Strange ultrafilters.

Moti Gitik*

May 3, 2017

Abstract

We deal with some natural properties of ultrafilters which trivially fail for normal ultrafilters.

Throughout the paper all ultrafilters considered are non-principal.

If U is a κ -complete ultrafilter over κ , then denote by $i_U : V \to M_U \simeq \text{Ult}(V, U)$ the corresponding elementary embedding and the transitive collapse of the ultrapower.

If W is a κ -complete ultrafilters over κ and $\langle W_{\alpha} \mid \alpha < \kappa \rangle$ is a sequence of κ -complete ultrafilters, then $W - \lim \langle W_{\alpha} \mid \alpha < \kappa \rangle$ is a κ -complete ultrafilter over κ which consists of all $X \subseteq \kappa$ such that

$$\{\alpha < \kappa \mid X \in W_{\alpha}\} \in W_{\alpha}$$

Let us address first the following natural question asked by Eyal Kaplan:

Is it possible to have a κ -complete ultrafilter F over κ such that for some sequence of κ -complete ultrafilters $\langle W_{\alpha} \mid \alpha < \kappa \rangle$ over κ different from F we have $F = F - \lim \langle W_{\alpha} \mid \alpha < \kappa \rangle$?

Note that this is clearly impossible once F is normal. Also, this is impossible once the family $\langle W_{\alpha} \mid \alpha < \kappa \rangle$ is *discrete*, i.e. there is a sequence $\langle A_{\alpha} \mid \alpha < \kappa \rangle$ which consists of pairwise disjoint sets such that $A_{\alpha} \in W_{\alpha}$, for every $\alpha < \kappa$.

However, it turns out that the situation occurs quit often.

Theorem 0.1 Let $F = W - \lim \langle W_{\alpha} \mid \alpha < \kappa \rangle$, for some discrete (or discrete mod W) family of κ -complete ultrafilters $W_{\alpha}, \alpha < \kappa$, over κ . Then there is a family $\langle E_{\nu} \mid \nu < \kappa \rangle$ of κ -complete ultrafilters over κ different from F such that $F = F - \lim \langle E_{\nu} \mid \nu < \kappa \rangle$.

^{*}The work was partially supported by Israel Science Foundation Grant No. 58/14. We are grateful to Eilon Bilinski who drew our attention to the subject, to Tom Benhamou and Eyal Kaplan for stimulating questions and discussions.

Proof. Consider $i_W : V \to M_W$. Let $i_W(\langle W_\alpha \mid \alpha < \kappa \rangle) = \langle W'_\alpha \mid \alpha < i_W(\kappa) \rangle$. Take now the ultrapower of M_W by $W'_{[id]_W}$. Let

$$\sigma := i_{W'_{[id]_W}} : M_W \to N$$

be the corresponding elementary embedding. The family $\langle W_{\alpha} \mid \alpha < \kappa \rangle$ is discrete, so it is not hard to see that $W'_{[id]_W}$ differs from $i_W(F)$ and

$$\sigma \circ i_W = i_F$$
 and $N = M_F$

Consider now $\sigma(W'_{[id]_W})$. It is a $i_F(\kappa)$ -complete ultrafilter over $i_F(\kappa)$ in M_F different from $i_F(F)$. In V, we pick a sequence $\langle E_{\nu} | \nu < \kappa \rangle$ of κ -complete ultrafilters over κ which represents $\sigma(W'_{[id]_W})$ in the ultrapower M_F .

Let $i_F(\langle E_{\nu} \mid \nu < \kappa \rangle) = \langle E'_{\nu} \mid \nu < i_F(\kappa) \rangle$. Then $\sigma(W'_{[id]_W}) = E'_{[id]_F}$. Now,

$$Z \in F - \lim \langle E_{\nu} \mid \nu < \kappa \rangle \Leftrightarrow \{\nu < \kappa \mid Z \in E_{\nu}\} \in F \Leftrightarrow$$
$$i_{F}(Z) \in E'_{[id]_{F}} = \sigma(W'_{[id]_{W}}) \Leftrightarrow \sigma(i_{W}(Z)) \in \sigma(W'_{[id]_{W}}) \Leftrightarrow$$
$$i_{W}(Z) \in W'_{[id]_{W}} \Leftrightarrow \{\alpha < \kappa \mid Z \in W_{\alpha}\} \in W \Leftrightarrow Z \in W - \lim \langle W_{\alpha} \mid \alpha < \kappa \rangle = F.$$

So, $\langle E_{\nu} \mid \nu < \kappa \rangle$ is as desired. \Box

Remark 0.2 1. Note that the family $\langle E_{\nu} | \nu < \kappa \rangle$ have same ultrafilters, i.e. the function $\nu \mapsto E_{\nu}$ is not one-to -one. Moreover, it cannot be one-to -one on a set of ν 's in F. 2. We do not know to achieve $F = F - \lim \langle E_{\nu} | \nu < \kappa \rangle$ with a family consisting of different ultrafilters. Clearly this is impossible once the family is discrete.

Let show now the following negative result.

Proposition 0.3 Suppose that U, W and $\langle E_{\alpha} \mid \alpha < \kappa \rangle$ are κ -complete ultrafilters over κ such that $U =_{R-K} E_{\alpha}$ and $U \neq E_{\alpha}$, for every $\alpha < \kappa$. Then $U \neq W - \lim \langle E_{\alpha} \mid \alpha < \kappa \rangle$.

Proof. Suppose otherwise. Then $U = W - \lim \langle E_{\alpha} \mid \alpha < \kappa \rangle$. Observe first that if $U' =_{R-K} U$, then

$$U' = W - \lim \left\langle E'_{\alpha} \mid \alpha < \kappa \right\rangle,$$

for some $\langle E'_{\beta} \mid \beta < \kappa \rangle$. Thus, let $U' =_{R-K} U$ and let $h : \kappa \to \kappa$ be a one to one function witnessing this, say $h_*U = U'$. Set $E'_{\alpha} = h_*E_{\alpha}$, for every $\alpha < \kappa$. Let $Y \subseteq \kappa$. Then

$$Y \in U' \Leftrightarrow h^{-1} Y = X \in U \Leftrightarrow \{\alpha < \kappa \mid X \in E_{\alpha}\} \in W \Leftrightarrow$$
$$\{\alpha < \kappa \mid Y = h'' X \in h_* E_{\alpha}\} \in W \Leftrightarrow \{\alpha < \kappa \mid Y \in E'_{\alpha} = h_* E_{\alpha}\} \in W.$$

Next, consider $i_U: V \to M_U \simeq {}^{\kappa}V/U$. Set $i := i_U$ and $M := M_U$. Let $\eta = [id]_U$. If there is $\eta' < \eta$ and $f_{\eta'}: \kappa \to \kappa$ such that $i(f_{\eta'})(\eta') = \eta$, then let η^* be the least such η' . Note that then there will be no $\eta' < \eta^*$ such that for some $f : \kappa \to \kappa$, $i(f)(\eta') = \eta^*$, since otherwise $i(f_{\eta^*} \circ f)(\eta') = \eta$, which contradicts the minimality of η^* .

For every $\delta < i(\kappa)$, denote by U_{δ} the ultrafilter $\{X \subseteq \kappa \mid \delta \in i(X)\}$. Then $U_{\eta^*} \geq_{R-K} U$, as witnessed by f_{η^*} , but also $U_{\eta^*} \leq_{R-K} U$, since U_{η^*} is defined from *i*. Hence $U_{\eta^*} =_{R-K} U$.

By the observation above, we can replace then U by U_{η^*} . Assume for simplicity that already $U = U_{\eta^*}$.

Let $\alpha < \kappa$. Consider E_{α} . Pick $\delta_{\alpha} < i(\kappa)$ such that $E_{\alpha} = \{X \subseteq \kappa \mid \delta_{\alpha} \in i(X)\}.$

We have $E_{\alpha} =_{R-K} U$, so there is $h_{\alpha} : \kappa \to \kappa$ one to one such that $\delta_{\alpha} = i(h_{\alpha})(\eta)$. Then $\eta = i(h_{\alpha}^{-1})(\delta_{\alpha})$ which implies by the choice of η that $\delta_{\alpha} > \eta$.

Let $\pi : \kappa \to \kappa$ be a projection of U to the normal measure U_{κ} . Consider now the following set:

$$Z = \{\nu < \kappa \mid \forall \nu' < \nu \forall \alpha < \pi(\nu)(h_{\alpha}(\nu') \neq \nu)\}.$$

Then, by the choice of η , $Z \in U$, since for every $h : \kappa \to \kappa$ and in particular for every $h_{\alpha}, \alpha < \kappa$, we have $i(h)(\eta') \neq \eta$, whenever $\eta' < \eta$, and so, $\eta \in i(Z)$. On the other hand,

$$i(\kappa \setminus Z) = \{\nu < i(\kappa) \mid \exists \nu' < \nu \exists \alpha < i(\pi)(\nu)(i(h)_{\alpha}(\nu') = \nu)\}.$$

So, if $\alpha < \kappa$, then $\kappa \setminus Z \in E_{\alpha}$, provided $i(\pi)(\delta_{\alpha}) > \alpha$, since $i(h_{\alpha})(\eta) = \delta_{\alpha}$ and $\eta < \delta_{\alpha}$. In particular, this holds if π is not a constant function mod E_{α} .

Unfortunately, we do not see a reason why this should be the case.

In order to overcome the problem, let us use more involved argument. The idea would be to replace Z by another, similar set, but without π .

An ordinal $\alpha < i(\kappa)$ is called a generator of the embedding *i* iff for every $n, 1 \leq n < \omega$, every $g : [\kappa]^n \to \kappa$ and for every $\vec{\nu} \in [\alpha]^n$, $i(g)(\vec{\nu}) \neq \alpha$. Now, either η is a generator or there are an increasing sequence of generators $\langle \eta_0, ..., \eta_{n-1} \rangle$ below η and a function $g_\eta : [\kappa]^n \to \kappa$ such that $\eta = i(g_\eta)(\eta_0, ..., \eta_{n-1})$. Let us deal with the later case. The former one is similar and a bit simpler.

There may be several possibilities for sequences of generators and functions g_{η} as above. Pick first $\eta'_0 < \eta$ to be the least generator such that there is a finite sequence of generators $a \in [\eta'_0]^{<\omega}$ such that for some function $g : [\kappa]^{|a|+1} \to \kappa$ we have $\eta = i(g)(a^{\gamma}\eta'_0)$.

Next, let $\eta'_1 < \eta$ to be the least generator $< \eta'_0$ such that there is a finite sequence of generators $a \in [\eta'_1]^{<\omega}$ such that for some function $g : [\kappa]^{|a|+2} \to \kappa$ we have $\eta = i(g)(a^{\frown}\langle \eta'_1, \eta'_0 \rangle)$. Continue further by recursion. After finitely many steps, we will construct a sequence $\eta'_0 > \eta'_1 > ... > \eta'_{n-1}$ of generators such that each member is the smallest possible (in the above sense) and for some function $g : [\kappa]^n \to \kappa$ we have $\eta = i(g)(\langle \eta'_{n-1}, ..., \eta'_0 \rangle)$. Set now $\eta_{n-1} := \eta'_0, ..., \eta_0 = \eta'_{n-1}$.

Claim 1 $\eta = \eta_{n-1} + \eta_{n-2} + ... + \eta_0$.

Proof. First note that $\eta \leq \eta_{n-1} + \eta_{n-2} + \ldots + \eta_0$, since it is easy to find $f: \kappa \to \kappa$ such that $i(f)(\eta_{n-1} + \eta_{n-2} + \ldots + \eta_0) = \eta$.

Next let $\eta = \xi_{m-1} + ... + \xi_0$ be the Cantor normal form of η . By the minimality of η_{n-1} , we must have $\eta_{n-1} = \xi_{m-1}$. Then again, minimality of η_{n-2} implies that also $\eta_{n-2} = \xi_{m-2}$. Finally, we will have n = m and $\eta_0 = \xi_0$. \Box of the claim.

By the claim then, for almost all $\alpha < \kappa$, $\delta_{\alpha} = \eta_{n-1}^{\alpha} + \eta_{n-2}^{\alpha} + \ldots + \eta_{0}^{\alpha}$, since $U = U - \lim \langle E_{\alpha} | \alpha < \kappa \rangle$, and $\eta_{n-1}^{\alpha} \ge \eta_{n-1}$, since $\eta < \delta_{\alpha}$. Assume that this holds for every $\alpha < \kappa$.

Let $\pi_1 : \kappa \to \kappa$ be the projection of an ordinal to its largest component in the Cantor normal form, i.e. $\pi_1(\xi_{m-1} + \xi_{m-2} + ... + \xi_0) = \xi_{m-1}$. Then $i(\pi_1)(\eta) = \eta_{n-1}$ and $i(\pi')(\delta_\alpha) = \eta_{n-1}^{\alpha}$, for every $\alpha < \kappa$. Also note that $\kappa \leq \eta_{n-1} \leq \eta_{n-1}^{\alpha}$, for every $\alpha < \kappa$.

Suppose first that for almost all $\alpha < \kappa$, $\eta_{n-1} < \eta_{n-1}^{\alpha}$. Then, also $\eta < \eta_{n-1}^{\alpha}$. Thus, η_{n-1} is a generator, and hence, it cannot be written as a finite sum of smaller ordinals. Namely,

$$Y = \{\nu < \kappa \mid \forall m < \omega \forall \xi_0 < \dots < \xi_{m-1} < \pi_1(\nu)(\xi_{m-1} + \dots + \xi_0 < \pi'(\nu))\} \in U,$$

and so, $Y \in E_{\alpha}$ for almost every $\alpha < \kappa$. This means, in M_1 , that

$$\forall m < \omega \forall \xi_0 < \dots < \xi_{m-1} < \pi'(\nu)(\xi_{m-1} + \dots + \xi_0 < \eta_{n-1}^{\alpha}),$$

and in particular, $\eta = \eta_{n-1} + \ldots + \eta_0 < \eta_{n-1}^{\alpha}$.

Now we are ready to redefine Z. Set

$$Z' = \{\nu < \kappa \mid \forall \nu' < \pi_1(\nu) \forall \alpha < \pi'(\nu) (h_\alpha(\nu') \neq \nu)\}$$

Then

$$i(\kappa \setminus Z') = \{ \nu < i(\kappa) \mid \exists \nu' < i(\pi_1)(\nu) \exists \alpha < i(\pi_1)(\nu)(h'_{\alpha}(\nu') = \nu) \},\$$

where $\langle h'_{\alpha} \mid \alpha < i(\kappa) \rangle = i(\langle h_{\alpha} \mid \alpha < \kappa \rangle).$ Now, if $\alpha < \kappa$, then $\kappa \setminus Z \in E_{\alpha}$, since $i(\pi_1)(\delta_{\alpha}) = \eta_{n-1}^{\alpha} \ge \kappa > \alpha$, $i(h_{\alpha})(\eta) = \delta_{\alpha}$ and $\eta < i(\pi_1)(\delta_{\alpha}) = \eta_{n-1}^{\alpha}.$ Let us argue that $Z' \in U.$

Claim 2 $Z' \in U$.

Proof. We show that for every $\alpha < \eta_{n-1}$ and every $\eta' < \eta_{n-1}$, $h'_{\alpha}(\eta') \neq \eta$. It will be enough to argue that $h'_{\alpha}(\eta') \neq \eta_{n-1}$, since if $h'_{\alpha}(\eta') = \eta$, then the projection to the largest component of the Cantor normal form will give η_{n-1} .

Consider the extender G derived from i using ordinals below η_{n-1} , i.e.

$$G = \langle U_a \mid a \in [\eta_{n-1}]^{<\omega} \rangle$$

and its ultrapower $i_G: V \to N_G$.

Another way of stating this is to consider the transitive collapse of

$$\{i(g)(a) \mid a \in [\eta_{n-1}]^{<\omega}\}$$

Let $k : N_G \to M$ be the natural embedding, i.e. $k(i_G(g)(a)) = i(g)(a)$. Then, $crit(k) = \eta_{n-1}$, since η_{n-1} is a generator, and so, $\eta_{n-1} \neq i(g)(a)$, for $a \in [\eta_{n-1}]^{<\omega}$, $g : [\kappa]^{|a|} \to \kappa$, but every $\eta' < \eta$ is trivially of such a form, and so does not move by k.

Consider $\langle h_{\alpha} \mid \alpha < \kappa \rangle$. Let $i_G(\langle h_{\alpha} \mid \alpha < \kappa \rangle)$ be $\langle h''_{\alpha} \mid \alpha < i_G(\kappa) \rangle$. Let $\alpha < \eta_{n-1}$ and $\eta' < \eta_{n-1}$. Consider $h''_{\alpha}(\eta') = \mu$. Apply k to it. Then $k(h''_{\alpha}(\eta')) = h'_{\alpha}(\eta') = k(\mu)$, since neither $\alpha < \eta_{n-1}$ nor $\eta' < \eta_{n-1}$ are moved by k. Now, if $k(\mu) = \eta$, then η_{n-1} will in the range of k as the image the projection to the largest component of the Cantor normal form of μ , which is clearly impossible. So, $k(\mu) \neq \eta$, which means that $h'_{\alpha}(\eta') \neq \eta$ whenever $\alpha < \eta_{n-1}$ and $\eta' < \eta_{n-1}$. \Box of the claim.

Suppose now that that for almost all $\alpha < \kappa$, $\eta_{n-1} = \eta_{n-1}^{\alpha}$.

Let us assume for simplicity that n = 2 and for almost all $\alpha < \kappa$, $\eta_1 < \eta_1^{\alpha}$ and $\eta_2 = \eta_2^{\alpha}$. Assume that this holds for every $\alpha < \kappa$.

The crucial is that there is no $f : \kappa \to \kappa$ such that $\eta_1 = i(f)(\eta_2)$, since if this was the case, then we were able to reduce η_1 .

Let $\pi_2 : \kappa \to \kappa$ be the projection of an ordinal to its second largest component in the Cantor normal form, i.e. $\pi_2(\xi_{m-1} + \xi_{m-2} + ... + \xi_0) = \xi_{m-2}$. Then $i(\pi_2)(\eta) = \eta_2$ and $i(\pi_2)(\delta_\alpha) = \eta_2^{\alpha}$, for every $\alpha < \kappa$. Also note that $\kappa \leq \eta_2 \leq \eta_2^{\alpha}$, for every $\alpha < \kappa$.

Set

$$Z_{2} = \{\nu < \kappa \mid \forall \nu' < \pi_{2}(\nu) \forall \alpha < \pi_{2}(\nu) (h_{\alpha}(\pi_{1}(\nu) + \nu') \neq \nu)\}$$

Then

$$i(\kappa \setminus Z_2) = \{\nu < i(\kappa) \mid \exists \nu' < i(\pi_2)(\nu) \exists \alpha < i(\pi_2)(\nu)(h'_{\alpha}(i(\pi_1)(\nu) + \nu') = \nu)\}$$

where $\langle h'_{\alpha} \mid \alpha < i(\kappa) \rangle = i(\langle h_{\alpha} \mid \alpha < \kappa \rangle).$ Now, if $\alpha < \kappa$, then $\kappa \setminus Z_2 \in E_{\alpha}$, since $i(\pi_2)(\delta_{\alpha}) = \eta_2^{\alpha} \ge \kappa > \alpha$, $i(h_{\alpha})(\eta) = \delta_{\alpha}$ and $\eta = \eta_2 + \eta_1 + \eta_0, \eta_1 + \eta_0 < i(\pi_2)(\delta_{\alpha}) = \eta_1^{\alpha}.$ Let us argue that $Z_2 \in U$.

Claim 3 $Z_2 \in U$.

Proof. We show that for every $\alpha < \eta_1$ and every $\eta' < \eta_1$, $h'_{\alpha}(\eta_2 + \eta') \neq \eta$.

Consider the extender H derived from i using ordinals below η_1 and $\{\eta_2\}$, i.e.

$$H = \langle U_{a \frown \eta_2} \mid a \in [\eta_1]^{<\omega} \rangle$$

and its ultrapower $i_H: V \to N_H$.

Another way of stating this is to consider the transitive collapse of

$$\{i(g)(a^{\frown}\eta_2) \mid a \in [\eta_1]^{<\omega}\}.$$

Let $k : N_H \to M$ be the natural embedding, i.e. $k(i_H(g)(a \uparrow \eta'_2)) = i(g)(a \uparrow \eta_2)$, where η'_2 is the image of η_2 under the transitive collapse.

Then, $crit(k) = \eta_1$, since by the smallnest assumptions we made on η_1 , $\eta_1 \neq i(g)(a \neg \eta_2)$, for $a \in [\eta_1]^{<\omega}, g : [\kappa]^{|a|+1} \to \kappa$, but every $\eta' < \eta_1$ is trivially of such a form, and so does not move by k.

Consider $\langle h_{\alpha} \mid \alpha < \kappa \rangle$. Let $i_H(\langle h_{\alpha} \mid \alpha < \kappa \rangle)$ be $\langle h''_{\alpha} \mid \alpha < i_H(\kappa) \rangle$. Let $\alpha < \eta_1$ and $\eta' < \eta_1$. Consider $h''_{\alpha}(\eta'_2 + \eta') = \mu$. Apply k to it. Then $k(h''_{\alpha}(\eta')) = h'_{\alpha}(\eta_2 + \eta') = k(\mu)$, since neither $\alpha < \eta_1$ nor $\eta' < \eta_1$ are moved by k. Now, if $k(\mu) = \eta$, then η_1 will in the range of k as the image the projection to the second largest component of the Cantor normal form of μ , which is clearly impossible. So, $k(\mu) \neq \eta$, which means that $h'_{\alpha}(\eta_2 + \eta') \neq \eta$ whenever $\alpha < \eta_1$ and $\eta' < \eta_1$.

 \Box of the claim.

We address now the following issue, raised by Eyal Kaplan:

Let F be a κ -complete ultrafilter over κ and $n, 0 < n < \omega$. How many ways to project Fⁿ onto F are?

Clearly, we have the projections to each of n many coordinates. But are there any other projections?

It is not hard to see that once F is normal, then - no.

Let us deal with general F's.

Start with n = 1.

Proposition 0.4 Let U be a κ -complete non-principal ultrafilter over κ , $i_U : V \to M_U \simeq \kappa V/U$ the corresponding elementary embedding. For each $\alpha < i_U(\kappa)$, let $U_{\alpha} = \{X \subseteq \kappa \mid \alpha \in i_U(X)\}$. Then $U_{\alpha} = U$ iff $\alpha = [id]_U$.

Proof. Suppose otherwise. Let $\alpha < i_U(\kappa), \alpha \neq [id]_U$ be such that $U_\alpha = U$. Denote $[id]_U$ by η . Pick $f : \kappa \to \kappa$ which represents α in M_U , i.e. $[f]_U = i_U(f)(\eta) = \alpha$. Then f is one to one on a set in U, since $U_\alpha = U$, and so, the ultrapower by U_α is the same as those U, i.e. M_U . Suppose for simplicity that f is one to one on κ . Then either

$$\{\nu < \kappa \mid f(\nu) > \nu\} \in U$$

or

 $\{\nu < \kappa \mid f(\nu) < \nu\} \in U.$

Suppose that

$$\{\nu < \kappa \mid f(\nu) > \nu\} \in U,$$

i.e. f is increasing on a set in U. If the second possibility occurs then we can just replace f by f^{-1} and proceed as in the former case.

Let

$$A := \{\nu < \kappa \mid f(\nu) > \nu\} \in U.$$

Note that for every $B \in U$, we have $f''B \in U_{\alpha} = U$.

For every $n < \omega$, define a set $A^{(n)} \in U$ by induction as follows. Set $A^{(0)} = A, A^{(n+1)} = f''A^{(n)}$. Let

$$A^* = \bigcap_{n < \omega} A^{(n)}.$$

Then $A^* \in U$.

Pick any $\nu \in A^*$. Then $\nu \in A^{(1)}$, hence there is $\nu_1 \in A$ such that $f(\nu_1) = \nu$. This ν_1 is unique, since f is one to one. Also, $\nu_1 < \nu$, since f is increasing on A.

Now, $\nu \in A^{(2)}$, hence there is $\nu_2 \in A$ such that $f(f(\nu_2)) = \nu$. Then $f(\nu_2) = \nu_1$, since f is one to one, and $\nu_2 < \nu_1$, since f is increasing on A.

Continue further by induction. We will obtain an infinite decreasing sequence

$$\nu > \nu_1 > \nu_2 > \dots$$

which impossible.

Contradiction.

Consider now n = 2.

Note that intuitively, if we have say three copies of F inside $F \times F$ at different places, then their envelope (the ultrafilter they generate) should be F^3 . But F^3 is not Rudin - Kiesler below F^2 .

However, it turns out that it is possible to have three (and much more) copies of an ultrafilter inside its square, as will be shown below.

Theorem 0.5 Let $\langle W_{\alpha} \mid \alpha < \kappa \rangle$ be a discrete family of κ -complete ultrafilters over κ and W be a κ -complete ultrafilters over κ . Assume that $W >_{R-K} W_{\alpha}$, for every $\alpha < \kappa$. Let $F = W - \lim \langle W_{\alpha} \mid \alpha < \kappa \rangle$. Then there is a function $g : [\kappa]^2 \to \kappa$ such that

- 1. $g_*F \times F = F$, i.e. g projects $F \times F$ to F,
- 2. g is different (mod F) from the projections of $F \times F$ to the first and to the second coordinate.

Proof. We preserve the notation of Theorem 0.1. The discreteness of the family $\langle W_{\alpha} | \alpha < \kappa \rangle$ implies that $F \geq_{R-K} W$. Hence $F >_{R-K} W_{\alpha}$, for every $\alpha < \kappa$. Then, in M_W , $i_W(F) >_{R-K}$ $W'_{[id]_W}$. Applying σ , we get that $i_F(F) >_{R-K} \sigma(W'_{[id]_W})$. Pick some $h: i_F(\kappa) \to i_F(\kappa)$ witnessing this.

Now, we form the second ultrapower by taking the ultrapower of M_F by $i_F(F)$. Clearly, $M_{F\times F}$ is this ultrapower and $i_{F\times F} = i_{i_F(F)} \circ i_F$. Set $\eta = [h]_{i_F(F)}$. Then $i_F(F) >_{R-K} \sigma(W'_{[id]_W})$ implies that $i_F(\kappa) \leq \eta \neq [id]_{i_F(F)}$. Now

$$Z \in F \Leftrightarrow \{\alpha < \kappa \mid Z \in W_{\alpha}\} \in W \Leftrightarrow i_W(Z) \in W'_{[id]_W}$$

$$\Leftrightarrow \sigma(i_W(Z)) \in \sigma(W'_{[id]_W}) \Leftrightarrow i_F(Z) \in \sigma(W'_{[id]_W}) \Leftrightarrow \eta \in i_{i_F(F)}(i_F(Z)) \Leftrightarrow \eta \in i_{F \times F}(Z).$$

Pick a function $g : [\kappa]^2 \to \kappa$ which represents η in $M_{F \times F}$. Then $g_*F \times F = F$. Namely, let $A \in F \times F$ and Z = g''A. We have $[id]_{F \times F} \in i_{F \times F}(A)$. But, $i_{F \times F}(g)([id]_{F \times F}) = \eta$, so $\eta \in i_{F \times F}(Z)$, and then, by above $Z \in F$.

Clearly, $[id]_F < \eta$ and we argued that due to $<_{R-K}$, also $\eta \neq [id]_{i_F(F)}$. So we are done.

The theorem has the following somewhat curious corollary:

Corollary 0.6 Let F be as in the previous theorem. Let P_F be the Prikry forcing with F and $\vec{\xi}$ a Prikry sequence. Then, in $V[\vec{\xi}]$ there is another Prikry sequence $\vec{\eta}$ for F(over V) which is disjoint from $\vec{\xi}$.

Proof. Let us use g of the theorem to construct $\vec{\eta}$ from $\vec{\xi}$. Set $\eta_n = g(\xi_{2n}, \xi_{2n+1})$, for every $n < \omega$. The properties of g imply that the sequence $\vec{\eta}$ is as desired.

Note that the sequence $\vec{\eta}$ is not maximal, i.e. $V[\vec{\eta}] \neq V[\vec{\xi}]$. Clearly the above situation is impossible once F is normal.

Theorem 0.7 Let $\langle W_{\alpha} \mid \alpha < \kappa \rangle$ be a discrete family of κ -complete ultrafilters over κ and W be a κ -complete ultrafilters over κ . Let $s, 1 \leq s < \omega$. Assume that $W >_{R-K} W_{\alpha}^{s}$, for every $\alpha < \kappa$.

Let $F = W - \lim \langle W_{\alpha} \mid \alpha < \kappa \rangle$. Then there is a function $g : [\kappa]^2 \to [\kappa]^s$ such that

1. g is different (mod F) from the projections of $F \times F$ to the first and to the second coordinate.

2. $g_*F \times F$ is a κ -complete ultrafilter over $[\kappa]^s$ such that for every $\ell, 1 \leq \ell \leq s$, the ℓ -th component of $g_*F \times F$, i.e. the projection of $g_*F \times F$ to its ℓ -th coordinate

$$\{Z \subseteq \kappa \mid \exists Y \in g_*F \times F(Z = \{\nu_\ell \mid \langle \nu_1, ..., \nu_\ell, ..., \nu_s \rangle \in Y\})\}$$

is equal to F.

Proof. We proceed as in Theorem 0.5. The discreteness of the family $\langle W_{\alpha} \mid \alpha < \kappa \rangle$ implies that $F \geq_{R-K} W$. Hence $F >_{R-K} W^{s}_{\alpha}$, for every $\alpha < \kappa$. Then, in M_{W} , $i_{W}(F) >_{R-K} W^{'s}_{[id]_{W}}$. Applying σ , we get that $i_{F}(F) >_{R-K} \sigma(W^{'s}_{[id]_{W}}) = (\sigma(W^{'}_{[id]_{W}}))^{s}$. Pick some $h : i_{F}(\kappa) \to [i_{F}(\kappa)]^{s}$ witnessing this.

Now, we form the second ultrapower by taking the ultrapower of M_F by $i_F(F)$. Clearly, $M_{F\times F}$ is this ultrapower and $i_{F\times F} = i_{i_F(F)} \circ i_F$.

Set $\langle \eta_1, ..., \eta_s \rangle = [h]_{i_F(F)}$. Then $i_F(F) >_{R-K} \sigma(W'_{[id]_W}) = (\sigma(W'_{[id]_W}))^s$ implies that $i_F(\kappa) \leq \eta_1 < ... < \eta_\ell < ... \eta_s$ and $\eta_\ell \neq [id]_{i_F(F)}$, for every $\ell, 1 \leq \ell \leq s$. Now, for every $\ell, 1 \leq \ell \leq s$,

$$Z \in F \Leftrightarrow \{\alpha < \kappa \mid Z \in W_{\alpha}\} \in W \Leftrightarrow i_W(Z) \in W'_{[id]_W}$$

$$\Leftrightarrow \sigma(i_W(Z)) \in \sigma(W'_{[id]_W}) \Leftrightarrow i_F(Z) \in \sigma(W'_{[id]_W}) \Leftrightarrow \eta_\ell \in i_{i_F(F)}(i_F(Z)) \Leftrightarrow \eta_\ell \in i_{F \times F}(Z).$$

Pick a function $g_{\ell} : [\kappa]^2 \to \kappa$ which represents η_{ℓ} in $M_{F \times F}$. Then $(g_{\ell})_*F \times F = F$. Namely, let $A \in F \times F$ and Z = g''A. We have $[id]_{F \times F} \in i_{F \times F}(A)$. But, $i_{F \times F}(g_{\ell})([id]_{F \times F}) = \eta_{\ell}$, so $\eta_{\ell} \in i_{F \times F}(Z)$, and then, by above $Z \in F$. Clearly, $[id]_F < \eta_{\ell}$ and we argued that due to $<_{R-K}$, also $\eta_{\ell} \neq [id]_{i_F(F)}$.

Set $g = (g_1, ..., g_s)$. Then it is as desired. \Box

The theorem has somewhat curious corollaries:

Corollary 0.8 Let $s, 1 \leq s < \omega$. Then there are κ -complete ultrafilters F over κ and \tilde{F} over $[\kappa]^s$ such that

- 1. all projections of \tilde{F} to its coordinates are F,
- 2. $F \times F >_{R-K} \tilde{F}$.

Clearly, if s > 1 then \tilde{F} cannot be the product of its coordinates.

Corollary 0.9 Let F be as in the previous theorem. Let P_F be the Prikry forcing with F and $\vec{\xi}$ a Prikry sequence. Then, in $V[\vec{\xi}]$ there are s pairwise disjoint Prikry sequences $\langle \vec{\eta_{\ell}} | 1 \leq \ell \leq s \rangle$ for F(over V) which are also disjoint from $\vec{\xi}$.

Proof. Let us use g_{ℓ} 's of the theorem to construct η_{ℓ} from ξ . Set $\eta_{\ell n} = g_{\ell}(\xi_{2n}, \xi_{2n+1})$, for every $n < \omega$. The properties of g_{ℓ} imply that the sequence η_{ℓ} is as desired.

Let us replace a finite s by an infinite. In order to do so we will need to go beyond just measurability of κ . Consider the case $s = \kappa$, i.e. we aim will be to construct F such that $F \times F$ has κ -many different projections to F.

A similar argument (with canonical functions) can be used to obtain κ^+ -many.

The analog of Corollary 0.9 with κ -many disjoint Prikry sequences will follow.

It is possible to produce such a model by forcing over a model with $o(\kappa) = \kappa$. Instead, let us make a stronger assumption and proceed without forcing.

Assume, for simplicity GCH. Suppose that there is a (κ, κ^{+3}) -extender E with ultrapower closed under κ -sequences of its elements, i.e.

there is $j: V \to M \simeq \text{Ult}(V, E)$ such that

- 1. κ is the critical point of j,
- 2. $M \supseteq V_{\kappa+3}$,
- 3. $^{\kappa}M \subseteq M$.

For every $\alpha < j(\kappa)$, set

$$E_{\alpha} = \{ Z \subseteq \kappa \mid \alpha \in j(Z) \}.$$

The number of ultrafilter over κ is κ^{++} . So, there is $\mu^* < \kappa^{+3}$ such that for every $\mu, \mu^* \leq \mu < \kappa^{+3}$, the ultrafilter E_{μ} appears κ^{+3} many times below κ^{+3} . Pick now an increasing sequence $\langle \mu_{\xi} | \xi < \kappa \rangle$ such that

- 1. $\mu^* \leq \mu_{\xi} < \kappa^{+3}$, for every $\xi < \kappa^{+3}$,
- 2. $E_{\mu_{\xi}} \neq E_{\mu_{\zeta}}$, whenever $\xi \neq \zeta$.

Note that the family $\langle E_{\mu_{\xi}} | \xi < \kappa \rangle$ is discrete, since each of $E_{\mu_{\xi}}$'s is a *P*-point.

There is a set $A = \{\tau_{\nu} \mid \nu < \kappa \cdot \kappa\} \subseteq [\mu^*, \kappa^{+3})$ of order type $\kappa \cdot \kappa$ such that $E_{\tau_{\nu}} = E_{\mu_{\xi}}$, for all $\nu \in [\kappa \cdot \xi, \kappa \cdot \xi + \kappa)$. Using the κ -closure of M, find δ , $\sup(A) \leq \delta < \kappa^{+3}$ which codes A, and so, $E_{\delta} >_{R-K} E_{\gamma}$, for every $\gamma \in A$. Now let W be E_{δ} and $W_{\alpha} = E_{\mu_{\alpha}}$, for every $\alpha < \kappa$. Repeat the argument of Theorem 0.7. We will obtain F over κ and \tilde{F} over $[\kappa]^{\kappa}$ such that

- 1. all projections of \tilde{F} to its coordinates are F,
- 2. $F \times F >_{R-K} \tilde{F}$.

This implies:

Corollary 0.10 Let P_F be the Prikry forcing with F and $\vec{\xi}$ a Prikry sequence. Then, in $V[\vec{\xi}]$ there are κ pairwise disjoint Prikry sequences $\langle \vec{\eta_{\gamma}} | 1 \leq \gamma \leq \kappa \rangle$ for F(over V) which are also disjoint from $\vec{\xi}$.

Let us show it is possible to have two disjoint maximal Prikry sequences once a normal measure is replaced by a non-normal.

Theorem 0.11 Let U be a normal measure over κ and let $P_{U \times U}$ be the Prikry forcing with $U \times U$. Then in $V^{P_{U \times U}}$ there disjoint maximal Prikry sequences for $P_{U \times U}$, i.e. there are sequences $\vec{\eta} = \langle \eta_n \mid n < \omega \rangle$, $\vec{\eta'} = \langle \eta'_n \mid n < \omega \rangle$ such that

- 1. $\{\eta_n \mid n < \omega\} \cap \{\eta_n \mid n < \omega\} = \emptyset,$
- 2. $\vec{\eta}$ is $P_{U \times U}$ generic over V,
- 3. $\vec{\eta}'$ is $P_{U \times U}$ generic over V,
- 4. $V[\vec{\eta}] = V[\vec{\eta'}].$

Proof.

Recall that

$$X \in U \times U \Leftrightarrow \{\alpha < \kappa \mid \{\beta < \kappa \mid (\alpha, \beta) \in X\} \in U\} \in U.$$

So,

$$[\kappa]^2 = \{ (\alpha, \beta) \mid \alpha < \beta \} \in U \times U.$$

Force with $P_{U \times U}$. Let

 $\vec{\eta} = \langle \eta_n \mid n < \omega \rangle$

be a generic Prikry sequence.

Assume for simplicity that all its members come from $[\kappa]^2$.

Let for every $n < \omega, \eta_n = (\eta_{n0}, \eta_{n1})$. Define now a new sequence

$$\vec{\eta}' = \langle \eta'_n \mid n < \omega \rangle$$

as follows:

set $\eta'_n = (\eta_{n1}, \eta_{n+1,0})$, for all $n < \omega$. Clearly, $V[\vec{\eta}] = V[\vec{\eta}']$ and $\vec{\eta}, \vec{\eta}'$ are disjoint as the sets.

Claim 4 $\vec{\eta}'$ is a Prikry sequence for $P_{U \times U}$ over V.

Proof. Let $A \in U \times U$. We need to show that a final segment of $\vec{\eta}'$ is contained in A. Let $\langle t, T \rangle$ be any condition. Assume for simplicity that t is just empty and $T \subseteq A$.

Consider $U^4 = (U \times U) \times ((U \times U))$. It can be written as $U \times (U \times U) \times U$. Let $\pi_{23} : [\kappa]^4 \to [\kappa]^2$ be the projection to 2,3 coordinates, i.e.

$$\pi_{23}(\alpha,\beta,\gamma,\delta) = (\beta,\gamma).$$

Then π_{23} will project U^4 to $U^2 = U \times U$. In particular, $B := \pi_{23}{}''A \times A \in U \times U$. So, $C := B \cap A \in U \times U$. Let $D = \pi_{23}^{-1}{}''C$. Then

$$\{(\alpha,\beta)\in[\kappa]^2\mid\{(\gamma,\delta)\in[\kappa]^2\mid(\alpha,\beta,\gamma,\delta)\in D\}\in U\times U\}\in U\times U$$

Set

$$X = \{ (\alpha, \beta) \in [\kappa]^2 \mid \{ (\gamma, \delta) \in [\kappa]^2 \mid (\alpha, \beta, \gamma, \delta) \in D \} \in U \times U \}$$

and

$$Y_{(\alpha,\beta)} = \{(\gamma,\delta) \in [\kappa]^2 \mid (\alpha,\beta,\gamma,\delta) \in D\}$$

for every $(\alpha, \beta) \in X$. Consider

$$Y = \Delta^*_{(\alpha,\beta)\in X} Y_{(\alpha,\beta)} = \{ (\gamma,\delta) \in [\kappa]^2 \mid \forall (\alpha,\beta) \in X(\beta < \gamma \to (\gamma,\delta) \in Y_{(\alpha,\beta)}) \}.$$

Then $Y \in U \times U$, since in the ultrapower by $U \times U$ we have

$$(\kappa, \kappa_1) \in i_{U \times U}(Y)_{(\alpha, \beta)},$$

for every $(\alpha, \beta) \in i_{U \times U}(X)$ with $\beta < \kappa$, where $\kappa_1 = i_U(\kappa)$. Hence,

$$(\kappa, \kappa_1) \in i_{U \times U}(Y).$$

Take finally $Z := X \cap Y \cap C$.

Then the condition $\langle \langle \rangle, Z \rangle$ will force that $\vec{\eta}'$ will be contained in A.

 \Box of the claim.

Note that once $F = \mathcal{V} \times \mathcal{U}$ and $\mathcal{V} \leq_{R-K} \mathcal{U}$, then it is easy to produce g that satisfies the conclusion of 0.5.

Namely, let s be a projection of \mathcal{U} on \mathcal{V} .

Define $g: [\kappa \times \kappa]^2 \to \kappa \times \kappa$ as follows:

$$g((\alpha, \beta), (\gamma, \delta)) = (s(\beta), \delta).$$

We would like to argue that this is basically the only possibility provided the set $\{o(\alpha) \mid \alpha < \kappa\}$ is bounded in κ in the core model.

Start with the following observation:

Theorem 0.12 Assume that κ is a measurable cardinal and the set $\{o(\alpha) \mid \alpha < \kappa\}$ is bounded in κ in the core model. Let U be a κ -complete ultrafilter over κ . Then the number of Rudin-Keisler non-equivalent ultrafilters which are $\leq_{R-K} U$ is strictly less than κ .

Proof. Denote the core model by \mathcal{K} . Consider $j := i_U \upharpoonright \mathcal{K}$. Then, by Mitchell [5], j is an iterated ultrapower of \mathcal{K} by its measures. The number of generators¹ of j is less than κ , since the set $\{o(\alpha) \mid \alpha < \kappa\}$ is bounded in κ in the core model, every generator is a critical point of one of the embeddings forming j and ${}^{\kappa}M_U \subseteq M_U$.

Denote the set of generators of j by Gen(j).

Now suppose that $\langle U_{\alpha} \mid \alpha < \kappa \rangle$ is a sequence of pairwise different κ -complete ultrafilters over κ which are $\leq_{R-K} U$.

Then, for every $\alpha < \kappa$ there is $\rho_{\alpha}, \kappa \leq \rho_{\alpha} < j(\kappa)$, such that

$$U_{\alpha} = \{ X \subseteq \kappa \mid \rho_{\alpha} \in i_U(X) \}.$$

Now, the number of generators is less than κ , so all but less than κ -many ρ_{α} 's are not generators. Suppose for simplicity that non of them is a generator.

Then, for every $\alpha < \kappa$ there is $\vec{\eta}_{\alpha} \in [Gen(j) \cap \rho_{\alpha}]^{<\omega}$ and a function $f_{\alpha} \in \mathcal{K}$ such that

$$\rho_{\alpha} = j(f_{\alpha})(\vec{\eta}_{\alpha}).$$

Assume that $\vec{\eta}_{\alpha}$ is such smallest possible set of generators.

Note that due to the smallness of $\vec{\eta}_{\alpha}$, the function f_{α} can be picked to be one to one, since

¹an ordinal $\eta, \kappa \leq \eta < j(\kappa)$, is called a generator of j iff for every $n < \omega, f : [\kappa]^n \to \kappa$ in \mathcal{K} and $a \in [\eta]^n$, $j(f)(a) \neq \eta$.

in \mathcal{K} , the ultrafilters

$$\{Y \subseteq \kappa \mid Y \in \mathcal{K} \text{ and } \vec{\eta}_{\alpha} \in j(Y)\}$$

and

$$\{Z \subseteq \kappa \mid Z \in \mathcal{K} \text{ and } \rho_{\alpha} \in j(Z)\}$$

have the same ultrapower. Then U_{α} will be Rudin-Keisler equivalent to

$$W_{\vec{\eta}_{\alpha}} := \{ X \mid \vec{\eta}_{\alpha} \in i_U(X) \},\$$

as witnessed by f_{α} .

Again, all but less that κ -many $\vec{\eta}_{\alpha}$'s, and so $W_{\vec{\eta}_{\alpha}}$, are the same. Hence, all but less that κ -many U_{α} 's will be Rudin-Keisler equivalent. \Box

Theorem 0.13 Assume that κ is a measurable cardinal and the set $\{o(\alpha) \mid \alpha < \kappa\}$ is bounded in κ in the core model. Let F, W be κ - complete ultrafilters over κ such that $g_*F \times W >_{R-K} F$ for some function $g : [\kappa]^2 \to \kappa$ which is different (mod $F \times W$) from the projections of $F \times W$ to the first coordinate. Assume in addition that if $W \ge_{R-K} F$ then gis different (mod $F \times W$) from any projection which witnesses this. Then there are κ -complete ultrafilters W', \mathcal{V} and $\{\mathcal{U}_{\alpha} \mid \alpha < \kappa\}$ such that

- 1. $W' \leq_{R-K} W$,
- 2. $\mathcal{U}_{\alpha} =_{R-K} W'$, for every $\alpha < \kappa$,
- 3. $\mathcal{V} \leq_{R-K} F$,
- 4. $F =_{R-K} \mathcal{V} \times W'$,
- 5. $F = \mathcal{V} \lim \langle \mathcal{U}_{\alpha} \mid \alpha < \kappa \rangle.$

Proof. Let $g: [\kappa]^2 \to \kappa$ be such projection. Let $\rho = [g]_{F \times W}$. Set, in M_F ,

$$\mathcal{U} = \{ X \subseteq i_F(\kappa) \mid \rho \in i_{i_F(W)}(X) \}.$$

Then $\mathcal{U} \supseteq i''_F F$. Let the sequence $\langle \mathcal{U}_{\alpha} \mid \alpha < \kappa \rangle$ be a sequence of κ -complete ultrafilters over κ that represents \mathcal{U} in M_F , i.e.

$$i_F(\langle \mathcal{U}_{\alpha} \mid \alpha < \kappa \rangle)([id]_F) = \mathcal{U}.$$

We have then that

$$F = F - \lim \langle \mathcal{U}_{\alpha} \mid \alpha < \kappa \rangle$$

since

$$X \in F - \lim \left\langle \mathcal{U}_{\alpha} \mid \alpha < \kappa \right\rangle \Leftrightarrow \left\{ \alpha < \kappa \mid X \in \mathcal{U}_{\alpha} \right\} \in F \Leftrightarrow i_{F}(X) \in \mathcal{U} \Leftrightarrow$$
$$\rho \in i_{i_{F}(W)}(X) \Leftrightarrow [g]_{F \times W} \in i_{F \times W}(X) \Leftrightarrow X \in F.$$

Note that in M_F , $\mathcal{U} \leq_{R-K} i_F(W)$, hence, by elementarity, $\mathcal{U}_{\alpha} \leq_{R-K} W$ for almost all α 's mod F. Assume for simplicity that this is true for every $\alpha < \kappa$.

By 0.12, then the number of Rudin-Keisler non-equivalent ultrafilters among \mathcal{U}_{α} 's is strictly less than κ . So, there is $A \in F$ such that for every $\alpha, \beta \in A, \mathcal{U}_{\alpha} =_{R-K} \mathcal{U}_{\beta}$.

Let W' be such that $\mathcal{U}_{\alpha} =_{R-K} W'$, for every $\alpha \in A$.

Let us get rid now from same ultrafilters.

For $\alpha, \beta \in A$, set $\alpha \sim \beta$ iff $\mathcal{U}_{\alpha} = \mathcal{U}_{\beta}$. Let t be a function that picks one member from each equivalence class.

If $|\operatorname{rng}(t)| < \kappa$, then there is $\alpha^* \in A$ such that for almost all $\alpha \mod F$, $\mathcal{U}_{\alpha} = \mathcal{U}_{\alpha^*}$. Then $F = F - \lim \langle \mathcal{U}_{\alpha} \mid \alpha < \kappa \rangle$ will imply $F = \mathcal{U}_{\alpha^*}$. Also, in M_F , $i_F(F)$ will be \mathcal{U} . Recall that $\mathcal{U}_{\alpha^*} \leq_{R-K} W$. So, $F \leq_{R-K} W$. Then, as in M_F , $i_F(F)$ will be \mathcal{U} , g will be a projection of W to F. Which contradicts to the assumption of the theorem.

So, $|\operatorname{rng}(t)| = \kappa$.

Set $\mathcal{V} = t_* F$. Then \mathcal{V} be κ -complete non-trivial ultrafilter over $\kappa, \mathcal{V} \leq_{R-K} F$ and

$$F = \mathcal{V} - \lim \langle \mathcal{U}_{\alpha} \mid \alpha < \kappa \rangle.$$

Now, in M_F ,

$$i_F(W') =_{R-K} \mathcal{U} \leq_{R-K} i_F(W).$$

Hence, $W' \leq_{R-K} W$.

Finally, applying separation, which holds under (anti) large cardinals assumptions made by [4], to \mathcal{V} and $\langle \mathcal{U}_{\alpha} \mid \alpha < \kappa \rangle$ and using $F = \mathcal{V} - \lim \langle \mathcal{U}_{\alpha} \mid \alpha < \kappa \rangle$ it is not hard to see that

$$\mathrm{Ult}(V,F) = M_F = \mathrm{Ult}(M_{\mathcal{V}}, i_{\mathcal{V}}(\langle \mathcal{U}_{\alpha} \mid \alpha < \kappa \rangle)([id]_{\mathcal{V}})) = \mathrm{Ult}(M_{\mathcal{V}}, i_{\mathcal{V}}(W')).$$

Hence, $F =_{R-K} \mathcal{V} \times W'$.

Remark 0.14 Note that, as in [3], starting with a measurable κ such that the set $\{o(\alpha) \mid \alpha < \kappa\}$ is unbounded in it, it is possible to construct a model with κ -complete ultrafilters

W, $\langle W_{\alpha} \mid \alpha < \kappa \rangle$ as in 0.5 and in addition a sequence $\langle W_{\alpha} \mid \alpha < \kappa \rangle$ is Rudin-Keisler increasing, or alternatively, it can be made of normal ultrafilters. In this type of situations the conclusion of 0.13 will be wrong.

References

- M. Gitik, Changing cofinalities and the nonstationary ideal, Israel Journal of Math., 56(3),1986,280-314.
- [2] M. Gitik, Prikry type forcings, in Handbook of Set Theory, Foreman, Kanamori, eds.
- [3] M. Gitik, On Mitchell and Rudin-Keisler orderings of ultrafilters, Annals of Pure and Applied Logic 39 (1988), 175-197.
- [4] M. Gitik, Some constructions of ultrafilters over a measurable cardinal,
- [5] W. Mitchell, Core model for sequences of measures,