
A remark on subforcings of the Prikry forcing

Abstract

We will show that every subforcing of the basic Prikry forcing is either trivial or
isomorphic to the Prikry forcing with the same ultrafilter.

Let κ be a measurable cardinal and U a normal ultrafilter over κ. We will denote by

P (U) the basic Prikry forcing with U . Let us recall the definition.

Definition 0.1 P (U) is the set of all pairs 〈p,A〉 such that

1. p is a finite subset of κ,

2. A ∈ U , and

3. min(A) > max(p).

It is convenient sometimes to view p as an increasing sequence of ordinals.

Definition 0.2 Let 〈p,A〉, 〈q, B〉 ∈ P (U). Then 〈p,A〉 ≥ 〈q, B〉 iff

1. p ∩ (max(q) + 1) = q,

2. A ⊆ B, and

3. p \ q ⊆ B.

If 〈p,A〉 ≥ 〈q, B〉 and p = q, then 〈p,A〉 is called a direct extension of 〈q, B〉 and denote

this by 〈p,A〉 ≥∗ 〈q, B〉.

Let G be a generic for 〈P (U),≤ 〉. Then

C = ∪{p | ∃A 〈p,A〉 ∈ G}

is called a Prikry sequence. It is easy to reconstruct G form C, just note that

G = {〈p,A〉 ∈ P (U) | C ⊆ p ∪ A}.
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So V [G] = V [C]. By Mathias [?], every infinite subsequence C ′ of C is a Prikry sequence as

well for a generic set

G′ = {〈p,A〉 ∈ P (U) | C ′ ⊆ p ∪ A}.

Our aim will be to prove the following:

Theorem 0.3 Every subforcing of the Prikry forcing is either trivial or it is isomorphic to

the Prikry forcing (with the same ultrafilter).

Proof. Let C be a Prikry sequence (over V ). It is enough to show that for every set A of

ordinals in V [C] there is a subsequence C ′ of C such that V [A] = V [C ′]. We will show this

by induction on sup(A). The Prikry forcing P (U) preserves all the cardinals, so it is enough

to deal with A’s such that sup(A) is a cardinal. Also, recall that P (U) does not add new

bounded subsets to κ. Hence the first interesting case is sup(A) = κ.

Let us deal first with the following simple partial case.

Lemma 0.4 Let ~α = 〈αn | n < ω〉 ∈ V [C] be an increasing cofinal in κ sequence. Then

there exists an infinite subsequence C ′ of C such that V [C ′] = V [~α].

Proof. Work in V . Given a condition 〈q, B〉, construct by induction (using the Prikry

property and the normality of U) a condition 〈p,A〉 and a non-decreasing sequence of natural

numbers 〈nk | k < ω〉 such that for every k < ω

1. 〈q, B〉 ≤∗ 〈p,A〉

2. for every 〈η1, ..., ηnk〉 ∈ [A]nk the condition 〈p_〈η1, ..., ηnk〉, A \ ηnk + 1〉 decides the

value of α∼k,

3. there is no n, nk ≤ n < nk+1 such that for some 〈η1, ..., ηn〉 ∈ [A]n and E ∈ U the

condition 〈p_〈η1, ..., ηn〉, E〉 decides the value of α∼nk+1
,

Define a function F : [A]<ω → [κ]<ω by setting F (η1, ..., ηn) = 〈〉, if n < n0 and

F (η1, ..., ηn) = 〈ν1, ..., νk〉, if n ≥ n0, where 〈ν1, ..., νk〉 is the sequence of the maximal length

such that for every i, 1 ≤ i ≤ k,

〈p_〈η1, ..., ηn〉, A \ ηn + 1〉‖ α∼i = νi.

Using normality of U it is possible to find A∗ ∈ U and In ⊆ n, for each n < ω, such that for

every n < ω and 〈η0, ..., ηn−1〉, 〈η′0, ..., η′n−1〉 ∈ [A∗]n the following hold:

In+1 ∩ n ⊆ In
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and

F (η0, ..., ηn−1) = F (η′0, ..., η
′
n−1) iff ηi = η′i, whenever i ∈ In,

i.e. F � [A∗]n depends only on the coordinates in In and there it is one to one.

Now, using the density argument, we can find such 〈p,A∗〉 in the generic set. Consider a

tree

T = {〈η1, ..., ηn〉 ∈ [A∗]n | ∃k < ω F (η1, ..., ηn) = 〈α1, ..., αk〉}.

Set Jn =
⋂
m<ω(Im ∩ n) and J =

⋃
n<ω Jn. Define C ′ = C � J . We claim that V [~α] = V [C ′].

Thus, given C ′ we can use F on A∗ in order to define ~α. On the other hand given ~α we use

the tree T to reconstruct C ′. Actually, for each n ∈ J the n-th level of T consists of elements

of the form t_η, where t’s from the level n− 1 may vary, but η is always the same and it is

the n-th element of C.

�

Lemma 0.5 Suppose that A ∈ V [C] is an unbounded subset of κ and κ is a singular cardinal

in V [A]. Then there is a subsequence C ′ of C such that V [A] = V [C ′].

Proof. The cofinality of κ should be ω in V [A], since V [A] ⊆ V [C] and the Prikry forcing

does not change cofinality of cardinals that differ from κ.

Let 〈ηn | n < ω〉 ∈ V [A] be a cofinal sequence in κ. Let 〈Xni | i < δn〉 be the least in a fixed

well ordering of V enumeration of P(ηn), for each n < ω. Set in to be the least i < δn such

that A ∩ ηn = Xni, for each n < ω. Then A ∈ V [〈ηn | n < ω〉, 〈in | n < ω〉]. So

V [A] = V [〈ηn | n < ω〉, 〈in | n < ω〉],

and we can apply Lemma 0.4.

�

Lemma 0.6 Suppose that A ∈ V [C] is an unbounded subset of κ. Then there is a subse-

quence C ′ of C such that V [A] = V [C ′].

Proof. Without loss of generality let us assume that A is a new subset of κ and the weakest

condition forces this.

Work in V . Let A∼ be a name of A and 〈s, S〉 ∈ P (U). Define by induction a subtree T of

[S]<ω. For each ν ∈ S pick some Sν ⊆ S, Sν ∈ U and aν ⊆ ν such that

〈s_ν, Sν〉‖A∼ ∩ ν = aν .

3



Set

S(0) = S ∩4ν∈SSν .

Consider the function ν → aν , (ν ∈ S(0)). By normality of U it is easy to find A(0) ⊆ κ and

T (0) ⊆ S(0), T (0) ∈ U such that A(0) ∩ ν = aν , for every ν ∈ T (0). Set the first level of T

to be T (0).

Let now ν0, ν1 ∈ T (0) and ν1 > ν0. Then, clearly, ν1 ∈ Sν0 . Find Sν0,ν1 ⊆ Sν0 , Sν0,ν1 ∈ U and

aν0,ν1 ⊆ ν1 such that

〈s_〈ν0, ν1〉, Sν0,ν1〉‖A∼ ∩ ν1 = aν0,ν1 .

Set

S(ν0) = T (0) ∩4ν∈Sν0Sν0,ν .

Again, we consider the function ν → aν , (ν ∈ Sν0). By normality of U it is easy to find

A(ν0) ⊆ κ and T (ν0) ⊆ Sν0 , T (ν0) ∈ U such that A(ν0) ∩ ν = aν0,ν , for every ν ∈ T (ν0).

Define the set of the immediate successors of ν0 to be T (ν0), i.e. SucT (ν0) = T (ν0).

This defines the second level of T . Continue similar to define further levels of T .

Now let us turn 〈s, T 〉 into a condition in P (U) by taking the diagonal intersections, i.e. set

T ∗ = 4t∈TSucT (t) and consider 〈s, T ∗〉. It has the following property:

(*) for every 〈η1, ..., ηn〉 ∈ T ∗,

〈s_〈η1, ..., ηn〉, T ∗〈η1,...,ηn〉〉‖A∼ ∩ ηn = A(η1, ..., ηn−1) ∩ ηn.

A simple density argument implies that there is a condition which satisfies (*) in the

generic set. Assume for simplicity that already 〈s, T ∗〉 is such a condition and s = 〈〉. Then,

C ⊆ T ∗. Let 〈κn | n < ω〉 = C. So, for every n < ω,

A ∩ κn = A(κ0, ..., κn−1) ∩ κn.

Let us work now in V [A] and define by induction a sequence 〈ηn | n < ω〉 as follows. Consider

A(0). It is a set in V , hence A(0) 6= A. So there is η such that for every ν ∈ T ∗ \ η we have

A ∩ ν 6= A(0) ∩ ν. Set η0 to be the least such η. Turn to η1. Let ξ ∈ T ∗ ∩ η0. Consider

A(ξ). It is a set in V , hence A(ξ) 6= A. So there is η such that for every ν ∈ T ∗ \ η we have

A ∩ ν 6= A(ξ) ∩ ν. Set η(ξ) to be the least such η. Now define η1 to be sup({η(ξ) | ξ < η0}).
Suppose that η0, ..., ηn are defined. Define ηn+1. Let ξ0 < ξ1 < ... < ξn be in T ∗. Consider

A(ξ0, ..., ξn). It is a set in V , hence A(ξ0, ..., ξn) 6= A. So there is η such that for every

ν ∈ T ∗ \ η we have A∩ ν 6= A(ξ0, ...ξn)∩ ν. Set η(ξ0, ...ξn) to be the least such η. Now define

ηn+1 to be sup({η(ξ0, ...ξn) | ξ0 < η0, ..., ξn < ηn}).
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This completes the definition of the sequence 〈ηn | n < ω〉.
Let us argue that it is cofinal in κ. Then the lemma will follow by Lemma 0.5.

Suppose otherwise. Let k be the least such that κk > sup({ηn | n < ω}). Then

A ∩ κk = A(κ0, ..., κk−1) ∩ κk.

This is impossible, since ηk < κk.

�

Let now A be a subset of κ+ in V [C].

As a warm up let us show the following:

Lemma 0.7 Suppose that A ⊆ κ+ in V [C] and A ∩ α ∈ V , for every α ∈ V . Then A ∈ V .

Proof. For each α < κ+ pick 〈sα, Sα〉 ∈ G such that

〈sα, Sα〉‖A∼ ∩ α = A ∩ α.

There are an unbounded E ⊆ κ+ and s ∈ [κ]<ω such that for each α ∈ E we have s = sα.

Now, in V , we consider

H = {〈s, T 〉 ∈ P (U) | ∃α < κ+∃a ⊆ α 〈s, T 〉‖A∼ ∩ α = a}.

Note that if 〈s, T 〉, 〈s, T ′〉 ∈ P (U) and for some α ≤ β < κ+, a ⊆ α, b ⊆ β we have

〈s, T 〉‖A∼ ∩ α = a and 〈s, T ′〉‖A∼ ∩ β = b,

then b ∩ α = a. Just conditions of this form are compatible, and so they cannot force

contradictory information.

Apply this observation to H. Let

X = {a ⊆ κ+ | ∃〈s, S〉 ∈ H 〈s, T 〉‖A∼ ∩ α = a}.

Then necessarily,
⋃
X = A.

�

So A 6∈ V implies that some initial segments of A are not in V as well.

Work in V [A]. Fix some well ordering. By Lemma 0.6, for each α < κ+, we can pick the

least Prikry sequence Cα for P (U)such that V [Cα] = V [A ∩ α]. Note that Cα need not be a

subsequence of C, but still |Cα \C| < ℵ0. The number possibilities for Cα’s is at most κ. So
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there is α∗ < κ+ such that Cα = Cα∗ , for every α, α∗ ≤ α < κ+. Set C∗ = C ∩ Cα∗ . Clearly,

C∗ ∈ V [A] and

∀α(α∗ ≤ α < κ+ → V [C∗] = V [A ∩ α]).

It does not necessary means that V [C∗] = V [A], since the sequence 〈A ∩ α | α < κ+〉 is

probably not in V [C∗]. But let us argue that indeed V [C∗] = V [A].

Suppose for simplicity that C∗ is a sequence consisting of members of C standing at even

places, i.e. C∗ = Ceven, where

Ceven = 〈C(2n) | n < ω〉.

Split the Prikry forcing with U , which we further denote by P (U) into two parts the first

adds the even part of the Prikry sequence and the second the rest of it.

For S ∈ U let S ′ = {ν ∈ S | S ∩ ν is unbounded in ν}. Let

D = {〈s0, ..., sk, S〉 ∈ P (U) | k is even}.

Define a map π : D → P (U) as follows:

π(〈s0, ..., s2n, S〉 = 〈s0, s2, ..., s2k, ...s2n, S〉.

We would like to turn π into a projection map. In order to do so let us define a new order

� over P (U).

Definition 0.8 Let p = 〈t1, ..., tn, T 〉, q = 〈r1, ..., rm, R〉 ∈ P (U). Set q � p iff

1. T ⊆ R,

2. 〈t1, ..., tn〉 end extends 〈r1, ..., rm〉,

3. for each k,m < k ≤ n we have tk ∈ R,

4. (a) if m = 0, i.e. the sequence of q is empty, then R∩ t1 6= ∅ and for each k, 1 < k ≤ n

we have R ∩ (tk−1, tk) 6= ∅,

(b) if m > 0, then for each k,m < k ≤ n we have R ∩ (tk−1, tk) 6= ∅.

Lemma 0.9 π projects the forcing 〈P (U),≤ 〉 onto the forcing 〈P (U),� 〉.

6



Proof. Let p = 〈s0, s1, ..., s2n, S〉 , 〈t1, ..., ti〉 ∈ [S ′]i and T ⊆ S ′ with min(T ) > ti. We need to

find an extension q of p which π projects above 〈s0, s2, ..., s2k, ..., s2n, t1, ..., ti, T 〉. It is easy

to arrange. Thus pick some r1, ..., ri ∈ S such that

r1 < t1 < r2 < ... < ri < ti.

Consider

q = 〈s0, s1, ..., s2n, r1, t1, ..., ri, ti, T 〉.

Then π(q) = 〈s0, s2, ..., s2k, ..., s2n, t1, ..., ti, T
′〉 and we are done.

�

Lemma 0.10 〈P (U),�,≤∗ 〉 is a Prikry type forcing notion, where ≤∗ is the usual direct

extension order on P (U).

Proof. The standard argument for the Prikry forcing works here.

�

Let G ⊆ P (U) be a 〈P (U),� 〉 generic. Denote by E the set⋃
{{t1, ..., tn} | ∃T ∈ U 〈t1, ..., tn, T 〉 ∈ G}.

Clearly, E is just a Prikry sequence for U . Let 〈en | n < ω〉 be the increasing enumeration

of E.

Note that it is possible to reconstruct G from E.

Thus set

G′ = {〈t1, ..., tn, T 〉 | 〈t1, ..., tn〉 = 〈e1, ..., en〉,∀k ≥ n T ∩ (ek, ek+1) 6= ∅}.

Lemma 0.11 G = G′.

Proof. Assume first that p = 〈t1, ..., tn, T 〉 is in G. Then clearly 〈t1, ..., tn〉 = 〈e1, ..., en〉. Sup-

pose that for some k ≥ n we have T ∩(ek, ek+1) = ∅. There is a condition q = 〈e1, ..., em, S〉 ∈
G for some m > k. Both p and q in G, so there is r = 〈e1, ..., el, R〉 ∈ G stronger than both

p, q. So l ≥ m. Then p � r implies by 0.8, T ∩ (ek, ek+1) 6= ∅. Contradiction. Hence p ∈ G′.
Suppose now that p = 〈t1, ..., tn, T 〉 is in G′. Then 〈t1, ..., tn〉 = 〈e1, ..., en〉 and for all

k ≥ n we have T ∩ (ek, ek+1) 6= ∅. It is enough to show that p is compatible (�) with every

member of G. Let q = 〈e1, ..., em, S〉 ∈ G. Extending if necessary we can assume that n = m.
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Set R = S ∩ T \ en + 1. Consider now r = 〈e1, ..., en, R〉. Then p, q � r and we are done.

�

Consider now

P ∗ = {〈pe, p〉 ∈ P (U)× P (U) | pe‖ p ∈ P (U)/C∼even}.

Clearly, P ∗ is isomorphic to P (U).

Lemma 0.12 The following two conditions are equivalent:

〈ν0, ..., νn, S〉‖ 〈η0, η1, η2, η3, ..., η2m, T 〉 ∈ P (U)/C∼even

and

1. 〈η0, η2, ..., η2m−2, η2m〉 is an initial segment (probably not proper) of 〈ν0, ..., νn〉,

2. T ⊇ S,

3. if τ1, τ2 ∈ S or τ1, τ2 are members of the sequence 〈ν0, ..., νn〉 above η2m, then τ1 < τ2 →
(τ1, τ2) ∩ T 6= ∅.

Proof. Suppose otherwise. Let for example T 6⊇ S. Pick then some ν ∈ S \ T and extend

〈ν0, ..., νn, S〉 to 〈ν0, ..., νn, ν, S \ ν+ 1〉. Then for each generic Geven with 〈ν0, ..., νn, ν, S \ ν+

1〉 ∈ Geven we will have that ν ∈ Ceven. But ν 6∈ C for any G with 〈η0, ..., η2m, T 〉 ∈ G.

Now suppose that for some τ1, τ2 ∈ S τ1 < τ2 but (τ1, τ2) ∩ T = ∅. Extend 〈ν0, ..., νn, S〉 to

〈ν0, ..., νn, τ1, τ2, S\τ2〉.
�

Lemma 0.13 The forcing P (U)/Geven satisfies κ+-c.c..

Proof. Let {pα | α < κ+} ⊆ P (U)/Geven.

Work in V . For each α < κ+ pick some qα = 〈〈sα,0, ..., sα,2nα〉, Sα〉 and 〈~ηα, Tα〉 such that

qα‖ p∼α
= 〈~ηα, Tα〉.

By shrinking if necessary, we can assume for some n < ω and some sequence 〈s0, ..., s2n〉
nα = n and 〈sα,0, ..., sα,2nα〉 = 〈s0, ..., s2n〉, for every α < κ+. By shrinking more and

extending if necessary, using Lemma 0.12 we may assume that ~ηα = 〈s0, s1, ..., s2n−1, s2n〉,
for some sequence 〈s1, s3, ..., s2n−1〉, for each α < κ+.
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Let now α, β < κ+. Consider S = Sα ∩ Sβ. Let T = (Tα ∩ Tβ)′. Clearly T ∈ U . Finally, let

S∗ = S ∩ T . Then

〈〈s0, ..., s2n〉, S∗〉‖ 〈〈s0, s1, ..., s2n−1, s2n〉, T 〉 ∈ P (U)/G∼even,

by Lemma 0.12.

�

Let show a bit stronger statement.

Lemma 0.14 Let Godd be a generic subset of P (U)/Geven. Then the forcing P (U)/Geven

satisfies κ+-c.c. in V [Geven, Godd].

Proof. Let {pα | α < κ+} ⊆ P (U)/Geven in V [Geven, Godd].

Work in V . For each α < κ+ pick some qα = 〈〈sα,0, ..., sα,2nα〉, Sα〉, 〈~να, Rα〉 and 〈~ηα, Tα〉
such that

qα‖ 〈~να, Rα〉 ∈ P (U)/G∼even

and

〈qα, 〈~να, Rα〉〉‖ p∼α
= 〈~ηα, Tα〉.

By shrinking if necessary, we can assume for some n < ω and some sequence 〈s0, ..., s2n〉
nα = n and 〈sα,0, ..., sα,2nα〉 = 〈s0, ..., s2n〉, for every α < κ+. By shrinking more and

extending if necessary, using Lemma 0.12 we may assume that ~ν = 〈s0, r1, s2, ..., r2n−1, s2n〉
and ~ηα = 〈s0, s1, ..., s2n−1, s2n〉, for some sequences 〈r1, r3, ..., r2n−1〉, 〈s1, s3, ..., s2n−1〉, for each

α < κ+.

Let now α, β < κ+. Consider S = Sα ∩ Sβ. Let T = (Tα ∩ Tβ)′, R = (Rα ∩ Rβ)′. Clearly

T,R ∈ U . Finally, let S∗ = S ∩ T ∩R. Then

〈〈s0, ..., s2n〉, S∗〉‖ 〈〈s0, r1, ..., r2n−1, s2n〉, R〉 ∈ P (U)/G∼even

and

〈〈s0, ..., s2n〉, S∗〉‖ 〈〈s0, s1, ..., s2n−1, s2n〉, T 〉 ∈ P (U)/G∼even,

by Lemma 0.12. Hence

〈〈〈s0, ..., s2n〉, S∗〉, 〈〈s0, r1, ..., r2n−1, s2n〉, R〉〉‖ p∼α
, p
∼β

are compatible conditions in P (U)/G∼even.

�
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Lemma 0.15 A ∈ V [Geven].

Proof. Suppose that A 6∈ V [Geven].

Work in V [Geven]. For each α < κ+ consider the set

Xα = {B ⊆ α | ‖A∼ ∩ α = B‖ 6= 0},

where A∼ is a name of A in P (U)/Ceven and the boolean value is taken in RO(P (U)/Ceven).

For B ∈ Xα we denote

‖A∼ ∩ α = B‖ by b(B).

Note that by Lemma 0.13 each Xα has cardinality at most κ. Also, for every α ≤ β < κ+

and B ∈ Xα there is B′ ∈ Xβ such that B′ ∩α = B. In addition, if B′ ∈ Xβ and B′ ∩α = B

then b(B′) ≤ b(B). Clearly, that if b(B′) < b(B), then there is p ∈ P (U)/Geven stronger

than b(B) but incompatible with b(B′). Just any p stronger than b(B) \ b(B′) will work.

Now force with P (U)/Geven. Let Godd be a generic. For each α < κ+ let Aα = A ∩ α. By

our assumptions, each Aα ∈ V [Geven]. Clearly, Aα ∈ Xα, for every α < κ+. Set bα = b(Aα).

Then

bβ ≤ bα,

for every α ≤ β < κ+. The sequence of bα’s cannot stabilize since A not in V [Geven], by

the assumption. Hence there will be a strictly decreasing subsequence 〈bαi | i < κ+〉 of the

sequence 〈bα | α < κ+〉. But then

〈bαi \ bαi+1
| i < κ+〉

will be an antichain of the length κ+ which is impossible by Lemma 0.14. Contradiction.

�

Now, using induction we can go up and show that for every cardinal λ > κ+ and a set

A ⊆ λ in V [C] there is a subsequence C∗ of C such that V [A] = V [C∗].

Thus, if cof(λ) > κ, then the argument of Lemma 0.15 applies.

Suppose that δ = cofV (λ) ≤ κ. Pick in V a cofinal in λ sequence 〈λα | α < δ〉 consisting

of regular cardinals. Find a subsequence C ′ of C which is in V [A] and such that V [C ′] ⊇
V [A ∩ λα], for each α < δ. Thus for each α < δ pick Cα to be the least Prikry sequence for

P (U) (in a fixed well ordering of V [A]) such that V [A∩λα] = V [Cα]. Consider 〈Cα | α < δ〉.
Clearly, this sequence is in V [A]. It can be coded as a subset of κ. Hence, by Lemma 0.6,

there is a Prikry sequence C ′′ ∈ V [A] for P (U) such that V [C ′′] = V [〈Cα | α < δ〉]. Set

C ′ = C ∩C ′′. Still C ′ ∈ V [A] and V [C ′′] = V [〈Cα | α < δ〉]. Note that, if δ 6∈ {ω, κ}, then it
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is possible to find C ′ such that V [C ′] = V [A ∩ λα] for a final segment of α’s.

Suppose that V [C ′] 6= V [C]. Work in V [C ′]. For each α < δ let

Xα = {B ⊆ λα | ‖A∼ ∩ λα = B‖ 6= 0}.

By Lemma 0.13 each Xα has cardinality at most κ. Hence we can code 〈Xα | α < δ ≤ κ〉
as a subset of κ. So, over V [C ′], adding A is equivalent to adding of a subset of κ. Let H

denote such a subset. Then

V [A] = V [C ′][H] = V [C ′, H].

But C ′×H can be coded again into a subset of κ and it in turn is equivalent to a subsequence

C∗ of C, i.e. V [C ′, H] = V [C∗]. Hence, V [A] = V [C∗].

This completes the proof of the theorem.

�
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