime} \times W^{\prime}$.
So, $\mathcal{V}^{\prime} \times W^{\prime}={ }_{R-K} \mathcal{U} \times \mathcal{V}$. Then by Kanamori [4] (5.6), at least one of the following three possibilities must holds:

1. $W^{\prime}={ }_{R-K} \mathcal{V}$ and $\mathcal{V}^{\prime}={ }_{R-K} \mathcal{U}$;
2. there is a κ-complete ultrafilter F, such that $\mathcal{V}^{\prime}={ }_{R-K} \mathcal{U} \times F$ and $\mathcal{V}={ }_{R-K} F \times W^{\prime}$;
3. there is a κ-complete ultrafilter G such that $\mathcal{U}={ }_{R-K} \mathcal{V}^{\prime} \times G$ and $W^{\prime}={ }_{R-K} G \times \mathcal{V}$.

Suppose for a moment that the first possibility occurs. Then

$$
\mathcal{U} \geq_{R-K} \mathcal{W}^{\prime}=_{R-K} \mathcal{V} \geq_{R-K} \mathcal{V}^{\prime}=_{R-K} \mathcal{U}
$$

So, $\mathcal{U}={ }_{R-K} \mathcal{V}$, and then $\mathcal{U} \times \mathcal{V}={ }_{R-K} \mathcal{V} \times \mathcal{U}$, which is impossible.
Suppose now that the second possibility occurs.
Then $\mathcal{V} \geq_{R-K} \mathcal{V}^{\prime}$ and $W^{\prime} \leq_{R-K} U$ imply

$$
\mathcal{U} \times F \leq_{R-K} F \times W^{\prime} \leq_{R-K} F \times \mathcal{U}
$$

But, also (2) implies that $\mathcal{V}>_{R-K} F$. So, we can apply the induction to

$$
\mathcal{U} \times F \leq_{R-K} F \times \mathcal{U} .
$$

Consider now the third possibility.
Then $\mathcal{U} \geq_{R-K} W^{\prime}$ and $\mathcal{V} \geq_{R-K} \mathcal{V}^{\prime}$ imply

$$
\mathcal{V} \times G \geq_{R-K} \mathcal{V}^{\prime} \times G \geq_{R-K} G \times \mathcal{V} .
$$

But, also (3) implies that $\mathcal{U}>_{R-K} G$. So, we can apply the induction to

$$
\mathcal{V} \times G \geq_{R-K} G \times \mathcal{V}
$$

References

[1] M. Gitik, Changing cofinalities and the nonstationary ideal, Israel Journal of Math., 56(3),1986,280-314.
[2] M. Gitik, Prikry type forcings, in Handbook of Set Theory, Foreman, Kanamori, eds.
[3] M. Gitik, On Mitchell and Rudin-Keisler orderings of ultrafilters, Annals of Pure and Applied Logic 39 (1988), 175-197.
[4] A. Kanamori, Ultrafilters over a measurable, Ann. of Math. Logic, 11 (1976), 315-356.
[5] W. Mitchell, Core model for sequences of measures,

[^0]: *The work was partially supported by Israel Science Foundation Grant No. 58/14. We are grateful to Eilon Bilinski who drew our attention to the subject, to Tom Benhamou and Eyal Kaplan for stimulating questions and discussions.

[^1]: ${ }^{1}$ Theorem 5.10 of [4] states that this is impossible, however we think that there is a problem in the argument. Namely, on page 346, line 7 - sets depend on β 's; this effects the further definition of a function f (line 16). Its unclear how to insure $f(\xi)>f\left(\xi^{\prime}\right)$ for most ξ 's, and, so f may be constant mod D_{0}.

