On spectrum of strongly uniform ultrafilters over a singular cardinal.

Moti Gitik*

February 18, 2019

Abstract

We construct a model with $sp^{str}(\aleph_{\omega}) = {\aleph_{\omega+2}}$ and \aleph_{ω} strong limit.

1 Some basic definitions.

Let κ be a strong limit singular cardinal and D be an ultrafilter over κ .

D is called *uniform* iff for every $A \in D$, $|A| = \kappa$.

D is called *strongly uniform* iff there exists an increasing sequence $\vec{\tau} = \langle \tau_{\alpha} \mid \alpha < \operatorname{cof}(\kappa) \rangle$ such that

for every $A \in D$, the set $\{\alpha < \operatorname{cof}(\kappa) \mid |A \cap \tau_{\alpha}| = \tau_{\alpha}\}$ is unbounded in $\operatorname{cof}(\kappa)$.

Note that sets $\{\alpha < \operatorname{cof}(\kappa) \mid |A \cap \tau_{\alpha}| = \tau_{\alpha}\}$, with $A \in D$ generate a uniform ultrafilter over $\operatorname{cof}(\kappa)$ which is Rudin-Keisler below D.

A subset W of D is called a bases of D iff for every $A \in D$ there is $B \in W$ such that $B \subseteq^* A$, i.e. $|B \setminus A| < \kappa$.

 $ch(D) = \min(\{|W| \mid W \text{ is a basis of } D\}).$

 $\operatorname{sp}(\kappa) = {\operatorname{ch}(D) \mid D \text{ is a uniform ultrafilter over } \kappa}.$

 $\operatorname{sp}^{str}(\kappa) = {\operatorname{ch}(D) \mid D \text{ is a strongly uniform ultrafilter over } \kappa}.$

 $\mathfrak{u}(\kappa) = \min(\{\operatorname{ch}(D) \mid D \text{ is a uniform ultrafilter over } \kappa\}).$

 $\mathfrak{u}^{str}(\kappa) = \min(\{\operatorname{ch}(D) \mid D \text{ is a strongly uniform ultrafilter over } \kappa\}).$

^{*}The research was partially supported by Israel Science Foundation Grant no. 1216/18.

2 Main construction.

Our aim will be to construct a model in which \aleph_{ω} is a strong limit cardinal, $2^{\aleph_{\omega}} = \aleph_{\omega+2}$ and $\mathfrak{u}^{str}(\aleph_{\omega}) = \aleph_{\omega+2}$. Hence, $\operatorname{sp}^{str}(\aleph_{\omega}) = \{\aleph_{\omega+2}\}$ in this model.

Actually more information on uniform ultrafilters over \aleph_{ω} will be given.

Assume GCH.

Suppose that E is a (κ, κ^{++}) -extender over κ .

In [6], using this type of assumption, models of $2^{\aleph_{\omega}} = \aleph_{\omega+2}$ and $2^{\aleph_n} = \aleph_{a(n)}$, $n < \omega$, where $a : \omega \to \omega$, $a(n) > n, m \le n \to a(n) \le a(m)$, were constructed.

We will use a particular model of this type here.

Let us give the description of cardinals and the power function of the model used.

Let $\langle \kappa_n \mid n < \omega \rangle$ denote the Prikry sequence of the normal measure of the extender E with $\kappa_0 = \aleph_0$.

The cardinal structure:

Now the power function that will be used:

 $2^{\kappa}=\kappa^{++},$ GCH above $\kappa^{+},$ for every $n<\omega$ the following holds:

- 1. $2^{\kappa_n} = \kappa_n^{++,1}$ i.e. GCH at κ_n , since κ_n^+ is collapsed,
- 2. $2^{\kappa_n^{++}} = \kappa_n^{+3}$, again GCH at the successor of κ_n ,
- 3. $2^{\kappa_n^{+3}} = \kappa_{n+1}^{++}$, i.e. GCH fails with a gap 2 here.

Blowing up powers are achieved by adding the corresponding Cohen functions.

We have the following cardinal arithmetic structure in this model:

$$\operatorname{tcf}(\prod_{n<\omega}(\kappa_n^{++},<_{J^{bd}})=\kappa^{++}=\aleph_{\omega+2}.$$

The rest relevant products correspond to $\kappa^+ = \aleph_{\omega+1}$.

Let us turn to the analysis of strongly uniform ultrafilters over $\kappa = \aleph_{\omega}$ in this model. We proceed in a slightly more general setting. Let D be a uniform ultrafilter on κ .

 $[\]kappa_n^{+k}$ here and throughout denotes the k-successor as computed in V and not in the extension used.

Suppose that here is $f: \omega \to \omega$ such that for every $A' \in D$ there is $A \in D, A \subseteq A'$ such that the set

$$\{n < \omega \mid |A \cap [\kappa_n, \kappa_{n+1}]| = \kappa_{f(n)}\}$$

is infinite.

Assume first that:

for every $A \in D$, the set

$$\{n < \omega \mid |A \cap [\kappa_n, \kappa_{n+1}]| \ge \kappa_n\}$$

is infinite, in particular, for infinitely many $n < \omega$, $f(n) \ge n$. Recall that the only cardinals in the interval $[\kappa_n, \kappa_{n+1}]$ are (in the extension!) $\kappa_n, \kappa_n^{++}, \kappa_n^{+3}, \kappa_{n+1}$. D is an ultrafilter, hence there is $k \in \{0, 2, 3\}$ such that

for every $A' \in D$ there is $A \in D, A \subseteq A'$ such that the set

$$\{n < \omega \mid |A \cap [\kappa_n, \kappa_{n+1}]| = \kappa_n^{+k}\}$$

 $is \ infinite.^2$

Namely,

let $A \in D$ and $X_A = \{n < \omega \mid |A \cap (\kappa_n, \kappa_{n+1})| \ge \kappa_n\}$. For every $n \in X_A$ let $k_n \in \{0, 2, 3\}$ be such that $|A \cap (\kappa_n, \kappa_{n+1})| = \kappa_n^{+k_n}$. Set

$$A_k = \bigcup \{ A \cap (\kappa_n, \kappa_{n+1}) \mid k_n = k \},\$$

for every $k \in \{0, 2, 3\}$.

Clearly, $A = \bigcup_{k \in \{0,2,3\}} A_k$. Hence there is $k^A \in [0,2,3]$ such that $A_{k^A} \in D$.

Pick now $A \in D$ with k^A as small as possible. Then for every $B \in D$, $k^{A \cap B} = k^A$. Denote such k^A by k^* .

Let $h_n : \sup(A_{k^*} \cap \kappa_{n+1}) \leftrightarrow \kappa_n^{+k^*}$, for every $n < \omega$ such that $k_n = k^*$. Now move D to an isomorphic ultrafilter D' generated by

$$\{\bigcup\{h_n''(B \cap A_{k^*} \cap (\kappa_n, \kappa_{n+1})) \mid k_n = k^*\} \mid B \in D\}.$$

Clearly, ch(D') = ch(D). So we can just replace D by D'.

Split now the argument into three cases according to the value of k.

Case 1 For every $A \in D$ the set $\{n < \omega \mid A \text{ is unbounded in } \kappa_n^{++}\}$ is infinite.

The following general proposition that applies to the present case was proved in [4].

²The case $|A \cap [\kappa_n, \kappa_{n+1}]| = \kappa_{n+1}$ can be dropped, since its treatment the same as of the case $|A \cap [\kappa_n, \kappa_{n+1}]| = \kappa_n$.

Proposition 2.1 Suppose that κ is a singular cardinal of cofinality η . Let D be an uniform ultrafilter over κ . Let $\langle \kappa_{\alpha} | \alpha < \eta \rangle$ be an increasing sequence of cardinals converging to κ . Suppose that δ is a regular cardinal such that

1. $\kappa < \delta \leq 2^{\kappa}$

- 2. there is an increasing sequence of regular cardinals $\langle \delta_{\alpha} \mid \alpha < \eta \rangle$ such that
 - (a) $\kappa_{\alpha} < \delta_{\alpha} \leq \kappa_{\alpha+1} < \delta_{\alpha+1}$, for every $\alpha < \eta$,
 - (b) $\operatorname{tcf}(\prod_{\alpha < \eta} \delta_{\alpha}, <_F) = \delta$, for some filter F on η which extends the filter of co-bounded subsets of η ,
 - (c) for every $A \in D$, the set $\{\alpha < \eta \mid |A \cap \delta_{\alpha}| = \delta_{\alpha}\} \in F$

Then $\operatorname{ch}(D) \geq \delta$.

Now, in the present situation, we have $\operatorname{tcf}(\prod_{n < \omega} \kappa_n^{++}, <_{J^{bd}}) = \kappa^{++}$ and $2^{\kappa} = \kappa^{++}$. So, by Proposition 2.1, $\operatorname{ch}(D) = \kappa^{++}$.

\Box of Case 1.

Case 2. For every $A \in D$ the set $\{n < \omega \mid A \text{ is unbounded in } \kappa_n\}$ is infinite. Let \mathcal{W} be a generating family for D of cardinality $\aleph_{\omega+1}$.

We will rule this out using the following general proposition from [4]:

Proposition 2.2 Suppose that κ is a singular cardinal of cofinality η and D is an uniform ultrafilter over κ .

Let $\langle \kappa_{\alpha} \mid \alpha < \eta \rangle$ be an increasing sequence of cardinals converging to κ . Suppose that δ is a regular cardinal such that

- 1. $\kappa < \delta \leq 2^{\kappa}$
- 2. there is an increasing sequences of regular cardinals $\langle \tau_{\alpha} \mid \alpha < \eta \rangle$ such that
 - (a) $\kappa_{\alpha} \leq \tau_{\alpha} < 2^{\tau_{\alpha}} < \kappa_{\alpha+1}$, for every $\alpha < \eta$,
 - (b) $\operatorname{tcf}(\prod_{\alpha < \eta} \delta_{\alpha}, <_F) = \delta$, where $\delta_{\alpha} = 2^{\tau_{\alpha}}$ and F is an ultrafilter on η which extends the filter of co-bounded subsets of η ,
 - (c) $\mathbf{r}(\tau_{\alpha}) = \delta_{\alpha}$ (non-splitting number), i.e. whenever $S \subseteq [\tau_{\alpha}]^{\tau_{\alpha}}$ of cardinality $< \delta_{\alpha}$, then there is $a \in [\tau_{\alpha}]^{\tau_{\alpha}}$ such that for every $s \in S$, $|a \cap s| = |(\tau_{\alpha} \setminus a) \cap s| = \tau_{\alpha}$. In particular, if $2^{\tau_{\alpha}} = \tau_{\alpha}^{+}$, then $\mathbf{r}(\tau_{\alpha}) = \tau_{\alpha}^{+} = \delta_{\alpha}$.

(d) For every $A \in D$, the set $\{\alpha < \eta \mid |A \cap \tau_{\alpha}| = \tau_{\alpha}\} \in F$

Then $\operatorname{ch}(D) \geq \delta$.

Let us take $\eta = \omega$, $\tau_i = \kappa_i$, for every $i < \eta$. We have $\operatorname{tcf}(\prod_{n < \omega} (\kappa_n^{++}, <_{J^{bd}}) = \kappa^{++} = 2^{\kappa} = \aleph_{\omega+2}$ and $2^{\kappa_i} = \kappa_i^{++}$, for every $i < \omega$.

Recall that we have GCH at κ_i , and so, $\mathfrak{r}(\kappa_i) = 2^{\kappa_i} = \kappa_i^{+2}$, for every $i < \omega$. Hence, the proposition applies and we obtain that $ch(D) = 2^{\kappa}$.

 \Box of Case 2.

Case 3. For every $A \in D$ the set $\{n < \omega \mid A \text{ is unbounded in } \kappa_n^{+3}\}$ is infinite. Let \mathcal{W} be a generating family for D of cardinality $\aleph_{\omega+1}$.

We will rule this out as in the previous case, using the general proposition 2.2 from [4]. Let us take $\eta = \omega$, $\tau_i = \kappa_i^{+3}$, for every $i < \eta$. We have $\operatorname{tcf}(\prod_{n < \omega} (\kappa_n^{++}, <_{J^{bd}}) = \kappa^{++} = 2^{\kappa} = \aleph_{\omega+2}$ and $2^{\kappa_i^{+3}} = \kappa_{i+1}^{++}$, for every $i < \omega$.

Recall also, that the power of κ_i^{+3} was blown up using Cohen subsets. So, $\mathfrak{r}(\kappa_i^{+3}) = 2^{\kappa_i^{+3}} = \kappa_{i+1}^{++}$, for every $i < \omega$. Hence, the proposition applies and we obtain that $ch(D) = 2^{\kappa}$. \Box of Case 3.

Suppose finally that

there is $A \in D$ such that the set $\{n < \omega \mid |A \cap (\kappa_n, \kappa_{n+1})| < \kappa_n\}$ is co-finite,

i.e. f(n) < n, for all but finitely many n's.

Then, for every $m \in \operatorname{rng}(f)$, split (κ_{m-1}, κ_m) into ω many sets $\langle I_{mn} | n < \omega \rangle$ each of cardinality κ_m .

Pick $h_n : A \cap (\kappa_n, \kappa_{n+1}) \leftrightarrow I_{f(n)n}$. Use h_n 's in the obvious fashion in order to move D to an isomorphic ultrafilter D'. Then, D' falls under one of the cases considered above.

3 Some open problems.

Let κ be singular strong limit cardinal and $2^{\kappa} > \kappa^+$.

It was shown above that it is possible to have $\mathfrak{u}^{str}(\kappa) = 2^{\kappa}$. The following remains open:

Question 1. Is it possible to have $\mathfrak{u}(\kappa) = 2^{\kappa}$ or even $\mathfrak{u}(\kappa) > \kappa^+$?

Question 2. What is $\mathfrak{u}(\kappa)$ in the model of Section 2?

We think that $\mathfrak{u}(\kappa) = \kappa^+$ there.

GCH breaks down below \aleph_{ω} in our model. So it is natural to ask the following:

Question 3. Is it possible to have GCH below \aleph_{ω} and $\mathfrak{u}^{str}(\aleph_{\omega}) > \aleph_{\omega+1}$?

The relation of almost inclusion \subseteq^* was used in the definition of a basis and ch(D). In case of a regular cardinal (with $\kappa^{<\kappa} = \kappa$) it is possible to replace \subseteq^* by \subseteq .

Question 4. Can \subseteq^* be replaced by \subseteq for singular?

References

- S. Garti and S. Shelah, *The ultrafilter number for singular cardinals*, Acta Math. Hungar. 137 (2012), no. 4, 296–301.
- [2] Shimon Garti, Menachem Magidor, and Saharon Shelah, On the spectrum of characters of ultrafilters, Notre Dame J. Form. Log. 59 (2018), no. 3, 371–379.
- [3] S. Garti, M. Gitik and S. Shelah, Cardinal characteristics at aleph omega,
- [4] More on uniform ultrafilters over a singular cardinal.
- [5] M. Gitik, Prikry type forcings, in Handbook of Set Theory, Foreman, Kanamori eds., Springer 2010, vol.2, pp.1351-1447
- [6] M. Gitik and C. Merimovich, *Possible values for* 2^{\aleph_n} and $2^{\aleph_{\omega}}$, Annals of Pure and Applied Logic 90 (1997) 193-241