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Abstract

We continue the work done in [6],[2],[3]. We prove that for every set A in a Magidor-

Radin generic extension using a coherent sequence such that o
~U (κ) = κ, there is C ′ ⊆

CG, such that V [A] = V [C ′].

1 Introduction

In this paper we consider the version of Magidor-Radin forcing for o
~U(κ) = κ. The major

difference when we let o
~U(κ) = κ, is that we cannot split M[~U ] to the part below o

~U(κ) and
above it. As proven in [3], this decomposition provided the ability to run over all possible
extension types. In terms of CG this means that we cannot split CG below κ in a way that
will determine what are the measure which we use in the construction of CG. The classic
example for such a sequence is

κ0, κκ0 , κκκ0 , ...

in which every element in the sequence is taken from a measure which depends of the previous
element in the sequence. This suggest that some sort of tree construction is needed in order
to refer to such sequences in the ground model.

In context of [3] and [2], we are working by induction on κ. In Sections 2, 3 we will

assume that o
~U(κ) < κ+ and in 4, 5 the assumption is that o

~U(κ) = κ. In the results of

Sections 2,3 and 4.1, 4.2, there are no restrictions on o
~U(δ) for δ < κ. In Sections 4.3, 4.4, 5

we assume that ∀α ≤ κ. o
~U(α) ≤ α. Most of the claims in those section are proven without

the restriction on o
~U(δ), in order to provide basis for future work.

The main result of this paper is:

∗The work of the second author was partially supported by ISF grant No.1216/18.
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Theorem 1.1 Let ~U be a coherent sequence such that for every α ≤ κ, o
~U(α) ≤ α. Then

For every V -generic filter G ⊆ M[~U ], and every A ∈ V [G], there is C ′ ⊆ CG such that
V [A] = V [C ′].

Distinguishing from the case where o
~U(κ) < min(λ | 0 < o

~U(λ)), we do not have a classifica-
tion of what are exactly the subforcings which generates the models V [C ′]. Let us give some

examples of sub forcing of M[~U ] in the case of o
~U(κ) = κ.

Example 1.2 Let G be a generic with ,CG be the generic club added by M[~U ], consider
the increasing continuous enumeration of CG, 〈CG(i) | i < κ〉. Assume that CG(0) > 0, and
consider again the sequence 〈κn | n < ω〉 which is defined as follows:

κ0 = CG(0), κn+1 = CG(κn)

Consider the following tree of measures:

~W = 〈W~α | ~α ∈ [κ]<ω〉

where W~α = U(κ,max(~α)). Note here the since o
~U(κ) = κ, this is well defined. It is not hard

to check the Mathias criteria for the tree-Prikry forcing with ~W , given in [1], to conclude

that 〈κn | n < ω〉 is a tree-Prikry generic sequence with respect to ~W . Note that, since the
sequence of measures 〈U(κ, i) | i < κ〉 is a discrete family of normal measure, this tree-Prikry
forcing falls under the framework of [10] and therefore the model V [〈κn | n < ω〉] is minimal

above V . This phenomena does not occur in generic extensions of M[~U ] with o
~U(κ) < κ.

Example 1.3 The previous example can be made more complex. Let f : [κ]<ω → κ be any
function. Then 〈αn | n < ω〉 is defined as follows: α0 = CG(〈〉) and αn+1 is obtained by

applying f to some finite ~Cn ∈ [CG]<ω i.e. αn+1 = CG(f(~Cn)).

All the notations and basic definitions can be found in [3] section 2.

2 Fat Trees

Definition 2.1 Let ~U be a coherent sequence of normal measures and θ1 ≤ ... ≤ θn be
measurables with o

~U(θi) > 0. A ~U − fat tree on θ1 ≤ ... ≤ θn is a tree 〈T,≤T 〉 such that

1. T ⊆ [θn]≤n and 〈 〉 ∈ T .

2. ≤T is end-extension i.e. t ≤T s⇔ t = s ∩max(t) + 1

3. T is downward closed in end-extension.
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4. For any t ∈ T one of the following holds:

(a) There is β < o
~U(θ|t|+1) such that {α | t_〈α〉 ∈ T} ∈ U(θ|t|+1, β).

(b) |t| = n

We will use some usual notations of trees:

• SuccT (t) = {α | ta〈α〉 ∈ T}.

• Note that if the measures in ~U can be separated i.e. there are 〈X(α, β) | 〈α, β〉 ∈
Dom(~U)〉 such that Xi ∈ Ui∧∀j 6= iXi /∈ Uj, then we can intersect each set of the form

SuccT (t) with appropriate Xi and define U
(T )
t = U(θ|t|+1, β) if sucT (t) ∈ U(θ|t|+1, β)

(We drop the script (T ) when there is no risk of confusion).

• We will assume that if θi < θi+1 then for every t ∈ levi(T ), min(sucT (t)) > θi.

• ht(t) = otp(s ∈ T | s <T t)

• levi(T ) = {t ∈ T | ht(t) = i}.

• The height of a tree is ht(T ) = max({n < ω | levn(T ) 6= ∅}).

• For t ∈ T the tree above t is Tt = {s ∈ T | t ≤T s}.

• The set of all maximal branches of T is denoted by mb(T ) = levht(T )(T ).

• Let J ⊆ {0, 1, ..., ht(T )} then T � J =
⋃
j∈J
levj(T )

Proposition 2.2 Let T be a ~U-fat tree on θ1 ≤ ... ≤ θn, Then there is a θ1-complete
ultrafilter ~UT on

∏
1≤i≤ht(T )

θi such that mb(T ) ∈ ~UT .

Proof. by induction on ht(T ), If ht(T ) = 1 just take sucT (〈〉). Let T be a tree with ht(T ) = n,

Let α ∈ sucT (〈〉) then by hypothesis there is ~UTα . For X ⊆
∏ht(T )

i=1 θi

X ∈ ~UT ⇔ {α < θ1 | Xα ∈ ~UTα} ∈ U〈〉

where Xα = X ∩ ({α} ×
∏ht(T )

i=2 θi). By definition mb(T ) ∈ ~UTα . It is routine to check that
~UT is a θ1-complete ultrafilter.
�

For any t, t′ ∈ mb(T ), the of set t∪ t′ naturaly orders in one of finitely many orders. For
example, if t = 〈α1, .α2, α3〉 and t′ = 〈α′1, α′2, α′3〉 the following is a possible such interweaving:

α1 < α′1 = α2 < α′2 < α′3 < α3
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Definition 2.3 An interweaving p is a pair of order embedding 〈g, g′〉 where g, g′ : ht(T )→
{1, ..., k} so that Im(g)∪ Im(g′) = {1, ..., k}. Denote Ap = Im(g), A′p = Im(g′) and k = |p|.

Define the iteration associated with p, jp in the following way: the length of the iteration

is |p|, start with the pair 〈0, 0〉, set A
〈0,0〉
p = A

′〈0,0〉
p = ∅. Assume that we are at some stage

with the pair 〈n1, n2〉 and we have performed the mth iteration with critical points κ1, ..., κm.
Also assume inductively that

〈ki | i ∈ Ap ∩m+ 1〉 ∈ jm(T ), 〈ki | i ∈ A′p ∩m+ 1〉 ∈ jm(T )

If m+ 1 ∈ Ap \A′p, then perform the ultrapower by jm(~U)〈κi|i∈Ap∩m+1〉 which is an ultrafilter
over κm+1 = jm(θn1) where g(n1) = m + 1. If m + 1 ∈ A′p \ Ap we act in a similar manner.
Note that it is impossible that κm+1 is less then some κj by the assumption we made that
for t ∈ levj(T ), min(sucT (t)) > θj. If m + 1 = g(n1) = g′(n2) there are two possibilities,
either

jm(~U)〈κi|i∈Ap∩m+1〉 6= jm(~U)〈κj |j∈A′p∩m+1〉

In this case we stop, and declare that the iteration is undefined. Otherwise

jm(~U)〈κi|i∈Ap∩m+1〉 = jk(~U)〈κj |j∈A′p∩m+1〉

perform the ultrapower with this measure,

Proposition 2.4 Let T be a ~U-fat tree, where ~U is a discrete family of normal measures.
For any interweaving p

1. If jp is defined, then there is a ~U-fat tree, Sp, with ht(Sp) = |p| and for every s ∈
mb(Sp), s � Ap, s � A′p ∈ mb(T ) interweave as in p. Moreover, U

(Sp)
r = U

(T )
r�Ap∩ht(r) or

U
(sp)
r = U

(T )
r�A′p∩ht(r)

.

2. For any formula Φ(X, y1, ..., y|p|) and any parameter f ∈ V we have

M |= Φ(jp(f), κ1, ..., κ|p|)⇔ {~α ∈ [κ]|p| | Φ(f, ~α)} ∈ ~USp

3. We can shrink T to R such that mb(R) ∈ ~UT and if t, t′ ∈ mb(R) interweave as in p
then t ∪ t′ ∈ Sp

4. If in p α′1 < α1, then we can shrink T to R such that mb(R) ∈ ~UT and for every
t ∈ mb(R) and α ∈ SuccR(〈〉) ∩min(t) there is t′ ∈ mb(T ) such that t, t′ interweave as
p and min(t′) = α.

5. If the iteration jp is not defined then there is S such that mb(S) ∈ ~UT and there are
no t, t′ ∈ mb(S) interweaving as in p.
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Proof. Let θi be the meausrables of the interweaving i.e. jp(θi) = κi. Prove 1, 2 simultane-

ously, by induction on k we will define S
(k)
p - a tree of height k which correspond to step k of

the iteration. S
(0)
p = {∅}, and S

(1)
p = T � 1 which satisfy 1, 2 by Los theorem. Assume that

S
(m)
p is defined and 1, 2 hold. Consider the mth step of the iteration. If m + 1 ∈ Ap \ A′p

define S
(m+1)
p � m = S

(m)
p and for every ~α ∈ Levm(S

(m)
p ) define

Succ
S
(m+1)
p

(~α) = sucT (~α � Ap ∩m+ 1) \ (max(~α) + 1) ∈ U (T )
~α�Ap∩m+1

If m+ 1 ∈ A′p \Ap the definition is similar. Assume that m+ 1 = g(n1) = g′(n2), since jp is
defined

jm(~U)〈κi|i∈Ap∩m+1〉 = jm(~U)〈κj |j∈A′p∩m+1〉

By 2 of the induction hypothesis it follows the

Levm(S(m+1)
p ) := {~α ∈ Levk(S(m)

p ) | ~U~α�Ap∩(m+1) = ~U~α�A′p∩(m+1)} ∈ US(m)
p

For ~α ∈ Levm(S
(m+1)
p ) define

Succ
S
(m+1)
p

(~α) = SuccT (~α � Ap ∩ (m+ 1)) ∩ sucT (~α � A′p ∩ (m+ 1)) ∈ ~U (T )
~α�Ap∩(m+1)

To see that 1, 2 hold, 1 follows directly from the definition of S
(m+1)
p . For 2, Let Φ(X, y1, ..., ym+1)

be any formula and f ∈ V , then

Mm+1 |= Φ(jm+1(f), κ1, ..., κm+1)↔Mm |= {α < κm+1 | Φ(jm(f), κ1, ..., κm, α)} ∈ jm(~U)〈κi|i∈Ap〉

↔ {~α ∈ [θm]≤m | {α < θm+1 | Φ(f, ~α, α)} ∈ U~α�Ap∩(m+1)} ∈ US(m)
p
↔ {~α_α | Φ(f, ~α, α)} ∈ U

S
(m+1)
p

Finally, Sp = S
(|p|)
p is as wanted.

To see 3, for every ~α ∈ Levm+1(Sp) define t(~α) ∈ T to be ~α � Ap ∩m + 1 and t′(~α) = ~α �
A′p ∩ m + 1. From 1 it follows that if m + 1 ∈ Ap then sucSp(~α) ∈ Ut(~α) and similarly for
m+ 1 ∈ A′p. Define R inductively, let k1 = min(Ap), k2 = min(A′p) then

sucR(〈〉) = ∆~α∈Levk1 (Sp)sucSp(~α) ∩∆~α∈Levk2 (Sp)sucSp(~α) ∈ U (T )
〈〉

Assume r ∈ Levm(R) is defined, let g(m) = n1 and g′(m) = n2. Define

sucR(r) = ∆
~α∈Levn1 (Sp),t(~α)=r

sucSp(~α) ∩ ∆
~α∈Levn2 (Sp),t′(~α)=r

sucSp(~α) ∈ U (T )
r

So R ∈ ~UT . To see 4, suppose that α′1 < α1 and Ap = {n1, ..., nk}. Define a sequence

inductively, let ~η1 = 〈β1, ..., βn1−1〉 ∈ Sp. Then by 1, sucSp(~η1) ∈ U
(T )
〈〉 , thus

κ1 ∈ j1(sucSp(~η1)) = sucj1(Sp)(~η1)
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Consider ~η_1 〈κ1〉 ∈ levn1(j1(Sp)), pick any ~η2 such that ~η_1 〈κ1〉_~η2 ∈ levn2−1(j1(Sp)), then

sucj1(Sp)(~η
_
1 〈κ1〉_~η2) ∈ j1(~U)(j1(T ))κ ⇒ κ2 ∈ sucj2(Sp)(~η_1 〈κ1〉_~η2)

continuing in this fashion we end up with a witness for the statement

Mn |= ∃t ∈ mb(jn(T )) s.t. 〈κ1, ..., κn〉, t interweave as in p

Since β1 ∈ sucSp(〈〉) = sucT (〈〉) was arbitrary, it follows that

Mn |= ∀β ∈ sucj1(T )(〈〉)∩κ1∃t ∈ mb(jn(T )) s.t. min(t) = β∧〈κ1, ..., κn〉, t interweave as in p

By 2, 3, we can find R as wanted. To prove 5, we apply 1, 2, 3 to first level of the iteration
which is not defiend. �

The following lemmas are generalizations of the combinatorical property that were proven
in [2] for product of measures. They can be stated for more general trees but we will restrict
our attention to our needs.

Lemma 2.5 Let ~U be a sequence of normal measures and let T be a ~U-fat tree on θ1 ≤
θ2 ≤ ... ≤ θn. For any λ < θ1 and f : mb(T ) → λ there is a ~U-fat tree T ′ ⊆ T such that

mb(T ′) ∈ ~UT and f � mb(T ′) = const.

Proof. By induction on the heigth of a tree. If ht(T ) = 1 it is the case of one measure, U〈〉,
which is well known. Assume the lemma holds for n and fix T, f such that ht(T ) = n + 1.
For ~α = 〈α0, ...αn−1〉 ∈ levn(T ) consider sucT (~α) ∈ U~α. Define f~α : sucT (~α) → λ by
f~α(β) = f(~α_β). Then there exist H~α ∈ U~α homogeneous for f~α with color c~α. Consider
the function

g : mb(T � n+ 1)→ λ g(~α) = c~α

Since ht(T � n+ 1) = n we can apply the induction hypothesis to g, so let T ′ ⊆ T � n+ 1 be

an homogeneous ~U -fat subtree. Extend T ′ by adjoining H~α as the successors of ~α ∈ mb(T ′),
denote the resulting tree by T ∗. Note that by the induction, T ∗ is a ~U -fat tree with ht(T ∗) =
n+ 1. It is routine to check that T ∗ is as wanted.
�

Lemma 2.6 Let T be a ~U-fat tree on θ1 ≤ ... ≤ θn and f : mb(T )→ B where B is any set.

Then there is a ~U-fat tree T ′ ⊆ T , with mb(T ′) ∈ ~UT I ⊆ {1, ..., ht(T )} such that for any
t, t′ ∈ mb(T ′)

t � I = t′ � I ⇔ f(t) = f(t′)

We call the set I- a set of important coordinates.
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Note that the condition t � I = t′ � I ⇔ f(t) = f(t′) ensures that f is well defined modulo
this relation and the induced function is 1− 1. We denote this function by fI .

Proof. Again we go by induction on ht(T ). For ht(T ) = 1 it is well known. Assume
ht(T ) = n+ 1 and fix α ∈ lev1(T ) consider the function

fα : mb(T〈α〉)→ B fα(~β) = f(α_~β)

By the induction hypothesis there is T ′α ⊆ T〈α〉 and Iα ⊆ {2, ..., n + 1} for which the lemma
holds. Shrink lev1(T ) to H ∈ U〈〉 so there is I ′ such that Iα = I ′ for α ∈ H. Let S be the tree
with lev1(S) = H and for every α ∈ H, (S)α = T ′α. Our strategy is to go over all possible
interweaving of counter examples for the lemma and shrink the tree S to try eliminate them.
A counter example is two elements t = 〈α1, ..., αn+1〉, t′ = 〈α′1, ..., α′n+1〉 ∈ mb(S), such that

t � I ′ ∪ {1} 6= t′ � I ′ ∪ {1} ∧ f(t) = f(t′)

Note that ifmin(t) = min(t′) then by the construction of S, t, t′ cannot be a counter example,
hence a counter example is one with min(t) 6= min(t′). Fix any interweaving p with α1 6= α′1,
and consider the corresponding iteration, jp. If this iteration is undefined then by 2.4(5) we
can shrink S such that we have eliminated this kind interweaving. If the iteration is defined,
compare jp(f)(〈κi | i ∈ Ap〉), jp(f)(〈κj | j ∈ A′p〉). Suppose the interweaving is such that for
some i ∈ I ′, αi 6= α′i we claim that

jp(f)(〈κi | i ∈ Ap〉) 6= jp(f)(〈κj | j ∈ A′p〉)

Otherwise by 2.4(2), we can shrink S so that any t, t′ which interweaves as p, satisfy f(t) =
f(t′). WLOG suppose that α′i < αiand let q = g(i), in particular q ∈ Ap. We construct
recursively two maximal branches of Sp, pick any element in t ∈ levq−1(Sp), pick tq < rq ∈
sucSp(t). Assume that tk, rk are defined such that for any j ∈ A′p ∩ (k + 1), tj = rj. If

k + 1 ∈ A′p then ~U
(Sp)

t_〈tl...tk〉,
~U

(Sp)

t_〈rl...rk〉 depends only on t_〈tl, ..., tk〉 � A′p = t_〈rl, ..., rk〉 � A′p
so we can choose

tk+1 = rk+1 ∈ sucSp(t_〈tl...tk〉) ∩ sucSp(t_〈rl...rk〉)

If k + 1 ∈ Ap, extend tk, rk randomly. Eventually we obtain t∗, r∗ ∈ mb(Sp) with t∗ � A′p =
r∗ � A′p = ~α′ and min(t∗) = min(r∗) = min(t). Hence t∗ � Ap, r∗ � Ap, ~α′ ∈ mb(S), note that
both t∗ � Ap, ~α′ and r∗ � Ap, ~α′ interweave as in p. Consequently,

f(t∗ � Ap) = f(~α′) = f(r∗ � Ap)

This means we found a counter example with the same first coordinate with is a contradiction,
concluding that jp(f)(〈κi | i ∈ Ap〉) 6= jp(f)(〈κj | j ∈ A′p〉) . By 2.4(2) we can shrink S so
that for every t, t′ which interweaves as p, f(t) 6= f(t′), in other words, we have eliminated
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all such counter examples which coresponds to p. Next, consider p in which αi = α′i for every
i ∈ I ′. If

jp(f)(〈κi | i ∈ Ap〉) = jp(f)(〈κj | j ∈ A′p〉)
then we can shrink S so that whenever t, t′ ∈ mb(S) interweave as p, f(t) = f(t′). By 2.4 (4)
we can shrink S further to S∗ so that for evert t ∈ mb(S∗) and α < min(t) there is s ∈ mb(S)
so that min(s) = α∧ t, s interweave as in p. We claim that 1 is not an important coordinate
i.e. I ′ = I is a set of important coordinate. To see this, assume that t, t′ ∈ mb(S∗). WLOG
assume that min(t′) = α < min(t), by the construction of S∗, there is t′′ ∈ mb(S) such that
t, t′′ interweave as in p and min(t′) = α = min(t′′), also t � I = t′′ � I. Hence f(t) = f(t′′)
and

f(t) = f(t′)⇔ f(t′′) = f(t′)⇔ t′′ � I = t′ � I ⇔ t � I = t′ � I

Finally if jp(f)(〈κi | i ∈ Ap〉) 6= jp(f)(〈κj | j ∈ A′p〉) then we shrink S and eliminate counter
examples of the form p. Obviously, if we went through all possible interweaving of a counter
examples and eliminated them, then I = I ′ ∪ {1} will be a set of important coordinate. �

Given F : mb(T ) → κ as in the last lemma, and important coordinates I, it is possible
that the reason for a specific i to be in I is that for every ~α, ~α′ ∈ mb(T ) if αi 6= α′i then for
some j ∈ I, i 6= j and αj 6= α′j. In this case it is possible to drop i from I since

~α � I = ~α′ � I ⇔ ~α � I \ {i} = ~α′ � I \ {i}

In general we can pick I so that no matter how we shrink T to S with mb(S) ∈ ~UT , for every
i ∈ I there are ~α, ~α′ ∈ mb(S) such that ~α � I \ {i} = ~α′ � I \ {i} and αi 6= α′i. Call such
I minimal set of important coordinates. In the next lemma we will also need the following
definition mb(T ) � I = {t � I | t ∈ mb(T )}.

Lemma 2.7 Let T and S be ~U-fat trees on θ1 ≤ ... ≤ θn, κ1 ≤ ... ≤ κm respectively. Suppose
F : mb(T ) → κ and G : mb(S) → κ are any functions with minimal sets of important

coordinates I, J respectively. Then there exists ~U-fat subtrees T ∗, S∗ with mb(T ∗) ∈ ~UT and

mb(S∗) ∈ ~US such that one of the following holds:

1. mb(T ∗) � I = mb(S∗) � J , (F � mb(T ∗))I , (G � mb(S∗))J are well defined on this set
and

(F � mb(T ∗))I = (G � mb(S∗))J

2. Im(F � mb(T ∗)) ∩ Im(G � mb(S∗)) = ∅

Proof. The proof is similar to case of product of measures. By induction on 〈ht(T ), ht(S)〉,
If ht(T ) = ht(S) = 1 then we are in the case of product of measures. If κ1 < θ1 assume
that min(sucT (〈〉)) > κ1 and if θ1 < κ1 assume that min(sucT (〈〉)) > κ1. assume that
〈ht(T ), ht(S)〉 >LEX 〈1, 1〉. Assume WLOG that κ1 ≥ θ1, if ht(T ) = 1 define

H1 : sucT (〈〉)×mb(S)→ {0, 1}, H1(α, ~β) = 1⇔ F (α) = G(~β)
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Since sucT (〈〉)× S is again a ~U -fat tree we can shrink S, T to trees so that H1 is constantly
c1. As in the case of product of sets, if c1 = 1 then F,G are constant on large sets, thus
I = J = ∅ and we are done. Assume that c1 = 0. If ht(T ) > 1, for every α ∈ sucT (〈〉) define
the functions

Fα : mb(Tα)→ X, Fα(~α) = F (α, ~α)

Use the induction hypothesis for Fα, G (which have important coordinates I∗ = I \{1}, J∗ =

J) to obtain T ∗α, S
α for which mb(T ∗α) ∈ ~UTα ,mb(Sα) ∈ ~US such that one of the following:

1. mb(T ∗α) � I∗ = mb(Sα) � J∗ and (Fα � mb(T ∗α))I∗ = (G � mb(S∗))J∗ .

2. Im(Fα � mb(T ∗α)) ∩ Im(G � mb(Sα)) = ∅.

denote by iα ∈ {1, 2} the relevant case. There is H ⊆ sucT (〈〉) U〈〉-large such that iα is

constantly i∗. Let T ′ be the tree such that sucT ′(〈〉) = H and T ′α = T ∗α then T ′ ∈ ~UT . Let S ′

be the tree define as follows:
sucS′(〈〉) = ∆

α∈A1

sucSα(〈〉)

(Since θ1 ≤ κ1 we can take the diagonal intersection) and for every β ∈ sucS′(〈〉)

S ′β = ∩α<β(Sα)β

then S ′ ∈ ~US. If i∗ = 1 the we can shrink sucT (〈〉) even more to stabilize the value of
Iα = I∗, Jα = J∗. Note that I = I∗ and J∗ ⊆ J , to see this is suffices to prove that 1 /∈ I,
otherwise, fix α 6= α′ ∈ sucT ′(〈〉), by the assumption

mb(T ∗α) � I∗ = mb(Sα) � J∗

take some ~β ∈ mb(Sα) ∩ mb(Sα′) thus ~β � J∗ ∈ mb(T ∗α) � I∗ ∩ mb(T ∗α′) � I∗ there are

~α ∈ mb(T ∗α) , ~α′ ∈ mb(T ∗~α′) such that ~α � I∗ = ~α′ � I∗ = ~β � J∗. On one hand, since 1 is
an important coordinate, α 6= α′ → F (~α) 6= F (~α′). On the other hand, ~α � I∗ = ~α′ � I∗

and F (~α) = G(~β) = F (~α′), contradiction. Thus 1 /∈ I. Let 〈α, ~α〉, 〈α′, ~α′〉 ∈ mb(T ′) with
~α � I∗ = ~α′ � I∗, then ~α � I∗ ∈ mb(S ′) � J∗ and

F (α, ~α) = Fα(~α) = (Fα)I∗(~α � I
∗) = GJ∗(~α � I

∗) = (Fα′)I∗(~α
′ � I∗) = Fα′(~α) = F (α′, ~α′)

consequently FI∗ is a well defined function on mb(T ′) and (F � mb(T ′))I∗ = (G � mb(S ′))J∗ ,
so we may assume that assume i∗ = 2. We repeat the same process only this time we use Gβ

and fixing F , denoting jβ the relevant case, shrink the sets so that j∗ is constant. In case
j∗ = 1 the proof is the same as i∗ = 1. So we assume that i∗ = j∗ = 2, meaning that for
every 〈α, ~α〉 ∈ mb(T ′), 〈β, ~β〉 ∈ mb(S ′) if α < β then 〈β, ~β〉 ∈ mb(Sα) and ~α ∈ mb(T ∗α), by
i∗ = 2

F (α, ~α) = Fα(~α) 6= G(β, ~β)
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Similarly, if β < α then 〈α, ~α〉 ∈ mb(T β) and ~β ∈ mb(S∗β), hence F (α, ~α) 6= G(β, ~β) by

j∗ = 2, so the only possibility for equality is α = β. If the measures U
(T )
〈〉 , U

(S)
〈〉 are different

we can just separate the sets sucT ′(〈〉), sucS′(〈〉) and avoid the case α = β, we conclude that

Im(F � mb(T ′)) ∩ Im(G � mb(S ′)) = ∅

If U
(T )
〈〉 = U

(S)
〈〉 we can shrink to sucT ′(〈〉) = sucS′(〈〉) and for every α ∈ sucT ′(〈〉) we apply the

induction hypothesis to the functions Fα, Gα, this time denoting the cases by r∗. If r∗ = 2,
then we have eliminated the possibility of F (α, ~α) = G(α, ~β), together with i∗ = 2, j∗ = 2
we are done. Finally, assume r∗ = 1, namely that for I \ {1} = I∗ ⊆ {2, ..., ht(T )}, J \ {1} =
J∗ ⊆ {2, ..., ht(S)}, and every α ∈ sucT ′(〈〉)

mb(T ′α) � I∗ = mb(S ′α) � J∗ ∧ (Fα � mb(T
′
α))I∗ = (Gα � mb(S

′
α))J∗

It follows that

mb(T ′) � I∗ ∪ {1} = ∪α∈sucT ′ (〈〉)mb(T
′
α) � I∗ = ∪α∈sucS′ (〈〉)mb(S

′
α) � J∗ = mb(S ′) � J∗ ∪ {1}

Moreover, for every 〈α, ~α〉 � I∗ ∪ {1} ∈ mb(T ′) � I∗ ∪ {1},

FI∗∪{1}(α, ~α � I
∗ ∪ {1}) = (Fα)I∗(~α � I

∗) = (Gα)J∗(~α � I
∗) = GJ∗∪{1}(α, ~α � I

∗ ∪ {1})

If 1 /∈ I then I = I∗ and FI is well defined. We claim that 1 /∈ J , to see this, take some
~β, ~β′ ∈ mb(S ′) such that β1 6= β′1 and ~β � J∗ = ~β′ � J∗. there exists such by minimality of J .

It follows that G(~β) 6= G(~β′). Moreover,

~β � J∗ ∈ mb(S ′β1) � J
∗ ∩mb(S ′β′1) � J

∗ = mb(T ′β1) � I ∩mb(T
′
β′1

)

there are ~α ∈ mb(T ′β1), ~α ∈ mb(T
′
β′1

) such that ~α � I = ~β � J∗ and ~α′ � I = ~β′ � J∗. Since F

is well defined on I it follows that F (~α) = F (~α′) which is impossible since F (~α) = G(~β) and

F (~α′) = G(~β′). So 1 /∈ J . In a similar way, we conclude that 1 ∈ I iff 1 ∈ J . In any case we
are done. �

3 The proof for short sequences

Let us turn to the theorem for Magidor forcing with o
~U(κ) = κ. The analog of the set X(p)

would be the notion of tree of extensions.

Definition 3.1 Let p ∈ M[~U ] be a condition. As usual assume that the large sets in the

condition are separated i.e. Bi(p) =
⊎

j<o~U (κi(p))

Bi,j(p). A tree of extension of p is a ~U -fat

tree T such that each t ∈ T is a legal extension of p i.e. p_t ∈ M[~U ]. Moreover we require

that for every t ∈ T \ Levht(T )(T ) there exist i ≤ l(p) + 1 and j < o
~U(κi(p)) such that

SuccT (t) ⊆ Bi,j(p)
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Note that by definition of tree of extensions, if t1, t2 ∈ mb(T ) are different then p_t1, p
_t2 are

incompatible. To see this, assume t1 � i = t2 � i and with out loss of generality t1(i) < t2(i).

Then there are j ≤ l(p) + 1 and ξ < o
~U(κj(p)) such that t1(i), t2(i) ∈ SuccT (t1 � i) ⊆ Bj,ξ(p),

in particular o
~U(t2(i)) = o

~U(t1(i)) = ξ. Thus t1(i) /∈ (
⊎
j<ξ

Bi∗,j(p)) ∩ (t2(i − 1), t2(i)) and

therefore p_t1, p
_t2 are incompatible.

Proposition 3.2 Let p ∈M[~U ] be a condition and T a tree of extensions for p. Then there
exists p∗ ≥∗ p such that T is also a tree of extensions for p∗ and

DT = {p∗_t | t ∈ mb(T )}

is a maximal antichain above p∗. In particular, for any generic G with p∗ ∈ G, |G∩DT | = 1.

Proof. Fix 〈ν,A〉 in p and i < o
~U(ν). For every t ∈ T ∩ [ν]<ω if sucT (t) ∈ U(ν, i) then let

Bt = sucT (t), otherwise Bt = A. Define

A∗i = ∆t∈T∩[ν]<ωBt ∩ Ai ∈ U(ν, i)

also let A∗ = ∪i<o~U (ν)A
∗
i . Extend 〈ν,A〉 to 〈ν,A∗〉, doing so for every ν in p defines p ≤∗ p∗.

Now we turn to the proof that Dt is a maximal antichain above p∗. In the discussion
preceding this lemma we saw that DT forms a antichain. To see it’s maximality we will use
induction on ht(T ). For ht(T ) = 1 we are in the case of extension types. Assume that it
holds for ht(T ) = k, And let T be a tree of height k + 1. Set

T ′ = T \mb(T )

then T ′ is a tree of height k. Let p∗ ≤ q, by induction hypothesis there exists t ∈ T ′ and
r ∈M[~U ] such that p∗_t, q ≤ r. Consider i, ν such that sucT (t) ∈ U(ν, i) and let ν ′ > max(t)

be minimal appearing in r such that i ≤ o
~U(ν ′), obviously, ν ′ ≤ ν. If o

~U(ν ′) = i, then ν ′ ∈ A∗i
therefore ν ′ ∈ sucT (t) so we can take t_ν ′ ∈ T . If follows that q, p∗_(t_ν ′) ≤ r. If o

~U(ν ′) > i,

there is B such that 〈ν ′, B〉 in r and B ∈ ∩~U(ν ′), in particular

Bi ⊆ A∗i ∩ (max(t), ν) ⊆ sucT (t)

then any choice γ ∈ Bi will witness that p∗_(t_γ), q ≤ r_γ.
�

Proposition 3.3 Let T be a ~U-fat tree of extensions of p. Suppose that for every t ∈ mb(T )
there is a condition pt ≥∗ p_t. Then there is p∗ ≥∗ p and T ∗ with mb(T ∗) ∈ UT such that
for every t ∈ mb(T ∗), every q ≥ p∗_t is compatible with pt.

Proof. The proof is similar to the case o
~U(κ) < κ, by induction on ht(T ). For ht(T ) = 1,

this is simply what we have already proved in [3]. The proof of the induction step is the
same. �
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Lemma 3.4 Let p ∈ M[~U ] and 〈λ,B〉 in the steam of p. Consider the decomposition,

p = 〈q, r〉, where q ∈ M[~U ] � λ ∧ r ∈ M[~U ] � (λ, κ). Let ∼x be a name for an ordinal. Then
there is r ≤∗ r∗ such that for any q′ ≥ q if

∃~α ∃r′ ≥∗ r∗_〈~α〉. 〈q′, r′〉 ||∼x

then there is a tree of extensions of r∗, Tq′, such that

∀t ∈ mb(Tq′). 〈q′, r∗_t〉 ||∼x

Proof. In order to simplify notation assume p has empty steam i.e. p = 〈〈κ,A〉〉 where
A =

⊎
i<o~U (κ)

Ai. Fix q′ ≥ q and n < ω. Let ~α = 〈α1, ..., αn〉 ∈ [κ]<ω, such that r_〈~α〉 is a

condition and i < o
~U(κ). Set

A0
i (~α) = {α ∈ Ai \ (αn + 1) | ∃r′ ≥∗ r_〈~α, α〉 (〈q′, r′〉 || ∼x)}, A1

i (~α) = Ai \ A0
i (~α)

only one of A0
i (~α), A1

i (~α) is in U(κ, i). Denote it by Ai(~α) and let Ci(~α) ∈ {0, 1} such that

Ai(~α) = A
Ci(~α)
i (~α). Define

A∗i = ∆
~α∈[κ]<ω

Ai(~α) ∩ A ∈ U(κ, i)

so far A∗i has the property that for ~α ∈ [κ]<ω if ∃α ∈ A∗i and r′ ≥∗ r_〈~α, α〉 deciding ∼x then

every α ∈ A∗i there is r′ deciding ∼x. For every j < o
~U(κ) define D

(1)
j (α1, ..., αn−1, ∗) : A∗j →

{0, 1} by

D
(1)
j (α1, ..., αn−1, α) = 0⇔ ∃i < o

~U(κ) Ci(α1, .., αn−1, α) = 0

There is an homogeneous A
(1)
j (α1, ..., αn−1) ∈ U(κ, j) with color C

(1)
j (α1, ..., αn−1) , as before,

denote the diagonal intersection over all sequences of length n − 1 by A
∗(1)
j ∈ U(κ, j). In

similar fashion, define recursively for k ≤ n

D
(k)
j (α1, ..., αn−k, α) = 0⇔ ∃i < o

~U(κ) C
(k−1)
i (α1, .., αn−k, α) = 0

find homogeneous A
(k)
j ∈ U(κ, j) with color C

(k)
j (α1, ..., αn−k). Eventually, set

A′i,n =
⋂
k≤n

A
∗(k)
i , A′i =

⋂
n<ω

A′i,n ∈ U(κ, i) and A′ =
⊎

i<o~U (κ)

A′i

Let r′q′ = 〈〈κ,A′〉〉 ≥∗ r. Assume that there exists r′′ ≥ r′q′ such that 〈q′, r′′〉||∼x. There is

〈~α, α〉 ∈ [A′]<ω such that r
′_
q′ 〈~α, α〉 ≤∗ r′′. Thus, for some i < o

~U(κ), α ∈ A′i and i1, .., in
such that ~α = 〈α1, ..., αn−1〉 ∈ A′i1 × A

′
i2
× ...× A′in . It follows that Ai(~α) = A0

i (~α). Hence,

Ci(~α) = 0⇒ D
(1)
in

(α1, .., αn) = 0⇒ C
(1)
in

(α1, .., αn−1) = 0⇒ D
(2)
in−1

(α1, .., αn−1) = 0⇒
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C
(2)
in−1

(α1, ..., αn−2) = 0⇒ ...⇒ D
(n)
i1

(α1) = 0⇒ C
(n)
i1

(〈〉) = 0

Define the tree T ′q′ : ht(T
′
q′) = n+ 1 we initiate the definition by SuccT ′

q′
(〈〉) = A′i1 . Since A′i1

is homogeneous, D
(n)
i1

(α) = 0 for every α ∈ A′i1 , hence, there is iα1 such that D
(n−1)
iα1

(α1, ∗)
takes the color 0 on A′iα1 . Let SuccT ′

q′
(α1) = A′iα1 keep defining the other levels similarly.

The tree T ′q′ has the property that for every t ∈ mb(T ′q′) there is rt ≥∗ r
′_
q′ t such that 〈q′, rt〉

decide ∼x. By proposition 3.3 we can amalgamate all those rt’s and find r∗q ≥∗ r′q and shrink
T ′q to T ∗q such that for every t ∈ T ∗q , every q ≥ r∗_q t is compatible with rt. It follows that
r∗_q t||∼x. Finally, since |Q| is small enough we can find r∗ ≥ r∗q and shrink T ∗q accordingly.
�

Lemma 3.5 Assume that |A| < κ. Then there exists C ′ ⊆ CG such that V [A] = V [C ′].

Proof. Let A = 〈ai | i < λ〉 where λ = |A| < κ be an enumeration of A. In V, Pick a

name for A, 〈∼ai | i < λ〉. We proceed by a density argument, let p ∈ M[~U ] � (λ, κ) be any
condition, using lemma 3.4, find an ≤∗-increasing sequence 〈pi | i < λ〉 above p and maximal

antichains Zi ⊆ M[~U ] � λ such that for every q ∈ Zi there is a ~U − fat tree Tq,i such that

any extension of pi from mb(Tq,i) together with q decides ∼ai. Since pi ∈ M[~U ] � (λ, κ), we
can find p∗ such that for every i < λ pi ≤∗ p∗. Define the function Fq,i : mb(Tq,i)→ On by:

Fq,i(~α) = γ ⇔ 〈q, p∗_~α〉  ∼ai = γ̌

By lemma 2.6, we can find p∗ ≤∗ p∗∗ and restrict Fq,i to extensions from p∗∗ such that
there exists Iq,i ⊆ {1, ..., ht(Tq,i)}, minimal sets of important coordinates of Fq,i. For any
q, q′ ∈ Zi use lemma 2.7 for the functions Fq,i, Fq′,i and shrink Tq,i, Tq′,i so that either
Im(Fq,i) ∩ Im(Fq′,i) = ∅ or mb(Tq,i) � Iq,i = mb(Tq′,i) � Jq′,i and (Fq,i)Iq,i = (Fq′,i)Iq′,i .

Extend p∗∗ ≤∗ pq,q′ using proposition 3.2. Since |M[~U ] � λ| is small enough there is p′

above these pq,q′ . By density find such p′ ∈ G, the continuation is identical to the proof for

o
~U(κ) < κ.
�

Corollary 3.6 Suppose that p ∈ M[~U ] and ∼x is a name such that p  ∼x ∈ ∼CG. Then there

is p∗ ≥∗ p either p∗||∼x or there is a a ~U-fat tree, T such that ∀~b ∈ mb(T ) p_~b  ∼x = max(~b).

Moreover, in the later case, if o
~U(κ) = κ then for every ~b ∈ mb(T )

p_〈~b \ {max~b}〉||o~U(∼x)

Proof. Assume that there is no p∗ ≥∗ p which decides ∼x. By 3.4 find T with minimal ht(T )
so that for every t ∈ mb(T ) p_t||∼x. Assume that {ν1, ..., νn} are the ordinals appearing in
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p, denote xt the forced value and shrink T so that the function

f(t) =

{
i xt = νi

n+ 1 xt /∈ {ν1, ..., νn}

is constant. if f would be constantly some i ≤ n then there is p∗ ≥∗ p such that p∗  ∼x = νi,
contradiction. So we may assume that xt /∈ {ν1, ..., νn}. Keep shrinking T so that there is a
unique i ≤ ht(T ), such that xt ∈ [t(i), t(i + 1)) (where t(ht(T ) + 1) = κ). If i < ht(T ) then
for every t ∈ Levi(t), the function gt : mb((T )t)→ κ, define by gt(s) = xtas is regressive and
therefore can be stabilized on some St ⊆ Tt. so that for every t ∈ St, xtas = yt, depending
only on t. Thus the tree T � i already decides ∼x, contradiction the minimality of ht(T ).
Hence it most be that xt ≥ t(ht(T )) = max(t). Again we shrink the tree so that xt > max(t)
or xt = max(t). Toward a contradiction, assume that xt > max(t), then xt /∈ {ν1, ..., νn} ∪ t
so we can shrink the sets in p_t so that p_t  ∼x = xt /∈ ∼CG, contradiction. Hence for every

t ∈ mb(T ) p_t 
sim
x = max(t). Finally, if o

~U(κ) = κ then the measures in ~U are separated

using o
~U(ν), so for every t ∈ mb(T )

omax(t) = γ ↔ sucT (t \ {max(t)}) ∈ U(κ, γ)

and therefore
p_〈~b \ {max~b}〉||o~U(∼x)

The following lemma is analogous to a lemma proven in [1] for Prikry forcing.

Lemma 3.7 Let {di | i < λ < κ} ∈ V [CG] be some set of ordinals such that

CG ∩ {di | i < λ} = ∅

then there is X ∈
⋂

i<o(κ)

U(κ, i) such that

X ∩ {di | i < λ} = ∅

Proof. Let us start with a single name of an ordinal ∼x and p ∈ G such that p  ∼x /∈ ∼CG.
Assume that p = 〈r, 〈κ,A〉〉, then by 3.4 there is A∗q ⊆ A and a maximal antichain Z ⊆
M[~U � max(q)] such that for every q ∈ Z there is a tree Tq for which every ~b ∈ mb(Tq),

〈q, A∗q〉_~b  ∼x = fq(~b)

For every ~b, fq(~b) /∈ ~b hence it falls in one of the intervals

(0, b1), (b1, b2), ..., (bht(Tq), κ)

let n~b be the number of this interval. Using lemma 2.5 there we can take A∗∗q ⊆ A∗q and a

tree T ∗q ⊆ Tq on which the value n~b is constantly n∗ now we can find A∗∗∗q such that fq(~b)
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depends only on b1, ..., bn∗ and fq(b1, ..., bn∗) > bn∗ hence T ∗q � n
∗ = Sq decides ∼x. Finally

we can find Bq ⊆ A∗∗∗q , such that every ~α ∈ [Bq]
<ω is a legal extension. It must be that

fq(b1, ..., bn∗) /∈ Bq \bn∗ , otherwise, the condition 〈q, 〈κ,Bq〉〉_〈b1, ..., bn∗ , fq(b1, ..., bn∗)〉  ∼x ∈
CG contradiction. Also fq(b1, ..., bn∗) > bn∗ and we conclude that fq(b1, ..., bn∗) /∈ Bq. Let
Ax =

⋂
q∈Z

Bq, we claim that

p ≤∗ 〈r, 〈κ,Ax〉〉  ∼x /∈ Ax

Otherwise, there is q ∈ Z, ~b ∈ mb(Sq) and p′ such that

〈q, 〈κ,Ax〉〉_~b ≤ p′  ∼x ∈ Ax

but also p′  ∼x = fq(~b) so fq(b1, ..., bn∗) ∈ Ax ⊆ Bq which is a contradiction. Now the lemma
follows easily, Let {di | i < λ < κ} ∈ V [CG] be some set of ordinals such that

CG ∩ {di | i < λ} = ∅

then we can take names {∼di | i < λ} and some p forcing ∀i < λ∼di /∈ ∼CG, as before we can
define the sets Ai and find an increasing ≤∗ sequence 〈r, pi〉, find p∗ which bounds all of them
and A∗ =

⋂
i<λ

Ai, then p∗ forces that ∀i < λ ∼di /∈ A∗. By density argument we can find such

in G.
�

4 The proof for subsets of κ

In the proof of o
~U(κ) < κ we use the fact that |CG| < κ, which is no longer true if o

~U(κ) ≥ κ.

4.1 Stabilization of Subsets of κ

Let us start by proving a lemma which will help us code the information we need into one
sequence.

Proposition 4.1 If C∗ ⊆ CG be any subset and C ′′ ⊆ CG be countable, then there is C ′ ⊆ CG
such that C∗ ∪ C ′′ ⊆ C ′ and C∗, C ′′ ∈ V [C ′]

Proof. To find such C ′, we start with names ∼C
∗, 〈∼cn | n < ω〉 for C∗ and C ′′ respectively and

p′  ∼C
∗, 〈∼cn | n < ω〉 ⊆ ∼CG
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We proceed by a density argument, let p ∈M[~U ] denote by
∼
γ
(0)
n = ∼cn,

∼
γ
(k+1)
n be a name such

that
p 

∼
γ(k+1)
n = sup({x ∈ ∼C

∗ ∩
∼
γ(k)n | o

~U(x) ≥ o
~U(
∼
γ(k)n )} ∪ {0})

enumerate 〈
∼
γ
(k)
n | n, k < ω〉 = 〈∼δ0n | n < ω〉. Note that for every n, k < ω

p 
∼
γ(k)n = 0 ∨

∼
γ(k)n ∈ ∼CG and

∼
γ(k+1)
n <

∼
γ(k)n

This is since ∼CG is closed and for every α ∈ CG there is ξ < α such that for every γ ∈
CG ∩ (ξ, α), o

~U(γ) < o
~U(α). Suppose that 〈∼δ

(k)
n | n < ω〉 is defined and there is p ≤∗ pk such

that
∀n < ω pk  ∼δ

(k)
n ∈ ∼CG

Use corollary 3.6 to find pk ≤∗ pk+1, trees T
(k)
n such that for every ~b ∈ mb(T

(k)
n ) p_k+1

~b 

∼δ
(k)
n = max(~b). consider the function F

(k)
n : Lev

ht(T
(k)
n )−1(T

(k)
n )→ κ

F (k)
n (~α) = β ↔ p_k+1~α  o

~U(∼δ
(k)
n ) = β

Shrink T
(k)
n , extend pk+1 accordingly and find important coordinates I

(k)
n . For every j ∈ I(k)n

let
∼
γ
(0)
n,j be a name for the uniqe jth ordinal in a branch that ends with ∼δ

(k)
n in the tree T

(k)
n .

As before let
∼
γ
(m+1)
n,j be a name name such that

pk+1 
∼
γ
(m+1)
n,j = sup({x ∈ ∼C

∗ ∩
∼
γ
(m)
n,j | o

~U(x) ≥ o
~U(
∼
γ
(m)
n,j )} ∪ {0})

enumerate 〈
∼
γ
(m)
n,j | n, j,m < ω〉 as 〈∼δ

(k+1)
n | n < ω〉. Note that pk+1 

∼
γ
(m)
n,j ∈ ∼CG. Use

σ-closure to find pn ≤∗ pω and shrink all the trees to be extension tree of pω. By density
there is such pω ∈ G. Define

C∗ = 〈(∼δ
(k)
n )G | n, k < ω〉

Since pω  ∼δ
(k)
n ∈ ∼CG, C∗ ⊆ CG. We claim that C∗ ∈ V [A]. Work inside V [A], recall that

C ′′, C∗ ∈ V [A] therefore 〈(∼δ
(0)
n )G | n < ω〉 is definable in V [A]. Assume we have defines

〈δ(k)n | n < ω〉, choose Dn ∈ F (0),−1
n [{(∼δ

(k)
n )G}] (definable in V [A]). Similar to 3.5, it follows

that j ∈ I(k)n (
∼
γn,j)G = Dn(j). Again, since C∗ ∈ V [A] it follows that 〈(∼δ

(k+1)
n )G | n < ω〉 is

definable in V [A]. So we conclude that C∗ ∈ V [A]. Define

C ′ = C∗ ∪ C∗ ∈ V [A]

We claim that C∗ ∈ V [C ′], So it remains to prove that C∗ ∈ V [C ′] let 〈λi | i < otp(C∗)〉, be
a countable increasing enumeration of C∗ and let 〈∼λi | i < otp(C∗)〉 re numerate

〈∼δ
(m)
n | n,m < ω〉

accordingly. Note that this order is in V since no new reals are added. More over the
relation of ∼λi1 , ..., ∼λik are the branch of ∼λi and ∼λj is a name for sup({x ∈ ∼C

∗ ∩ ∼λi | o
~U(x) ≥

16



o
~U(∼λi)} ∪ {0}) can be coded as a real hence we can extend pω to a condition p ∈ G that

forces all this information. Also let I = I(C∗ \ C∗, C∗) ⊆ otp(C∗), so I ∈ V . Work in V [C ′],
Inductively we will define 〈βi | i < otp(C∗)〉. β0 = λ0, Assume that 〈βj | j < i〉 is defined, in

particular the indices of the branch of ∼λi = δ
(k)
n , is i1 < ...ik < i and i∗ < i is the index of

the supremum. Define

βi = min({x ∈ C ′ \ {βj | j ∈ I ∩ i} | x > βi∗ ∧ o
~U(x) ≥ (F (k)

n )
I
(k)
n

(βi1 , ..., βik)} ∪ {0})

This is a legitimate definition in V [C ′]. Let us prove that βi = λi, inductively assume that
〈βj | j < i〉 = 〈λj | j < i〉 then

{βj | j ∈ I ∩ i} = (C∗ \ C∗) ∩ λi

and therefore λi ∈ C ′ \ {βi | i ∈ I ∩ p}, also λi > λi∗ = βi∗ and F
(k)
n (βi1 , ..., βik) = o

~U(λi)

hence λi ≥ βi. If βi < λi then βi ∈ (λi∗ , λi) with o
~U(βi) ≥ o

~U(λi) which is a contradiction
to the definition of λi∗ . Thus C∗ ∈ V [C ′]. From this it will follow that C∗ \ C∗, C ′′ ∈ V [C ′]
since they are all subset of a countable set in V [C ′], therefore C∗ = C ′ \ (C∗ \ C∗) ∈ V [C ′]
which is what we needed.
�

Lemma 4.2 Assume o
~U(κ) = κ and let A ∈ V [G], sup(A) = κ. Assume that ∃C∗ ⊆ CG

such that

1. C∗ ∈ V [A] and ∀α < κ A ∩ α ∈ V [C∗]

2. cfV [A](κ) < κ

Then ∃C ′ ⊆ CG such that V [A] = V [C ′].

Proof. If |C∗| < κ then we can proceed as in the case when o
~U(κ) < κ. Assume that |C∗| = κ,

since C∗ ⊆ CG and o
~U(κ) = κ, we can construct a cofinal sequence 〈αn | n < ω〉 ∈ V [C∗]

unbounded and cofinal in κ. we define in V [A] as before 〈δn | n < ω〉 that codes A ∩ αn
in V [C∗], by the previous section we can find C ′′ ⊆ CG such that |C ′′| = ω such that
V [〈δn | n < ω〉] = V [C ′′]. By proposition 4.1, in V [A] we can find some C ′ ⊆ CG such that
C∗, C ′′ ∈ V [C ′], then V [A] = V [C ′]. �

Consider the crucial set

XA = {ν < κ | ν is a cardinal cfV (ν) > cfV [A](ν)}

which is defined in V [A]. Note also that XA ⊆ Lim(CG), and that is not necessarily closed:
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Example 4.3 If there is α ∈ CG such that o
~U(α) = α+, then α stays regular in V [G]. Set

A = CG, then XA ∩ α will be unbounded in α, but α /∈ XA.

However, a final segment of XA is closed:

Lemma 4.4 Suppose that o
~U(κ) = κ, and let κ∗ < κ be such that for every ξ ∈ CG∩ (κ∗, κ),

o
~U(ξ) ≤ ξ1, then XA \ κ∗ is closed.

Proof. Since the only cardinals that changed cofinality in V [G] are limit points of the Magidor
club, XA ⊆ Lim(CG). Moving to V [G], assume that

CG = 〈κα | α < κ〉

is the increasing enumeration. For every α ≤ κ with o
~U(α) = α, there is in CG a maximal

member α∗ < α such that o
~U(κα∗) ≥ κα∗ , hence if we define the sequence:

α0 = kα∗+1, αn+1 = καn

it must be unbounded in α, otherwise it’s limit, α′, would be a point of the Magidor club
which satisfy o

~U(α′) ≥ α′ contradicting the maximality of α∗. If α ∈ CG and o
~U(α) < α,

then otp(CG ∩ κρ) < κρ. We will prove that XA \ κρ is a club. To it is closed, note that is
sup(XA ∩ (κρ, α)) = α, then α ∈ Lim(CG) and therefore α ∈ CG \ κρ, hence otp(XA ∩ α) ≤
otp(CG ∩ α) < α, hence cfV [A](α) < α as witnnessed by Xa ∩ α, which implies that α ∈ XA.
�

There are trivial examples in which the set XA is bounded. We will use a new kind of
”freshness” of sets A ∈ V [G], to see get that XA is unbounded.

Definition 4.5 Let A ⊆ On, we say that A stabilizes if there is β < κ such that ∀α <
sup(A), A ∩ α ∈ V [G � β]

Proposition 4.6 Suppose that o
~U(κ) = κ, A ∈ V [G] is a set of ordinals and 〈A ∩ α |

α < sup(A)〉 does not stabilize and for every α < sup(A) there is C ′ ⊆ CG such that
V [A ∩ α] = V [C ′]2. Then XA is unbounded in κ. In particular, then cfV [A](κ) < κ.

Proof. To see that it is unbounded, let δ < κ, take some β such that A∩β /∈ V [G � max(δ, κρ)
which exists by our assumption that A does not stabilize, By the inductive assumption, there
exists C ′ ⊆ CG such that

V [C ′] = V [A ∩ β] ⊆ V [A]

1In fact, we can also prove it for o
~U (ξ) < ξ+

2This assumption is simply an inductive assumption about sup(A). We have this assumption if A ⊆ κ by
the part for short sequences.
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It is impossible that C ′ \ (CG ∩max(δ, κρ)) is finite, otherwise

A ∩ β ∈ V [C ′] ⊆ V [G � max(δ, κρ)]

which contradicts the choice of β. There is a limit point γ of C ′ above max(δ, κρ), it is clear
that γ ∈ XA \ κρ. If otp(XA) < k then κ changes cofinality in V [A], otherwise

XA = 〈xβ | β < κ〉

As before define inductively

y0 = min(XA \ κ∗), yn+1 = xyn

So sup(yn | n < ω) = κ and cfV [A](κ) = ω.

4.2 Subsets of κ which stabilizes

In this section we assume that A ⊆ κ and |A| = κ and the sequence 〈A∩α | α < κ〉 stabilizes,
which means that there is κ∗ < κ such that

∀α < κ A ∩ α ∈ V [CG ∩ κ∗]

Note that if A ∈ V [CG∩λ] for some λ < κ then we can use the induction, so we also assume
that A is fresh with respect to the models V [CG∩λ]. We will use freshness and work a little
bit to prove cfV [A](κ) < κ while finding C ′ is easy. Then we use of lemma 4.2.

Lemma 4.7 There is C ′ ⊆ CG such that C ′ ∈ V [A] and ∀α < κ A ∩ α ∈ V [C ′].

Proof. Let 〈αi | i < cfV [A](κ)〉 ∈ V [A] be unbounded in κ. Pick 〈Di | i < cfV [A](κ)〉 ∈ V [A]
such that V [Di] = V [A ∩ αi] and each Di is generic. Then, Di ⊆∗ CG ∩ κ∗. Assume that
Di ⊆ κ∗. If κ is singular in V [A], we can code the sequence 〈αi | i < cfV [A](κ)〉 as a bounded
subset of κ and use previous results. If κ is regular in V [A] (In the rest of this section we will
see that this situation is impossible), then there is E ⊆ κ unbounded and D∗ ⊆ κ∗ generic
such that for every i ∈ E, Di = D∗. It is routine to check that C ′ = D∗ ∩ CG ∈ V [A] is as
wanted. �

It remains to prove that κ changes cofinality in V [A]. Let us settle first a simple case:

Lemma 4.8 Assume that A is such that ∀β < κ there is α < κ such that A∩α /∈ V [A∩ β],
then cfV [A](κ) < κ.
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Proof. Define a sequence 〈αi | i < θ〉, in the following way, α0 = 0, for limit δ αδ = sup(αβ |
β < δ). In successor stage let

αβ+1 = min(γ | A ∩ γ /∈ V [A ∩ αβ])

this is well defined by our assumption about A. In V [G], each i < θ can be mapped to
Cαi ⊆ CG ∩ κ∗ thus |θ| ≤ 2κ

∗
< κ.

�

For general A, we fix C ′ ⊆ κ∗ ∩ CG such that ∀β < κ A ∩ β ∈ V [C ′]. Find a subforcing

P of M[~U ] � κ∗ for which C ′ is generic [8] and let Q = (M[~U ] � κ∗)/C ′. It remains to force

above V [C ′] with Q×M[~U ] � (κ∗, κ). Note for every κ∗ ≤ α < κ with o
~U(α) > 0 we have

|Q×M[~U ] � (κ∗, α)| < min(ν > α | o~U(ν) = 1)

Let ∼A be a name for A in the forcing Q×M[~U ] � (κ∗, κ) and assume that  ”∀α ∼A∩α is old”.

Lemma 4.9 Let p ∈ M[~U ] � (κ∗, κ) and ~α_α ∈ [κ]<ω such that p_~α_α ∈ M[~U ] � (κ∗, κ)

and o
~U(α) = 0. Consider the decomposition of

p_~α_α = 〈p<α, α, p>α〉

then there is Z~α,α ⊆ Q×M[~U ] � (κ∗,max(~α)) Maximal Anti chain and p>α ≤∗ p~α,α such that

∀q ∈ Z~α,α 〈q, α, p~α,α〉|| ∼A ∩ α

Proof. Fix ~α, α as in the statement, For each q ∈ Q×M[~U ] � (κ∗,max(~α)) we will find q ≤ q′

and p<α ≤∗ pq ∈M[~U ] � (α, κ) such that 〈q′, α, pq〉||∼A ∩ α. Take some generic

H ⊆ Q×M[~U ] � (κ∗,max(~α))

with q ∈ H, and denote (∼A)H the M[~U ] � (α, κ)-name in V [C ′][H] derived from ∼A. We use
the Prikry condition to find p>α ≤∗ pq such that pq  (∼A)H ∩α = X for some X ∈ V [C ′][H],
it is possible to find such X since above α, the order ≤∗ is α-closed. Note that, X ∈ V [C ′]
since we assumed  ”∀α ∼A ∩ α is old” Hence there is q ≤ q′ such that

q′  (pq  ∼A ∩ α = X)

Thus 〈q′, α, pq〉  ∼A ∩ α = X. Again by α-closure of ≤∗ above α and since Q ×M[~U ] �
(κ∗,max(~α)) is of small cardinality, we can find p~α,α such that for pq ≤∗ p~α,α for every q.
The definition of Z~α,α is a simple use of by Zorn’s lemma and the property of p~α,α.
�

Assume that p~α,α = 〈〈ν1, B1〉, ..., 〈νn, Bn〉, 〈κ,B〉〉 and that νi < max(~α) < νi+1, then for
every i + 1 ≤ j shrink the sets Bj(0) so that Z~α,α does not depend on α nut only on ~α and
j. We denote these antichains by Z~α,j.
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Lemma 4.10 For every p ∈ M[~U ] � (κ∗, κ) there is p ≤∗ p∗ such that for all ~α_α ∈ [κ]<ω

such that p∗_~α_α ∈M[~U ] � (κ∗, κ) with o
~U(α) = 0, p~α,α ≤∗ p∗>α. In particular

∀q ∈ Z~α,j∀α ∈ Bj(0) 〈q, α, p∗>α〉|| ∼A ∩ α

Proof. Assume p = 〈〈ν1, B1〉, ..., 〈νn, Bn〉〈κ,B〉〉. For every ~α, α < νi there is a pair
〈νi, Bi(~α, α)〉 in p~α,α, define

B∗i = ∆
~α,α<ν

Bi(~α, α) ∈ ∩~U(νi)

it follows that p∗ = 〈〈ν1, B∗1〉, ...〈νn, B∗n〉, 〈κ,B∗〉〉 is as wanted.
�

Lemma 4.11 There is p∗ ≤∗ p∗∗ = 〈〈ν1, B1〉, ..., 〈νn, Bn〉, 〈κ,B〉〉 and sets Aj(q, ~α) for ~α ∈
[κ]<ω and q ∈ Z~α,j, such that for every α ∈ Bj(0), such that p∗∗_~α_α ∈M[~U ] � (κ∗, κ) and

〈q, α, p∗∗>α〉  ∼A ∩ α = Aj(q, ~α) ∩ α

Proof. Fix ~α and q ∈ Z~α,j. By the previous lemma, for every α ∈ B∗j (0), we can find
aj(q, ~α, α) ⊆ α such that

〈q, α, p∗>α〉  ∼A ∩ α = aj(q, ~α, α)

By ineffability of νj there is B′j(0) ⊆ B∗j (0) in U(νj, 0) and Aj(q, ~α) such that

∀α ∈ B′j(0) Aj(q, ~α) ∩ α = aj(q, ~α, α)

Shrink B∗j to B′j so obtain p∗∗.
�

Lemma 4.12 Assume that o
~U(κ) = κ, then cfV [A](κ) < κ.

Proof. Work in V [A], by density find p∗∗ ∈ G � (κ∗, κ) with the properties described in
lemma 4.11. There is Some ξ < κ such that

0M[~U ]  ∀α ∈ ∼CG \ ξ, o
~U(α) < α

Assume that ξ = 0, otherwise just work above ξ. In V [G], let 〈κi | i < κ〉 be the enumeration
of CG, let us define in V [A] a sequence 〈γλ | λ < θ〉 where θ ≤ κ. γ0 = κ0 + 1, at limit
point δ < κ, denote by γ′δ = sup(γλ | λ < δ) ≤ κ. if γ′δ = κ then define θ = δ and stop the
definition, in this case we are done since cfV [A](κ) ≤ δ < κ. Assume that γ′δ < κ, define
γδ = γ′δ + 1. At successor stage, assume that δ = λ+ 1, let

η(q, ~α) = max(min(A∆A1(q, ~α)), ...,min(A∆An(q, ~α))) < κ
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this is well define since Ai(q) ∈ V [C ′] and by freshness assumption on A, A /∈ V [C ′], in
particular it must be that A 6= Ai(q, ~α). Define

γ′δ = sup(η(q, ~α) | q ∈ Z~α,i, ~α ∈ [γλ]
<ω) ≤ κ

If γ′δ = κ as before we stop the definition since we found a short cofinal sequence in κ,
otherwise, define γδ = γ′δ + 1. Assume that the definition goes up to κ and 〈γλ | λ < κ〉
is defined. Let us show that ∀λ < κ γλ > κλ. At 0 and limit stage it is an clear from the
definition and continuity. Assume that γλ > κλ, since κλ+1 is successor in CG, o

~U(κλ+1) = 0,

so find ~C∗ such that p∗∗_ ~C_
∗ κλ+1 ∈ G � (κ∗, κ). There is j such that κλ+1 ∈ B∗∗j (0)

Z ~C∗,j
⊆ Q×M[~U ] � (κ∗,max(~C∗))

By the induction hypothesis max(~C∗) ≤ κλ < γλ. Z ~C∗,j
is a maximal anti chain so there is

q ∈ Z ~C∗,j
such that t∗ = 〈q, κλ+1, P

∗∗
>κλ+1

〉 ∈ G and t∗  ∼A∩κλ+1 = Aj(q, ~C∗)∩κλ+1 but then

it must be that A∩ κλ+1 = Aj(q, ~α)∩ κλ+1. This means that κλ+1 ≤ η(q, ~C∗) ≤ γ′λ+1 < γλ+1

as wanted. Let us define an ω-sequence unbounded in κ, α0 = γ0 and αn+1 = γαn , by the
assumption about ξ at the beginning of the proof, it follows that κ = sup(καn | n < ω) ≤
sup(γαn | n < ω) ≤ κ.
�

4.3 Subsets of κ which does not stabilize

Assume that A does not stabilize. By proposition 4.6, since we assume that o
~U(κ) = κ, then

XA is a club, and κ changes cofinality in V [A].

It doesn’t have to be the case that cfV [A](κ) = ω, but cfV [A](κ) most be some member
of the generic club that will eventually change it’s cofinality to ω. For example, using the
enumeration CG = 〈κi | i < κ〉 and the canonical sequence αn that was defined in the last
lemma, we can define in V [G] the set

A =
⋃
n<ω

{καn+α | α < κn}

then A does not stabilize. Moreover, we cannot construct the sequence 〈αn | n < ω〉 or any

other ω-sequence unbounded in κ inside V [A] since A is generic for the forcing M[~U � (κ, κω)]

which does not change the cofinality of κ to ω. For this kind of examples the case o
~U(κ) < κ

suffices.

Definition 4.13 A set D is generic if for every δ ∈ Lim(D), δ ∈ XA and for every Y ∈⋂ ~U(δ) there is ξ < δ such that D ∩ (ξ, δ) ⊆ Y .
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Lemma 4.14 If D ∈ V [G] is generic then D \CG is finite. In particular, if sup(D) is limit,
then sup(D) ∈ Lim(CG).

Proof. Otherwise there let δ ≤ sup(D) be minimal such that |D ∩ δ \ CG| ≥ ω then
δ ∈ Lim(D). So there most be some infinite {dn | n < ω} ⊆ D \CG unbounded in δ. By 3.7

there is Y ∈
⋂ ~U(δ) such that Y ∩ {dn | n < ω} = ∅ contradicting the condition of D.�

We denote X ⊆∗ Y if X \ Y is finite. Also define X =∗ Y if X ⊆∗ Y ∧ Y ⊆∗ X,
equivalently, if X 4 Y is finite.

Lemma 4.15 Let 〈Di | i < θ〉 ∈ V [A] be a sequence of generic subsets of κ such that for
every i < θ min(Di) ≥ θ and θ is regular in V [A]. Then there is 〈D∗i | i < θ〉 ∈ V [A] such
that:

1.
⋃
i<θ

D∗i is generic.

2. ∀i < θ,Di =∗ D∗i ⊆ sup(Di).

Proof. By removing finitely many elements from every Di, we can assume that otp(Di) is a
limit ordinal and therefore sup(Di) ∈ XA. Denote D =

⋃
i<λ

Di and ν∗ = sup(D) > θ. Note

that ν∗ ∈ XA, since CG is closed, and ν∗ = sup(sup(Di) | i < λ). Proceed by induction on
ν∗, By lemma 4.14, Di \ CG is finite, it follows that |D \ CG| ≤ θ. We would like to remove
the noise in D by intersecting it with a large set, define a sequence 〈Yα | α < λ < ν∗+〉 of
sets such that

1. ∀i < ν∗+ Yi ∈
⋂ ~U(ν∗).

2. For every i < j < λ Yj \ Yi is bounded in ν∗.

If for every Y ∈ ∩~U(ν∗) D \ Y is bounded in ν∗, define λ = 0. Otherwise, let Y0 ∈ ∩~U(ν∗)
such that D \ Y0 is unbounded in ν∗. Assume that 〈Yα | α < β〉 is defined and satisfy 1, 2
for some β < ν∗+. If α + 1 = β let Y ′ = Yβ. If β is limit, find 〈βi | i < cfV (β) ≤ ν∗〉 ∈ V a
sequence cofinal in β. The sequence 〈Yβi | i < cfV (β)〉, might not be in V , but by ν∗+-c.c.
there is a sequence 〈Zi | i < ν∗〉 covering it. In particular,

Y ′ = 4
i<ν∗

Zi ∈ ∩~U(ν∗)

Note that for every j < β there is βi such that j < βi, hence Yβi \ Yj is bounded by some
α < ν∗. Moreover, there is ρ < ν∗ such that Yβi = Zρ, and by the definition of diagonal
intersection, Y ′ \ Yβi ⊂ ρ < ν∗. It follows that

Y ′ \ Yj = [(Y ′ ∩ Yβi) \ Yj] ∪ [(Y ′ \ Yβi) \ Yj] ⊆ (Yβi \ Yj) ∪ (Y ′ \ Yβi) ⊆ max(α, i) < ν∗
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thus Y ′ \ Yj is bounded in ν∗. If for every Y ∈ ∩~U(ν∗), D ∩ Y ′ \ Y is bounded in ν∗, stop
the recursion at λ = β, else let Y be some set witnessing the opposite, define Yβ = Y ∩ Y ′.
To see that this process reaches the halting condition before ν∗+, assume otherwise, then we
have defined a sequence 〈Yi | i < ν∗+〉. For every α < ν∗+, D ∩ Yα \ Yα+1 is unbounded in
ν∗. Also there is an ordinal ξ < ν∗ such that CG ∩ (ξ, ν∗) ⊆ Yα+1 thus

D ∩ Yα \ Yα+1 ⊆ ξ ∪ (D \ CG)

There only ν∗ many such subsets, since |D \ CG| ≤ θ and ν∗ ∈ Lim(CG) and thus a strong
limit. Moreover, the the function

α 7→ D ∩ Yα \ Yα+1

is 1 − 1 since if α < β < ν∗,+ then Yβ \ Yα+1 is bounded by some ξ < ν∗. Take some
γ ∈ D∩ Yα \ Yα+1 above ξ then γ /∈ Yβ and in particular not in D∩ Yβ \ Yβ+1, contradiction.
So the halting condition must be reached at some λ < ν∗+. Let 〈λα | α < cfV (λ)〉 ∈ V be
some sequence cofinal in λ. Find a covering sequence 〈Zi | i < ν∗〉, and define

Y ∗ = 4
i<ν∗

Zi ∈ ∩~U(ν∗), D∗ = D ∩ Y ∗

By the definition of the halting condition:

Claim 1 For every Y ∈
⋂ ~U(ν∗), D∗ \ Y is bounded in ν∗

Claim 2 D∗ \ CG is bounded in ν∗.

Proof. Toward a contradiction, assume there is an infinite {βi | i < cfV [A](ν∗)} ⊆ D∗ \ CG
and sup(βi | i < cfV [A](ν∗)) = ν∗. Since ν∗ ∈ XA, cfV [A](ν∗) < ν∗ and by 3.7, there most

be Z0 ∈
⋂ ~U(ν∗) such that Z0 ∩ {βi | i < ν∗} = ∅. But then {βi | i < ν∗} ⊆ D∗ \ Z0 which

contradicts claim 1.
�claim 2

In V [A], let ξ1 < ν∗ be an ordinal such that D∗ \ ξ1 is generic. By claim 2 such a ξ1 exists.
Consider the set

Z(0) = {ν < ν∗ | Y ∗ ∩ ν ∈ ∩~U(ν)}

to see that Z(0) ∈ ∩~U(ν∗), let i < o
~U(ν∗), then jU(ν∗,i)(Y

∗) ∩ ν∗ = Y ∗ ∈
⋂
ξ<i

U(ν∗, ξ). By

coherency, the order of ν∗ in jU(ν∗,i)(~U) is i, which implies that

∩
ξ<i
U(ν∗, ξ) = ∩j(~U)(ν∗)

By definition ν∗ ∈ j(Z(0)) thus Z(0) ∈ U(ν∗, i) for every i < o
~U(ν∗) and Z(0) ∈

⋂ ~U(ν∗). By
claim 2, we can find ξ2 < ν∗ such that Lim(D∗) \ ξ2 ⊆ Z(0). Let η0 = max(ξ1, ξ2) < ν∗.
The sets Di ∩ η0 are also generic, so we may apply the induction hypothesis to the sequence
〈Di ∩ η0 | i < θ〉 to find 〈D′i | i < θ〉 such that
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1.
⋃
i<θ

D′i is generic.

2. Di ∩ η0 =∗ D′i ⊆ η0.

Define
D∗i = D′i ] (Di ∩ Y ∗ \ η0)

Claim 3 Di =∗ D∗i ⊆ sup(Di) for every i < λ.

Proof. It is clear that D∗i ⊆∗ Di. Toward a contradiction,assume that there is i < θ and
δ ≤ sup(Di) minimal such that

|(Di ∩ δ) \ (D∗i ∩ δ)| ≥ ω

By the definition of D∗i , δ > η0 and δ ∈ Lim(Di). By the definition of η0, δ ∈ Z(0) which

means that δ ∩ Y ∗ ∈
⋂ ~U(δ). Since Di is generic, there is ξ < δ such that Di ∩ (ξ, δ) ⊆ Y ∗,

in particular
Di ∩ (ξ, δ) = Di ∩ Y ∗ ∩ (ξ, δ) = D∗i ∩ (ξ, δ)

So (Di ∩ δ) \ (D∗i ∩ δ) = (Di ∩ ξ) \ (D∗i ∩ ξ), this is a contradiction to the minimality of δ.
�claim 3

∪
i<θ
D∗i = D∗ \ η0 ∪ ( ∪

i<θ
D′i) is generic as the union of two generics.

�lemma4.15

Lemma 4.16 Assume that λ = cfV [A](κ) and for every 0 < α < κ, o(α) < α. Then there
is a sequence 〈βi | i < λ〉 ∈ V [A] such that

1. 〈βi | i < λ〉 is increasing and continuous of elements of XA.

2. β0 = min(XA), sup(βi | i < λ) = κ.

3. If D ⊆ βi is generic then for any Y ⊆ otp(D), Y ∈ V [A], there is j < i and DY ⊆ βj
such that V [Y ] = V [DY ].

4. βj ∈ XA (Recall that XA is the set of all measurables in V that changed cofinality in
V [A]).

Proof. Fix in V [A] some cofinal sequence 〈αi | i < λ〉 such that {αi | i < λ} ⊆ XA. Since we
assumed ∀0 < α < κ, o(α) < α, we have that otp(CG ∩ αi) < αi. We would like to bound
in V [A] the order type of D’s which deviate from CG ∩ α at finitely many places. For every
α denote

α̃ = sup(otp(D) | D ⊆ α is generic)
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By lemma 4.14, every D participating in the sup deviates from CG at finitely many places,
and therefore α̃ ≤ otp(CG ∩ α) + ω, if α ∈ Lim(CG) then α̃ ≤ otp(CG ∩ α) < α. Define in
V [A]

α−1 = max((α̃ + 1) ∩XA) ≤ α̃

α−(k+1) = max((α̃−k + 1) ∩XA) ≤ α̃−k

Since for every k, α−k ∈ XA ⊆ Lim(CG) we have α−(k+1) < α−k and this definitions reach 0
after finitely many steps. Define a new sequence: β0 = min(XA). From α0 find the last k0
such that α−k00 > β0 and define

β1 = α−k00 , ..., βk0 = α−10 , βk0+1 = α0

Continuing in this fashion, assume αi = βj is defined such that i ≤ j < i+ ω, let ki < ω be
last such that α−kii+1 > αi and define

βj+1 = α−kii+1 , ..., βj+ki = α−1i+1, βj+ki+1 = αi+1

and i + 1 ≤ j < i + 1 + ω. At limit points we want to stay continuous so βi is defined to
be the limit, it is clear αi = βi. Claim that 〈βi | i < λ〉 is as wanted. (1), (2), (4) are trivial,
assume D ⊆ βi is generic, then otp(D) ≤ β−1i < βi. If i is limit then otp(D) ≤ βj for some
j < i and we use can use the last section. Otherwise i = j + 1, again, if otp(D) ≤ βj we are
done, so assume that otp(D) > βj, it follows that from the definition of βj+1 that

max(XA ∩ otp(D)) = βj

let Y ⊆ otp(D), there is C ⊆ CG ∩ otp(D), such that V [Y ] = V [C]. There cannot be a limit
point γ of C above βj since C ∈ V [Y ] ⊆ V [A] thus γ ∈ XA, which contradicts the definition
of βj. So removing finitely many ordinals we can assume that C ⊆ βj is a suitable generic.
�

From now on the sequence 〈βi | i < λ〉 is fixed.

Proposition 4.17 Let D,D′ ∈ V [A] be generic sets, bounded in κ. Then there is D∗ ⊆
sup(D ∪D′) also generic such that D∗ ∈ V [A], D,D′ ∈ V [D∗] and D ∪D′ ⊆ D∗.

Proof. By induction on sup(D ∪ D′) = ν < κ. For ν ≤ β0 this is trivial since we can just
take the union and the indices are in V . Assume that it is true for every α < ν, define
D0 = D ∪D′ ∈ V [A] and consider I(D,D0), I(D′, D0) ∈ V [A]. Let i < λ be minimal such
that βi ≥ ν By the property in lemma 4.16 of βi and genericity of D0, there is some j < i
and a generic E ⊆ βj such that I(D,D0), I(D′, D0) ∈ V [E] ⊆ V [A]. Use the induction
hypothesis to find D1 ∈ V [A] good for E,D0 ∩ βj. Define D∗ = D1 ∪ (D0 \ βj) ∈ V [A], then
sup(D∗) = ν. It is routine to see that D∗ is as wanted.
�
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Lemma 4.18 Assume that θ < κ is a regular cardinal in V [A] and 〈Di | i < θ〉 ∈ V [A] is
a sequence of generic sets such that Di ⊆ θi < κ and θi’s are non decreasing. Then there is
〈D∗i | i < θ〉 ∈ V [A] such that

1.
⋃
i<θ

D∗i is generic.

2. i < i′ → D∗i ⊆∗ D∗i′.

3. Di ∈ V [D∗i ] and Di ⊆∗ D∗i ⊆ θi.

Proof. Work in V [A], define D∗0 = D0. At successor stage, define use proposition 4.17 to
find D∗α+1 generic such that D∗α ∪ Dα+1 ⊆ D∗α+1 and Dα+1 ∈ V [D∗α+1]. At limit stage δ,
consider δ′ = cfV [A](δ) and δ∗ = max(XA ∩ δ′). Since cfV [A](δ) is regular in V [A] it follows
that δ∗ < δ′. Let 〈δi | i < δ′〉 be cofinal in δ. Then D∗δi ∩ δ

∗ stabilizes in =∗ at some i∗. To
see this, note that |CG ∩ δ∗| < δ∗ and δ∗ stays strong limit in V [G], hence

|{Dδi
j ∩ δ∗ | i < δ′}| ≤ 2|CG∩δ

∗| · [δ∗]<ω = δ∗ < δ′

Thus there is a value D∗ = D∗δi∗ ∩ δ
∗ repeating cofinally many times. Since the sequence is

⊆∗-increasing, for every i ≥ i∗ there is j > i such that D∗δj ∩ δ
∗ = D∗, therefore

D∗ ⊆∗ D∗i ∩ δ∗ ⊆∗ D∗δj ∩ δ
∗ =∗ D∗

So D∗i ∩δ∗ =∗ D∗. Use lemma 4.15 for the sequence 〈Dδi \δ′ | i < δ′〉 and obtain the sequence
〈Ei | i < δ′〉. Note that by genericity, D∗δi ∩ (δ∗, δ′) must be finite, otherwise there is dome
limit point of Di in the interval (δ∗, δ′). Now limit points of Di are also in XA, this is a
contradiction to the definition of δ∗. Define E = ∪

i<δ′
Ei ⊆ sup(θδi | i < δ′) ≤ θδ, then E is

generic and for every i < δ′, D∗δi \ δ
′ ⊆∗ E ⊆ βδ. Let

D′ = D∗ ] E ⊆ θδ

Then D′ is generic and D∗δi ⊆
∗ D′. Finally, D∗δ is defined by proposition 4.17 and the generics

D′, Dδ. It is clear that Dδ ⊆∗ D∗δ ⊆ θδ, that it is generic and that Dδ ∈ V [D∗δ ]. Let α < δ,
find α ≤ δi < δ then

D∗α ⊆∗ D∗δi = D∗δi ∩ δ
∗ ]D∗δi \ δ

∗ ⊆∗ D′ ∩ δ∗ ] Ei ⊆∗ D∗δ

So the sequence 〈D∗i | i < θ〉 is defined. The union my not be generic so we use lemma 4.15
again in the same way as in the limit stage, let θ∗ = sup(XA∩ θ). Since V [A] |= θ is regular,
θ∗ < θ. Consider the ⊆∗-increasing sequence 〈D∗i ∩ θ∗ | i < θ〉, it =∗-stabilizes from some i∗

on the va;ue D∗. Use lemma 4.15 for the sequence 〈D∗i \ θ | i < θ〉 which yield the sequence
〈Ei | i < θ〉. For every i < θ define

F ∗i = D∗i ∩D∗ ] Ei
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We note that D∗i =∗ F ∗i . So V [D∗i ] = V [F ∗i ], Di ⊆∗ F ∗i ⊆ θi and

∪
i<θ
F ∗i = D∗ ] ( ∪

j<θ
Ej)

which is the union of two generics. The sequence 〈F ∗i | i < θ〉 is still ⊆∗-increasing since
D∗i =∗ F ∗i . �

The following theorem is what we need to finish the proof of the main result for subsets
of κ which does not stabilize.

Theorem 4.19 Assume that for every α < κ, o
~U(α) < α. Let 〈Di | i < λ〉 ∈ V [A] be a

sequence of generics such that for every i < λ, Di ⊆ βi. Then there is 〈D∗i | i < λ〉 ∈ V [A]
such that

1. ∀i < λ, Di, D
∗
i ∈ V [

⋃
i<λ

D∗i ].

2.
⋃
i<λ

D∗i is generic.

3. Di ⊆∗ D∗i ⊆ βi.

4. 〈D∗i | i < λ〉 is ⊆∗-increasing.

Proof. Use 4.18 to get 〈D0
i | i < λ〉 such

1. i < i′ → D0
i ⊆∗ D0

i′

2. Di ⊆∗ D0
i ⊆ βi

3.
⋃
i<λ

D0
i is generic.

4. Di ∈ V [D0
i ].

Define sequences 〈Dξ
i | i < λ〉 for ξ < κ+ recursively such that for every i < λ,

1. ξ1 < ξ2 → Dξ1
i ⊆∗ D

ξ2
i

2. ∀i ≤ j.Dξ
i ⊆∗ D

ξ
j

3. Dξ
i ⊆ βi

4.
⋃
j<λ

Dξ
j is generic.
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5. D0
i ∈ V [Dξ

i ].

6. there is ρi < i such that I(Dξ
i , ∪
j<λ

Dξ
j ∩ βj) ∈ V [Dξ+1

ρi
]

At successor stage, assume 〈Dα
i | i < λ〉 is defined, since Dα

j is generic, there is ρj < j such
that I(Dα

j , (
⋃
i<λ

Dα
i )∩βj) is coded by a generic subset Y α

j ⊆ βρj . We need to pick ρj carefully

since at βρj we wont be able to code more the βρj many sets. To do this, we make use of the
following subsequence of the βi’s:

γ0 = β0, γn+1 = βγn

the sequence γn reaches λ after finitely many steps, otherwise we would have found some
point below κ with o

~U(α) ≥ α which i a contradiction. Now for the choice of ρj, for successor
j ρj = j − 1. For limit j, assume γk < j ≤ γk+1 then choose αk < ρj < j. Note that for a
specific γk < i ≤ γk+1, {j | ρj = i} ⊆ γk+1 = βγk < βi. Code 〈Y α

j | ρj = i〉 as a single subset
Xi of βi. Pick some sequence 〈Ei | i < λ〉 of generic sets Ei ⊆ βi and V [Xi, D

∗
i ] = V [Ei]’s

and find for each i < λ using 4.17 a generic Fi such that Ei ∪Dα
i ⊆ Fi and Ei, D

α
i ∈ V [Fi].

By lemma 4.18 we may find 〈Dα+1
i | i < λ〉 such that

1.
⋃
i<λ

Dα+1
i is generic.

2. Fi ∈ V [Dα+1
i ].

3. Fi ⊆∗ Dα+1
i ⊆ βi

4. i < i′ → Dα+1
i ⊆∗ Dα+1

i′

For limit δ < κ+, pick a cofinal sequence 〈δi | i < cfV [A](δ)〉. Note that δ′ = cfV [A](δ) < κ.

For every j < λ apply lemma 4.18 to the sequence 〈Dδξ
j | ξ < δ′〉 and obtain 〈Dj,ξ | ξ < δ′〉

and let
Fj = ∪

ξ<δ′
Dj,ξ

Then Fj ⊆ βj is generic. As in the successor stage, apply proposition 4.17 to F δ
j and D0

j and
get 〈Gj | j < λ〉 generic such that Fj ⊆ Gj ⊆ βj and D0

j ∈ V [Gj]. Define 〈Dδ
j | j < λ〉 using

4.18 on the sequence 〈Gj | j < λ〉. Let α < δ, there is ξ < δ′ such that j ≤ δξ then

Dα
j ⊆∗ D

δξ
j ⊆∗ Dj,ξ ⊆ Fj ⊆ Gj ⊆∗ Dδ

j

Hence the sequence 〈Dξ
j | j < λ〉 is defined. For every j < λ, 〈Dξ

j | ξ < κ+〉 is a ⊆∗-increasing
sequence of subsets of βi, thus there is ξj < κ+ from which this sequence stabilizes. Let
ξ∗ = sup(ξj | j < λ) < κ+.

29



Denote by D∗i = Dξ∗

i , and let us prove that D∗i is as wanted. By the construction of
the sequence (2), (3), (4) of the theorem follows directly. To see (1), for every ξ∗ ≤ ξ′ < κ+

and for every i < λ, D∗i =∗ Dξ′

i . In particular Dξ+1
i =∗ D∗i . By induction we will show

that D∗j ∈ V [
⋃
i<λ

D∗i ]. For j = 0 this is trivial since I(D∗0,
⋃
i<λ

D∗i ∩ β0) ∈ V . Assume that

D∗j ∈ V [
⋃
i<λ

D∗i ], then Dξ+1
j ∈ V [

⋃
i<λ

D∗i ] and therefore I(D∗j+1,
⋃
i<λ

D∗i ∩βj+1) ∈ V [
⋃
i<λ

D∗i ]. If j is

limit, ρj < j is such that I(D∗j , (
⋃
i<λ

D∗i )∩ βj) is coded by Dξ+1
ρj

, by induction D∗ρj ∈ V [
⋃
i<λ

D∗i ]

and therefore Dξ+1
ρj
∈ V [

⋃
i<λ

D∗i ] which finishes the induction. Finally, for every i < λ, D0
i ∈

V [D∗i ] ⊆ V [
⋃
i<λ

D∗i ] so 〈D∗i | i < λ〉 is as wanted.

�

Corollary 4.20 If A ⊆ κ, such that A ∈ V [G] and A ∩ α does not stabilize, then there is a
generic C ′ ⊆ CG such that ∀α < κ.A ∩ α ∈ V [C ′].

Proof. By the previous section, find generic sets 〈Di | i < λ〉 ∈ V [A] such that V [Di] =
V [A∩βi] and Di ⊆ βi. Use 4.19 to find 〈D∗i | i < λ〉 and set D∗ = ∪

i<λ
D∗i . Then D∗ is generic

and therefore D∗ ⊆∗ CG. Let C ′ = CG ∩D∗. Hence C ′ =∗ D∗ and therefore V [C ′] = V [D∗].
Now for every α < κ, find i < λ such that α < βi. By the properties of D∗, Di ∈ V [D∗],
hence, A∩βi ∈ V [D∗]. Note that A∩α = (A∩βi)∩α and therefore A∩α ∈ V [D∗] = V [C ′]
as wanted.�

4.4 Removing the assumption that κ is the first such that o
~U(κ) ≥ κ

So far we have proved that if o
~U(κ) = κ, and for every α < κ, o

~U(α) < α. Then for every
A ⊆ κ, there is C ′ ⊆ CG such that V [A] = V [C ′]. We can use the techniques of this section

to inductively remove the assumption that every α < κ, o
~U(α) < α. More precisely, we will

assume that ∀α ≤ κ.o
~U(α) ≤ α3 We will use the fact that if o

~U(κ) = κ, then there are only

finitely many points α ∈ CG such that o
~U(α) = α.

We prove by induction on the number of point α < κ, such that o
~U(α) = α, that for

every A ⊆ κ, there is V [C ′] such that V [A] = V [C ′]. The first lemma in which we assumed
that κ is the first was 4.16, we will change this definition, and then prove the rest of the
claims 4.17-4.20 with will be our inductive assumption.

What we proved so far in the induction basis, when κ is the first such point. Note that

3most of the results are actually true under the assumption that o
~U (κ) = κ, and for every α < κ,

o
~U (α) < α+.

30



beside 4.16-4.20 we did not restrict o
~U(κ) to be the first so we will can use them without

having to prove them again.

Let κ∗ < κ be the last such that κ∗ ∈ CG ∧ o~U(κ∗) = κ∗. Note that κ∗ satisfy the
induction hypothesis.

The definition of the sequence 〈βi | i < λ〉 will start above κ∗ instead min(XA):

Lemma 4.21 In V [A] there is a sequence 〈βi | i < λ〉, such that:

1. 〈βi | i < λ〉 is increasing and continuous of elements of XA.

2. β0 = min(XA \ κ∗), sup(βi | i < λ) = κ.

3. If D ⊆ βi is generic then for any Y ⊆ otp(D), Y ∈ V [A], there is j < i and DY ⊆ βj
such that V [Y ] = V [DY ].

4. βj ∈ XA (Recall that XA is the set of all measurables in V that changed cofinality in
V [A]).

By the induction hypothesis, lemma 4.17 holds for κ∗, let us prove that the lemma holds
also for unbounded generics of κ∗. Note that once we finish the induction, this lemma will
also hold for κ.

Lemma 4.22 Let D,E ∈ V [A] be generic subsets of κ∗. Then there is F ∈ V [A] generic
such that D ∪ E ⊆∗ F and D,E ∈ V [F ].

Proof. If |D|, |E| < κ∗ then |D ∪ E| < κ∗ and therefore I(D,D ∪ E), I(D ∪ E) is bounded
in κ∗. Therefore, there is a bounded in κ∗ generic T such that

V [T ] = V [I(D,D ∪ E), I(D ∪ E)]

Let ν = sup(T ) < κ∗. By proposition 4.17 applied to κ∗, we can find a generic F∗ ⊆ ν such
that

[(D ∪ E) ∩ ν] ∪ T ⊆ F∗ and (D ∪ E) ∩ ν, T ∈ V [F∗]

Let F = [(D ∪ E) \ ν] ∪ F∗. Then F ∈ V [A] generic, and (D ∪ E) \ ν, T ∈ V [F ]. Moreover,
(D ∪ E) ∩ ν, T ∈ V [F ]. Hence I(D,D ∪ E), I(D ∪ E), D ∪ E ∈ V [F ]. It follows that
D,E ∈ V [F ] and obviously, D ∪ E ⊆ F .

If |D| = κ∗ ∨ |E| = κ∗, then necessarily cfV [A](κ∗) = ω. Let 〈αn | n < ω〉 ∈ V [A] be
cofinal in κ∗, and consider D ∩ αn, E ∩ αn. Again by proposition 4.17, there is Fn ⊆ αn
generic with

D ∩ αn, E ∩ αn ∈ V [Fn] and (D ∩ αn) ∪ (E ∩ αn) ⊆ Fn
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By 4.19, we can find a generic F such that for every n < ω, Fn ⊆∗ F and Fn ∈ V [F ]. It follows
that ∪n<ωFn ⊆∗ℵ0 F i.e. F \ (∪n<ωFn) is at most countable. Moreover, D ∪ E ⊆ ∪n<ωFn,
hence |(D∪E) \F | ≤ ℵ0. Denote this set by 〈γn | n < ω〉. Now proposition 4.1, we can find
a generic H such that

F, (D ∪ E) \ F ∈ V [H], and F ∪D ∪ E ⊆ H

In V [H], we have F , and therefore we have Fn’s (not as a sequence), therefore we have D∩αn
and E ∩ αn for every n < ω. As usually, to have the sequences

〈D ∩ αn | n < ω〉, 〈E ∩ αn | n < ω〉

Code these subsets by ordinals 〈δn | n < ω〉 and 〈ρn | n < ω〉, then we use 4.1 again, to find
a generic D∗ ∈ V [A] such that

〈δn | n < ω〉, 〈ρn | n < ω〉 ∈ V [D∗]

and H ⊆ D∗. So in V [D∗] we can find also D,E ad wanted.�

Now we can prove 4.17 for κ:

Corollary 4.23 Let D,E ⊆ κ be bounded such that D,E ∈ V [A]. Then there is F ∈ V [A]
generic, such that

D ∪ E ⊆ F ⊆ sup(D ∪ E)

and D,E ∈ V [F ].

Proof. If sup(D ∪ E) ≤ κ∗ then we use 4.22. Then the induction step is the same as 4.17.�

Now lemma 4.18 follows, since the proof only used lemma 4.17 and 4.15, which are known
at this point for κ. Finally, let us prove 4.19:

Theorem 4.24 Assume that for every α < κ, o
~U(α) < α. Let 〈Di | i < λ〉 ∈ V [A] be a

sequence of generics such that for every i < λ, Di ⊆ βi. Then there is 〈D∗i | i < λ〉 ∈ V [A]
such that

1. ∀i < λ, Di, D
∗
i ∈ V [

⋃
i<λ

D∗i ].

2.
⋃
i<λ

D∗i is generic.

3. Di ⊆∗ D∗i ⊆ βi.

4. 〈D∗i | i < λ〉 is ⊆∗-increasing.
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Proof. Work in V [A], list all the generic sets D ⊆ κ∗. This is definable in V [A] and so the
list is in V [A]. The is a list of length at most 2κ

∗
. Since β1 ∈ XA, and β1 > β0 = κ∗, it is a

strong limit, hence 2κ
∗
< β1. Hence there is C ′ ⊆ CG bounded in β1 such that every generic

D ⊆ κ∗ in V [A] belongs to V [C ′], and C ′ ∈ V [A].

As in 4.19, we construct for every ξ < κ+, a sequence of generics 〈Dξ
i | i < λ〉 such that

for every i < λ:

1. ξ1 < ξ2 → Dξ1
i ⊆∗ D

ξ2
i

2. ∀i ≤ j.Dξ
i ⊆∗ D

ξ
j

3. Dξ
i ⊆ βi

4.
⋃
j<λ

Dξ
j is generic.

5. D0
i ∈ V [Dξ

i ].

6. there is ρi < i such that I(Dξ
i , ∪
j<λ

Dξ
j ∩ βj) ∈ V [Dξ+1

ρi
]

This can be done since we use already proved everything used in this lemma. Again by
regularity of κ∗, we can find ξ∗ < κ+, such that for every ξ∗ ≤ ξ′ < κ+, and for every
i < λ, Dξ∗

i =∗ Dξ′

i . Let ν∗ = sup(C ′) < β1, use 4.22 to find D∗ ⊆ ν∗ such that that
∪i<λD∗i ∩ ν∗, C ′ ∈ V [D∗], and ∪i<λD∗i ∩ ν∗ ∪ C ′ ⊆ D∗. Define D0,∗ = D∗ ∩ κ∗ and for
0 < i < λ,

Di,∗ = D∗ ∪ (D∗i \ ν∗)

Let us show that D∗,i is as wanted, (2), (3), (4) are clear by the definition. To see (1), first
we denote D∗ = ∪i<λD∗,i. Note that since D∗ ∩ ν∗ = D∗ and D∗ \ ν∗ = ∪i<λD∗i \ ν∗ so in
V [D∗] we have D∗ and therefore we have C ′ and ∪i<λD∗i ∩ ν∗. It follows that

∪i<λD∗i =
(
∪i<λ D∗i ∩ ν∗

)
∪
(
∪i<λ D∗i \ ν∗

)
∈ V [D∗]

We claim that D∗i ∈ V [D∗] for every i < λ (and therefore also Di and D∗,i). For i = 0,
note that I(D∗0,∪i<λD∗i ∩ κ∗) ∈ V [A] and is coded by a generic subset of κ∗ in V [A]. Thus
I(D∗0,∪i<λD∗i ∩κ∗) ∈ V [C ′] and also in V [D∗]. So in V [D∗] we have both I(D∗0,∪i<λD∗i ∩κ∗)
and ∪i<λD∗i ∩ κ∗, which implies that D∗0 ∈ V [D∗]. The prove for 0 < i < λ is exactly as in
4.19.�

This proves the induction step. We conclude as in 4.20 the following:

Theorem 4.25 If for every α ≤ κ, o
~U(α) ≤ α, then for every A ⊆ κ in V [G], there is

C ′ ⊆ CG such that V [A] = V [C ′].
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5 The proof for subsets of κ+

We start with have two easy observations:

Proposition 5.1 If A ∈ V [G], such that A ⊆ κ+ is of cardinality κ, then there is C ′ ⊆ CG
such that V [A] = V [C ′].

Proof. Let sup(A) < θ < κ+. In V find a bijection from π : κ→ θ. Consider Aκ = π−1
′′
[A] ⊆

κ. Apply the last section to Aκ, then there is C ′ ⊆ CG such that V [Aκ] = V [C ′]. Since
π ∈ V , it is clear that V [A] = V [Aκ], hence C ′ is as wanted.�

Lemma 5.2 If there is β < κ such that for every α < κ+, A ∩ α ∈ V [G � β], then there is
C ′ ⊆ CG such that V [A] = V [C ′]

Proof. In this situation we claim that A ∈ V [G � β] as well. To see this, Note that the

forcing completing V [G � β] to V [G] is simply M[~U ] � (β, κ) which is κ+-c.c. in V [G]
(since κ+ is regular in V [G]). Therefore, A cannot be a fresh set with respect to the models
V [G � β] ⊆ V [G].�

Claim 4 If A ∩ α does not stabilize, then cfV [A](κ) < κ.

Proof. Simple corollary of 4.4.�

Proposition 5.3 Let A ∈ V [G] be any subset of κ+ such that A∩α does not stabilize. Then
there is a sequence 〈Dα | α < κ+〉 such that:

1. 〈Dα | α < κ+〉 ∈ V [A].

2. ∀α < κ+, Dα ⊆∗ CG.

3. 〈Dα | α < κ+〉 is ⊆∗-increasing.

4. A ∩ α ∈ V [Dα]

Proof. Work in V [A]. For every α < κ+, by the last section, there is a generic set D′α ⊆ CG
such that V [A∩α] = V [D′α]. Then 1, 2, 4 hold but 3 might fail. Let us construct the sequence
〈Dα | α0 ≤ α < κ+〉 more carefully to insure condition (3): We go by induction on β < κ+

Assume the sequence 〈Dα | α < β〉 is defined. If β = α + 1, then use lemma 4.22 with Dα

and D′β to find Dβ+1 such that Dα ⊆ Dβ and D′β ∈ V [Dβ]. If β is limit, let λ = cfV [A](β).
Since κ is singular in V [A], then λ < κ. By lemma 4.18, for every α < β, Dα ∩ λ is bounded
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in λ and we can find D∗ ⊆ λ such that the sequence 〈Dα ∩ λ | α < β〉, =∗-stabilizes of D∗.
As for the sequence 〈Dα \ λ | α < β〉 we can use 4.14 to find a single D∗ ∈ V [A] generic,
such that Dα \ λ ⊆∗ D∗.

Consider now the two sets D∗ ∪ D∗ and D′β. Use lemma 4.22 to find Dβ such that
D∗ ∪D∗ ⊆ Dβ and D′β ∈ V [Dβ]. Clearly the sequence 〈Dα | α < κ+〉 is as wanted.�

In the next theorem we will prove that the sequence 〈Di | i < κ+〉 must stabilize, we will
use the Erdös-Rado theorem[11], which is stated here for the convenience of the reader.

Theorem 5.4 If θ is a regular cardinal then for every ρ < θ

(2<θ)+ → (θ)2ρ

i.e. for every function f : [(2<θ)+]2 → ρ there is H ⊆ θ such that |H| = θ such that f � [H]2

is constant.

Proof. see [9, Theorem 7.3].�

The next theorem is stated in general settings but will be used for the specific sequence
defined in 5.3.

Theorem 5.5 Let κ be a singular strong limit cardinal, and 〈Dα | α < κ+〉 be any ⊆∗-
increasing sequence of subsets of κ. Then the sequence =∗-stabilizes i.e. there is α∗ < κ+

such that for every α∗ ≤ α < κ+, Dα =∗ Dα∗.

Proof. Toward a contradiction, assume that the theorem fails, then there is Y ⊆ κ+ such
that |Y | = κ+ and for every α, β ∈ Y , if α < β then Dα ⊆∗ Dβ and |Dβ \Dα| ≥ ω. Denote
λ = cf(κ) < κ. Fix 〈ηi | i < λ〉 be cofinal in κ. For every i < λ, there is Ei ⊆ CG ∩ ηi such
that The set

Xi = {ν < κ+ | Dν ∩ ηi = Ei}

is unbounded in κ+, set αi := min(Xi). Since Di is ⊆∗-increasing, for every αi ≤ α < κ+,
Dα ∩ ηi =∗ Ei. To see this, find β ∈ Xi such that αi ≤ α ≤ β, then

Dαi ⊆∗ Dα ⊆∗ Dβ

Hence
Ei = Dαi ∩ ηi ⊆∗ Dα ∩ ηi ⊆∗ Dβ ∩ ηi = Ei

Therefore, Ei =∗ Dα ∩ [ηi, ηi+1).

Set E∗ = ∪i<λEi and α∗ = sup(αi | i < λ). Clearly, α∗ < κ+.

Claim 5 For every δ < κ and every α∗ ≤ β1 < β2 < κ+, |(Dβ1 ∩ δ)∆(Dβ1 ∩ δ)| < ω
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Proof. (of claim 5) Let i < λ be such that ηi ≥ δ. Since β1, β2 ≥ α∗ ≥ αi,

|(Dβ1 ∩ δ)∆(Dβ2 ∩ δ)| ≤ |(Dβ1 ∩ ηi)∆(Dβ2 ∩ ηi)| ≤ |
(

(Dβ1 ∩ ηi)∆Ei
)
∪
(

(Dβ2 ∩ ηiδ)Ei
)
| < ω

�claim6

Claim 6 For every α∗ ≤ β1 < β2 < κ+, Dβ1 =∗ℵ0 Dβ2 .

Proof. (of claim 6) Otherwise there are β1, β2 such that |Dβ1∆Dβ2| ≥ ℵ1. Then there is
δ < κ such that |Dβ1 ∩ δ∆Dβ2 ∩ δ| ≥ ω. Contradiction to the last claim. �claim5

Let χ = (2λ
+

)+ and let X ⊆ Y be such that |X| = χ. Enumerate X, 〈Dαi | i < χ〉.

Define the partition f : [χ]2 → λ:

Let i < j < χ. Since Di ⊆∗ Dj, there is γi,j < λ such that (Dαi \ ηγi,j) ⊆ (Dαj \ ηγi,j).
Simply pick some ηγi,j above finitely many elements in Dαi \Dαj . Then set

f(i, j) = γi,j

By Erdös-Rado theorem, we can find I ⊆ χ such that |X| = λ+ which is homogeneous with
color γ∗ < λ. This means that for any i < j in I, Dαi \ ηγ∗ ⊆ Dαj \ ηγ∗ .

Let 〈iρ | ρ < λ+〉 be the increasing enumeration of I. We will prove that |Dαiω1
\Dαi0

| ≥
ω1, and since αi1 , αiω1 ≥ α∗, this is a contradiction to claim 6.

Indeed for every ξ < ω1, pick any δξ ∈ (Dαiξ+1
\ ηγ∗) \ (Dαiξ

\ ηγ∗). Such δξ exists, since

by claim 5, Dαiξ+1
∩ ηγ∗ =∗ Dαiξ

∩ ηγ∗ . Since αiξ , αiξ+1
∈ Y , then ω ≤ |Dαiξ+1

∆Dαiξ
|. So

ω ≤ |(Dαiξ+1
\ ηγ∗)∆(Dαiξ

\ ηγ∗)|. Since iξ, iξ+1 ∈ I, Dαiξ
\ ηγ∗ ⊆ Dαiξ+1

\ ηγ∗ , it follows that

|(Dαiξ+1
\ ηγ∗) \ (Dαiξ

\ ηγ∗)| ≥ ω. The map ξ 7→ δξ is a bijection from ω1 to Dαiω1
\ Dαi0

,

contradiction.�

Corollary 5.6 There is C ′ ⊆ CG such that C ′ ∈ V [A] for every α < κ+, A ∩ α ∈ V [C ′]

Proof. Consider the sequence 〈Dα | α < κ+〉 from proposition 5.3, then use theorem 5.5 to
find α∗ < κ+ such that for every α∗ ≤ β < κ+, Dβ =∗ Dα. In particular, V [Dβ] = V [Dα].
Define C ′ = Dα∗ ∩ CG, let us prove that C ′ is as wanted. Since Dα∗ is generic, C ′ =∗ Dα∗ ,
then

V [C ′] = V [Dα∗ ] = V [A ∩ α∗] ⊆ V [A]

Let α < κ+, if α ≤ α∗, then

A ∩ α ∈ V [A ∩ α∗] = V [Dα∗ ] = V [C ′]
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If α > α∗, then Dα =∗ Dα∗ =∗ C ′ and therefore

A ∩ α ∈ V [Dα] = V [C ′]

�

As usual we would like to conclude that A cannot be fresh with respect to the models
V [C ′] ⊆ V [CG], and for this we need to dill with the quotient forcing.

Definition 5.7 Let ∼C
′ be a M[~U ]-name such that ∼C

′
G = C ′. Define P

∼C
′ , the complete

subalgebra of RO(M[~U ]) generated by the conditions X = {||α ∈ ∼C
′|| | α < κ}.

By [8, 15.42], V [C ′] = V [H] for some V -generic filet H of P
∼C
′ . In fact

C ′ = {α < κ | ||α ∈ ∼C
′|| ∈ X ∩G}

Definition 5.8 Define the function π : M[~U ]→ P
∼C
′ by

π(p) = inf(b ∈ P
∼C
′ | b ≥ p)

It not hard to check that π is a projection i.e.

1. π is order preserving.

2. ∀p ∈M[~U ]∀π(p) ≤ q∃p′ ≥ p.π(p′) ≥ q.

3. Im(π) is dense in P
∼C
′ .

Definition 5.9 Let π : P→ Q be any projection, let H ⊆ Q be V -generic, define

P/H = π−1
′′
H

We abuse notation by defining M[~U ]/C ′ = M[~U ]/H, where H is some generic for P
∼C
′ such

that V [H] = V [C ′].

It is known that G is V [C ′]-generic for M[~U ]/C ′ and V [G] = V [C ′][G].

It is important to note that M[~U ]/C ′ depends of the choice of the name ∼C
′.

Example 5.10 It is tempting to try and discard this name and define M[~U ]/C ′ to consist

of all p such that there is a V -generic H ⊆ M[~U ], with p ∈ H and C ′ ⊆ CH . Such a forcing
is not κ+- c.c. even above V [C ′]. Indeed, we take for example any {cn | n < ω} ⊆ CG
unbounded in κ, such that for every n, o

~U(cn) = 0. Basically, it is a Prikry sequence for the
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measure U(κ, 0). Now V [C ′] |= κω = κ+ so let 〈fi | i < κ+〉 ∈ V [C ′] be an enumeration of
all function from ω to κ. we can factor the forcing to first pick i < κ+, then the rest of the
forcing ensures that CG(fi(n) + 1) = cn, this means that fi, determined the places of cn’s in
the sequence CG. Since no choice of i 6= j can be compatible, the first part is not κ+-c.c.
and therefore also the product.

Example 5.11 Let us consider another possible simplification of M[~U ]/C ′,

M[~U ]′ = {q ∈M[~U ] for every finite a ⊆ κ there is qa ≥ q, qa  c∼
′
α = č′α, for every α ∈ a}

First we define an M[~U ]−name C∼
′ of a subset {c′α | α < κ} of a generic sequence CG. For

every α < κ, let

Xα = {ν < κ | o~U(ν) = α}.

Pick some different ρ0, ρ1 ∈ X0. The play would be between two conditions

p0 = 〈ρ0, 〈κ, κ \ ρ0 + 1〉〉 and p1 = 〈ρ1, 〈κ, κ \ ρ1 + 1〉〉

Above p0 we do something simple - for example, let c′∼α be a name just the first element of
Xα in the generic sequence CG.

Now above p1, let us do something more sophisticated. We will build a κ−tree with each
of its branches corresponding to an extension of p1 and such conditions will be incompatible
in M[~U ]/C ′, where C ′ := C ′∼H and H ⊆M[~U ] is a V -generic filter with p0 ∈ H.

Start with a description of the first level:
Fix Y1 ∈ U(κ, 1), such that Y1 ⊆ X1 and Z1 = X1 \ Y1 has cardinality κ. Split Z1 into two
disjoint non-empty sets Z1,0, Z1,1.

Now, let p1 extended by an element of Y1 produces c∼
′
1 to be different from those which

p0 defines, for example, let it be the the first element of X2 in CG.

For i = 0, 1, let p1 extended by an element of Z1,i produces c∼
′
1 to be the same as c∼

′
1 by

p0.

The idea behind is to insure that for every i, p1_Z1i ∪ Y1 will be in M [~U ]/C ′, but only
because of Z1i. So, if i 6= j are different then we will have incompatibility since Z1i and Z1j

are disjoint. Continue in a similar fashion to define the rest of the levels, the α-th level we
Take Yα ⊆ Xα such that Zα := Xα \ Yα has size κ, and we split Zα into two disjoint non
empty sets Zα,0, Zα1 . The definition of c′∼α is such that p1 extended by elements of Yα forces
c′∼α to be the first member of Xα+1 in CG. While p1 extended by elements of Zα will force
the same value as p0 did.

Note that the construction is completely inside V .
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Finally, there are κ+−branches of length κ in T . Let ph denotes an extension of p1 which
corresponds to a κ−branch h i.e. ph = 〈ρ1, 〈κ,

⋃
α<κ

Yα ] Zα,h(α)〉〉.

Let h1, h2 be two different branches. Let α < κ be the least such that h1(α) 6= h2(α).

Then ph1 and ph2 are incompatible in M[~U ]/C ′. This follows from the choice of c∼
′
α and the

definitions of conditions at the level α.

Note that every ph is in M[~U ]′, since for every finite a ⊆ κ, we can extend ph to some qa
using the elements from Zα,h(α).

The problem here however is that the conditions ph are not in M[~U ]/C ′, thus M[~U ]′ 6=
M[~U ]/C ′. Otherwise, by the next proposition, there is a generic H such that {(c′∼α)H | α <
κ} = C ′ with ph ∈ H. Since Y ∗ :=

⋃
α<κ

Yα ∈ ∩~U(κ), then by the Mathias criteria there is

ξ < κ such that CH \ ξ ⊆ Y ∗. It follows that the interpretation (c′∼α)H must be different
from the one p0 made, contradiction

Proposition 5.12 For every q ∈M[~U ], q ∈M[~U ]/C ′ iff there is a generic G′ for M[~U ] such
that ∼C

′
G′ = C ′.

Proof. Let q ∈M[~U ]/H, letG′ be any V [C ′]-generic for M[~U ]/H with q ∈ G′, thenG′ ⊆M[~U ]
is a V -generic filter. To see that ∼C

′
G′ = C ′, denote C ′′ := ∼C

′
G′ , toward a contradiction assume

that s ∈ C ′ \ C ′′, then there is q ≤ q′ ∈ G′ such that q′  s /∈ ∼C
′, hence π(q′) /∈ H, this is a

contradiction since G′ ⊆ M[~U ]/H. Also if s ∈ C ′′ \ C ′, then there is q ≤ q′ ∈ G such that
q′  s ∈ ∼C

′. Since s /∈ C ′, then ||s ∈ ∼C
′|| /∈ H, hence q′ /∈ H which is again a contradiction.

For the other direction, if q ∈ G′ for some G′ for M[~U ] such that ∼C
′
G′ = C ′, then

X ∩G′ = X ∩G. Let a ∈ G′, if π(a) /∈ H, then there is α ∈ C ′ such that π(a) and ||α ∈ ∼C ′||
are incompatible, hence ||α ∈ ∼C

′|| /∈ G′, but ||α ∈ ∼C
′|| ∈ X ∩G, contradiction.�

Definition 5.13 A uniform ultrafilter on a regular cardinal κ is called p-point, if for every
function f : κ→ κ which is not constant (modU) is almost 1−1 (modU) i.e. There is A ∈ U
such that for every δ < κ,

|{ν < κ | f(ν) = δ}| < κ

Proposition 5.14 Let U be a p-point ultrafilter on κ, let 〈Xi | i < κ〉 a sequence of sets in
U . Consider π : κ→ κ such that [π]U = κ then:

∆∗i<κXi = {ν < κ | ∀i < π(ν). ν ∈ Xi} ∈ U

Proof. Assume otherwise, there the set E = {ν < κ | ∃i < π(ν).ν /∈ Xi} ∈ U . For every
ν ∈ E fix iν < π(ν) witnessing ν ∈ E. The function f(ν) = iν is below π, in the <U order.
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Since [π]U = κ, There is ξ < κ such that [f ]U = [Cξ]U . It follows that E∗ = {ν | iν = ξ} ∈ U .
For every ν ∈ E∗, ν /∈ Xξ, thus, Xξ ∩ E∗ = ∅, contradiction.�

First we need a generalization of Galvin’s theorem (see [7], or [5, Proposition 1.4]):

Proposition 5.15 Suppose that 2<κ = κ and let F be a normal filter or a p-point ultrafilter
over κ . Let 〈Xi | i < κ+〉 be a sequence of sets such that for every i < κ+, Xi ∈ F , and let
〈Zi | i < κ+〉 be any sequence of subsets of κ. Then there is Y ⊆ κ+ of cardinality κ, such
that

1.
⋂
i∈Y Xi ∈ F .

2. there is α ∈ Y such that [Zα]<ω ⊆
⋃
i∈Y \{α}[Zi]

<ω

Proof. (of proposition) For every ~ν ∈ [κ]<ω, α < κ+ and ξ < κ, let

Hα,ξ,~ν = {i < κ+ | Xi ∩ ξ = Xα ∩ ξ ∧ ~ν ∈ [Zi]
<ω}

Claim 7 There is α∗ < κ+ such that for every ξ < κ and ~ν ∈ [Zα∗ ]
<ω, |Hα∗,ξ,~ν | = κ+

Proof. (of claim) Otherwise, for every α < κ+ there is ξα < κ and ~να ∈ [Zα]<ω such that
|Hα,ξα,~να| ≤ κ. There is X ⊆ κ+, ~ν∗ ∈ [κ]<ω and ξ∗ < κ, such that |X| = κ+ and for every

∀α ∈ X, ~να = ~ν∗ ∧ ξα = ξ

Since κ is strong limit and ξ < κ, there are less than κ many possibilities for Xα∩ ξ∗. Hence
we can shrink X to X ′ ⊆ X such that |X ′| = κ+ and find a single set E∗ ⊆ ξ∗ such that for
every α ∈ X ′, Xα ∩ ξ∗ = E∗. It follows that for every α ∈ X ′:

Hα,ξα,~να = Hα,ξ∗,~ν∗ = {i < κ+ | Xi ∩ ξ∗ = E∗ ∧ ~ν∗ ∈ [Zi]
<ω}

Hence the set Hα,ξα,~να does not depend on α, which means it is the same for every α ∈ X ′.
Denote this set by H∗. To see the contradiction, note that for every α ∈ X ′, α ∈ Hα,ξα,~να =
H∗, thus X ′ ⊆ H∗. Bt then

κ+ = |X ′| ≤ |H∗| ≤ κ

contradiction.�claim

End of proof of proposition: Let α∗ be as in the claim. Let us define Y ⊆ κ+ that will
witness the lemma. First, enumerate [Zα∗ ]

<ω, 〈~νi | i < κ〉 (Recall that the cardinality of Zα∗
is κ by the assumption. Let π : κ→ κ be the function representing κ i.e. [π]U = κ4 Since U

4If U is normal π = id.
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is p-point or normal, there is a set X ∈ U such that for every α < κ X ∩ π−1′′α is bounded
in κ. So for every α < κ, we find ρα > sup(π−1′′[α + 1]).

Then by recursion, define βi for i < κ. At each step we pick βi ∈ Hα∗,ρi+1,~νi \{βj | j < i}.
It is possible to do so since the cardinality of Hα∗,ρi+1,~νi \ {βj | j < i} is κ+, and so far we
have defined less than κ+ many ordinals. Let us prove that Y = {βi | i < κ} ∪ {α∗} is as
wanted. Indeed, by definition, it is clear that |Y | = κ. Also, if ~ν ∈ [Zα∗ ]

<ω, then ~ν = ~νi for
some i < κ. By definition, βi ∈ Hα∗,ρi+1,~νi , hence ~ν ∈ [Zβi ]

<ω, so

[Zβi ]
<ω ⊆

⋃
x∈Y \{α∗}

[Zx]
<ω

Finally, we need to prove that
⋂
i∈Y Xi ∈ F . By proposition 5.14 (or normality),

Xα∗ ∩∆∗i<κXβi ∈ F

Let ζ ∈ Xα∗ ∩∆∗i<κXβi , then for every i < π(ζ), ζ ∈ Xβi . For i ≥ π(ζ), by definition of ρi,
ζ < ρi. Since βi ∈ Hα∗,ρi+1,~νi

Xα∗ ∩ (ρi + 1) = Xβi ∩ (ρi + 1)

Also, ζ ∈ Xα∗∩(ρi+1), hence ζ ∈ Xβi . We conclude that ζ ∈
⋂
α∈Y Xα. Hence

⋂
α∈Y Xα ∈ F .

�

Now for the main theorem of this section

Theorem 5.16 Let of π : M[~U ] → P be a projection. Let G ⊆ M[~U ] be V -generic and

H = ¯π[G] be the induced generic for P, then V [G] |= M[~U ]/H is κ+-c.c.

Proof. Assume otherwise, and let 〈pi | i < κ+〉 ∈ V [G] be an anthichain in M[~U ]/H. Let
〈
∼
pi | i < κ+〉 be a sequence of names for them and r ∈ G such that

r  〈
∼
pi | i < κ+〉 is an antichain in M[~U ]/∼H

Work in V , for every i < κ+, let r ≤ ri ∈M[~U ] and ξi ∈M[~U ] be such that ri 
∼
pi = ξi.

Claim 8 ∀i < κ+∀r′ ≥ ri∃q ≥ ξi∀q′ ≥ q∃r′′ ≥ r′ r′′  q ∈M[~U ]/∼H

Proof. (of claim) Otherwise, there is i and r′ ≥ ri, such that for every q ≥ ξi, there is q′ ≥ q

such that every r′′ ≥ r′, r′′ 6 q′ ∈M[~U ]/∼H. In particular, the set

E = {q ≥ ξi | ∀r′′ ≥ ri.r
′′ 6 q ∈M[~U ]/∼H}
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is dense above ξi. To obtain a contradiction, let G′ be any generic for M[~U ] such that r′ ∈ G′.
Since r′ ≥ ri ≥ r, r, ri ∈ G′ and there for ξi =

∼
pi,G′ ∈ M[~U ]/∼HG′ . Denote H ′ = ∼HG′ . Then,

there is a V -generic filter G′′ for M[~U ] such that ξi ∈ G′′ and ∼HG′′ = H ′. By density of E,

there is q ∈ E ∩ G′′ and in particular, q ∈ M[~U ]/H ′. Thus, there is r′ ≤ r′′ ∈ G′ such that

r′′  q ∈M[~U ]/H ′, contradicting q ∈ E.�claim

By the claim applied to r′ = ri, for every i < κ+, there is qi ≥ ξi such that

(∗)i ∀q′ ≥ qi.∃r′′ ≥ ri.r
′′  q′ ∈M[~U ]/∼H

Denote qi = 〈ti1, ..., tini , 〈κ,A(qi)〉〉 and ri = 〈si1, ..., simi , 〈κ,A(ri)〉〉. Stabilize the sequences
〈ti1, ..., tini〉 and 〈si1, ..., simi〉 i.e. find X ⊂ κ+ such that |X| = κ+ and ~t = 〈t1, .., tn〉, ~s =
〈s1, ..., sm〉 such that for every i ∈ X

〈ti1, ..., tini〉 = 〈t1, .., tn〉, and 〈si1, ..., simi〉 = 〈s1, ..., sm〉

This means that for every i ∈ X, qi = ~ta〈κ,A(qi)〉 and ri = ~sa〈κA(ri)〉. By lemma 5.15,
there is Y ⊆ X of cardinality κ, such that

1.
⋂
i∈Y A(qi) ∈

⋂
i<κ U(κ, i).

2. There is α∗ ∈ Y such that [A(rα)]<ω ⊆
⋃
i∈Y \{α}[A(ri)]

<ω

Consider the set A =
⋂
i∈Y A(qi). For every i ∈ Y , qi ≤ ~ta〈κ,A〉 =: q∗. Consider α∗ ∈ Y

which is guaranteed by 5.15. Then there is r′′ ≥ rα∗ such that r′′  q∗ ∈ M[~U ]/∼H. Hence

there is ~ν ∈ [A(rα∗)]
<ω such that raα∗~ν ≤∗ r′′. Denote

r′′ = 〈s1, ..., sm, 〈ν1, B1〉, ..., 〈νk, Bk〉, 〈κ,A(r′′)〉〉

By the property of α∗, ~ν ∈ ∪j∈Y \{α∗}[A(rj)]
<ω and so there is j ∈ Y such that ~ν ∈

[A(rj)]
<ω. Since rα∗ and rj have the same lower part, and ~ν ∈ [A(rj)]

<ω, it follows that r′′

and rj are compatible by the condition:

r∗ = 〈s1, ..., sm, 〈ν1, B1 ∩ A(rj)〉, ...〈νk, Bk ∩ A(rj)〉, 〈κ,A(rj) ∩ A(r′′)〉〉

To see the contradiction, note that since r∗ ≥ rα∗ , rj and r,

r∗ 
∼
pα∗ = ξα∗ ,

∼
pj = ξj are incompatible in M[~U ]/C ′

But since r∗ ≥ r′′,
r∗  q∗ ∈M[~U ]/∼H

Since q∗ ≥ qα∗ ≥ ξα∗ and q∗ ≥ qj ≥ ξj, then r∗ 
∼
pα∗ ,

∼
pj are compatible, contradiction.�
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Note that for M[~U ]/C ′ be κ+-c.c. in V [C ′], we can use a more abstract and direct
argument:

Suppose we have an iteration P ∗ Q
∼

of forcing notions. It is a classical result about the
iteration that if for a regular cardinal λ we have

1. P has λ−c.c.,

2. P Q∼
has λ− c.c.,

then P ∗Q
∼

satisfies λ−c.c..

Also, if P has λ−c.c., P ∗Q
∼

has λ−c.c., then P Q∼
has λ− c.c..

Namely, suppose otherwise. Then there are p ∈ P and a sequence of P−names 〈 q
∼α
| α < λ〉

such that

p P 〈 q∼α
| α < λ〉 is an antichain in Q

∼
.

Consider now {(p, q
∼α

) | α < λ} ⊆ P ∗Q
∼

. By λ−c.c., there are α, β < λ, α 6= β such that
(p, q
∼α

) and (p, q
∼β

) are compatible. Hence, there are (p′, q
∼
′) ≥ (p, q

∼α
), (p, q

∼β
). But then

p′ P q
∼
′ is stronger than both q

∼α
, q
∼β
,

which is impossible, since p′ forces that them are members of an antichain.

However, in 5.16, we address a different question:

Suppose that P ∗ Q
∼

satisfies λ−c.c.. Let G ∗ H be a generic subset of P ∗ Q
∼

. Consider
the interpretation Q of Q

∼
in V [G,H]. Does it satisfies λ−c.c.?

Clearly, this is not true in general. The simplest P be trivial and Q be the forcing for
adding a branch to a Suslin tree. Then, in V Q, Q will not be c.c.c. anymore.

Our attention in theorem 5.16 is to subforcings and projections of M[~U ], however the
argument given is more general:

Theorem 5.17 Suppose that P is either Prikry or Magidor or Magidor-Radin or Radin or
Prikry with a p-point ultrafilter forcing and Q

∼
is a projection of P. Let G(P) be a generic

subset of P.
Then, the interpretation of Q

∼
in V [G(P)], satisfies κ+−c.c. there.

We do not know how to generalize this theorem to wider classes of Prikry type forcing
notions.

43



For example the following may be the first step:

Question 5.18 Is the result valid for a long enough Magidor iteration of the Prikry forcings?

The problem is that there is no single complete enough filter here, and so the Galvin Theorem
(or its generalization) does not seem to apply.

Question 5.19 To Which ultrafilters does Galvin’s theorem hold?

One particular example is a fine normal ultrafilter on Pκ(λ) which is used in the super-
compact Prikry forcing (see [4] for the defintiion).

Question 5.20 Assume that λ<κ = λ. Is every quotient forcing of the super compact Prikry
forcing also λ+-c.c. in the generic extension?

The problem here in generalizing Galvin’s theorem to fine normal ultrafilter on Pκ(λ), is
the following:

A set X is bounded in Pκ(λ) if for some ξ < λ there is no P ∈ X with ξ ∈ P . Such X
may be of cardinality λ. However, over κ if X is bounded, then X ⊆ ξ and so |X| < κ.

In the Galvin’s argument, the possibility to stabilize intersections with bounded sets was
essential. In the context of Pκ(λ) such stabilization is just impossible, since if a bounded set
has cardinality λ, then there are 2λ subsets of it, and not < κ as in the argument for κ.

Theorem 5.21 Let W |= ZFC and T ⊆ P be any W -generic filter and let λ be a regular
cardinal in W [T ]. Assume P is λ-c.c. in W [T ]. Then in W [T ] there are no fresh subsets of
λ with respect to W .

Remark 1 Note that it is crucial that P is λ-c.c. in the generic extension, otherwise there
are trivial examples which contradict this. Namely, The forcing which Adds a branch through
a Suslin tree, is c.c.c., but the branch added is a fresh subset of ω1.

Proof. Toward a contradiction, assume that A ∈ W [T ] \W is fresh subset of λ. Let ∼A be a
name for A in P. For every α < λ define in W

Xα = {B ⊆ α | ||∼A ∩ α = B|| 6= 0}

where the truth value is taken in RO(P)- the complete boolean algebra of regular open
sets for P. Different B’s in Xα yeild incompatible conditions of P and we have λ-c.c by
assumption, thus (even in W [T ])

∀α < λ |Xα| < λ
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For every B ∈ Xα define b(B) = ||∼A ∩ α = B||. Assume that B′ ∈ Xβ and α ≤ β then
B = B′ ∩ α ∈ Xα. Moreover b(B′) ≤B b(B) (we Switch to boolean algebra notation p ≤B q
means p extends q). Note that for such B,B′ if b(B′) <B b(B), then there is

0 < p ≤B (b(B) \ b(B′)) ≤B b(B)

Therefore
p ∩ b(B′) ≤B (b(B) \ b(B′)) ∩ b(B′) = 0

meaning p⊥b(B′). Work in W [T ], denote Aα = A ∩ α. By freshness

∀α < λ Aα ∈ W

thus Aα ∈ Xα. Consider the ≤B-non-increasing sequence 〈b(Aα) | α < λ〉. If there exists
some γ∗ < λ on which the sequence stabilizes, define

A′ =
⋃
{B ⊆ λ | ∃α b(Aγ∗)  ∼A ∩ α = B} ∈ W

Claim that A′ = A, notice that if B,B′, α, α′ are such that

b(Aγ∗)  ∼A ∩ α = B, b(Aγ∗)  ∼A ∩ α
′ = B′

With out loss of generality, α ≤ α′ then we must have B′ ∩ α = B otherwise, the non zero
condition b(Aγ∗) would force contradictory information. Consequently, for every ξ < λ there
exists ξ < γ < λ such that b(Aγ∗)  ∼A ∩ γ = A ∩ γ, hence A′ ∩ γ = A ∩ γ. This is a
contradiction to A /∈ M . We conclude that the sequence 〈b(Aα) | α < λ〉 does not stabilize.
By regularity of λ, there exists a subsequence 〈b(Aiα) | α < λ〉 which is strictly decreasing.
Use the observation we made to find pα ≤B b(Aiα) such that pα⊥b(Aiα+1). Since b(Aiα) are
decreasing, for any β > α pα⊥b(Aiβ) thus pα⊥pβ. This shows that 〈pα | α < λ〉 ∈ W [T ] is
an antichain of size λ which contradiction.
�

Theorem 5.22 A ∈ V [C ′] and V [A] = V [C ′].

Proof. Otherwise A would have been a fresh subset of κ+ with respect to the models V [C ′] ⊆
V [C ′][G] which is a generic extension of the κ+-c.c. forcing M[~U ]/C ′ in V [C ′][G] contradiction
the last theorem.�

Following theorem 5.21, we state here another result related to fresh subsets in Prikry-
type models.

Sets of ordinals above κ+: By induction on sup(A) = λ > κ+. It suffices to assume
that λ is a cardinal.

case1: cfV [G](λ) > κ, the arguments for κ+ works.
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case2: cfV [G](λ) ≤ κ and since κ is singular in V [G] then cfV [G](λ) < κ. Since M[~U ]
satisfies κ+ − c.c. we must have that ν := cfV (λ) ≤ κ. Fix 〈γi| i < ν〉 ∈ V cofinal in λ.
Work in V [A], for every i < ν find di ⊆ κ such that V [di] = V [A ∩ γi]. By induction, there
exists C∗ ⊆ CG such that V [〈di | i < ν〉] = V [C∗], therefore

1. ∀i < ν A ∩ γi ∈ V [C∗]

2. C∗ ∈ V [A]

Work in V [C∗], for i < ν fix 〈Xi,δ | δ < 2γi〉 = P (γi) then we can code A ∩ γi with some
δi such that Xi,δi = A ∩ γi. By the previous metheods, we can find C ′′ ⊆ CG such that
V [C ′′] = V [〈δi | i < ν〉] finally we can find C ′ ⊆ CG such that V [C ′] = V [C∗, C ′′], it follows
that V [A] = V [C ′]
�

Let us conclude another resault about fresh subsets in Prikry, Magidor, Magidor-Radin
forcings.

Theorem 5.23 Assume that o
~U(κ) < κ+ and let G ⊆ M[~U ] be V -generic. If A ∈ V [G] is

fresh subset with respect to V , then cfV [G](sup(A)) = ω

Proof. By induction on κ. Let A be a fresh subset, then if A ∈ V [CG ∩ α] for some α < κ,
we are done. Assume that A /∈ V [CG ∩ α], in particular sup(A) ≥ κ. Let us start with
sup(A) = κ. Toward a contradiction assume that λ := cfV [G](κ) > ω, since we assume that

o
~U(κ) < κ+, then ω < λ < κ. Also find Let 〈cα | α < λ〉 be a cofinal continuous subsequence

of CG such that c0 > λ. Let 〈c′∼α | α < λ〉 be a sequence of names for it. Also let A∼ a name
for A.

Let p ∈ G � (λ, κ) be such that

p  ∼A is fresh ∧ 〈c′∼α | α < λ〉 is a cofinal continuous subsequence of CG

As in 3.4, for every i < λ find a condition p ≤∗ p(i) such that if there is ~α ∈ [κ]<ω and
A(~α) ⊆ max(~α) such that

p(i)a~α  ∼A ∩max(~α) = A(~α) ∧max(~α) = c′∼i

then there is a ~U -fat tree of extensions of p(i), Ti, with ~α ∈ mb(Ti), such that

∀t ∈ mb(Ti). ∃A(t) ⊆ max(t). p(i)at  ∼A ∩max(t) = A(t) ∧ c′∼i = max(t)

To see that there is such ~α, find any ~α and q such that p(i)a~α ≤∗ q and q  max(~α) = c′∼i
and then above max(~α) there is enough closure to decide ∼A ∩ max(~α). Hence there is an

46



q � (max(~α), κ) ≤∗ qmax(~α)< and q � max(~α) ≤ q≤max(~α) such that 〈q≤max(~α), qmax(~α)<〉 is as
wanted.

By recursion, define Ais for s ∈ Ti \mb(Ti). Let s ∈ Levht(Ti)−1(Ti), then we can shrink
SuccTi(s) and find Ais such that for every α ∈ SuccTi(s), A(saα) = Ais ∩ α. Note that if
ni /∈ Ii, then Ais = A(saα) for every α ∈ SuccTi(s).

Generally, take s ∈ Ti and assume that for every α is SuccTi(s), A
i
saα is defined. We can

find a single Ais and shrink SuccTi(s) such that for every α ∈ SuccTi(s), A
i
saα ∩ α = Ais ∩ α.

Now we move to V [A], for every i, define recursively ρik for k ≤ ni := ht(Ti). Let
ρi0 = min(A∆Ai〈〉) + 1.

ρik+1 = sup(min(A∆Ai〈δ1,...,δk〉) + 1 | δ1 < ρi0, ..., < δk < ρik))

Let ~ci ∈ mb(Ti) such that p(∗)a~ci ∈ G, let us argue that for every k ≤ ni, ρ
i
k > (~ci)k.

By construction of the tree Ti, A ∩ ci = Ai~ci ∩ ci. now for every j ≤ ni,

A ∩ (~ci)j = Ai〈(~ci)0,...,(~ci)j−1〉 ∩ (~ci)j

In particular, A ∩ (~ci)0 = A〈〉 ∩ (~ci)0. Since A ∩ ρi0 6= A〈〉 ∩ ρi0, it follows that (~ci)0 < ρi0.
Assume that (~ci)j < ρij for every j ≤ k. Since Ai〈(~ci)0,...,(~ci)k〉 ∩ (~ci)k+1 = A ∩ (~ci)k+1, then

(~ci)k+1 < min(Ai〈(~ci)0,...,(~ci)k〉∆A) ≤ ρik+1

It remains to see that ρik < κ. Again by induction on k, ρi0 < κ since A 6= A〈〉, as A〈〉 ∈
V [CG ∩ λ] but A /∈ V [CG ∩ λ].

Toward a contradiction assume that ρik+1 = κ. Back to V [CG∩λ], consider the collection

{Ai〈α0,...,αk〉 | α0 < ρi0, ..., αk < ρik}

Then for every γ < κ pick any distinct ~α1, ~α2 such that Ai~α1
6= Ai~α2

, but Ai~α1
∩ γ = Ai~α2

∩ γ.
To see that there are such ~α1, α2, by assumption that ρik+1 = κ there is ~α1 such that
η1 := min(A∆Ai~α1

) > γ, hence Ai~α1
∩ γ = A ∩ γ. Let ~α2 be such that min(A∆Ai~α2

) > η1. In
particular, Ai~α1

6= Ai~α2
, but Ai~α1

∩ γ = A ∩ γ = Ai~α2
∩ γ. Since this is all in V [CG ∩ λ], where

κ is still measurable, then we can find unboundedly many γ’s with the same ~α1, ~α2, which is
clearly a contradiction.

So we found a sequence 〈ρini | i < λ〉 ∈ V [A] such that ρini > ci. Let Z be the closure of
{ρi | i < λ}. Since λ > ω, there is some a limit α < λ such that cα < κ is a limit point of Z.

To see the contradiction, note that on one hand, A∩cα ∈ V , and therefore the set Z∩cα is
defined in V , on the other hand, cα > λ is measurable in V , and |Z ∩ cα| = λ, contradiction.
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For general A, if λ := cfV (sup(A)) ≤ κ then there is a fresh set X ⊆ λ such that
V [A] = V [X]. To see this, pick in V a cofinal sequence 〈ηi | i < λ〉 in sup(A). Then By
κ+-c.c, there is F ∈ V , such that

1. Dom(F ) = λ.

2. For every i < λ, |F (i)| = κ.

3. A ∩ ηi ∈ F (i).

For each i < λ, find in V , an enumeration 〈xij | j < κ〉 of F (i), such that for every W ∈ F (i),
{j < κ | xij = W} is unbounded in κ.

Move to V [A], inductively define 〈γi | i < λ〉 increasing such that xiγi = A ∩ ηi.

Set γ0 = min(j | x0j = A ∩ η0). Assume that γi was defined for every i ≤ k < λ,

define γk+1 = min(j > γk | xk+1
j = A ∩ ηk+1). Note that at limit stage δ, the sequence

〈γi | i < δ〉 is definable using only the enumeration and A ∩ ηδ which is all available in V .
hence γ′δ = sup(γi | i < δ) < κ and we define γδ = min(j > γ′δ | xδj = A ∩ ηδ).

Let X = {γi | i < λ} ⊆ κ. Since 〈γi | i < λ〉 is increasing, cfV [G](sup(X)) = cfV [G](λ),
V [A] = V [X] and X is fresh. It follows by the proof for subsets of κ that cfV [G](X) = ω,
hence cfV [G](sup(A)) = ω.

Finally, if λ ≥ κ+, by theorems 5.17,5.21 there cannot be a fresh subset of with cf(sup(A)) ≥
κ+.�

6 Open problems

Let us conclude with some related open problems:

Distinguishing from the case where o
~U(κ) < κ, we do not have here a classification of the

subforcings of M[~U ].

Question 6.1 What are the subforcings of M[~U ]?

Using theorem 1.1, it remains to consider models of the form V [C ′] for some C ′ ⊆ CG,
and try to classify the forcings which generates these models.

Our conjecture is the following
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Conjecture 6.2 Let G ⊆ M[~U ] be a V -generic filter, where o
~U(κ) = κ. If V ⊆ M ⊆ V [G]

is a transitive ZFC model, then either it is a finite iteration of Magidor like forcings as
in [3], or there is a tree T ⊆ [κ]<ω in V such that ht(T ) = ω and for every t ∈ T and

every α ∈ SuccT (t), there is a name
∼

M[~U ]∗taα for a Magidor-like forcing, such that if H is

V -generic filter for the forcing adding a branch through the tree T along with the forcings

∼
M[~U ]∗taα corresponding to the branch, then M = V [H].

Question 6.3 Suppose that o
~U(κ) = κ+. Is still every set of ordinals in the extension

equivalent to a subsequence of a generic sequence?

Note that the situation here is more involved since κ stays regular in V [G] and there is
no way to identify the measure associated to a member of the generic CG.

Question 6.4 The same as 2, but with o
~U(κ) ≥ κ+.

Question 6.5 What can we say about other Prikry type forcing notions ?

Probably the simplest would be to deal a long enough Magidor iteration of the Prikry
forcings and to analyze its subforcings.
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