
Intermediate models of Prikry generic extensions

Moti Gitik ∗ Vladimir Kanovei † Peter Koepke ‡

March 3, 2010

Abstract

We prove that if V ⊆ V[h] is a generic extension by Prikry forcing then
every transitive intermediate model M of ZFC , where V $ M ⊆ V[h] , is
again a Prikry generic extension of V . Moreover the family of intermediate
models is parametrised by P(ω)/finite. The result is proved by studying
V-constructibility degrees of sets in V[h] using parameters in V .

Introduction

For a generic extension V ⊆ V[G] one may study the family of all intermediate
models M where V ⊆ M ⊆ V[G] and M is a transitive model of ZFC . It is
well-known that every intermediate model is itself a set generic extension of V
and hence of the form V[X] for some X ∈ V[G] . The structure of the family of
intermediate models depends on the initial forcing extension. If V[G] is obtained
by adjoining a Sacks real, V and V[G] are the only intermediate models. In the
case of Cohen and Solovay-random reals the family displays a rather amorphous
structure with respect to the inclusion relation ⊆ . In this paper we show that for
Prikry forcing there is good control over the intermediate models:

Theorem 1. Let κ be a measurable cardinal in the ground model V and let h ⊆ κ
be a Prikry sequence over V . Then every intermediate model M of the Prikry
extension V ⊆ V[h] is of the form M = V[h′] for some subset of the Prikry
sequence. Moreover, it is true in V[h] that the structure

〈{M : M is an intermediate model, V ⊆ M ⊆ V[h]},⊆〉

is order isomorphic to 〈P(ω)/finite,⊆∗〉.
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Note that every infinite subset of a Prikry sequence h in V[h] is a Prikry
sequence itself, by the Matias criterion, see for example T. Jech [3],21.14.

Let us state an equivalent formulation of Theorem 1 in forcing terms:

Theorem 2. Every subforcing of the Prikry forcing is either trivial or it is equiv-
alent to the the Prikry forcing with the same normal measure.

Note that this may break down without normality, i.e. once tree Prikry forcings
are used. Also there are always non-trivial subforcings of the supercompact Prikry
forcing. Namely, if κ is a supercompact cardinal, then every (κ,∞)– distributive
forcing notion (Q,≤) is a subforcing of the supercompact Prikry forcing with a
normal ultrafilter over Pκ(2|Q|), see, for example, [5] 6.21.

If V[X] and V[Y ] are intermediate models then V[X] ⊆ V[Y ] iff X ∈ V[Y ] ,
that is, iff X is V-constructible from Y . So we are lead to study the degrees
of V-constructibility in Prikry extensions of the ground model V . Generic ex-
tensions by Cohen or Solovay-random reals display a rather amorphous structure
of the constructibility degrees over the ground universe. Some other extensions,
notably Sacks forcing and its iterations, contain a more definite structure of the
constructibility degrees, as shown for example in [1].

Formally the partial order 6V of V-constructibility in a generic extension of
V is defined by: X 6V Y iff X ∈ V[Y ] =

⋃
z∈V, z⊆Ord L[z, Y ] , and L[z, Y ] is

the class of all sets Gödel-constructible relative to 〈z, Y 〉 . Thus X 6V Y means
that there is a set z ∈ V, z ⊆ Ord , such that X ∈ L[z, Y ] . Here Ord denotes
the ordinals in V . The equivalence relation ≡V is defined so that X ≡V Y iff
both X 6V Y and Y 6V X . The equivalence classes of ≡V are called degrees of
V-constructibility , or just V-degrees.

Prikry forcing over a ground model V with a measurable cardinal κ produces a
Prikry sequence, that is, a cofinal set h ⊆ κ of order type ω . For more details, see
Section 3. The next theorem is our main result; it obviously implies Theorem 1.
Theorem 3 says that every set in the Prikry extension is V-constructibly equivalent
to a subsequence of the Prikry sequence, and moreover, the structure of the V-
degrees is isomorphic to the structure of subsets of ω under inclusion modulo
finite.

Theorem 3. Suppose that h ⊆ κ is a Prikry sequence over the ground model V.
Then in the Prikry extension V[h] of V :

(i) for every set X there exists a set d ⊆ h satisfying X ≡V d ;

(ii) if c, c′ ⊆ h then c′ 6V c iff c′ r c is finite.

We obtain Theorem 3 as a consequence of the two following theorems:

Theorem 4 (= Theorem 3 for sets X ⊆ κ). Suppose that h ⊆ κ is a Prikry
sequence over the ground model V. Then in the Prikry extension V[h] of V :
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(i) for every set X ⊆ κ there exists a set d ⊆ h satisfyingX ≡V d ;

(ii) if c, c′ ⊆ h then c′ 6V c iff c′ r c is finite.

Theorem 5 (reduction to sets X ⊆ κ). Suppose that h ⊆ κ is a Prikry sequence
over the ground model V. Then in the Prikry extension V[h] of V : for every
set X there exists a set Y ⊆ κ satisfying X ≡V Y .

The proof of Theorem 4 (Sections 1 – 7) is based on indiscernible subsets of κ.
We make use of a representation of subsets of κ in the Prikry extension by means
of certain functions defined on [κ]fin in the ground universe. This is similar to some
extent to the analysis of degrees of constructibility in iterated Sacks extensions,
but the technique is completely different.

The proof of Theorem 5 (Sections 8 – 11) will involve some general forcing
arguments, including Solovay’s technique of representation of a generic extension
as a generic extension of any of its subextensions.

We use standard set theoretic notation, as for example in [3]. In particular
[X]n denotes the collection of all n-element subsets of a set or class X , and
[X]fin =

⋃
n∈ω[X]n (the collection of all finite subsets). |x| is the number of

elements in a finite set x . It is assumed that the reader has some acquaintance
with forcing, as well as elementary definitions and facts related to measurable
cardinals, normal ultrafilters, and ultrapowers.

1 Good indiscernible sets

Let U be a normal ultrafilter U on a measurable cardinal κ .
Recall that a non-empty set I ⊆ κ is an indiscernible set w.r. t. a family of

sets F iff for any set B ∈ F and any n ≥ 1 either every s in [I]n belongs to
B or every s in [I]n does not belong to B. Rowbottom’s theorem, known since
the early 1960s, implies that if κ and U are as above then for any family F
of cardinality less than κ there exists a set I ∈ U which is an indiscernible set
w.r. t. F . We employ this basic result to find a slightly more convenient type of
indiscernible sets.

Proposition 6. Suppose that F is a family of cardinality less than κ.
Then there exists a good set of indiscernibles I ∈ U w.r. t. F , that is, for

any n ≥ 1, any B ∈ F and any sets a ∈ [κ]fin and x, y ∈ [I]n, if max a < minx
and max a < min y then a ∪ x ∈ B ⇐⇒ a ∪ y ∈ B .

Note that the ordinals in a are not assumed to be members of the set I.

Proof. For any ordinal α < κ the family Fα of all sets of the form

{x ∈ [κ]n : a ∪ x ∈ B ∧ max a 6 α < minx}, where a ∈ [α + 1]fin and B ∈ F ,
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has cardinality less than κ. Therefore there exists a set Iα ∈ U, Iα ⊆ κr α that
is an indiscernible set w.r. t. Fα. Consider the diagonal intersection I = ∆

α<κ
Iα .

Thus ξ ∈ I iff ξ > 0 and ξ ∈ ⋂
α<ξ Iα. By the normality of U, I still belongs to

U. To check the good indiscernibility, let n, B, a, x, y be as in Proposition 6. Then
µ = max a < minx, and hence x ⊆ Iµ by the definition of I. Similarly y ⊆ Iµ.
Then a ∪ x ∈ B ⇐⇒ a ∪ y ∈ B for any B ∈ F by the choice of Iµ . (If a = ∅
then we take µ = 0 in this argument.)

2 Canonization of functions

As above, let U be a normal ultrafilter U on a measurable cardinal κ .
The next theorem will be our main technical tool. For any sets x, s ⊆ Ord

we define the order preserving restriction x //s ⊆ x (“x restricted to s”) as
follows. Put elements of x in the increasing order: x = {ξγ : γ < δ}. Now define
x //s = {ξγ : γ ∈ s}. Note that if y ⊆ x ∈ [Ord]n then there is a unique set s ⊆ n
such that y = x //s.

Theorem 7. Suppose that F is a function defined on [κ]fin. Then for any n ≥ 1
and a ∈ [κ]fin there exist sets Jn(a) ∈ U and basn(a) ⊆ n such that for all
x, y ∈ [Jn(a)]n with max a < minx, min y we have F (a∪x) = F (a∪y) if and only
if x //basn(a) = y //basn(a).

Proof. Let ϑ be any cardinal bigger than κ such that Vϑ (the ϑ-th level of the
von Neumann hierarchy) contains F. Let F be the collection of all sets z ∈ Vϑ

definable in Vϑ by an ∈-formula with F as the only parameter; F is countable.
Let I ∈ U be given by Proposition 6 for such an F .

We prove the theorem by induction on n.
Suppose that n = 1. Fix a set a ∈ [κ]fin . Put J1(a) = I . Take any distinct

ordinals ξ, η ∈ I bigger than max a. If F (a∪{ξ}) = F (a∪{η}) then by the choice
of I we have F (a ∪ {ξ}) = F (a ∪ {η}) for every pair of ordinals ξ 6= η in I .
Indeed take the set

{a ∪ {ξ, η} : a ∈ [κ]fin ∧ min a < ξ, η < κ ∧ F (a ∪ {ξ}) = F (a ∪ {η})}

as B in Proposition 6. Therefore bas1(a) = ∅ is as required. If F (a ∪ {ξ}) 6=
F (a ∪ {η}) then similarly bas1(a) = {0} works.

Now the induction step n → n + 1. The idea is to reduce the level n + 1 to
n for bigger sets a. Fix a ∈ [κ]fin. Take any ξ < κ, max a < ξ. By the induction
hypothesis there exist sets Jn(a ∪ {ξ}) ∈ U and basn(a ∪ {ξ}) ⊆ n such that

F (a ∪ {ξ} ∪ x) = F (a ∪ {ξ} ∪ y) iff x //basn(a ∪ {ξ}) = y //basn(a ∪ {ξ})

holds for any pair of sets x, y ∈ [Jn(a ∪ {ξ})]n with ξ < minx, min y.
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Obviously there exist sets J ∈ U and s ⊆ n such that max a < min J and
basn(a ∪ {ξ}) = s for all ξ ∈ J. The set J ′ = I ∩ J ∩ ∆

γ∈J
Jn(a ∪ {γ}) belongs

to U since U is a normal filter. (Note that ξ ∈ J ′ iff ξ ∈ I ∩ J, ξ > 0, and
ξ ∈ Jn(a ∪ {γ}) for all γ ∈ J, γ < ξ .) Moreover we have

F (a ∪ {ξ} ∪ x) = F (a ∪ {ξ} ∪ y) iff x //s = y //s (1)

for any ξ ∈ J ′ and any pair of sets x, y ∈ [J ′]n with ξ < minx, min y.
We put Jn+1(a) = J ′. To define basn+1(a), take any pair of ordinals α 6= γ

in J ′ bigger than max a. Also take any z ∈ [J ′]n with min z > α, γ .
Case 1 : F (a ∪ {α} ∪ z) = F (a ∪ {γ} ∪ z). Let us show that basn+1(a) =

{1 + k : k ∈ s} works. Take any x′, y′ ∈ [J ′]n+1 with ξ = minx′ > max a and
η = min y′ > max a. Then x = x′ r {ξ} and y = y′ r {η} belong to [J ′]n.

Suppose, for instance, that η 6 ξ. Then still η < minx. Therefore, by the case
assumption, the choice of I, and the fact that J ′ ⊆ I, the equality F (a ∪ x′) =
F (a ∪ x′′) holds, where x′′ = {η} ∪ x. Further by (1) F (a ∪ y′) = F (a ∪ x′′)
iff x //s = y //s. And finally the equality x′ //basn+1(a) = y′ //basn+1(a) is
equivalent to x //s = y //s.

Case 2 : F (a ∪ {α} ∪ z) 6= F (a ∪ {γ} ∪ z). A similar argument shows that
basn+1(a) = {0} ∪ {1 + k : k ∈ s} works.

3 Prikry extension

For more details on measurable cardinals and Prikry forcing, see for example [3].
Let V be the model for which we prove Theorems 3, 4, 5. Until the end of

the paper we’ll consider V as the ground universe of all sets. In particular all
ordinals are ordinals in V and generally all sets are sets in V or depending on
the context sets in generic extensions of V . We suppose that κ is a measurable
cardinal in V and U is a normal ultrafilter over κ in V .

Recall that the Prikry forcing = (U) associated to U consists of all pairs
p = 〈ap, Ap〉 of sets ap ∈ [κ]fin and Ap ∈ U such that max ap < minAp. The order
is as follows: p 6 q (meaning that p is stronger) iff aq ⊆end ap (meaning that ap

is an end-extension of aq , that is, aq ⊆ ap and max aq < min (ap r aq)), Ap ⊆ Aq ,
and ap r aq ⊆ Aq .

-generic extensions are called Prikry extensions.
We’ll make use of the following basic fact about the Prikry forcing.

Proposition 8. If p ∈ and ϕ is a closed formula of the -forcing language then
there is a condition q ∈ , q 6 p which decides ϕ and satisfies ap = aq .

The first part of the following proposition is an immediate corollary, using the
κ-completeness.
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Proposition 9. (1) In a Prikry extension V[G] of the ground universe V, if
X ⊆ α < κ then X ∈ V. Therefore every V-cardinal ϑ < κ remains a cardinal
in the extension, and with the same cofinality.

(2) Moreover, κ itself remains a cardinal, too, but its cofinality changes to ω .
(3) Finally all cardinals ϑ > κ remain cardinals, and the cofinality does not

change provided it was bigger than κ in V .

Proof. Given a set G ⊆ , we let hG =
⋃

p∈G ap , a subset of κ . If G is a generic
filter then by an easy forcing argument hG is a set of order type ω cofinal in κ ,
and hence cofκ = ω in the extension. Finally to prove (3) note that satisfies
the κ+-c.c. simply because any two conditions p, q ∈ such that ap = aq are
compatible in .

Sets of the form hG , G ⊆ being a Prikry generic filter over a ground model
V containing κ and U , are called Prikry sequences (over V). It is known that
every Prikry sequence h = hG is a cofinal subset of κ of order type ω , so that it
can equivalently be considered as the sequence

h = 〈h(0), h(1), h(2), . . . , h(n), h(n + 1), . . . 〉 , in the increasing order .

In particular, h(0) is the least element of h , and so on.
By G we denote a name for the canonical generic subset of . Let h be a

name for hG. Then forces that h ⊆ κ̌ is a set of order type ω̌ cofinal in κ̌, and
G = {p ∈ :̌ ap ⊂end h∧ hr ap ⊆ Ap} . And x̌ (x being a set in the ground model,
for example, ω or κ) is a canonical name of x in the forcing language.

4 Coding subsets of κ in the Prikry extension

Beginning the proof of Theorem 4, we fix, for Sections 4 to 7, a -name X of a
subset of κ̌ . And κ, U as in Section 3 remain to be fixed. Our goal is to code X
by a subset of the canonical Prikry sequence h .

Crucial assumption 10. Suppose to the contrary that a condition p∗ = 〈a∗, A∗〉 ∈
forces otherwise, that is, forces that there is no set d ⊆ h satisfying X ≡V d .

Unfortunately, working in this assumption towards contradiction, a∗ and, oc-
casionally, A∗ would inconveniently contaminate each and every essential formula.
Therefore we would like to work in a somewhat narrower case:

Crucial assumption 11. Suppose that p∗ = 〈∅, κ〉 in Crucial assumption 10.
We are going to derive a contradiction by getting a condition p ∈ , actually

of the form p = 〈∅, I〉 (where I ∈ U will be a certain indiscernible set), which
forces the opposite, that is, the existence of a set d ⊆ h satisfying X ≡V d .
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To explain why this assumption does not lead to any loss of generality, note
first of all that p∗ still can be (inconveniently) imported in the arguments below in
a certain uniform way — and we’ll show how to do this in the definition of F just
below. However there is a more formal argument. The point is that there exists
another -name X ′ such that whatever p∗ forces for X is forced for X ′ by 〈∅, κ〉 .
To define X ′ , note that the canonical Prikry sequence hG in a Prikry extension
V[G] is almost included in A∗ since A∗ ∈ U . Therefore, cutting an appropiate
finite initial segment b of hG and adjoining a∗ we obtain another cofinal set h′ .
By a standard forcing argument, h′ will be a Prikry sequence (for a suitably
defined generic filter G′ ), compatible with p∗ . Define X ′ to be X interpreted in
the sense of h′ (or G′ ). And then define X ′ to be a name of X ′ in the Prikry
forcing language. Then under Crucial assumption 10 〈∅, κ〉 forces that there is
no set d ⊆ h satisfying X ′ ≡V d .

After these preliminaries, we begin to work towards contradiction under Cru-
cial assumptions 10 and 11. Define, for each x ∈ [κ]fin ,

F (x) = {ξ < κ : ∃p ∈ (ap = x ∧ p ||−− ξ̌ ∈ X)}. (2)

It follows from Theorem 7 that there exist a set J =
⋂

n Jn(∅) ∈ U and a sequence
{basn}n∈ω of sets basn = basn(∅) ⊆ n such that the equivalence

F (x) = F (y) ⇐⇒ x //basn = y //basn (3)

holds for all n and x, y ∈ [J ]n .

Remark 12. Working with an arbitrary condition p∗ = 〈a∗, A∗〉 ∈ , we would
have to define J =

⋂
n Jn(a∗) and basn = basn(a∗), of course.

It is interesting to figure out whether basn = bask ∩ n holds for n < k . But
fortunately a somewhat weaker result of the next lemma will suffice for our goals.

Lemma 13. If n < k then basn ⊆ bask .

Proof. By (3), it suffices to show that F (x) = F (y) holds for any sets x, y ⊆ I
satisfying |x| = |y| = n and x //s = y //s, where s = basn+1 ∩ n. Suppose
otherwise: F (x) 6= F (y), that is, for example, there is an ordinal ξ ∈ F (x)rF (y).
Then there exists a condition p ∈ with ap = x that forces ξ̌ ∈ X, and by
Proposition 8 there is a condition q ∈ with aq = y that forces ξ̌ /∈ X. We may
assume that Ap = Aq ⊆ I and ξ < µ = minAp. Then the sets x′ = x ∪ {µ} and
y′ = y ∪ {µ} satisfy |x′| = |y′| = n + 1 and x′ //basn+1 = y′ //basn+1. It follows
that F (x′) = F (y′) by (3).

Consider conditions p′ = 〈x′, Ap r {µ}〉 and q′ = 〈y′, Aq r {µ}〉. Obviously
p′ 6 p in , therefore p′ forces ξ̌ ∈ X, and then ξ ∈ F (x′) = F (y′). It follows
that there is a condition r ∈ with ar = y′ that still forces ξ̌ ∈ X. This is a
contradiction because q′ ||−− ξ̌ /∈ X (indeed q′ 6 q ) and aq′ = ar = y′.
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5 Further definitions and technical lemmas

Now fix a cardinal ϑ > κ. Then Vϑ is a transitive set containing κ, F, , J , the
ultrafilter U , the sequence {basn}n∈ω , and the relation p ||−− ξ̌ ∈ X (of two
arguments p and ξ ). Let F be the family of all subsets of Vϑ definable in Vϑ

by an ∈-formula with those seven sets involved as parameters. Let I ∈ U satisfy
Proposition 6 with these initial conditions. We can assume that I ⊆ J.

The following is the key technical instrument.

Lemma 14. If ξ < γ < κ, p, q ∈ , ap ∩ γ = aq ∩ γ, (ap ∪ aq)r γ ⊆ I , and
Ap ∪Aq ⊆ I r γ . Then p ||−− ξ̌ ∈ X iff q ||−− ξ̌ ∈ X.

In particular if a condition p ∈ satisfying ap r γ ⊆ I and Ap ⊆ I r γ forces
ξ̌ ∈ X then so does q = 〈ap ∩ γ, I r γ〉.
Proof. Suppose this is not the case. Then since Aq ⊆ I we can w. l. o. g. assume
that p ||−− ξ̌ ∈ X and q ||−− ξ̌ /∈ X. Put a = ap ∩ γ = aq ∩ γ. The remaining
parts y = aq r a and x = ap r a are finite subsets of I r γ. We can assume that
|x| = |y| as otherwise the condition with the shorter part can be appropriately
strengthened.

Put m = |a| and n = |x| = |y| . Then a = {α1 < α2 < · · · < αm} . The
ordinal ξ can be equal to one of αi or belong to one of intervals [0, α0), (αi, αi+1),
ξ > αm — totally 2m + 1 options. Let the order structure of the triple a, x, ξ be
the following information: max a < minx , ξ < min ax , and the choice between the
2m + 1 options mentioned just above.

Consider the set B of all unions of the form {η} ∪ u ∪ v such that η < κ ,
u ∈ [κ]m , v ∈ [κ]n , the order structure of the triple u, v, η is the same as the order
structure of the triple a, x, ξ , and there is a condition r ∈ such that ar = u ∪ v
and r ||−− η̌ ∈ X . Then B ∈ F . Moreover {ξ} ∪ a ∪ x ∈ B is witnessed by the
condition r = p . It follows that {ξ} ∪ a∪ y ∈ B as well by the choice of I . (Note
that x ∪ y ⊆ I . But a ⊆ I and ξ ∈ I are not assumed.) Therefore there is a
condition r ∈ such that ar = a ∪ y = aq and r ||−− ξ̌ ∈ X . Thus conditions q, r
with aq = ar are incompatible. But this is a contradiction.

Lemma 15. If γ < κ and a0 ⊆ γ is finite then the condition p0 = 〈a0, I r γ〉
forces X ∩ γ̌ = F̌ (h ∩ γ̌) ∩ γ̌ .

Proof. Fix any ordinal ξ < γ. Suppose that a condition p ∈ , p 6 p0 forces
ξ̌ ∈ X. Then Ap ⊆ Irγ , and hence γ 6 minAp. Note that h∩ γ̌ is forced by p to
be equal to ǎ, where a = ap ∩ γ . Therefore we have to show that ξ ∈ F (a), that
is, there exists a condition q ∈ with aq = a which forces ξ̌ ∈ X. Yet q = 〈a, Irγ〉
is such a condition by Lemma 14.

Conversely suppose that a condition p ∈ , p 6 p0 forces ξ̌ /∈ X. As above, we
have to prove that ξ /∈ F (a), where a = ap ∩ γ. Otherwise there is a condition
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q ∈ with aq = a such that q ||−− ξ̌ ∈ X. It can be assumed that Aq ⊆ I r γ .
Then Lemma 14 leads to contradiction.

For any α ∈ I let α† be the next element of I.

Corollary 16. If p = 〈a,A〉 ∈ , A ⊆ I, and γ = (max a)† then p forces X ∩ γ̌ =
F̌ (ǎ) ∩ γ̌ .

6 Getting the set from a subsequence

Put S =
⋃

n basn. It follows from Lemma 13 that for any n there exists a number
k = kn such that S∩n = bask∩n for all k ≥ kn ; in particular S∩n = baskn ∩n.

Let d be a name for h // Š. This is a subsequence of h in the extension.

Proposition 17. The condition 〈∅, I〉 forces X 6V d.

Proof. Argue in the Prikry extension V[G] of the ground universe V , where G ⊆
is a generic filter containing 〈∅, I〉 . Define h = hG , X = X[G] , and d = h //S .
Then h ⊆ I since G contains 〈∅, I〉 .

For any m let Xm =
⋃

x(F (x)∩maxx), where the union is taken over all finite
sets x ⊆ I satisfying |x| ≥ m and x //S ⊆end d . The sequence of sets Xm belongs
to V[d] , of course, and hence so does the set

X ′ =
⋃

n

⋂
m≥n Xm = {ξ < κ : ∃n ∀m ≥ n (ξ ∈ Xm)}.

It remains to prove that X = X ′ .
Suppose that ξ ∈ X . Then ξ̌ ∈ X is forced by a condition p = 〈a,A〉 ∈ G .

Note that a is a finite initial segment of h , hence a ⊆ I , and in addition hra ⊆ A .
Assuming w. l. o. g. that max a > ξ , we assert that ξ ∈ Xm for any m ≥ n = |a| .
Indeed let x be the set of the first m elements of h . Then |x| = m , a ⊆end x ⊆ I ,
ξ < maxx , xra ⊆ A , and obviously x //S ⊆end d . (This is true for any x ⊆end h .)
Thus to show ξ ∈ Xm we have only to prove that ξ ∈ F (x).

Consider any condition q = 〈x,Aq〉 ∈ G with aq = x . Let A′ = Aq ∩ A ;
then q′ = 〈x, A′〉 also belongs to G and easily q′ 6 p . (Recall that x r a ⊆ A .)
Therefore q′ forces ξ̌ ∈ X , and this implies ξ ∈ F (x), as required.

Conversely, suppose that ξ ∈ X ′ , and this is witnessed by some n , so that
ξ ∈ Xm for all m ≥ n . Take m0 ≥ n big enough for the set y0 of the first m0

elements of h to satisfy ξ < max y0 . By definition there is a finite set x ⊆ I such
that ξ < maxx , m = |x| ≥ m0 , x //S ⊆end d , and ξ ∈ F (x). Let y be the set of
the first m elements of h . Then y ⊆ I and ξ < max y by the choice of m0 . In
addition x //S = y //S = h , so that x //basn = y //basn , and hence F (x) = F (y)
by (3). Thus ξ ∈ F (y). This means the existence of a condition q ∈ with aq = y
such that q ||−− ξ̌ ∈ X . We can w. l. o. g. assume that Aq ⊆ I .
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This does not immediately imply ξ ∈ X because we cannot claim that q ∈ G .
However let γ = 1 + max y . The condition p = 〈y, I r γ〉 obviously belongs to
G . Moreover p forces ξ̌ ∈ X by Lemma 14 because so does q . Thus ξ ∈ X , as
required.

The next lemma on subsets of hG proves claim (ii) of Theorem 4.

Lemma 18. In the Prikry extension V[G],

(i) for every c ⊆ h = hG there is a unique E ⊆ ω in V such that c = h //E ;

(ii) if c, c′ ⊆ h then c′ 6V c iff c′ r c is finite.

Proof. (i) Obviously in V[G] there is a unique set E ⊆ ω with c = h //E . It
belongs to V because the Prikry forcing does not add new bounded subsets of κ .

(ii) Let, by (i), c = h //E and c′ = h //K, where E, K ⊆ ω are sets in V.
Suppose on the contrary that K rE is infinite but h //K 6V h //E . Then there
exist a set x ∈ V and an ordinal α such that h //K is the α-th element in the
canonical Gödel wellordering of L[x, h //E] . This is forced by a condition p ∈ G ,
so that p forces that h //Ǩ is the α̌-th element in the canonical Gödel wellordering
of L[x̌, h // Ě] .

As KrE is infinite, there is an element n ∈ KrE such that n ≥ |ap| . We can
w. l. o. g. assume that n = |ap| (otherwise consider a suitable stronger condition).
Choose ordinals ξ, η in the set Ap such that max ap < ξ < η . Define a pair of
conditions q, r ∈ so that aq = ap∪{ξ} , ar = ap∪{η} , and Aq = Ar = Apr(η + 1),
that is, η < minAq = minAr . Both q and r are stronger than p .

Let h ⊆ κ be a Prikry sequence compatible with q (in the sense that aq ⊆end h
and h r aq ⊆ Aq ). Clearly ξ ∈ h but η /∈ h . Then h′ = h ∪ {η} r {ξ} is a
Prikry sequence compatible with r by an ordinary forcing argument. Note that
h //E = h′ //E since n /∈ E . It follows that h //K = h′ //K because p forces
h //Ǩ be an absolute function of h // Ě . But on the other hand h //K 6= h′ //K
because n ∈ K and the n-th element ξ of h is not equal to the n-th element η
of h′ . This contradiction completes the proof.

7 Getting the subsequence from the set

Here we prove the opposite reduction:

Proposition 19. The condition 〈∅, I〉 forces d 6V X .

Proof. Argue in the Prikry extension V[G] of the ground universe V , where G ⊆
is a generic filter containing 〈∅, I〉 . Define h = hG , X = X[G] , and d = h //S .
Then h ⊆ I since G contains 〈∅, I〉 . Let W be the family of all finite non-empty
sets x ⊆ I such that X ∩ γ = F (x) ∩ γ , where γ = (maxx)† .
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Lemma 20. If x is an initial segment of h then x ∈ W .

Proof. Easily by Lemma 15. (Lemma 20 )

As obviously W 6V X , we have to prove that d 6V W in V[G] .

Lemma 21. Suppose that 0 ∈ bas1 . Then the only ordinal ϑ ∈ I such that
{ϑ} ∈ W is equal to h(0), the least element of h.

Proof. {h(0)} ∈ W by Lemma 20. Suppose for a contradiction that there are
two different ordinals ϑ as in the lemma. In other words there exist ordinals ξ < η
in I such that F ({ξ}) ∩ ξ† = X ∩ ξ† and F ({η}) ∩ η† = X ∩ η† . Since ξ† < η† ,
clearly F ({ξ}) ∩ ξ† = F ({η}) ∩ ξ† . It follows from the assumption 0 ∈ bas1 that
F ({ξ}) = F ({η}) iff ξ = η . Therefore to get a contradiction it suffices to prove
that F ({ξ}) = F ({η}).

Case 1 : η = ξ†, so that F ({ξ})∩ η = F ({η})∩ η . By the indiscernibility of I
this holds for every pair of ordinals ξ < η in I . It follows that F ({ξ}) = F ({η}).
Indeed take any ζ ∈ I bigger than η . Then F ({ξ})∩ζ = F ({ζ})∩ζ = F ({η})∩ζ .

Case 2 : γ = ξ† < η . Then F ({ξ})∩ γ = F ({η})∩ γ for all ordinals ξ < γ < η
in I by the indiscernibility. And once again F ({ξ}) = F ({η}). Indeed take any
pair of ordinals γ < ζ in I with γ > max{ξ, η}. Then F ({ξ})∩ γ = F ({ζ})∩ γ =
F ({η}) ∩ γ . (Lemma 21 )

Lemma 22. Suppose that x, y ⊆ I are finite sets, |x| = |y| = n ≥ 2, maxx =
max y , and F (x) 6= F (y). Then F (x) ∩ γ 6= F (y) ∩ γ , where γ = (maxx)† .

Proof. Otherwise by the indiscernibility of I we would have F (x)∩γ = F (y)∩γ
for all γ ∈ I, γ > maxx . (Lemma 22 )

By the way Lemma 22 is trivially true for n = 1 since in this case maxx = max y
implies x = y . On the other hand the next lemma in the case n = 1 easily follows
from Lemma 21.

Lemma 23. Suppose that sets x, y ∈ W satisfy |x| = |y| = n ≥ 2. Then
F (x) = F (y), therefore x //basn = y //basn .

Proof. First of all note that the second claim is equivalent to the first claim by
(3), and hence it suffices to prove only one of them. For instance if basn = 0 then
x //basn = y //basn = ∅ is obvious, so in the rest of the proof of the lemma we’ll
suppose that basn 6= ∅ and prove the equality F (x) = F (y).

Let µ = maxx and ν = max y . We assume w. l. o. g. that µ 6 ν . Then

F (x) ∩ µ† = X ∩ µ† and F (y) ∩ ν† = X ∩ ν† ,

because x, y ∈ W . Therefore F (x) ∩ µ† = F (y) ∩ µ† .
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If maxx = max y = µ then F (x) ∩ µ† = F (y) ∩ µ† because x, y belong to W ,
hence F (x) = F (y) by Lemma 22. Thus it will be assumed that µ = maxx <
max y = ν , in addition to the earlier assumption basn 6= ∅ .

By the indiscernibility we can suppose that all elements of the sets x, y have
limit indices in the sense of the natural increasing order of I — this allows us
to move them, if necessary, without any change in their common configuration
within I . We have several cases.

Case 1 : the number n−1 does not belong to basn . Then the sets u = x //basn

and v = y //basn do not contain ordinals resp. µ and ν . Thus z = x∪{ν}r {µ}
satisfies z //basn = x //basn = u , therefore F (x) = F (z). In particular, F (z) ∩
γ = F (x) ∩ γ = F (y) ∩ γ , where γ = µ† . On the other hand max z = max y = ν ,
therefore F (y) = F (z) by Lemma 22 (because F (z) ∩ γ = F (y) ∩ γ ), and finally
F (x) = F (y), as required.

Case 2 : the number n− 1 belongs to basn . Then the sets u = x //basn and
v = y //basn are different (since µ < ν ), therefore F (x) 6= F (y). We are going to
prove F (x) = F (y) even in this case, which is thereby self-contradictory.

Case 2a: basn = {n− 1}. Then u = {µ} and v = {ν}. In this case the value
of F (y) does not depend on the values of ordinals in y r {ν} , and hence we can
assume that µ† < min y . (Otherwise shift them suitably, using the “limit indices”
assumption above.) Now the same argument as in the proof of Lemma 21 (Case 2)
shows that still F (x) = F (y).

Case 2b: the set basn contains both the number n− 1 and at least one more
element. Accordingly the sets u and v contain both resp. µ and ν and elements
other than resp. µ and ν.

Case 2b1 : ur {µ} = v r {ν}. Let z = v ∪ (xr u). In other words z consists
of those elements of y which belong to v = y //basn and those elements of x
which do not belong to u = x //basn . In our assumptions (including the Case
2b1 assumption), we have z //basn = y //basn = v , and hence F (z) = F (y). It
follows that F (x) ∩ µ† = F (z) ∩ µ† — because F (x) ∩ µ† = F (y) ∩ µ† , see above.
On the other hand, the only difference between x and z is that µ = maxx < ν =
max z = max y , and in the rest x r {µ} = z r {ν} . Put w = x r {µ} = z r {ν} ,
so that x = w ∪ {µ} and z = w ∪ {ν} .

According to the “limit indices” assumption, the ordinal γ = µ† satisfies γ < ν
strictly, and, recall, F (w ∪ {µ}) ∩ γ = F (w ∪ {ν}) ∩ γ . By the indiscernibility,
this equality holds for any triple of ordinals µ < γ < ν in I such that supw < µ .
Choose any pair of γ′ < ν ′ in I such that ν < γ′ . Then immediately

F (w ∪ {µ}) ∩ γ′ = F (w ∪ {ν ′}) ∩ γ′ and F (w ∪ {ν}) ∩ γ′ = F (w ∪ {ν ′}) ∩ γ′ .

(Consider the triples µ < γ′ < ν ′ and ν < γ′ < ν ′ .) It follows that

F (x) ∩ γ′ = F (w ∪ {µ}) ∩ γ′ = F (w ∪ {ν}) ∩ γ′ = F (z) ∩ γ′ ,
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and hence F (x) = F (z) because γ′ can be arbitrarily large in κ . And finally
F (x) = F (y), as required.

Case 2b2 : ur{µ} 6= vr{ν} , and then (since |u| = |v|) there exists an ordinal
α ∈ u r v, α < µ . According to the “limit indices” assumption, the ordinal
β = α† does not occur in x and does not occur in y . Put x′ = x ∪ {β} r {α} ,
and if α ∈ y (but /∈ v ) then y′ = y ∪ {β} r {α} as well. (And if α /∈ y
then we keep y′ = y .) Then x //basn 6= x′ //basn , hence F (x) 6= F (x′), and
further F (x) ∩ γ 6= F (x′) ∩ γ by Lemma 22, where γ = µ† . On the other hand,
y //basn = y′ //basn , because the substitution of β for α does not alter the set
v = y //basn . Therefore F (y) = F (y′). And finally the order configuration of the
complex x, y, γ is clearly similar to the configuration of x′, y′, γ, and hence the
equalities F (x)∩γ = F (y)∩γ and F (x′)∩γ = F (y′)∩γ hold or fail simultaneously,
contradiction to the above. (Lemma 23 )

We are ready to accomplish the proof of Proposition 19.
Fix a number m ≥ 1 and, arguing in the Prikry extension V[G] , show how the

set Dm = d //m of m first elements of the subsequence d = h //S can be recovered
starting from X . We assume that d is infinite as otherwise there is nothing to
prove. Then there is a least number n = nm ≥ m such that |S ∩ n| ≥ m, and
further there is a least number k = km ≥ nm such that bask ∩ n = S ∩ n.

Consider the set Wk of all k-element sets x ∈ W . In particular the set
xk = {h(i) : i < k} of first k elements of the whole Prikry sequence h = hG

belongs to Wk by Lemma 20. Suppose that x, y ∈ Wk . Then x //bask = y //bask

by Lemma 23, and hence the first m elements of the sets x //S and y //S are
the same by the choice of k and n. In other words, for any x ∈ Wk the first m
elements of the sets x //S and xk //S are the same. But the first m elements of
the set xk //S are equal to the set Dm of the first m elements of d .

Thus the following plan of computing Dm in the Prikry extension works:
compute n = nm and k = km as above, take any x ∈ Wk and take the first m
elements of the set x //S .

(Proposition 19 )

Propositions 17 and 19 end the proof of claim (i) of Theorem 4. Indeed, we
have proved that the condition 〈∅, I〉 forces d ≡V X , and this contradicts Crucial
assumptions 10 and 11.

(Theorem 4 )

8 Reduction theorem: the scheme of the proof

Here we start the proof of Theorem 5. It obviously suffices to prove Theorem 5
for sets X ⊆ Ord . And this proof will go on by induction on the least cardinal
λ ≥ κ such that X ⊆ λ , and the case λ = κ is obvious.
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We have to carry out the step: prove the result for λ assuming it holds for all
cardinals λ′ , κ 6 λ′ < λ . Thus we suppose that

(I) G ⊆ is a generic set over the ground model V ,

(II) h = hG ⊆ κ is a corresponding Prikry sequence,

(III) λ > κ is a cardinal, and

(IV) if λ′ is a cardinal, κ 6 λ′ < λ , and X ⊆ λ′ , X ∈ V[G] , then there exists a
set Y ⊆ κ such that V[X ′] = V[Y ] (the inductive hypothesis).

Lemma 24 (the inductive step lemma). Under these assumptions, if X ⊆ λ,
X ∈ V[G], then there is a set Y ⊆ κ such that V[X] = V[Y ].

The proof of the lemma will be different in two cases, the first of which (Sections
9 and 10) is the case when cofλ > κ strictly while the second (Section 11) will
be the case when cofλ 6 κ . 1

9 Large cofinality inductive step

Here we prove Lemma 24 in the case when cofλ > κ . Fix a set X ⊆ λ in V[h] .
The following is a warmup lemma; it presents a key argument in a particular,

simplified case.

Lemma 25. Under the conditions of Lemma 24, if cofλ > κ and xξ = X∩ξ ∈ V
for all ξ < λ then X ∈ V .

Proof. Let X be a name for X , so that X = X[G] . For each ξ < λ , let Pξ be
the set of all conditions p ∈ which force X∩ ξ̌ = x̌ξ . Thus every set Pξ belongs to
V and is non-empty (contains a condition in G). Moreover ξ < η =⇒ Pη ⊆ Pξ .

Case 1: there is a condition p ∈ ⋂
ξ<λ Pξ . Then clearly p decides every formula

of the form α̌ ∈ X , α < λ , and we are done.
Case 2: not case 1. Then the set Ξ = {ξ < λ : Pξ+1 $ Pξ} is unbounded in

λ , and hence cardΞ > κ under the assumptions of Lemma 24. For any ξ ∈ Ξ
choose an arbitrary pξ ∈ Pξ r Pξ+1 . Then pξ does not force X ∩ ξ̌ = x̌ξ , so pick
a condition qξ = 〈bξ, Bξ〉 6 pξ which forces X ∩ ξ̌ 6= x̌ξ . Then the conditions qξ ,
ξ ∈ Ξ, are pairwise incompatible in . Then by a simple cardinality argument in
V[G] there is an unbounded set Ξ′ ⊆ Ξ (hence still cardΞ′ > κ), and a finite
set t ⊆ κ such that bξ = t for all ξ ∈ Ξ′ . But this is impossible because any two
conditions with the same first (finite) component are obviously compatible.

1 Formally by cofλ we mean the cofinality in V , the ground universe. However by Proposi-
tion 9 if cofλ > κ in V then cofλ > κ in any Prikry extension of V . And the converse is true
by elementary reasons.
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But of course a set X ⊆ λ does not necessarily satisfy X∩ξ ∈ V for all ξ < λ .
Still the following is true:

Lemma 26. Under the conditions of Lemma 24, if cofλ > κ then there is a set
d ∈ V[h], d ⊆ h, such that X ∩ ξ ≡V d for all sufficiently large ξ < λ.

Proof. It follows from the inductive hypothesis that, in V[G] , for every ξ < λ
there is a set dξ ⊆ h satisfying X ∩ ξ ≡V dξ . By a simple cardinality argument
based on cofλ > κ , there is a single set d ⊆ h in V[h] such that dξ = d , and
hence X ∩ ξ ≡V d , for unboundedly many ξ < λ , and hence for all sufficiently
large ξ < λ .

Since a set X ⊆ λ in V[h] has been fixed, let us also fix a set d ⊆ h in V[h]
such that X ∩ ξ ≡V d for all sufficiently large ξ < λ (and still X ∩ ξ ∈ V[d] for
all ξ < λ in general).

Lemma 27 (the key lemma). Then X ∈ V[d], therefore X ≡V d.

We precede the proof of the lemma with a few remarks and constructions.
As d is a subset of the given Prikry sequence h = {h(0) < h(1) < h(2) < . . .} ,

there is a unique infinite and coinfinite set ess ⊆ ω , ess ∈ V[h] (the set of
“essential” indices) such that d = h //ess = {h(k) : k ∈ ess} . Then in fact
ess ∈ V by Proposition 9. We w. l. o. g. assume that 0 ∈ ess .

For any n , we let n⊕ be the least number j ∈ ess , j > n .
Our idea is to consider the universe V[G] = V[h] as a generic extension of the

subuniverse V[d] , and get Lemma 27 following the proof of Lemma 25.
The technical device we employ is the “quotient forcing” of Solovay [4]. Let

d ∈ V be a canonical -name for d = h //ess . In V[G] , we define /d to be the set
of all conditions p ∈ compatible with d in the sense that p -forces, over V , no
any statement regarding d contradicting to the factual properties of d = h //ess
as the interpretation of d in V[G] . This looks like unsound definition because
of the intended quantifier over statements. Yet can be eliminated by a certain
transfinite procedure of discarding “wrong” conditions.

Definition 28. A sequence of sets Aξ ⊆ is defined in V[d] by transfinite induc-
tion on ξ ∈ Ord as follows.

A0 is the set of all conditions p ∈ such that, for some α < κ , either p -forces
α̌ ∈ d but α /∈ d , or conversely, p -forces α̌ /∈ d but α ∈ d .

Aξ+1 is the set of all conditions p ∈ such that Aξ is dense in below p .
Finally, if λ ∈ Ord is limit then Aλ =

⋃
α<λ Aα .

Clearly Aξ ⊆ Aη whenever ξ < η . Therefore there is an ordinal δ such that
Aδ = Aδ+1 , and hence Aγ = Aδ for all γ > δ . Put A = Aδ and /d = r A (the
set Σ of Solovay [4, Section 4]). Obviously /d ∈ V[d] .
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The following principal facts were discovered in [4].

1◦ : G ⊆ /d ,

2◦ : if D ∈ V is a dense subset of then D ∩ (/d) is dense in /d ,

3◦ : if p ∈ /d , q ∈ , and p 6 q then q ∈ /d ,

4◦ : if p ∈ then p ∈ /d iff there is a set G′ ⊆ , -generic over V , containing p ,
and such that hG′ //ess = d ,

5◦ : G is a set (/d)-generic over V[d] ,

6◦ : any set G′ ⊆ /d , (/d)-generic over V[d] , is also -generic over V .

Claims 1◦, 2◦, 3◦, 5◦, and implication =⇒ in 4◦ are just (Σ1) − (Σ5) in
[4, Section 4], while 6◦ is an easy consequence of 2◦. Let us prove the inverse
implication in 4◦. Suppose that G′ ⊆ is a set -generic over V , and hG′ //ess = d .
Prove that G′ ⊆ /d , that is, G′ ∩ Aξ = ∅ for all ξ . That G′ ∩ A0 = ∅ follows
from the assumption hG′ //ess = d . The limit step is obvious. Finally assume
that G′ ∩ Aξ = ∅ and prove G′ ∩ Aξ+1 = ∅ . Suppose towards the contrary that
p ∈ G′∩Aξ+1 . By definition, the set Aξ is dense below p , thus easily G′∩Aξ 6= ∅ ,
which is a contradiction.

Thus V[G] is a generic extension of V[d] . This allows us to carry out the
proof of Lemma 27 on the base of the following lemma. The proof of Lemma 29
will follow in Section 10.

Lemma 29. The forcing /d satisfies κ+-CC in V[h].

Proof (Lemma 27). Thus X (the given set) belongs to V[G] = V[d][G] , and
this is a (/d)-generic extension of V[d] by 5◦ above. Emulating the proof of
Lemma 25, we let X ∈ V[d] be a (/d)-name for X . For each ξ < λ , let Pξ be
the set of all conditions p ∈ /d which (/d)-force X ∩ ξ̌ = x̌ξ over V[d] (where
xξ = X ∩ ξ ∈ V[d]). Thus ∅ 6= Pξ ∈ V[d] , and ξ < η =⇒ Pη ⊆ Pξ .

Case 1: there is a condition p ∈ ⋂
ξ<λ Pξ . Then p decides, over V[d] , every

formula of the form α̌ ∈ X , α < λ , so easily X ∈ V[d] , and we are done.
Case 2: not case 1. Then, in V[h] , there is a pairwise incompatible set in /d of

cardinality at least κ+ . (Just as in the proof of Lemma 25.) But this contradicts
to Lemma 29.

(Lemma 27, modulo Lemma 29 )

(The case cofλ > κ in Lemma 24, modulo Lemma 29 )

10 Proof of the chain condition lemma

This section presents the proof of Lemma 29. We argue in the notation of Section 9.
The idea is to define a dense set ⊆ /d which is somewhat simpler that /d itself
so that the chain condition for will be rather obvious.
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Definition 30. is the set of all conditions p = 〈a,A〉 ∈ such that

(A) µ = minA ∈ d , and hence µ = h(n), where n = n(p) ∈ ess ;

(B) hr µ ⊆ A ;

(C) dom a = n , thus a is a sequence of length n = n(p) defined by (A);

(D) a //ess = d ∩ µ .

To explain (D), suppose, for the sake of clarity, that ess = {0, 2, 4, 6, . . .} (all
even numbers), and a = {α0 < α1 < · · · < αn−2 < αn−1} . Then a //ess = {α0 <
α2 < α4 < · · · < α2k−2 < α2k} , where n = 2k + 2 or n = 2k + 1. Now, (D)
requires that a //ess coincides with the set of all members ξ ∈ d smaller than µ .

Obviously ∈ V[h] , but we can hardly expect that ∈ V[d] , and hence cannot
replace /d as a forcing over V[d] .

Lemma 31. Q ⊆ /d, and is dense in /d, so that if p = 〈a,A〉 ∈ /d then there
is a condition q = 〈b,B〉 ∈ such that q 6 b.

Proof. Assume that p = 〈a,A〉 ∈ . Then a = {α0 < α1 < · · · < αn−2 < αn−1} ,
where n = n(p) ∈ ess , and h(n) = µ , where µ = minA , and finally addition
a //ess = d ∩ µ . Prove that p ∈ /d . According to 4◦ of Section 9, it suffices to
find a Prikry sequence h′ : ω → κ over V , compatible with p and such that still
h′ //ess = d . We put h′(j) = h(j) for all j ≥ n and for all j < n, j ∈ ess . It
needs more work to suitably define h′(j) for numbers j ∈ nr ess .

Thus let j < n, j /∈ ess . There is k < n, k ∈ ess , such that k < j < k⊕ 6 n ,
and h′(k) = h(k) = a(k), h′(k⊕) = h(k⊕) (= a(k⊕), if k⊕ < n strictly) by (D).
It follows that h′(k) < a(j) < h′(k⊕), and we simply put h′(j) = a(j).

By construction, h′ : ω → κ is increasing, compatible with p , still h′ //ess = d ,
and h′(j) = h(j) for all but finite j , so that h′ is a Prikry sequence over V , as
required. This ends the proof of Q ⊆ /d .

To prove the density, suppose that q = 〈b,B〉 ∈ /d . According to 4◦ of
Section 9, there exists a Prikry sequence h′ : ω → κ over V , compatible with
q and such that still h′ //ess = d . In particular h′(k) = h(k) for all k ∈ ess .
The sets hrB and h′ rB are finite, and hence there is a number n ∈ ess such
that µ = h′(n) = h(n) ∈ d and h r µ ⊆ B , h′ r µ ⊆ B . Put A = B r µ , thus
µ = minA and still we have both hr µ ⊆ A and h′ r µ ⊆ A .

Let finally a = h′ ¹ n = 〈h′(0), . . . , h′(n − 1)〉 . Then a //ess = d ∩ µ since
d = h′ //ess . It follows that p = 〈a,A〉 ∈ . To show that p 6 q , note that
A ⊆ B by construction, a extends b simply because h′ is compatible with q , and
ar b ⊆ B simply because a ⊆ h ⊆ b ∪B .

Proof (Lemma 29). Suppose towards the contrary that W ∈ V[h] , W ⊆ /d , is an
antichain in /d , and cardW = κ+ . By Lemma 31, we can w. l. o. g. assume that
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W ⊆ . By a cardinality argument, there exist a finite set a ⊆ κ , an ordinal µ < κ ,
and a set W ′ ⊆ W , such that still cardW ′ = κ+ , and we have minAp = µ and
ap = a for all p ∈ W ′ . Consider any pair of conditions p = 〈a,Ap〉 6= q = 〈a,Aq〉
in W ′ . Then r = 〈c, Ap ∩ Aq〉 , a stronger condition, also belongs to , and hence
p, q are compatible in , a contradiction.

11 Small cofinality inductive step

Here we prove Lemma 24 in the case when cofλ 6 κ . Let us fix a set X ⊆ λ in
V[G] = V[hG] , and an increasing sequence {ϑξ}ξ<δ ∈ V of cardinals ϑξ , cofinal
in λ . The goal is to prove that there is a set Z ⊆ κ such that X ≡V Z .

It follows from the inductive hypothesis (IV) of Section 8 that, in V[X] , for
every ordinal ξ < δ there is a set Yξ ⊆ κ satisfying (X ∩ ϑξ) ≡V Yξ . Thus there
also exist: a parameter pξ ∈ V, and ordinals αξ and βξ , such that Yξ is the αξ-th
element in the canonical Gödel wellordering of L[pξ, X∩ϑξ] , and conversely, X∩ϑξ

is equal to the βξ-th element in the canonical Gödel wellordering of L[pξ, Yξ] , so
that the following statement is true in V[X] :

(1) for every Z , if Z is equal to the αξ-th element in the canonical Gödel
wellordering of L[pξ, X ∩ ϑξ] , then Z ⊆ κ and X ∩ ϑξ is equal to the βξ-th
element in the canonical Gödel wellordering of L[pξ, Z] .

Moreover, as is a κ+-CC forcing, and δ 6 κ , there exist sets P, A, B ∈ V of
cardinality cardP = cardA = cardB = κ in V , such that, in V[X] ,

(2) for any ξ < δ , sets pξ, αξ, βξ satisfying (1) do exist in sets resp. P, A, B .

We let pξ(X), αξ(X), βξ(X) denote the least such sets, in the sense of fixed
wellorderings (in V) of the sets P, A, B . The maps ξ 7−→ pξ(X), αξ(X), βξ(X)
are well-defined in V[X] .

Let us now fix, in V , three bijections

b1 : κ
onto−→ P , b2 : κ

onto−→ A , b3 : κ
onto−→ B ,

This converts the maps ξ 7−→ pξ(X), αξ(X), βξ(X) in V[X] into three functions,
say ν1, ν2, ν3 : ω → κ , which effectively code the maps, and subsequently the
sequence of sets X ∩ ϑξ , ξ < δ , and the set X itself, so that X ∈ V[ν1, ν2, ν3] . It
remains to code ν1, ν2, ν3 in V[X] by a single set Y ⊆ κ .

(The case cofλ 6 κ in Lemma 24 )

(Theorems 5 and 3 )
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