More on Prikry forcings with non-normal ultrafilters.

January 9, 2017

Abstract

We continue here the study of subforcing of the Prikry forcing started in [5] and then in [1].

1 Introduction.

We deal here with Prikry forcings with non-normal ultrafilters over κ (including tree Prikry forcings with different ultrafilters). Note that such forcing may add various new subsets to κ. For example start with κ which is a κ-compact cardinal. In [1], an example of a Prikry forcing which adds a Cohen generic over V subset was produced starting just from a measurable. Clearly, it cannot be equivalent to a Prikry forcing since the Cohen forcing preserves cofinalities and Prikry changes the cofinality of κ to ω.

Our aim here will be to study situations where in $V[A], \kappa$ changes its cofinality, for some set A of ordinals in a Prikry extension.

Let κ be a measurable cardinal and let $\mathbb{U}=\left\langle U_{a} \mid a \in[\kappa]^{<\omega}\right\rangle$ be a tree consisting of κ-complete non-trivial ultrafilters over κ.

Denote by $P(\mathbb{U})$ the Prikry forcing with \mathbb{U}. Let C be a Prikry sequence for $P(\mathbb{U})$.
Our aim is to show the following:
Theorem 1.1 Let A be a set of ordinals in $V[C]$ of size κ. Then the following are equivalent:

1. κ changes its cofinality in $V[A]$;
2. A is equivalent to a Prikry forcing with \mathbb{W}, for some tree \mathbb{W} consisting of ultrafilters over κ Rudin-Keisler below some of those from \mathbb{U}.

Proof. The implication $(2) \Rightarrow(1)$ is obvious.
Our tusk will be to show $(1) \Rightarrow(2)$. So assume (1).

Clearly, the only possible value for the cofinality κ in $V[A]$ is ω, since $V[C]$ does not add new bounded subsets of κ. So, let $\left\langle\beta_{n} \mid n<\omega\right\rangle$ be a cofinal sequence to κ in $V[A]$.

2 Subsets of κ.

Let us assume first that $A \subseteq \kappa$.
Then for every $\xi<\kappa, A \cap \xi \in V$. In particular, for every $n<\omega, A \cap \beta_{n} \in V$, and so can be codded (in V) by an ordinal $\alpha_{n}<2^{\beta_{n}}$.
Now, obviously, we have

$$
V[A]=V\left[\left\langle\alpha_{n} \mid n<\omega\right\rangle\right] .
$$

Hence it is enough to prove (2) for $\left\langle\alpha_{n} \mid n<\omega\right\rangle$.
Let us use the following result from [1]:
Theorem 2.1 Let $\left\langle\alpha_{k} \mid k<\omega\right\rangle \in V[C]$ be an increasing cofinal in κ sequence. Then $\left\langle\alpha_{k} \mid k<\omega\right\rangle$ is a Prikry sequence for a sequence in V of κ-complete ultrafilters which are Rudin-Keisler below $\left\langle U_{n} \mid n<\omega\right\rangle$.
Moreover, there exist a non-decreasing sequence of natural numbers $\left\langle n_{k} \mid k<\omega\right\rangle$ and a sequence of functions $\left\langle F_{k} \mid k<\omega\right\rangle$ in $V, F_{k}:[k]^{n_{k}} \rightarrow \kappa$, $(k<\omega)$, such that

1. $\alpha_{k}=F_{k}\left(C \upharpoonright n_{k}\right)$, for every $k<\omega$.
2. Let $\left\langle n_{k_{i}} \mid i<\omega\right\rangle$ be the increasing subsequence of $\left\langle n_{k} \mid k<\omega\right\rangle$ such that
(a) $\left\{n_{k_{i}} \mid i<\omega\right\}=\left\{n_{k} \mid k<\omega\right\}$, and
(b) $k_{i}=\min \left\{k \mid n_{k}=n_{k_{i}}\right\}$.

Set $\ell_{i}=\left|\left\{k \mid n_{k}=n_{k_{i}}\right\}\right|$. Then $\left\langle F_{k}\left(C \upharpoonright n_{k_{i}}\right) \mid i<\omega, n_{k}=n_{k_{i}}\right\rangle$ will be a Prikry sequence for $\left\langle W_{i} \mid i<\omega\right\rangle$, i.e. for every sequence $\left\langle A_{i} \mid i<\omega\right\rangle \in V$, with $A_{i} \in W_{i}$, there is $i_{0}<\omega$ such that for every $i>i_{0},\left\langle F_{k}\left(C \upharpoonright n_{k_{i}}\right) \mid i<\omega, n_{k}=n_{k_{i}}\right\rangle \in A_{i}$, where each W_{i} is an ultrafilter over $[\kappa]^{\ell_{i}}$ which is the projection of $U_{n_{k_{i}}}$ by $\left\langle F_{k_{i}}, \ldots, F_{k_{i}+\ell_{i}-1}\right\rangle$.

Let us replace functions F_{k} 's by one to one functions.
Start with $i=1$.
So, W_{i} is an ultrafilter over $[\kappa]^{\ell_{1}}$ which is the projection of $U_{n_{k_{1}}}$ by $\left\langle F_{k_{1}}, \ldots, F_{k_{1}+\ell_{1}-1}\right\rangle$.
Consider the elementary embeddings

$$
j_{1}: V \rightarrow N_{1} \simeq{ }^{n_{k_{1}}} V / U_{n_{k_{1}}}
$$

and

$$
j_{1}^{\prime}: V \rightarrow N_{1}^{\prime} \simeq{ }^{n_{k_{1}}} V / W_{1} .
$$

Define

$$
\sigma_{1}: N_{1}^{\prime} \rightarrow N_{1}
$$

by setting

$$
\sigma_{1}\left(j_{1}^{\prime}(g)\left([i d]_{W_{1}}\right)=j_{1}(g)\left(\left\langle\left[F_{k_{1}}\right]_{U_{n_{k_{1}}}}, \ldots,\left[F_{k_{1}+\ell_{1}-1}\right]_{U_{n_{k_{1}}}}\right\rangle\right) .\right.
$$

Find in N_{1} the smallest set \vec{a}_{1} of generators such that for some $g_{1}:[\kappa]^{|\vec{a}|} \rightarrow[\kappa]^{\ell_{1}}$ we have

$$
j_{1}\left(g_{1}\right)(\vec{a})=\left\langle\left[F_{k_{1}}\right]_{U_{n_{k_{1}}}}, \ldots,\left[F_{k_{1}+\ell_{1}-1}\right]_{U_{n_{k_{1}}}}\right\rangle .
$$

Set

$$
U(1)=\left\{X \subseteq[\kappa]^{|\vec{a}|} \mid \vec{a} \in j_{1}(X)\right\} .
$$

So, $U(1)$ is a κ-complete ultrafilter generated by \vec{a} from $U_{n_{k_{1}}}$. Moreover, $U(1)$ is Rudin Keisler equivalent to W_{1}, since they have the same ultrapower. In particular, the map g_{1} can be taken one to one.

Continue now to W_{2}. We proceed in the similar fashion and find the smallest set of generators \vec{a}_{2} of $U_{n_{k_{2}}}$ which define a κ-complete ultrafilter $U(2)$, Rudin - Keisler equivalent to W_{2}, as witnessed by a one to one function g_{2} etc.

Let us now describe how to "unpack" a Prikry (tree) forcing from $U(n)$'s.
Let us deal with ultrafilters Rudin -Keisler below U_{2}. The general case is similar only notation are more complicated.
Consider the ultrapower by $U_{\langle \rangle}$:

$$
i_{\langle \rangle}: V \rightarrow M_{\langle \rangle} .
$$

The sequence $i_{\langle \rangle}\left(\left\langle U_{\langle\nu\rangle} \mid \nu<\kappa\right\rangle\right)$ will have the length $\kappa_{1}:=i_{\langle \rangle}(\kappa)$.
Let $U_{\left\langle[i d]_{\left.U_{\langle \rangle}\right\rangle}\right.}$be its $[i d]_{U_{\langle \rangle}}$ultrafilter in $M_{\langle \rangle}$over $i_{\langle \rangle}(\kappa)$. Consider its ultrapower

$$
i_{\left.U_{\left\langle[i d]_{U\rangle}\right\rangle}\right\rangle}: M_{\langle \rangle} \rightarrow M_{\left\langle[i d]_{U_{\ell}}\right\rangle}
$$

Set

$$
i_{2}=i_{U_{\left.\langle | i d]_{U}\right\rangle}} \circ i_{\langle \rangle} .
$$

Then

$$
\left.i_{2}: V \rightarrow M_{\left\langle[i d]_{U^{\prime}}\right\rangle}\right\rangle
$$

Let now

$$
\vec{\rho}, \vec{\mu}, \vec{\rho} \leq[i d]_{\left.U_{\curlywedge}\right\rangle}<\kappa_{1} \leq \vec{\mu} \leq[i d]_{U_{\left.[i d]_{U_{\langle \rangle}}\right\rangle}}
$$

be generators of i_{2} and let

$$
W=\left\{X \subseteq V_{\kappa} \mid\langle\vec{\rho}, \vec{\mu}\rangle \in i_{2}(X)\right\},
$$

i.e. W is an ultrafilter below U_{2} generated by $\langle\vec{\rho}, \vec{\mu}\rangle$. Consider in $M_{\langle \rangle}$an ultrafilter over $\left[\kappa_{1}\right]^{|\vec{\mu}|}$ in $M_{\langle \rangle}$,

$$
W^{\prime}=\left\{Z \subseteq \kappa_{1} \mid \vec{\mu} \in i_{\left.U_{\langle[i d]} U_{(\rangle}\right\rangle}(Z)\right\} .
$$

Pick the smallest possible set of generators $\overrightarrow{\rho^{\prime}}$ of $i_{\Delta\rangle}$ such that for some function h on $[\kappa]^{\left|\overrightarrow{\rho^{\prime}}\right|}$ such that $i_{\langle \rangle}(h)\left(\overrightarrow{\rho^{\prime}}\right)=W^{\prime}$.
If $\overrightarrow{\rho^{\prime}}<\kappa$, then h is a constant function $\bmod U_{\langle \rangle}$. So, $W^{\prime}=i_{\langle \rangle}\left(W^{\prime \prime}\right)$. Let

$$
W_{\vec{\rho}}=\left\{X \subseteq[\kappa]^{\vec{\rho}} \mid \vec{\rho} \in i_{\langle \rangle}(X)\right\} .
$$

Then $W_{\vec{\rho}} \times W^{\prime \prime}$ will be as desired.
Suppose that $\overrightarrow{\rho^{\prime}} \geq \kappa$. Then there is $E \in W_{\overrightarrow{\rho^{\prime}}}$ such that for every $\nu \in A, h(\nu)=W^{\nu}$, for some κ-complete ultrafilter W^{ν} over $[\kappa]^{|\vec{\mu}|}$. Also, by the choice of $\overrightarrow{\rho^{\prime}}, h$ is one to one.
We are ready now to define the tree T of hight 2 which corresponds to W. Set its first level to be a set in $W_{\vec{\rho} \backslash \overrightarrow{\rho^{\prime}}}$ which projection to $W_{\overrightarrow{\rho^{\prime}}}$ is a subset of E. Now, for every $\tau \in \operatorname{Lev}_{1}(T)$, let $\operatorname{Suc}_{T}(\langle\tau\rangle)$ be a set in W_{ν} once τ projects to ν.

This basically completes the case of $A \subseteq \kappa$.

3 Larger sets, few generators.

We continue the argument of the previous section.
Suppose now that $A \subseteq \kappa^{+}$.
Assume that κ changes its cofinality already in $V[A \cap \kappa]$. Just otherwise, working in $V[A]$, we can rearrange A in order to make the above happen.

Note that at least starting from V of the form $L\left[V_{\kappa}, U\right]$, it is impossible that in each $V[A \cap \alpha] \kappa$ is regular and it changes its cofinality only in $V[A]$. The standard argument for $2^{\kappa}=\kappa^{+}$shows this.
The next construction may be of some interest in this respect.
We will define an iteration of distributive forcing notions of size κ of given in advance length $\delta<\kappa^{+}$of cofinality ω or κ in V, such that

1. κ remains regular at each intermediate stage of the iteration,
2. the full iteration collapses κ to ω,
3. the Prikry extension adds $A \subseteq \delta$ such that
(a) κ is singular in $V[A]$,
(b) for every $\alpha<\delta, A \cap \alpha$ codes in a very simple way a generic for the iteration up to α, and so, κ is regular in $V[A \cap \alpha]$.

Suppose for simplicity that $\delta=\kappa$. We proceed as follows.
Let

$$
\vec{U}=\left\langle U(\eta, \delta) \mid \eta \in \operatorname{dom}(\vec{U}), \delta<o^{\vec{U}}(\eta)\right\rangle
$$

be a coherent sequence of ultrafilters such that

1. $\kappa=\max (\operatorname{dom}(\vec{U}))$,
2. $o^{\vec{U}}(\kappa)=\kappa \cdot \kappa$,
3. $U(\kappa, 0)$ concentrates on η 's which are η^{+}-supercompact. ${ }^{1}$

Now we iterate in Backward Easton way the forcings which change cofinalities below κ according to $o^{\vec{U}}$ and also on a set of η 's of $U(\kappa, 0)$ measure one, we change both cofinalities of η and η^{+}to ω using the η^{+}-supercompactness of η. We refer to [2] for this type of iteration. Now, for every $\alpha<\kappa$, let

$$
S_{\alpha}=\left\{\eta<\kappa \mid o^{\vec{U}}(\eta) \in[\kappa \cdot \alpha, \kappa \cdot(\alpha+1))\right\} .
$$

Set

$$
S_{-1}=\{\eta<\kappa \mid \eta \notin \operatorname{dom}(\vec{U})\} .
$$

Let G be a generic. Then, by $\kappa-$ c.c. each S_{α} will be stationary and fat.
Our main interest will be in the extension $\mathcal{U}:=\bar{U}(\kappa, 0)$ of $U(\kappa, 0)$.
Claim 1 In $V[G]^{P(\mathcal{U})}$, for every $\alpha<\kappa$, there is C_{α} such that C_{α} is a club in $V[G]$ generic over $V[G]$ for the natural forcing of adding a club that turns all $S_{\beta}, \beta \leq \alpha$ into non-stationary and leaves all S_{β} 's with $\beta>\alpha$ stationary.

[^0]Proof. Such forcing is distributive of size κ, so using the supercompact part of the iteration, it is not hard to construct such C_{α} 's.of the claim.
Now set

$$
A_{\alpha}=\kappa \cdot \alpha \cup\left\{\kappa \cdot \alpha+\xi \mid \xi \in C_{\alpha}\right\}
$$

for every $\alpha<\kappa$. Set

$$
A=\bigcup_{\alpha<\kappa} A_{\alpha}
$$

Claim 2κ is regular in $V[A \cap \alpha]$ for every $\alpha<\kappa$.

Proof. Just $A \cap \alpha$ is a generic (after the obvious decoding) for a κ-distributive forcing. square of the claim.

Claim 3κ has cofinality ω in $V[A]$.
Proof. Suppose otherwise. Let S be a stationary subset of κ. Define a regressive function f on S as follows:

$$
\begin{gathered}
f(\nu)=0, \text { if } \nu \notin \operatorname{dom}(\vec{U}), \\
f(\nu)=\alpha, \text { if } \nu \in \operatorname{dom}(\vec{U}) \text { and for some } \mu<\kappa, o(\nu)=\kappa \cdot \alpha+\mu .
\end{gathered}
$$

It is a regressive function since there is no $\eta<\kappa$ with $o^{\vec{U}}(\eta)=\eta \cdot \eta$. Then there are $S^{\prime} \subseteq S$ stationary and $\alpha^{\prime}<\kappa$ such that for every $\nu \in S^{\prime}, f(\nu)=\alpha^{\prime}$. But this is impossible, since the club $C_{\alpha^{\prime}+1}$ is disjoint to S^{\prime}.
Contrudiction.
\square of the claim.

3.1 Larger sets, few generators.

Suppose that the number of generators of each $U_{n}, n<\omega$ is less than κ, then it is possible to stabilize the ω-sequence for $A \cap \alpha$'s. Then the continuation is as in [3]. So we obtain the following:

Theorem 3.1 Suppose that non of the ultrafilters in \mathbb{U} has more than κ-generators. Let A be a set of ordinals in $V[C]$. Then the following are equivalent:

1. κ changes its cofinality in $V[A]$;
2. A is equivalent to a Prikry forcing with \mathbb{W}, for some tree \mathbb{W} consisting of ultrafilters over κ Rudin-Keisler below some of those from \mathbb{U}.

In view of [4], in order to have κ or more than κ-many generators, the strength $\kappa=\sup (\{o(\beta) \mid \beta<\kappa\})$ is needed. So, we have:

Theorem 3.2 Suppose that there is no inner model in which $\kappa=\sup (\{o(\beta) \mid \beta<\kappa\})$. Let A be a set of ordinals in $V[C]$. Then the following are equivalent:

1. κ changes its cofinality in $V[A]$;
2. A is equivalent to a Prikry forcing with \mathbb{W}, for some tree \mathbb{W} consisting of ultrafilters over κ Rudin-Keisler below some of those from \mathbb{U}.

3.2 Larger sets, at least κ-many generators.

Each $A \cap \alpha$, for $\alpha<\kappa^{+}$is equivalent to some subforcing of $P(\mathbb{U})$. If this subforcings stabilize, then the arguments of [3] apply.
Assume that this does not happen.
We deal with a special, but typical case of such situation. Suppose for simplicity that we have a single κ-complete ultrafilter \mathcal{U} over κ instead of \mathbb{U}.
Let $\left\langle\rho_{\alpha} \mid \alpha<\kappa\right\rangle$ be increasing sequence of generators of \mathcal{U} such that the ultrafilters $\mathcal{U}_{\rho_{\alpha}}:=$ $\left\{X \subseteq \kappa \mid \rho_{\alpha} \in i_{\mathcal{U}}(X)\right\}$ is Rudin-Keisler increasing.
Suppose that $\kappa=\rho_{0}$, i.e. $\mathcal{U}_{\rho_{0}}$ is the smallest normal measure.
Assume that its Prikry sequence $\left\langle\kappa_{n}^{n o r} \mid n<\omega\right\rangle$ appears in $V[A \cap \kappa]$.
Finally, the forcing equivalent to $A \cap \alpha, \kappa \leq \alpha<\kappa^{+}$, is determined by a function $f_{\alpha}: \kappa \rightarrow$ $\kappa, f_{\alpha} \in V$ as follows:

It is a tree Prikry forcing with trees T such that

1. $\operatorname{Lev}_{0}(T) \in \mathcal{U}_{\rho_{f_{\alpha}(0)}}$,
2. if $\left\langle\nu_{1}, \ldots, \nu_{n}\right\rangle \in T$, then $\operatorname{Suc}_{T}\left(\left\langle\nu_{1}, \ldots, \nu_{n}\right\rangle\right) \in \mathcal{U}_{\rho_{f_{\alpha}\left(\nu_{n}^{\text {nor }}\right)}}$, where $\nu_{n}^{\text {nor }}$ is the projection of ν_{n} to the least normal measure.

If $\alpha<\beta<\kappa^{+}$, then $A \cap \alpha$ is in $V[A \cap \beta]$. So the forcing equivalent to $A \cap \alpha$ is a subforcing of the forcing equivalent to $A \cap \beta$.
We assume that just $f_{\alpha}<f_{\beta} \bmod \mathcal{U}_{\kappa}$.
Now, the exact upper bound of

$$
\left\langle\left\langle f_{\alpha}\left(\kappa_{n}\right) \mid n<\omega\right\rangle \alpha<\kappa^{+}\right\rangle
$$

is some $\left\langle\lambda_{n} \mid n<\omega\right\rangle$ which corresponds to non-generators or to generators say of normal measure (measures).
This eliminates the possibility that there is an obvious subforcing equivalent to A.
From here the case of κ-generators is handled as those with κ^{+}-generators.

3.3 Larger sets, at least κ^{+}-many generators.

Assume, so that $A \cap \alpha$'s never stabilize, and hence, the number of generators of U_{n} 's is above κ.

Let $\alpha, \kappa \leq \alpha<\kappa^{+}$. We first attach to $A \cap \alpha$ an ω-sequence $\left\langle\eta_{n}^{\alpha} \mid n<\omega\right\rangle$ in the following canonical fashion:
first use the least in some fixed in advance well ordering of a large enough portion of V map $r_{\alpha}: \alpha \leftrightarrow \kappa$. Then consider $A_{\alpha}=r_{\alpha}{ }^{\prime \prime} A \cap \alpha$. Now use the initial sequence $\left\langle\beta_{n} \mid n<\omega\right\rangle$ to code A_{α} into an ω-sequence, as it was done for subsets of κ in the beginning of the proof. Set $\left\langle\eta_{n}^{\alpha} \mid n<\omega\right\rangle$ to be such sequence.
Then we have

$$
V\left[\left\langle\beta_{n} \mid n<\omega\right\rangle, A_{\alpha}\right]=V\left[\left\langle\eta_{n}^{\alpha} \mid n<\omega\right\rangle\right] .
$$

Consider now

$$
\vec{\eta}=\left\langle\left\langle\eta_{n}^{\alpha} \mid n<\omega\right\rangle \mid \kappa \leq \alpha<\kappa^{+}\right\rangle
$$

Clearly, we have

$$
V[A] \supseteq V[\vec{\eta}] \supseteq \bigcup_{\alpha<\kappa^{+}} V\left[A_{\alpha}\right]
$$

since the definition of $\vec{\eta}$ carried out inside $V[A]$.
Note also that for every $n_{0}<\omega, X \subseteq \kappa^{+}, X \in V[A]$ unbounded we have

$$
V\left[\left\langle\left\langle\eta_{n}^{\alpha} \mid n_{0} \leq n<\omega\right\rangle \mid \kappa \leq \alpha \in X\right\rangle\right] \supseteq \bigcup_{\alpha<\kappa^{+}} V\left[A_{\alpha}\right]
$$

Now, in $V[C]$, for every $\alpha<\kappa^{+}$, there is $n(\alpha)$, such that $\langle C(n) \mid n(\alpha) \leq n<\omega\rangle$ projects onto $\left\langle\eta_{n}^{\alpha} \mid n(\alpha) \leq n<\omega\right\rangle$, by the corresponding projections of U_{n} 's.
Find $n_{0}<\omega, X \subseteq \kappa^{+}$stationary such that for every $\alpha \in X$ we have $n(\alpha)=n_{0}$.
Assume that there is $X^{*} \subseteq X,\left|X^{*}\right|=\kappa^{+}$and $X^{*} \in V[A]$. By [6], it is consistent to have such X^{*} already in V.
Return back to $V[A]$. Then the following holds there:
for every $n \geq n_{0}$, there is $\xi_{n}<\kappa$ such that for every $\alpha \in X^{*}$

$$
\pi_{\alpha}\left(\xi_{n}\right)=\eta_{n}^{\alpha}
$$

where π_{α} is the canonical projection to the sequence (i.e. to the measures of) $\left\langle\eta_{n}^{\alpha} \mid n<\omega\right\rangle$. Then

$$
\bigcup_{\gamma<\kappa^{+}} V\left[\left\langle\beta_{n} \mid n<\omega\right\rangle, A \cap \gamma\right] \subseteq V\left[\left\langle\xi_{n} \mid n_{0} \leq n<\omega\right\rangle\right] \subseteq V[A] .
$$

If $V\left[\left\langle\xi_{n} \mid n_{0} \leq n<\omega\right\rangle\right] \neq V[A]$, then we proceed as in $[3]$ and derive a contradiction.
So, we have the following conclusion:
Theorem 3.3 Let A be a set of ordinals in $V[C]$ of size κ^{+}.
Assume that for every $X \subseteq \kappa^{+},|X|=\kappa^{+}$, in $V[C]$, there is $X^{*} \subseteq X,\left|X^{*}\right|=\kappa^{+}$and $X^{*} \in V[A]$.
Then the following are equivalent:

1. κ changes its cofinality in $V[A]$;
2. A is equivalent to a Prikry forcing with \mathbb{W}, for some tree \mathbb{W} consisting of ultrafilters over κ Rudin-Keisler below some of those from \mathbb{U}.

Let us continue further without the assumption of 3.3.
Consider the sequence

$$
\vec{\eta}=\left\langle\left\langle\eta_{n}^{\alpha} \mid n<\omega\right\rangle \mid \kappa \leq \alpha<\kappa^{+}\right\rangle
$$

defined above. By the Shelah Trichotomy Theorem [7], it has an exact upper bound. Let $\vec{\eta}^{*}:=\left\langle\eta_{n}^{*} \mid n<\omega\right\rangle$ be such a bound in $V[A]$.
Note that probably in $V[C]$ the exact upper bound for $\vec{\eta}$ is different (smaller).
Now, if $A \in V\left[\vec{\eta}^{*}\right]$ or $A \in V\left[\vec{\eta}^{*}, B\right]$ for a set B of size κ, then we are done.
Let us describe particular cases when this situation occurs.
Suppose the following:
W is a κ-complete ultrafilter over κ which has among its generators the following increasing sequence $\left\langle\theta_{\alpha} \mid \alpha<\kappa^{+}\right\rangle$with the property that if $\theta:=\bigcup_{\alpha<\kappa^{+}} \theta_{\alpha}$, then in the ultrapower N_{W} of V by W there is Z of size κ^{+}there such that $Z \supseteq\left\{\theta_{\alpha} \mid \alpha<\kappa^{+}\right\}$.
It is note hard to arrange this type situation using a $\left(\kappa, \kappa^{++}\right)$-extender, etc.
Force now with $P(W)$. Then the Prikry sequence $\vec{\theta}$ for θ will be the exact upper bound of the Prikry sequences $\vec{\theta}_{\alpha}$ for θ_{α} 's. In addition, using the canonical functions it is easy to see that each $\vec{\theta}_{\alpha}$ is in $V[\vec{\theta}]$.
The same phenomenon holds once, for example, $2^{\kappa}=\kappa^{++}$and κ^{+}above is replaced by κ^{++}. Only instead of the canonical functions, we use those that represent ordinals below κ^{++}in the ultrapower by the normal measure of W.

Let us sketch now two forcing construction below such that in the first we have an exact upper bound (in $V[C]$) for κ^{+}-many Prikry sequences which catches all of them and without the covering property in the ultrapower.
In the second the exact upper bound (in $V[C]$) for κ^{+}-many Prikry sequences does not catch any of them.

The first construction.

Start with a GCH model with an increasing Rudin - Keisler sequence $\left\langle W_{\alpha} \mid \alpha<\kappa^{+}\right\rangle$of ultrafilters over κ. Assume that W_{0} is a normal one.

Let $i_{0}: V \rightarrow N_{0}$ be the elementary embedding by $W_{0}, i: V \rightarrow N$ the elementary embedding into the direct limit of $\left\langle W_{\alpha} \mid \alpha<\kappa^{+}\right\rangle$.
Denote by $k_{0}: N_{0} \rightarrow N$ the canonical embedding.
Take additional ultrapower. Apply $i_{0}\left(W_{0}\right)$ to N_{0} and $i\left(W_{0}\right)$ to N.
Let $i_{0}^{1}: V \rightarrow N_{0}^{1}$ be the result of the first and $i^{1}: V \rightarrow N^{1}$ of the second. Denote by k_{0}^{1} the obvious embedding of N_{0}^{1} to N^{1}.
Now, force (with preparations below $G_{<\kappa}$) Cohen functions $g_{\xi}: \kappa \rightarrow \kappa, \xi<\kappa^{+}$. Let $g:=$ $\left\langle g_{\xi} \mid \xi<\kappa^{+}\right\rangle$.
We extend i_{0} to $i_{0}^{*}: V\left[G_{<\kappa}, g\right] \rightarrow N_{0}\left[G_{<\kappa}, g, G_{\left[\kappa^{+}, i_{0}(\kappa)\right]}\right]$. Next, extend i and k.
So, we will have

$$
\begin{gathered}
i^{*}: V\left[G_{<\kappa}, g\right] \rightarrow N\left[\left[G_{<\kappa}, g, G_{\left[\kappa^{+}, i_{0}(\kappa)\right]}, G_{\left[i_{0}(\kappa), i(\kappa)\right]}\right],\right. \\
k^{*}: N_{0}\left[G_{<\kappa}, g, G_{\left[\kappa^{+}, i_{0}(\kappa)\right]} \rightarrow N\left[\left[G_{<\kappa}, g, G_{\left[\kappa^{+}, i_{0}(\kappa)\right]}, G_{\left[i_{0}(\kappa), i(\kappa)\right]}\right] .\right.\right.
\end{gathered}
$$

Now deal with the additional ultrapowers. We extend first i_{0}^{1} to

$$
\left.i_{0}^{1 *}: V\left[G_{<\kappa}, g\right] \rightarrow N_{0}^{1}\left[G_{<\kappa}, g, G_{[\kappa}{ }^{\kappa}, i_{0}(\kappa)\right], G_{\left[i_{0}(\kappa), i_{0}^{1}(\kappa)\right]}\right] .
$$

Then use k_{0}^{1} and the point wise image of $G_{\left[i_{0}(\kappa), i_{0}^{1}(\kappa)\right]}$ to generate $N\left[\left[G_{<\kappa}, g, G_{\left[\kappa^{+}, i_{0}(\kappa)\right]}, G_{\left[i_{0}(\kappa), i(\kappa)\right]}\right]\right.$ - generic set in the interval $\left[i(\kappa), i^{1}(\kappa)\right]$. So we will have an extension of i^{1} :

$$
i^{1 *}: V\left[G_{<\kappa}, g\right] \rightarrow N\left[\left[G_{<\kappa}, g, G_{\left[\kappa^{+}, i_{0}(\kappa)\right]}, G_{\left[i_{0}(\kappa), i(\kappa)\right]}, G_{\left[i(\kappa), i^{1}(\kappa)\right]}\right] .\right.
$$

Consider $i^{1 *}\left(g_{\xi}\right): i^{1}(\kappa) \rightarrow i^{1}(\kappa)$, for every $\xi<\kappa^{+}$. Change one value of each of this functions by sending $i(\kappa)$ to the generator of W_{ξ}. Let j denotes the resulting embedding. Consider

$$
U=\{X \subseteq \kappa \mid i(\kappa) \in j(X)\}
$$

Force with $P(U)$. The Prikry sequence for U will be the exact upper bound for Prikry sequence of extensions of W_{ξ} 's and using g_{ξ} 's one obtains each of them from those of U.

The second construction.

Let us modify the first construction a little.
Thus, instead of one additional ultrapower, we take now two. I.e. apply $i_{0}^{1}\left(W_{0}\right)$ to N_{0}^{1} and $i^{1}\left(W_{0}\right)$ to N^{1}.
Let $i_{0}^{2}: V \rightarrow N_{0}^{2}$ be the result of the first and $i^{2}: V \rightarrow N^{2}$ of the second.
Then we proceed as in the first example - add generic Cohen function and extend the embeddings.
Only at the final stage, let us change one value of each of the Cohen functions by sending $i^{1}(\kappa)$ (instead of $i(\kappa)$) to the generator of W_{ξ}. Let j^{\prime} denotes the resulting embedding. Consider

$$
U^{\prime}=\left\{X \subseteq \kappa \mid i^{1}(\kappa) \in j^{\prime}(X)\right\}
$$

and

$$
U=\left\{X \subseteq \kappa \mid i(\kappa) \in j^{\prime}(X)\right\} .
$$

Force with $P\left(U^{\prime}\right)$. The Prikry sequence for U (not the main one for U^{\prime}) will be the exact upper bound for Prikry sequence of extensions of W_{ξ} 's. However, now we will be unable to reconstruct the Prikry sequences of extensions of W_{ξ} 's from the Prikry sequence for U.
The reason is that due to our particular extension of the initial embeddings, U is RudinKeisler equivalent to the extension of W_{0} which strictly below each of the extensions of $W_{\xi}, 0<\xi<\kappa^{+}$.

Back to the argument.

In V, for every $\alpha<\kappa^{+}$, there are $n_{\alpha}<\omega$ and T_{α} such that for every $t \in T_{\alpha}$ of the length n_{α} we have

$$
\left\langle t, T_{\alpha}\right\rangle \Vdash \forall n \geq n_{\alpha}\left(\pi_{\alpha}(\underset{\sim}{C}(n))={\underset{\sim}{n}}_{n}^{\alpha}\right) .
$$

There will be a set $Z \subseteq \kappa^{+}$consisting of κ^{+}-many α 's with same n_{α}. Suppose for simplicity that this constant value is just 0 .

Our assumption is that $V[A] \neq V[C]$.
Consider $P(\mathbb{U}) / A$.
So it is a non-trivial forcing (over $V[A]$).
Then we will have conditions $\langle t, T\rangle \in P(\mathbb{U}) / A$ such that for some $\nu \neq \nu^{\prime}$,

$$
\begin{gathered}
\left\langle t^{\frown} \nu, T_{t \vdash \nu}\right\rangle \in P(\mathbb{U}) / A,\left\langle t^{\frown} \nu^{\prime}, T_{t-\nu^{\prime}}\right\rangle \in P(\mathbb{U}) / A, \\
\left\langle t^{\frown} \nu, T_{t \vdash \nu}\right\rangle \geq\langle t, T\rangle,\left\langle t^{\frown} \nu^{\prime}, T_{t \frown \nu^{\prime}}\right\rangle \geq\langle t, T\rangle .
\end{gathered}
$$

Note that $\nu^{\text {nor }}=\nu^{\prime n o r}$, where $\xi^{\text {nor }}$ is the projection of ξ to the least normal measure of the corresponding level. Just $\left\langle C(n)^{\text {nor }} \mid n<\omega\right\rangle \in V[A]$.
Suppose for simplicity that t is just the empty sequence.
Now back in V, for almost all $\nu<\kappa$ there will be a name $\underset{\sim}{x}{ }_{\nu}$ and a condition $p_{\nu}=\left\langle\langle\nu\rangle, R_{\nu}\right\rangle$ such that

$$
p_{\nu} \Vdash{\underset{\sim}{x}}_{\nu} \text { is the set of all } \nu^{\prime}
$$

as above (i.e. the set of all possible replacements of ν which do not effect $V[A]$).
Note that each $x_{\nu} \in V[A]$, since it is just definable there. Also, this are subsets of κ, hence there is a single Prikry sequence in $V[A]$ which adds all of them.

Suppose for a moment that x_{ν} 's are in V, as well as the function $\nu \mapsto x_{\nu}$.
Define a projection map

$$
\nu \mapsto \min \left(x_{\nu}\right) .
$$

So the Prikry sequence for the projection will be in $V[A]$, since the corresponding forcing over A will be trivial.
Assuming that there is no largest Prikry sequence in $V[A]$ (i.e. one that catches every initial segment of A), we will have it below a final segment of sequences of $V[A]$.
Now pick two elements $\alpha<\beta$ of Z from this final segment. Shrink T_{α} and T_{β} if necessary. For every $\gamma<\alpha$ there will be $\nu \neq \nu^{\prime}$ such that $\pi_{\gamma}(\nu)=\pi_{\gamma}\left(\nu^{\prime}\right)$ and $\pi_{\alpha}(\nu)=\pi_{\alpha}\left(\nu^{\prime}\right)$, but
$\pi_{\beta}(\nu) \neq \pi_{\beta}\left(\nu^{\prime}\right)$. Which is impossible. The existence of such ν, ν^{\prime} follows due to the fact that the ultrafilters generated by γ and α are strictly below (in R-K order) the ultrafilter generated by β. So, in every set of measure one for β there will be elements like ν, ν^{\prime}.

In the general case, i.e. once x_{ν} 's are not in V, we will use the same idea. Proceed as follows: extend first p_{ν} to $p_{\nu}^{*}=\left\langle\langle\nu\rangle, R_{\nu}^{*}\right\rangle$ such that for some $y_{\nu} \subseteq \nu$,

$$
p_{\nu}^{*} \Vdash y_{\nu}=\underset{\sim}{x}{ }_{\nu} \cap \nu .
$$

Claim 4 Let $\rho \in y_{\nu}$. Then for every $\alpha<\kappa^{+}, n<\omega, \xi<\kappa, r, R \subseteq R_{\nu}^{*}$,

$$
\langle\langle\nu\rangle \subset r, R\rangle \Vdash{\underset{\sim}{\eta}}_{n}^{\alpha}=\xi \text { iff }\langle\langle\rho\rangle \subset r, R\rangle \Vdash{\underset{\sim}{\eta}}_{n}^{\alpha}=\xi,
$$

Proof. Suppose first that $\langle\langle\nu\rangle \subset r, R\rangle \Vdash \eta_{n}^{\alpha}=\xi$. If $\langle\langle\rho\rangle \subset r, R\rangle \Vdash \Vdash^{\eta}{\underset{\sim}{n}}^{\alpha}=\xi$, then for some ${r^{\prime}}^{\prime}, R^{\prime}$ with $\left\langle\langle\rho\rangle \subset r \frown r^{\prime}, R^{\prime}\right\rangle \geq\langle\langle\rho\rangle \subset r, R\rangle$ and $\xi^{\prime} \neq \xi$,

$$
\left\langle\langle\rho\rangle \subset r^{\frown} r^{\prime}, R^{\prime}\right\rangle \Vdash{\underset{\sim}{n}}^{\alpha}=\xi^{\prime} .
$$

Clearly, $\left\langle\langle\nu\rangle \subset r \frown r^{\prime}, R^{\prime}\right\rangle \geq\langle\langle\nu\rangle \subset r, R\rangle$. So,

$$
\left\langle\langle\nu\rangle \subset r^{\frown} r^{\prime}, R^{\prime}\right\rangle \Vdash{\underset{\sim}{\eta}}_{n}^{\alpha}=\xi .
$$

But, $\rho \in y_{\nu}$, hence the value of η_{n}^{α} cannot be effected by replacing ν with ρ. Contradiction. The opposite direction is similar.
\square of the claim.
Define a projection map

$$
\nu \mapsto \min \left(y_{\nu}\right) .
$$

Note that $\rho \in y_{\nu} \cap y_{\mu}$, for some ν, μ, then for every $\alpha<\kappa^{+}, n<\omega, \xi<\kappa, r, R \subseteq R_{\nu}^{*} \cap R_{\mu}^{*}$,

$$
(*)\langle\langle\nu\rangle \subset r, R\rangle \Vdash{\underset{\sim}{n}}_{n}^{\alpha}=\xi \text { iff }\langle\langle\rho\rangle \frown r, R\rangle \Vdash{\underset{\sim}{n}}_{n}^{\alpha}=\xi \text { iff }\langle\langle\mu\rangle \subset r, R\rangle \Vdash{\underset{\sim}{n}}_{n}^{\alpha}=\xi .
$$

Again the Prikry sequence for the projection will be in $V[A]$, since the corresponding forcing over A will be trivial.
Assuming that there is no largest Prikry sequence in $V[A]$ (i.e. one that catches every initial segment of A), we will have it below a final segment of sequences of $V[A]$.

Denote the generator of this projection by γ.
Let now β be an element of Z above γ.
Find some $\nu \neq \nu^{\prime}$ such that

1. $\nu, \mu \in T_{\beta}$,
2. $\pi_{\gamma}(\nu)=\pi_{\gamma}(\mu)$,
3. $\pi_{\beta}(\nu) \neq \pi_{\beta}(\mu)$.

There must be such ν, μ, since the ultrafilter generated by β is strictly above those of γ, so in each set of measure one there will be such elements.

Consider now two conditions $\left\langle\langle\nu\rangle, T_{\beta} \cap R_{\nu}^{*}\right\rangle$ and $\left\langle\langle\mu\rangle, T_{\beta} \cap R_{\mu}^{*}\right\rangle$. Then

$$
\min \left(y_{\nu}\right)=\pi_{\gamma}(\nu)=\pi_{\gamma}(\mu)=\min \left(y_{\mu}\right) .
$$

It follows by $\left(^{*}\right)$ above that for every $\alpha<\kappa^{+}, n<\omega, \xi<\kappa, R \subseteq R_{\nu}^{*} \cap R_{\mu}^{*}$,

$$
\langle\langle\nu\rangle, R\rangle \Vdash{\underset{\sim}{\eta}}_{n}^{\alpha}=\xi \text { iff }\langle\langle\mu\rangle, R\rangle \Vdash{\underset{\sim}{n}}_{n}^{\alpha}=\xi .
$$

In particular,

$$
\left\langle\langle\nu\rangle, T_{\beta} \cap R_{\nu}^{*} \cap R_{\mu}^{*}\right\rangle \Vdash{\underset{\sim}{n}}_{n}^{\beta}=\xi \text { iff }\left\langle\langle\mu\rangle, T_{\beta} \cap R_{\nu}^{*} \cap R_{\mu}^{*}\right\rangle \Vdash{\underset{\sim}{n}}_{n}^{\beta}=\xi \text {. }
$$

Take now $n=0$, then $\nu, \mu \in T_{\beta}$ implies that

$$
\left\langle\langle\nu\rangle, T_{\beta}\right\rangle \Vdash{\underset{\sim}{\eta}}_{0}^{\beta}=\pi_{\beta}(\nu) \text { and }\left\langle\langle\mu\rangle, T_{\beta}\right\rangle \Vdash{\underset{\sim}{\eta}}_{0}^{\beta}=\pi_{\beta}(\mu) .
$$

However, we have $\pi_{\beta}(\nu) \neq \pi_{\beta}(\mu)$. Which is impossible.
Contradiction to the assumption that γ is below of $\alpha^{\prime} s$ less than κ^{+}.

References

[1] T. Benhamou, M.Gitik, Sets in Prikry and Magidor Generic Extensions, submitted.
[2] M. Gitik, Changing cofinality and the non-stationary ideal,
[3] M. Gitik, A remark on subforcings of the Prikry forcing, http://www.tau.ac.il/ gitik/spr.pdf
[4] M.Gitik, On Mitchell and Rudin-Keisler orderings, APAL, 1988
[5] M.Gitik, V. Kanovei, P.Koepke, Intermediate Models of Prikry Generic Extensions, http://www.math.tau.ac.il/ gitik/spr-kn.pdf
[6] M. Gitik, On density of old sets, Proceedings AMS, to appear.
[7] S. Shelah, Cardinal Arithmetic,

[^0]: ${ }^{1}$ It will work with η^{+}-strongly compact cardinal or, even, with η-compact cardinal instead.

