A uniform ultrafilter over a singular cardinal with a singular character.

Moti Gitik*

December 25, 2018

Abstract

We construct a model with a uniform ultrafilter U over a singular cardinal κ such that $\kappa < \operatorname{cof}(\operatorname{ch}(U)) < \operatorname{ch}(U) < 2^{\kappa}$.

Let U be an ultrafilter over an infinite cardinal κ . We shall say that U is uniform iff $|A| = \kappa$ whenever $A \in U$.

A subset \mathcal{W} of U is called *a base* iff for every $A \in U$ there is $B \in \mathcal{W}$ such that $B \subseteq^* A$, i.e. $|B \setminus A| < \kappa$. A trivial example is $\mathcal{W} = U$, but we are interested in small bases. The character of U, ch(U) is $min\{|\mathcal{W}| \mid \mathcal{W} \text{ is a base of } U\}$.

We continue here the study of uniform ultrafilters over singular cardinals started by S. Garti and S. Shelah in [2] and continued in [3], [4]. Our aim here will be to construct a model with a uniform ultrafilter U over a singular strong limit cardinal κ having a singular character below 2^{κ} . Namely, in our model $\kappa < \operatorname{cof}(\operatorname{ch}(U)) < \operatorname{ch}(U) < 2^{\kappa}$. It answers a question from [4].

Assume GCH.

Suppose that

- 1. *E* is a (κ, λ) -extender over κ , with a regular λ ,
- 2. E' is a (μ, \aleph_{μ^++1}) -extender over μ ,
- 3. μ is the least above κ which has a (μ, \aleph_{μ^++1}) -extender over it,
- 4. $\kappa < \mu$,
- 5. $\aleph_{\mu^+} < \lambda$,

^{*}The research was partially supported by Israel Science Foundation Grant no. 1216/18.

6. $E' \lhd E$.

First we run the standard Easton iteration and the Woodin argument using E' (see [1] p.877 or [5]) in order to blow up the power of μ to \aleph_{μ^+} preserving measurability of μ . Let V_1 denotes the resulting generic extension of V. It is not hard to do this in a way which allowed to extend E.

Let us abuse the notation a bit and denote by E the extension of E from V in such generic extension.

Note that in the interval (μ, \aleph_{μ^+}) there will be no generators now.

Fix a normal ultrafilter U over μ (actually, κ^+ -completeness will be enough).

By normality, for every $\{X_{\alpha} \mid \alpha < \mu\} \subseteq U$ there is $X \in U$ such that $X \subseteq^* X_{\alpha}$, for every $\alpha < \mu$.

Let $\langle A_{\alpha} \mid \alpha < \aleph_{\mu^+} \rangle$ be an enumeration of U.

Force now with the extender based Prikry forcing \mathcal{P}_E with E.

Let $\langle \kappa_n \mid n < \omega \rangle$ denotes the Prikry sequence for the normal measure E_{κ} of E. For each $n < \omega$, denote by μ_n the measurable which corresponds to μ , by U_n denote the normal ultrafilter over μ_n which corresponds to U and let $\langle A^n_{\alpha} \mid \alpha < \aleph_{\mu^+_n} \rangle$ be an enumeration of U_n which corresponds to $\langle A_{\alpha} \mid \alpha < \aleph_{\mu^+} \rangle$.

Without loss of generality assume that $2^{\mu_n} = \aleph_{\mu_n^+}$.

Fix an ultrafilter F on ω which extends the filter of co-finite sets.

Set $W = F - \lim \langle U_n \mid n < \omega \rangle$.

We claim that $ch(W) = \aleph_{\mu^+}$.

Let G denotes a generic subset of \mathcal{P}_E and for every $\alpha \in [\kappa, \lambda)$ let $f_\alpha : \omega \to \kappa$ denotes the Prikry sequence for $E_\alpha = \{X \subseteq \kappa \mid \alpha \in j_E(X)\}$ which comes from G.

By [2], $\mu^+ \le ch(W)$.

For every $\alpha < \aleph_{\mu^+}$ and $S \in F$ set

$$A_{\alpha,S} = \bigcup_{n \in S} A_{f_{\alpha}(n)}^{n}.^{1}$$

Consider

$$\mathcal{W} = \{ A_{\alpha,S} \mid \alpha < \aleph_{\mu^+}, S \in F \}.$$

Lemma 0.1 The set \mathcal{W} is a base for W.

¹Note that we took here enumeration of all subsets of μ , so it will be unnecessary to remove bounded parts, as in [2], [3].

Proof.

Let $A \in W$. Then there is $S \in F$ such that for every $n \in S$, $A \cap \mu_n \in U_n$. Assume for simplicity that $S = \omega$.

Then, for every $n < \omega$, there is $\alpha_n < \aleph_{\mu_n^+}$ such that $A \cap \mu_n = A_{\alpha_n}^n$.

Consider the function $g_A \in \prod_{n < \omega} \aleph_{\mu_n^+}$ defined by setting $g_A(n) = \alpha_n$.

Now, back in V_1 , let g_A be a name of this function and $\langle \alpha_n | n < \omega \rangle$ names of its values. Suppose that already the weakest condition forces this.

The following claim is crucial:

Claim 1 Let $p \in \mathcal{P}_E$,

 $p = \{ \langle 0, \langle \tau_1, ..., \tau_n \rangle \} \cup \{ \langle \gamma, p^{\gamma} \rangle \mid \gamma \in \operatorname{supp}(p) \setminus \{ \operatorname{mc}(p), 0 \} \} \cup \{ \langle \operatorname{mc}(p), p^{\operatorname{mc}(p)}, T^p \rangle \}$ and α be a name of an ordinal. Suppose that $p \Vdash (\alpha < \aleph_{\mu_{n+m}^+})$, for some $m, 0 < m < \omega$. Then are $q \geq^* p$, $q = \{ \langle 0, \langle \tau_1, ..., \tau_n \rangle, \} \cup \{ \langle \gamma, q^{\gamma} \rangle \mid \gamma \in \operatorname{supp}(q) \setminus \{ \operatorname{mc}(q), 0 \} \} \cup \{ \langle \operatorname{mc}(q), q^{\operatorname{mc}(q)}, T^q \rangle \}, \ \delta \in \operatorname{supp}(q) \cap \aleph_{\mu^+} \text{ and } b$ such that

- 1. $q \cap \vec{\nu} \parallel \alpha$, for every $\vec{\nu} \in T^q$ with $|\vec{\nu}| = m$,
- 2. for every $\delta' \in \operatorname{supp}(q) \cap \aleph_{\mu^+}, \delta' \leq_E \delta$.
- 3. b is a function on $\operatorname{Lev}_{n+m} \pi''_{\operatorname{mc}(q)\delta} T^q$ such that

(a)
$$b(\nu) \subseteq \aleph_{\pi_{mc(q)\mu}(\nu)^+}$$
 of cardinality $\leq \nu^0$, for every $\nu \in \operatorname{Lev}_{n+m} \pi''_{\mathrm{mc}(q)\delta}(T^q)$,

4. for every $\vec{\nu} = \langle \nu_1, ..., \nu_m \rangle \in T^q$, $q^{\frown} \vec{\nu} \Vdash \alpha \in b(\pi_{\mathrm{mc}(q)\delta}(\nu_m)).$

Proof. Suppose that $p \Vdash (\alpha < \aleph_{\mu_{n+m}^+})$, for some $m, \ell(p) \le m < \omega$. Let $p = \{\langle 0, \langle \tau_1, ..., \tau_n \rangle, \} \cup \{\langle \gamma, p^{\gamma} \rangle \mid \gamma \in \operatorname{supp}(p) \setminus \{\operatorname{mc}(p), 0\}\} \cup \{\langle \operatorname{mc}(p), p^{\operatorname{mc}(p)}, T^p \rangle\}.$

Find first, using the Prikry condition, $p' \geq^* p$ such that $p' \cap \vec{\nu} \parallel \alpha$, for every $\vec{\nu} \in T^{p'}$ with $|\vec{\nu}| = m$.

Denote the decided value by $\alpha(\vec{\nu})$.

Now, set

$$b'(\nu) = \{ \alpha(\nu_1, ..., \nu_{m-1}, \nu) \mid \langle \nu_1, ..., \nu_{m-1}, \nu \rangle \in T^{p'} \}.$$

Then, by the definition of \mathcal{P}_E , $|b'(\nu)| \leq \nu^0$. Find and extension $q \geq^* p$ such that there is $\delta \in \operatorname{supp}(q) \cap \aleph_{\mu^+}$, for every $\delta' \in \operatorname{supp}(q) \cap \aleph_{\mu^+}, \delta' \leq_E \delta$. Consider now the ultrapowers $M_{E_{\operatorname{mc}(q)}} = \operatorname{Ult}(V_1, E_{\operatorname{mc}(q)})$ and $M_{E_{\delta}} = \operatorname{Ult}(V_1, E_{\delta})$. Let $k_{\delta \operatorname{mc}(q)} : M_{E_{\delta}} \to M_{E_{\operatorname{mc}(q)}}$ be the canonical embedding. Then, by the choice of δ , the critical point of $k_{\delta \operatorname{mc}(q)}$ will be above $\aleph_{\mu^+}^{M_{E_{\delta}}}$. In particular, $[b']_{E_{\operatorname{mc}(q)}}$ is in the range of $k_{\delta \operatorname{mc}(q)}$. Hence, there is b such that $k_{\delta \operatorname{mc}(q)}([b]_{E_{\delta}}) = [b']_{E_{\operatorname{mc}(q)}}$. So, q, δ, b are as desired. \Box of the claim.

Now we apply the claim ω -many times and produce a condition $q^* \in \mathcal{P}_E, \delta^* \in \operatorname{supp}(q^*) \cap \aleph_{\mu^+}$ and $\langle b_m \mid m < \omega \rangle$ such that

- 1. $q^* \cap \vec{\nu} \parallel \alpha_m$, for every $m < \omega, \vec{\nu} \in T^{q^*}$ with $|\vec{\nu}| = m$,
- 2. for every $\delta' \in \operatorname{supp}(q^*) \cap \aleph_{\mu^+}, \delta' \leq_E \delta^*$.
- 3. For every $m, m' < \omega$, $\operatorname{Lev}_m(T^{q^*}) = \operatorname{Lev}_{m'}(T^{q^*})$.
- 4. For every $m < \omega$, b_m is a function on $\operatorname{Lev}_m \pi''_{\operatorname{mc}(q^*)\delta^*} T^q$ such that

(a)
$$b_m(\nu) \subseteq \aleph_{\pi_{mc(q^*)\mu}(\nu)^+}$$
 of cardinality $\leq \nu^0$, for every $\nu \in \operatorname{Lev}_m \pi''_{\mathrm{mc}(q^*)\delta}(T^{q^*})$.

5. for every $m < \omega, \vec{\nu} = \langle \nu_1, ..., \nu_m \rangle \in T^{q^*},$ $q^* \frown \vec{\nu} \Vdash \alpha_m \in b_m(\pi_{\mathrm{mc}(q^*)\delta^*}(\nu_m)).$

Define a function c on $\pi''_{\mathrm{mc}(q^*)\delta^*} \mathrm{Lev}_1(T^{q^*})$ by setting $c(\nu) = \bigcup_{n < \omega} b_m(\nu)$. Then

- 1. $c(\nu) \subseteq \aleph_{\pi_{mc(q^*)\mu}(\nu)^+}$ of cardinality $\leq \nu^0$, for every $\nu \in \text{Lev}_1 \pi''_{mc(q^*)\delta}(T^{q^*})$,
- 2. for every $m < \omega, \vec{\nu} = \langle \nu_1, ..., \nu_m \rangle \in T^{q^*},$ $q^* \frown \vec{\nu} \Vdash \alpha_m \in c(\pi_{\mathrm{mc}(q^*)\delta^*}(\nu_m)).$

Now in the ultrapower $M_E = \text{Ult}(V_1, E)$ consider $j_E(c)(\delta^*)$. It is a subset of \aleph_{μ^+} of cardinality κ .

So, $\bigcap \{A_{\alpha} \mid \alpha \in j_E(c)(\delta^*)\} \in U$, by κ^+ -completeness. Pick $\alpha^* < \aleph_{\mu^+}$ such that $A_{\alpha^*} = \bigcap \{A_{\alpha} \mid \alpha \in j_E(c)(\delta^*)\}$. Assume now that $q^* \in G$. Then, for all but finitely many $n < \omega$, $A_{\alpha_n}^n \supseteq A_{f_{\alpha^*}(n)}^n$, and we are done. \Box **Lemma 0.2** There is no base for W of cardinality less than \aleph_{μ^+} .

Proof. Suppose otherwise. Let $\mathcal{W}' \subseteq \mathcal{W}$ be a base of W of cardinality $\langle \aleph_{\mu^+}$. Suppose for simplicity that

$$\mathcal{W}' = \{ A_{\alpha,\beta,S} \mid \alpha \in Z, \beta < \mu, S \in F \},\$$

for a set $Z \subseteq \aleph_{\mu^+}$ of cardinality $\langle \aleph_{\mu^+}$. Consider the set

$$Y = \{A_{\alpha} \in U \mid \alpha \in Z\}$$

Let $Z^* \subseteq \aleph_{\mu^+}, Z^* \in V_1, |Z^*| < \aleph_{\mu^+}$ be a cover of Z. It exists, since \mathcal{P}_E satisfies κ^+ -c.c. Then the set

$$Y^* = \{A_\alpha \in U \mid \alpha \in Z^*\}$$

will be a cover of Y in V_1 .

Recall now that V_1 was obtained from $V[G(P_{<\mu})]$ by adding \aleph_{μ^+} -Cohen functions to μ , where $P_{<\mu}$ denotes the preparation forcing and $G(P_{<\mu})$ is a generic subset of $P_{<\mu}$. Denote them by $\langle r_{\alpha} \mid \alpha < \aleph_{\mu^+} \rangle$.

By μ^{++} -c.c. of this forcing, there is $Z^{**} \in V[G(P_{<\mu})], Z^{**} \subseteq \aleph_{\mu^+}, |Z^{**}| < \aleph_{\mu^+}$ such that $Y^* \in V[G(P_{<\mu}), \langle r_{\alpha} \mid \alpha \in Z^{**} \rangle].$

Finally pick some $\beta \in \aleph_{\mu^+} \setminus Z^{**}$. Consider r_{β} .

It is a Cohen generic over $V[G(P_{<\mu}), \langle r_{\alpha} \mid \alpha \in Z^{**} \rangle]$. Identify it with a subset of μ .

Then it splits every subset of μ of cardinality μ in $V[G(P_{<\mu}), \langle r_{\alpha} \mid \alpha \in Z^{**} \rangle]$.

Suppose that $r_{\beta} \in U$, otherwise just replace it by its complement.

So, there is $\gamma < \aleph_{\mu^+}$, such that $r_{\beta} = A_{\gamma}$.

Now, in M_E , we will have that for every $\alpha \in Z$, $|A_{\gamma} \cap A_{\alpha}| = \mu$ and $|(\mu \setminus A_{\gamma}) \cap A_{\alpha}| = \mu$. But then, $A_{\gamma,\xi,\omega}$, for any $\xi < \mu$, cannot be generated by \mathcal{W}' . Contradiction.

References

- J. Cummings, Iterated Forcing and Elementary Embeddings, in Handbook of Set Theory, Foreman, Kanamori eds., Springer 2010, vol.2, pp.776-879.
- [2] S. Garti and S. Shelah, The ultrafilter number for singular cardinals, Acta Math. Hungar. 137 (2012), no. 4, 296–301.
- [3] Shimon Garti, Menachem Magidor, and Saharon Shelah, On the spectrum of characters of ultrafilters, Notre Dame J. Form. Log. 59 (2018), no. 3, 371–379.
- [4] S. Garti, M. Gitik and S. Shelah, Cardinal characteristics at aleph omega,
- [5] M. Gitik, The negation of SCH from $o(\kappa) = \kappa^{++}$, APAL,
- [6] M. Gitik, Prikry type forcings, in Handbook of Set Theory, Foreman, Kanamori eds., Springer 2010, vol.2, pp.1351-1447