A remark on large cardinals in "Cichon Maximum" by M. Gordstern, J. Kellner and S. Shelah.

Moti Gitik

April 18, 2019

1 On elementary embeddings.

In [3], M. Gordstern, J. Kellner and S. Shelah isolated the following interesting notion:

Definition 1.1 An elementary embedding $j : V \to M$ with critical point κ is called a *BUP-embedding from* κ to θ (for some regular $\theta > \kappa$), if

- 1. $\operatorname{cof}(j(\kappa)) = |j(\kappa)| = \theta$,
- 2. $^{\kappa>}M \subseteq M$,
- 3. whenever S is $\leq \kappa$ -directed partial order, then j''S is cofinal in S.

Such embeddings where constructed in [3] using strongly compact cardinals.

The purpose of this note is to reduce the assumptions.

Let E be a (κ, δ) -extender, i.e. $E = \langle E_a \mid a \in [\delta]^{<\omega} \rangle$, each E_a is a κ -complete ultrafilter over $[\kappa]^{|a|}$, $i_E : V \to M \simeq \text{Ult}(V, E)$ is the canonical embedding

such that

1. $i_E(\kappa) = \delta$,

2. δ is a regular cardinal.

Assume GCH.

Claim 1. M is closed under κ -sequences of its elements.

Proof. It follows from regularity of δ . Actually $cof(\delta) > \kappa$ is enough for this.

Claim 2. For every $x \in M$ there is a finite $a \in [\delta]^{|a|}$ and a function $f : [\kappa]^{|a|} \to V$ such that $x = i_E(f)(a)$.

Proof. Just M is a direct limit of ultrapowers $\langle \text{Ult}(V, E_b) \mid b \in [\delta]^n, n < \omega \rangle$.

Claim 3. $crit(i_E) = \kappa$ and $i_E(\kappa) = \delta$.

Claim 4. If $|A| < \kappa$, then $i''_E A = i_E(A)$.

Proof. Follows from Claim 3.

Claim 5. If $\lambda > \kappa$ is regular, then $\max(\delta, \lambda) \le i_E(\lambda) < \max(\delta, \lambda)^+$.

Proof. Let $\beta < i_E(\lambda)$. By Claim 2, there are $a_\beta \in [\delta]^{|a_\beta|}$ and a function $f_\beta : [\kappa]^{|a_\beta|} \to \lambda$ such that $\beta = i_E(f_\beta)(a_\beta)$. Counting the number of possibilities for a_β, f_β we obtain the bounds.

Claim 6. If S is a $\langle \lambda - \text{directed partial order, and } \kappa \langle \lambda, \text{ then } i''_E S \text{ is cofinal in } i_E(S).$ Proof. Let $s \in i_E(S)$. Use Claim 2 to find $a_s \in [\delta]^{|a_s|}$ and a function $f_s : [\kappa]^{|a_s|} \to S$ such that $s = i_E(f_s)(a_s)$. Now ran (f_s) has cardinality at most κ , so there is $s^* \in S$ above all members of the range. Then, by elementarity, s will be below $i_E(s^*)$.

Claim 7. If $\operatorname{cof}(\alpha) \neq \kappa$, then $i''_E \alpha$ is cofinal in $i_E(\alpha)$. *Proof.* Clear, if $\operatorname{cof}(\alpha) < \kappa$. If $\operatorname{cof}(\alpha) > \kappa$, then use Claim 6.

Note that δ can be collapsed $Col(\theta, < \delta)$ to any regular $\theta, \kappa < \theta < \delta$ without effecting the extender E and its properties (Claims 1-7). Just such forcing does not add new subsets to κ , and so, each of the components E_a remains a κ -complete ultrafilter.

It follows:

Proposition 1.2 The embedding i_E is a BUP-embedding from κ to δ .

Let us address the question of what large cardinals are needed in order to have such embeddings.

The following statement combines results by W. Mitchell [4] and by the author [1]

- **Theorem 1.3** If there exists a BUP-embedding from κ to δ (even without Item 3 of 1.1), then $o(\kappa) \geq \kappa^{++}$ in the core model.
 - If o(κ) ≥ κ⁺⁺ in the core model, then in a cardinal preserving generic extension which satisfies GCH there is a (κ, κ⁺⁺)-extender as above. In particular there exists a BUP-embedding from κ to κ⁺⁺.

If we relax GCH assumptions allow 2^{κ} to be large, then it is possible to get embeddings with targets (images of the critical point κ) larger than κ^{++} . See [2] for this type of constructions.

2 Four cardinals.

In the construction of [3], M. Gordstern, J. Kellner and S. Shelah used the following:

Assumption. $\aleph_1 < \kappa_9 < \lambda_1 < \kappa_8 < \lambda_2 < \kappa_7 < \lambda_3 < \kappa_6 < \lambda_4 < \lambda_5 < \lambda_6 < \lambda_7 < \lambda_8 < \lambda_9$ such that

- 1. For $\ell = 6, 7, 8, 9$, there is a BUP embedding j_{ℓ} from κ_{ℓ} to λ_{ℓ} .
- 2. All λ_i are regular and $\lambda_3 = \chi^+$ with $\chi^{\aleph_0} = \chi$.
- 3. $\lambda_2^{<\lambda_2} = \lambda_2, \lambda_4^{\aleph_0} = \lambda_4, \lambda_5^{<\lambda_4} = \lambda_5.$

Four strongly compacts were used in order to satisfy this assumption.

Let us show that variations of superstrong cardinals can be used instead.

Recall that a cardinal κ is called *a superstrong* iff there is an elementary embedding $j: V \to M$ with a critical point κ such that $M \supseteq V_{j(\kappa)}$.

Let us call a cardinal κ a superstrong with a target λ iff there is an elementary embedding $j: V \to M$ with a critical point κ such that $M \supseteq V_{j(\kappa)}$ and $j(\kappa) = \lambda$.

Note that such λ need not be a regular. Moreover, it will have cofinality ω , if κ is the least superstrong.

Our interest will be in embeddings with regular (and then necessary inaccessible) targets. The embedding j can be replaced by ultrapower embedding by extender, as in the previous section.

In particular, assuming GCH, we will have a BUP embedding from κ to λ .

Proposition 2.1 Let κ be a superstrong cardinal with a target λ .

Suppose that κ is a limit of superstrong cardinals η with targets $\eta^* < \kappa$. Then there is a superstrong cardinal κ' with a target λ' such that $\kappa < \kappa' < \lambda' < \lambda$.

Proof. Follows by elementarity.

The next proposition is similar:

Proposition 2.2 Let κ be a superstrong cardinal with a target λ . Suppose that κ is a limit of superstrong cardinals η with regular targets $\eta^* < \kappa$. Then there is a superstrong cardinal κ' with a regular target λ' such that $\kappa < \kappa' < \lambda' < \lambda$.

Let us now iterate the process.

Definition 2.3 Let κ be a superstrong cardinal with a regular target λ .

Say then that a degree $d(\kappa) \ge 1$.

Set $d(\kappa) \ge n + 1$ iff κ is a limit superstrong cardinals η with regular targets $\eta^* < \kappa$ and $d(\eta) \ge n$.

It follows then:

Proposition 2.4 Let $n, 1 \leq n < \omega$ and κ be a superstrong cardinal with a target λ with $d(\kappa) \geq n+1$. Then there are superstrong cardinals κ_i with regular targets $\lambda_i, 1 \leq i \leq n$ such that $\kappa < \kappa_1 < \ldots < \kappa_n < \lambda_n < \ldots < \lambda_1 < \lambda$.

In conclusion let us state the following:

Proposition 2.5 Suppose that κ is a superstrong cardinal with a Mahlo target λ . Then for every $n < \omega$, $d(\kappa) \ge n$.

Proof. Let $j: V \to M$ be a witnessing embedding by a (κ, λ) -extender E. Let $f: [\kappa]^k \to \kappa$, for some $k < \omega$. Consider

$$C_f = \{\nu < \kappa \mid f \upharpoonright [\nu]^k : [\nu]^k \to \nu\}.$$

It is clearly a club. Then $j(C_f)$ is a club in λ . Then

$$C := \bigcap \{ j(C_f) \mid f : [\kappa]^k \to \kappa, k < \omega \}$$

is also a club in λ .

Let η be any inaccessible cardinal in C. Then $E \upharpoonright \eta$ will be a (κ, η) -extender witnessing that κ is a strong cardinal with a target η .

Clearly, $E \upharpoonright \eta \in M$. By elementarity, then, κ is a limit of superstrong cardinals ν with regular targets $\nu^* < \kappa$. Again by elementarity, the same is true in M (and so in V) with κ replaced by $j(\kappa) = \lambda$.

Next we can pick an inaccessible cardinal μ in C above η . Then $E \upharpoonright \eta$ will be in the ultrapower by $E \upharpoonright \mu$. We can repeat the argument above, with $E \upharpoonright \mu$ replacing E, and argue that μ (the target of κ under $E \upharpoonright \mu$) is a limit of superstrong cardinals ν with regular targets $\nu^* < \mu$.

Continue by induction.

References

- [1] M. Gitik, Negation of SCH from $o(\kappa) = \kappa^{++}$, APAL
- [2] M. Gitik, On measurable cardinals violating GCH, APAL
- [3] M. Gordstern, J. Kellner and S. Shelah, Cichon Maximum.
- [4] W. Mitchell, Core model for sequences of measures I,