Short Extenders Forcings II

Moti Gitik

May 25, 2011
Contents

1 Pcf Structures 5
 1.1 Preliminary Settings ... 5
 1.2 Two cardinals ... 6
 1.3 ω–many cardinals ... 6
 1.4 ω_1–many cardinals ... 7
 1.5 The preparation forcing ... 17
 1.6 Types of Models .. 18
 1.7 The Main Forcing .. 20

2 Some further ideas 31
 2.1 otp $> \omega_1$. .. 31
 2.1.1 Finitely many cardinals 31
 2.1.2 Countably many cardinals 31
 2.1.3 \aleph_1 many cardinals 32
 2.2 Problems with moving down to \aleph_ω. 32

3 Bibliography .. 35
Chapter 1

Pcf Structures

1.1 Preliminary Settings

Let $\langle \kappa_\alpha \mid \alpha < \omega_1 \rangle$ be an increasing continuous sequence of singular cardinals of cofinality ω so that for each $\alpha < \omega_1$, if $\alpha = 0$ or α is a successor ordinal, then κ_α is a limit of an increasing sequence $\langle \kappa_{\alpha,n} \mid n < \omega \rangle$ of cardinals such that

1. $\kappa_{\alpha,n}$ is $\kappa_{\alpha,n+1}$-strong,

2. $\kappa_{\alpha,0} > \kappa_{\alpha-1}$.

Fix a sequence $\langle g_\alpha \mid \alpha < \omega_1, \alpha = 0 \text{ or it is a successor ordinal} \rangle$ of functions in $\prod_{n<\omega} 2^n$ such that for every $\alpha, \beta, \alpha < \beta$ which are zero or successor ordinals below ω_1 the following holds

(a) $\langle g_\alpha(n) \mid n < \omega \rangle$ is increasing

(b) there is $m(\alpha, \beta) < \omega$ such that for every $n \geq m(\alpha, \beta)$

$$g_\alpha(n) \geq \sum_{m=0}^{n} g_\beta(m).$$

(c) $g_\alpha(0) = 1$

In order to motivate the further construction let us consider first two simple (relatively) situation. The first will deal with only two cardinals κ_0 and κ_1, and the second with ω-many of them- $\langle \kappa_n \mid n < \omega \rangle$.
1.2 Two cardinals

We would like to blow up the powers (or pp) of both κ_0, κ_1 to κ_1^{++}. Organize this as follows. We have $\langle \kappa_{1,n} | n < \omega \rangle$. For each $n < \omega$ fix some regular $\kappa_{1,n,1}, \kappa_{1,n,1} + 1 > \kappa_{1,n,1} \geq \kappa_1^{++}$. It will be the one connected to κ_1^{++} at the level n of κ_1. Denote by $\rho_{1,n,1}$ the canonical name of the indiscernible for $\kappa_{1,n,1}$, i.e. the cardinal corresponding to $\kappa_{1,n,1}$ in the one element Prikry forcing or more precisely in the short extenders forcing of [2]. So the sequence $\langle \rho_{1,n,1} | n < \omega \rangle$ will correspond to κ_1^{++} after the forcing.

Now turn to the 0–level. We have here $\langle \kappa_{0,n} | n < \omega \rangle$. Instead of a direct connection to κ_1^{++} let us arrange a connection to elements of the interval $[\kappa_0^+, \kappa_1]$ and then via $\langle \rho_{1,n,1} | n < \omega \rangle$ it will continue automatically further to κ_1^{++}.

Specify first an interval $[\kappa_{0,0}, \kappa_{0,1}]$ that will correspond to $[\kappa_0^+, \rho_{1,0,1}]$, for some regular large enough $\kappa_{0,0,1} > \kappa_{0,1}$, say a Mahlo or even a measurable (note that there are plenty of such cardinals blow $\kappa_{0,1}$ since it is strong). Connection between them will be arranged and $\rho_{1,0,1}$ will correspond to $\kappa_{0,0,1}$. No more cardinals (i.e. those above $\rho_{0,0,1}$) will be connected to the 0–level of κ_0.

Turn to the next level of κ_0. We like to connect 0 and 1– levels of κ_1 to the 1–level of κ_0. In order to do this let us reserve two blocks of cardinals $[\kappa_{0,1}, \kappa_{0,0,1}]$ and $[\kappa_{0,1,0}, \kappa_{0,1,1}]$ such that $\kappa_{0,0,0,1} < \kappa_{0,1,0} < \kappa_{0,2}$ and $\kappa_{0,0,1,0}, \kappa_{0,0,1,1}$ are large enough (again Mahlo or measurables). Now the interval $[\kappa_0^+, \rho_{1,0,1}]$ will be connected to the first block $[\kappa_{0,1}, \kappa_{0,0,1}]$ and the interval $[\rho_{1,1,0}, \rho_{1,1,1}]$ to the second block $[\kappa_{0,0,1,0}, \kappa_{0,0,1,1}]$ with $\rho_{1,0,1}$ corresponding to $\kappa_{0,0,0,1}$ and $\rho_{1,1,1}$ to $\kappa_{0,0,1,1}$. No further cardinals from κ_1 will be connected to this level of κ_0.

Continue further in a similar fashion: connect the levels 0, 1, 2 of κ_1 to the 2–level of κ_0 by specifying three blocks at this level, etc.

1.3 ω–many cardinals

We would like to blow up the powers (or pp) of all $\kappa_n, n < \omega$ to κ_ω^+. Organize this as follows. For each $k < \omega$, pick the first block for κ_k to be the interval $[\kappa_{k,0}, \kappa_{k,0,\omega}]$, where $\kappa_{k,0,\omega}$ is large enough cardinal below $\kappa_{k,1}$ which is a limit of an increasing sequence of large enough regular cardinals $\langle \kappa_{k,0,m,l} | m < g_k(0), l < \omega \rangle$ between $\kappa_{k,0}$ and $\kappa_{k,0,\omega+1}$, where $g_k : \omega \rightarrow \omega$ and each value $g_k(i)$ will be defined by induction at stage i. We set $g_k(0) = 1$.

Denote by $\rho_{k,0,0,l}$ the indiscernible (that will be forced further) for $\kappa_{k,0,0,l}$, for every $l \in \omega + 1$. Connect the interval $[\kappa_{m-1}^+, \rho_{m,0,0,\omega}]$ to $[\kappa_{k,0,0,m}, \kappa_{k,0,0,\omega}]$, for every $m, k < m − 1 < \omega$ so that κ_{m-1}^+ corresponds to $\kappa_{k,0,0,m}$, $\rho_{m,0,0,l}$ corresponds to $\kappa_{k,0,0,l}$, for each $l, m < l < \omega$ and $\rho_{m,0,0,\omega}$
corresponds to $\kappa_{k,0,0,\omega}$. The obvious commutativity is required.

Turn to the second levels of κ_k’s. For each $k > 0$ we define $g_k(1) = 1$ and make no connections to m’s above k. For $k = 0$ set $g_0(1) = 2$. Then at the level second level of κ_0, we reserve two blocks (instead of one) $[\kappa_{k,1}, \kappa_{k,1,0,\omega}]$ and $[\kappa_{k,1,1,0,\omega}, \kappa_{k,1,1,\omega}]$, where $\kappa_{k,1,0,\omega} < \kappa_{k,1,1,0} < \kappa_{1,2}$, $\kappa_{k,1,0,\omega}$ is a limit of increasing sequence of large enough regular cardinals $\langle \kappa_{k,1,l} | l < \omega \rangle$ above $\kappa_{k,1,1}$ and $\kappa_{k,1,1,\omega}$ is a limit of an increasing sequence of large enough regular cardinals $\langle \kappa_{k,1,1,l} | l < \omega \rangle$ above $\kappa_{k,1,0,\omega}$.

Then for each m, such that $k < m - 1 < \omega$ we connect the interval $[\kappa_{m-1}^+, \rho_{m,0,0,\omega}]$ with $[\kappa_{k,1,0,m}, \kappa_{k,1,0,\omega}]$ and $[\rho_{m,0,0,\omega}^+, \rho_{m,1,0,\omega}]$ with the second block starting from $\kappa_{k,1,1,m}$. Require for the first block that κ_{m-1}^+ corresponds to $\kappa_{k,1,0,m}$, $\rho_{m,0,0,\omega}^+$ corresponds to $\kappa_{k,1,0,l}$, for each $l, m < l < \omega$ and $\rho_{m,0,0,\omega}$ corresponds to $\kappa_{k,1,0,\omega}$. For the second block let us require that $\rho_{m,0,0,\omega}^+$ corresponds to $\kappa_{k,1,1,m}$, $\rho_{m,1,0,\omega}^+$ corresponds to $\kappa_{k,1,1,l}$, for each $l, m < l < \omega$ and $\rho_{m,1,0,\omega}$ corresponds to $\kappa_{k,1,1,\omega}$.

At third levels of κ_k’s let us do the following. For each $k > 1$ $g_k(2) = 1$ and make no connections to m’s above k.

If $k = 1$, then set $g_1(2) = 2$ and proceed exactly as at the second levels with $k = 0$ replaced by $k = 1$.

If $k = 0$ then set $g_0(2) = 4$, reserve 4 blocks at the third level of κ_0 and arrange the connections to this blocks in the similar to that used for κ_0 above, covering three levels of κ_m’s, for $m > k$.

At the forth levels we do a similar connection only stepping up by one, etc.

It is not hard under the same lines to generalize the above construction from ω–many cardinals to η–many for every countable η.

A structure suggest below in order to deal with to ω_1–many cardinals will require drops with infinite repetitions.

1.4 ω_1–many cardinals

We would like to blow up the powers (or pp) of all $\kappa_\alpha, \alpha < \omega_1$ to $\kappa^+_{\omega_1}$.

The first tusk will be to arrange a pcf–structure that will be realized. It requires some work since we allow only finitely many blocks at each level. Note that in view of [9] one cannot allow infinitely many blocks at least not under the large cardinals assumptions used here (below a strong or a little bit more).

Organize the things as follows.
Let $n < \omega$ and $1 \leq \alpha < \omega_1$ be a successor ordinal or $\alpha = 0$. We reserve at level n a splitting into $g_\alpha(n)$–blocks one above another:

$$\{\kappa_{\alpha,n,m,i} \mid m < g_\alpha(n), i \leq \omega_1\},$$

so that

1. $\kappa_{\alpha,n} < \kappa_{\alpha,n,0,0}$,
2. $\kappa_{\alpha,n,m,i'} < \kappa_{\alpha,n,m,i}$, for every $m < g_\alpha(n), i' < i \leq \omega_1$,
3. $\kappa_{\alpha,n,m,\omega_1} < \kappa_{\alpha,n,m+1,0}$, for every $m < g_\alpha(n)$,
4. for every successor ordinal $i < \omega_1$ or if $i = 0$ let $\kappa_{\alpha,n,m,i+1}$ to be large enough (say a Mahlo or even measurable),
5. for every limit $i, 0 < i \leq \omega_1$ let $\kappa_{\alpha,n,m,i} = \sup(\{\kappa_{\alpha,n,m,i'} \mid i' < i\})$,
6. $\kappa_{\alpha,n,m,\omega_1} < \kappa_{\alpha,n,0}$, for every $m < g_\alpha(n)$.

Further by $\alpha < \omega_1$ we will mean always a successor ordinal or 0.

Let us incorporate indiscernibles that will be generated by extender based forcings into the blocks as follows. Denote as above the indiscernible for $\kappa_{\alpha,n,m,i}$ by $\rho_{\alpha,n,m,i}$.

$[\kappa_{\alpha-1}^+, \rho_{\alpha,0,0,\omega_1}^+]$ will the first block of α of the level 0 (if $\alpha = 0$, then let it be $[\omega_1, \rho_{0,0,0,\omega_1}^+]$). Then for every $m < g_\alpha(0)$ let m–th block of α of the level 0 be $[\rho_{\alpha,m-1,\omega_1}^+, \rho_{\alpha,0,m,\omega_1}^+]$. The first block of the level 1 of α will be $[\rho_{0,0,0,\omega_1}^+, \rho_{\alpha,1,0,\omega_1}^+]$. In general the first block of the level $n > 0$ of α will be $[\rho_{\alpha,n-1,\omega_1}^+, \rho_{\alpha,n,0,\omega_1}^+]$. The m–th block ($m > 0$) of the level $n > 0$ of α will be $[\rho_{\alpha,n,m-1,\omega_1}^+, \rho_{\alpha,n,m,\omega_1}^+]$.

Special attention will be devoted to the very last blocks of each level, i.e. to $[\rho_{\alpha,n,g_\alpha(n)-\omega_1}^+, \rho_{\alpha,n,g_\alpha(n)-1,\omega_1}^+]$.

In the final (after the main forcing) model we will have the following structure. Every element of the set $\{\kappa_\beta^+ \mid \alpha < \beta < \omega_1\}$ will be represented at all the levels up to level α. A countable set with uncountable pcf over α will be the set of indiscernibles

$$\{\rho_{\alpha,n,m,\omega_1}^+ \mid n < \omega, m < g_\alpha(n)\}.$$

For every successor ordinal $\beta, \alpha < \beta < \omega_1$, each indiscernible $\rho_{\beta,n,m,\omega_1}^+$ ($n < \omega, m < g_\beta(n)$) will be in the pcf of this set. Thus, we will have the following:

$$\text{pcf}(\{\rho_{\alpha,n,m,\omega_1}^+ \mid n < \omega, m < g_\alpha(n)\}) =$$

8
$= \{ \rho^+_\beta, n, m, \omega_1 \mid \alpha < \beta < \omega_1, \beta \text{ is a successor ordinal}, n < \omega, m < g_\beta(n) \} \cup \{ \kappa^+_\omega_1 \}$.

Actually for each limit ordinal $\gamma, \alpha < \gamma \leq \omega_1$, the following will hold:

$$\text{pcf}(\{ \rho^+_\alpha, n, m, \gamma \mid n < \omega, m < g_\beta(n) \}) =$$

$= \{ \rho^+_\beta, n, m, \gamma \mid \alpha < \beta < \gamma, \beta \text{ is a successor ordinal}, n < \omega, m < g_\beta(n) \} \cup \{ \kappa^+_\gamma \}$.

Note that for $\gamma < \omega_1$ the set on the right side of equality is countable.

Let us establish the first connection between the levels and blocks by induction. Start with a connection of the level 1 to to the level 0. Consider $m(0, 1)$, i.e. the least $m < \omega$ such that for every $n \geq m$ we have

$$g_0(n) \geq \sum_{k=0}^{n} g_1(k).$$

This is a place from which blocks of the second level fit nicely inside those of the first level. Let us arrange the connection as follows. Connect all the blocks of the levels $n, n \leq m(0, 1)$ of κ_1 to the blocks of the level $m(0, 1)$ of κ_0 moving to the right as much as possible, i.e. if $r = g_0(m(0, 1)) - \sum_{k=0}^{m(0, 1)} g_1(k)$, then the first block of κ_1 is connected to the r-th block of the level $m(0, 1)$ of κ_0, the second block of κ_1 is connected to $r + 1$-th block of the level $m(0, 1)$ of κ_0 etc., the last block of the level $m(0, 1)$ of κ_1 will be connected to the last block of the level $m(0, 1)$ of κ_0.

Let us deal now with a level $\alpha > 1$. Fix an enumeration $\langle \alpha_i \mid i < \omega \rangle$ of α (if $\alpha < \omega$, then the construction is the same). Connect blocks from $[\kappa_{\alpha-1}, \kappa_{\alpha}]$ (further reified as of α) to blocks from $[\kappa_{\alpha_0-1}, \kappa_{\alpha_0}]$ (further reified as of α_0) exactly as above (i.e. κ_1 and κ_0).

Let us deal now with α_1. We would like to have a tree order at least on the very last blocks of each level. Thus we would not allow a block of α to be connected to two unconnected blocks of α_0 and α_1. Split into two cases.

Case 1. $\alpha_1 > \alpha_0$. Let $l(\alpha_0, \alpha_1)$ be the first level where the connection between α_0 and α_1 starts. Then, by induction, $l(\alpha_0, \alpha_1) \geq m(\alpha_0, \alpha_1)$. Let $l(\alpha_0, \alpha)$ be the first level where the connection between α_0 and α starts. By the definition we have $l(\alpha_0, \alpha) = m(\alpha_0, \alpha)$. Consider $m(\alpha_1, \alpha)$. It is tempting to start the connection between α and α_1 with the levels $m(\alpha_1, \alpha)$, but we would like to avoid a situation when the last block of a level n of α is connected to last blocks of levels n of both α_0 and α_1, which are disconnected, i.e. the connection order is not a tree order. So set $l(\alpha_1, \alpha) = \max(l(\alpha_0, \alpha_1), m(\alpha_1, \alpha))$. Note that $m(\alpha_0, \alpha) = l(\alpha_0, \alpha) \leq l(\alpha_1, \alpha)$, since $l(\alpha_0, \alpha_1) \geq m(\alpha_0, \alpha_1)$.

9
Also note that there is a commutativity here, and for each \(n \geq l(\alpha_1, \alpha) \), blocks of \(\alpha \) of levels \(\leq n \) are connected to the level \(n \) of \(\alpha_1 \) and the levels \(\leq n \) of \(\alpha_1 \) are connected to the level \(n \) of \(\alpha_0 \).

Case 2. \(\alpha_1 < \alpha_0 \).

The treatment is similar only now \(\alpha_0 \) is connected to \(\alpha_1 \). Set

\[
l(\alpha_1, \alpha) = \max(l(\alpha_0, \alpha_1), l(\alpha_0, \alpha), m(\alpha_1, \alpha)).
\]

Continue in the same fashion by induction.

Let us called the established connection *automatic connection*. Last blocks ordered by this connection form a tree order by the construction.

Let \(\alpha < \omega_1, n < \omega \) and \(m < g_\alpha(n) \). Set

\[
a_\alpha(n, m) = \{(\alpha', n', m') \mid \alpha' < \alpha, \text{ the block } m' \text{ of } n' \text{ of } \alpha'
\]

is connected automatically to those of \(m \) of \(n \) of \(\alpha \).

Lemma 1.4.1 Let \(\alpha < \omega_1, n_1, n_2 < \omega, m_1 < g_\alpha(n_1), m_2 < g_\alpha(n_2) \) and \(n_1 \neq n_2 \) or \(n_1 = n_2 \) but \(m_1 \neq m_2 \). Then \(a_\alpha(n_1, m_1) \cap a_\alpha(n_2, m_2) = \emptyset \).

Proof. Let \(\langle \alpha_k \mid k < \omega \rangle \) be the enumeration of \(\alpha \) which was used in the definition of the automatic connection. Clearly, the connection to \(\alpha_0 \) cannot map different blocks of \(\alpha \) to a same block. Consider \(\alpha_1 \). If \(\alpha_1 < \alpha_0 \), then be start the connection from \(\alpha \) to \(\alpha_1 \) not before the level \(m(\alpha_0, \alpha_1) \). For any further \(\beta \leq \alpha_1 \), and any level \(n < \omega \) of \(\beta \) to which both \(\alpha_0 \) and \(\alpha_1 \) are connected, we must to have \(m(\alpha_0, \beta) \leq n \) and \(m(\alpha_1, \beta) \leq n \). Then all the blocks of \(\alpha \) up to (and including) the level \(n \) are connected with the blocks of the level \(n \) of \(\alpha_1 \) starting with the most right block of the level \(n \) of \(\alpha_1 \), and then the blocks of \(\alpha_1 \) up to and including the level \(n \) of \(\alpha_1 \) are connected to the level \(n \) of \(\beta \) again starting with the most right block of the level \(n \) of \(\beta \). So we have a kind of commutativity there. Hence no collisions occur over a level \(n \) of \(\beta \).

The same argument works if \(\alpha_1 > \alpha_0 \). Just replace \(\alpha_0 \) by \(\alpha_1 \) above.

Suppose now that \(k > 0 \) and \(\{\alpha_0, ..., \alpha_k\} \) provide the empty intersection. Let us argue that adding \(\alpha_{k+1} \) does not change this. Split the set \(\{\alpha_0, ..., \alpha_k\} \) into two sets \(\{\alpha_{i_0}, ..., \alpha_{i_s}\}, \{\alpha_{j_0}, ..., \alpha_{j_t}\} \) such that the members of the first are below \(\alpha_{k+1} \) and the members of the second one are above it. Consider \(\beta \leq \alpha_{k+1} \) and a level \(n \) of \(\beta \) where a potential intersection can occur once \(\alpha \) is connected to \(\alpha_{k+1} \). Let \(\{\alpha_{i_0}, ..., \alpha_{i_s}\} \) be the subset of \(\{\alpha_{i_0}, ..., \alpha_{i_s}\} \) which consists of all the elements \(\geq \beta \).
Then \(n \geq m(\alpha_{k+1}, \alpha_{j_0}) \) and \(n \geq m(\alpha_i, \alpha_{k+1}) \), for every \(q \leq r, p \leq s \). Also we can assume that \(n \geq m(\beta, \alpha_{k+1}) \). Otherwise there is no connection from \(\alpha_{k+1} \) to the level \(n \) of \(\beta \). There must be some \(\alpha^* \in \{\alpha_{l_0}, ..., \alpha_{l_t}\} \cup \{\alpha_{j_0}, ..., \alpha_{j_s}\} \) with \(m(\beta, \alpha^*) \leq n \), since otherwise only \(\alpha_{k+1} \) will be connected to the level \(n \) of \(\beta \) and then the intersection will not have elements there.

We deal now with \(\alpha^*, \alpha_{k+1}, \beta \) and \(n \) exactly as above.

\[\square \]

Note that many blocks remain unconnected. If no further connection will be made, then the following will occur. Unconnected blocks of an \(\alpha < \omega_1 \) will correspond to \(\kappa^+_{\alpha} \). By [8] we will have here always \(\max(\text{pcf}(\kappa^+_{\alpha} | \alpha < \beta)) = \kappa^+_{\beta} \), for every \(\beta < \omega_1 \), due to the initial large cardinal assumptions. So, eventually there will be \(\beta < \omega_1 \) such that all blocks of all \(\alpha < \beta \) will correspond to \(\kappa^+_{\beta} \). It is clearly bad for our purpose.

We would like to extend the automatic connection such that for every \(\alpha \), if \(\rho \) and \(\eta \) are the last members of different blocks for \(\alpha \) (does not matter of if levels are the same or not), then \(b_{\rho^*} \neq b_{\eta^*} \). A problematic for us situation is once a connection was established in a way that for some \(\alpha < \omega_1 \) there are two different blocks for \(\alpha \) that are connected to same blocks for unboundedly many levels below \(\alpha \). A problem will be then with a chain condition over \(\alpha \). Note that by Localization Property (see [23] or [1]) once pcf of a countable set is uncountable, there will be countable sets which correspond to cardinals much above their sup. Our construction uses only finitely many blocks at each level. If the connection is not built properly, then some countable set of blocks that should be connected with \(\aleph_1 \)–many may turn to be connected with a single block of some \(\alpha < \omega_1 \) which will spoil everything.

Let us do the following. We force using a c.c.c. forcing a new connection based on the automatic connection.

Definition 1.4.2 Let \(Q \) be a set consisting of all pairs of finite functions \(q, \rho \) such that

1. \(\text{dom}(\rho) \subseteq [\omega_1]^2 \),

2. \(l(\alpha, \beta) \leq \rho(\alpha, \beta) < \omega \), for every \(\alpha < \beta \) in the domain of \(\rho \).

 Intuitively, \(\rho(\alpha, \beta) \) will specify the place from which the automatic connection between \(\alpha \) and \(\beta \) will step into the play.

3. \(\text{dom}(q) \subseteq \omega_1 \times (\omega \times \omega) \),

4. \(q(\alpha, n, m) \) is a finite subset of \(\alpha \times \omega \times \omega \) such that
(a) If \(\langle \beta, r, s \rangle \in q(\alpha, n, m) \), then \(s < g_\beta(r) \).
This will mean that \(s \)-th block of the level \(r \) of \(\beta \) is connected to \(m \)-th block of
the level \(n \) of \(\alpha \).

(b) \((\alpha, \beta) \in \text{dom}(\rho) \) iff \(\alpha < \beta \) and \(\alpha, \beta \in \text{dom}(\text{dom}(q)) \).

(c) If \(\langle \beta, r, s \rangle \in q(\alpha, n, m) \), then \(\langle \beta, r, g_\beta(r) - 1 \rangle \in q(\alpha, n', m') \), for some \(n', m' < \omega \).
Note that in the automatic connection last blocks of \(\beta \) if connected then are
connected to last blocks.

(d) If \(\langle \beta, r, s \rangle \in q(\alpha, n, m) \) and \(\langle \beta, r, s \rangle \) is automatically connected to some block \(m' \)
of a level \(n' \) of \(\alpha \) and \(\rho(\beta, \alpha) \leq n \), then \(n = n' \) and \(m = m' \). I.e. we do not change
the automatic connection above \(\rho(\beta, \alpha) \). Note that then we must have \(n \leq r \).

(e) If \(\langle \beta, r, s \rangle \in q(\alpha, n, m) \), \(\langle \beta', r', s' \rangle \in q(\alpha', n', m') \) and \(r' > r \) then for some \(s'' \) (and
then also for \(s'' = g_\beta(r') - 1 \) \(\langle \beta, r', s'' \rangle \in q(\alpha, n, m) \).
This condition basically requires that the last connected level is same in each
component of \(\text{dom}(q) \).

(f) If \(\langle \beta, r, s \rangle \in q(\alpha, n, m) \), \((\alpha, n, m) \in q(\alpha', n', m') \), then \(\langle \beta, r, s \rangle \in q(\alpha', n', m') \).
This just the transitivity of the connection.

(g) If \(\beta < \alpha < \alpha' \), \(\langle \beta, r, s \rangle \in q(\alpha, n, m) \), \((\alpha, n, m) \) is automatically connected with
\((\alpha', n', m') \), \((\alpha', n', m') \in \text{dom}(q) \) and \(\rho(\alpha, \alpha') \leq n \), then \(\langle \beta, r, s \rangle \in q(\alpha', n', m') \), or
\(\langle \beta, r, s \rangle \) is automatically connected with \((\alpha', n', m') \) and \(\rho(\beta, \alpha') \leq r \).

(h) If \(\beta < \alpha < \alpha' \), \(\langle \beta, r, s \rangle \in q(\alpha', n', m') \), \((\alpha, n, m) \) is automatically connected with
\((\alpha', n', m') \), \((\alpha, n, m) \in \text{dom}(q) \) and \(\rho(\alpha, \alpha') \leq n \), then \(\langle \beta, r, s \rangle \in q(\alpha, n, m) \).

(i) If \(\langle \beta, r, s \rangle \in q(\alpha, n, m) \), then \(r < n \) (i.e. we connect to higher levels) unless \(\langle \beta, r, s \rangle \)
is automatically connected to \((\alpha, n, m) \) and \(\rho(\beta, \alpha) \leq n \)(in which case \(r \geq n \)).
This condition is helpful in the chain condition argument. It allows not to mix
automatically connected elements with the rest.

The next two conditions insure a closure of \(q \) under connections.

(j) If \(\langle \alpha', n', m' \rangle, (\alpha, n, m) \in \text{dom}(q) \) and \(\alpha > \alpha' \), then \(\langle \alpha', n', m' \rangle \in q(\alpha, n^*, m^*) \) for
some \(n^*, m^* < \omega \).

(k) If \(\langle \alpha', n', m' \rangle, (\alpha, n, m) \in \text{dom}(q), \langle \beta, r, s \rangle \in q(\alpha', n', m') \) and \(\beta < \alpha \), then \(\langle \beta, r, s \rangle \in q(\alpha, n^*, m^*) \) for some \(n^*, m^* < \omega \)
In particular, if \(\beta < \alpha < \alpha' \) and \(s \)-th block of a level \(r \) of \(\beta \) is connected (by \(q \)) to
\(\alpha' \), then it is connected to \(\alpha \) and we have the commutativity here.
5. Let \(n = \max(\rho(\alpha, \beta) \mid (\alpha, \beta) \in \text{dom}(\rho)) \). Then, for every \(\alpha < \beta \) in the domain of \(\rho \), all blocks of \(\alpha \) of levels \(\leq n \) are connected to blocks of \(\beta \) in \(q \).

6. If \(\langle \alpha', n', m' \rangle, \langle \alpha, n, m \rangle \in \text{dom}(q), \alpha' < \alpha, \langle \alpha', n', m' \rangle, \langle \alpha, n, m \rangle \) are automatically connected and \(n' \geq \rho(\alpha', \alpha) \) (i.e. they remain connected), then each \(\langle \beta, r, s \rangle \) with \(\beta < \alpha \) is in \(q(\alpha, n, m) \) iff it is in \(q(\alpha', n', m') \).

The next condition allows to simplify a bit a further chain condition argument.

7. Suppose that \(\gamma < \beta < \alpha < \alpha' < \omega_1, \langle \gamma, u, v \rangle \in q(\alpha, n, m) \cap q(\alpha', n', m') \cap q(\beta, r, s), \langle \beta, r, s \rangle \in q(\alpha, n, m) \cap q(\alpha', n', m'), \rho(\beta, \alpha), \rho(\beta, \alpha') \geq r \) and \(\langle \beta, r, s \rangle \) is connected to both \(\langle \alpha, n, m \rangle, \langle \alpha', n', m' \rangle \) by the automatic connection. If \(\langle \alpha, n, m \rangle \) is not connected to \(\langle \alpha', n', m' \rangle \) by the automatic connection or it is but \(\rho(\alpha, \alpha') > n \), then \(n = n', m = m' \).

Let us define the order on \(Q \).

Definition 1.4.3 Let \(\langle q_1, \rho_1 \rangle, \langle q_2, \rho_2 \rangle \in Q \). Set \(\langle q_1, \rho_1 \rangle \geq \langle q_2, \rho_2 \rangle \) iff

1. \(\rho_1 \supseteq \rho_2 \),

2. \(\text{dom}(q_1) \supseteq \text{dom}(q_2) \),

3. for every \(\langle \alpha, n, m \rangle \in \text{dom}(q_2) \) we have \(q_2(\alpha, n, m) = q_1(\alpha, n, m) \).

Let us give a bit more intuition behind the definition of \(Q \) and explain the reason of adding \(\rho \) instead of just using the function \(l \) of the automatic connection.

The point is to prevent a situation like this: let \(\gamma < \beta < \alpha < \omega_1, \langle \gamma, u, v \rangle \in q(\alpha, n, m) \cap q(\alpha', n', m') \cap q(\beta, r, s), \langle \beta, r, s \rangle \in q(\alpha, n, m) \cap q(\alpha', n', m'), \rho(\beta, \alpha), \rho(\beta, \alpha') \geq r \) and \(\langle \beta, r, s \rangle \) is connected to both \(\langle \alpha, n, m \rangle, \langle \alpha', n', m' \rangle \) by the automatic connection. If \(\langle \alpha, n, m \rangle \) is not connected to \(\langle \alpha', n', m' \rangle \) by the automatic connection or it is but \(\rho(\alpha, \alpha') > n \), then \(n = n', m = m' \).

Once we have \(\rho \), it is possible just to "fix" the automatic connection setting \(\rho(\beta, \alpha) \) (i.e. the point from which the automatic connection starts actually to work) higher enough.

Requirement (5) of 1.4.2 is needed in order deal with a situation once \(\beta \) as above is already in \(q \) and so \(\rho(\gamma, \beta), \rho(\beta, \alpha) \) are already determined.
Lemma 1.4.4 \(Q \) satisfies c.c.c.

Proof. Note that the automatic connection between last blocks of levels is a tree order. Let us argue that there is no \(\aleph_1 \)-branches. Suppose otherwise. Let \(\langle \langle \alpha_i, n_i \rangle \mid i < \omega_1 \rangle \) be a sequence such that for every \(i < i' < \omega_1 \), the last block of the level \(n_i \) of \(\alpha_i \) is connected automatically to the last block of the level \(n_{i'} \) of \(\alpha_{i'} \). By the definition of this connection then \(n_i = n_{i'} \) for every \(i < i' < \omega_1 \). Let \(n = n_i \). Also, by the same definition, \(m(\alpha_i, \alpha_{i'}) \leq l(\alpha_i, \alpha_{i'}) \leq n \). Then for each \(k \geq n \) the number of blocks of the level \(k \) of \(\alpha_{i'} \) (and actually of all the levels \(\leq k \)) is less or equal than those of the level \(k \) of \(\alpha_i \). Then there are some \(i(k) < \omega_1 \) and \(n(k) < \omega \) such that for every \(i \geq i(k) \) the number of blocks of the level \(k \) of \(\alpha_i \) is \(n(k) \). Set \(i^* = \sup \{ i(k) \mid n \leq k < \omega \} \). Then for every \(i, i^* < i < \omega_1, k \geq n \) we will have that the number of blocks of the level \(k \) of \(\alpha_i \) is the same as those of the level \(k \) of \(\alpha_{i^*} \). But this impossible, since the function \(g_{\alpha_{i^*}} \) dominates \(g_{\alpha_i} \).

Suppose that \(\langle \langle q_i, \rho_i \rangle \mid i < \omega_1 \rangle \) is a sequence of \(\omega_1 \)-elements of \(Q \). Let us concentrate on \(q_i \)’s. Set \(b_i = \text{dom}(\text{dom}(q_i)) \cup \text{dom} \text{dom}(\text{rng}(q_i)) \) (i.e. the finite sequence of ordinals of \(\text{dom}(q_i) \) and of its range). Form a \(\Delta \)-system. Suppose that \(b_i \mid i < \omega_1 \) is already a \(\Delta \)-system and let \(b^* \) be its kernel. Assume also that \(q_i \)’s are isomorphic over \(\omega \cup \sup(b^*) \). Consider now the set consisting of the last blocks (both of the domain and of the range of \(q_i \)):

\[
c_i = \{ \langle \alpha, n, g_\alpha(n) - 1 \rangle \mid \alpha, n, g_\alpha(n) - 1 \in \text{dom}(q_i) \cup \text{rng}(q_i) \}.
\]

Clearly \(c_i \cap c_{i'} = \emptyset \), for every \(i \neq i' \). Then, by the argument of Baumgartner, Malitz, Reinhardt, see [18], Lemma 16.18, there are \(i \neq i' \) such that any \(x \in c_i \) is incompatible (in our context are not connected automatically) with any \(y \in c_{i'} \).

We claim that \(q_i, q_{i'} \) are compatible. First let us argue that now two elements \(\langle \beta_i, r_i, s_i \rangle \) in the domain or range of \(q_i, \beta \notin b^* \) and \(\langle \beta_j, r_j, s_j \rangle \) in the domain or range of \(q_j, \beta \notin b^* \) are connected automatically. Suppose otherwise. Let, for example, that \(\beta_i < \beta_j \). Then \(r_j \leq r_i \) and \(\langle \beta_j, r_i, g_{\beta_j}(r_i) - 1 \rangle \) is automatically connected to \(\langle \beta_i, r_i, g_{\beta_i}(r_i) - 1 \rangle \), by the definition of the automatic connection. Note that \(\langle \beta_j, r_i, g_{\beta_j}(r_i) - 1 \rangle \) must appear in \(q_j \) (in its domain or range) since the level \(r_i \) must appear in \(q_j \) as it appears in \(q_i \) and they are isomorphic, and once a level appears then there must be the last block of this level as well. Hence \(\langle \beta_j, r_i, g_{\beta_j}(r_i) - 1 \rangle \in c_j \). But \(\langle \beta_i, r_i, g_{\beta_i}(r_i) - 1 \rangle \in c_i \) and they are compatible. Contradiction. Now form a condition extending both \(q_i \) and \(q_j \) by connecting their isomorphic parts.

Let \(G \) be a generic subset of \(Q \). It naturally defines a connection between blocks. Namely we connect \(s \)-th block of a level \(r \) of \(\beta \) with \(m \)-th block of a level \(n \) of \(\alpha \) iff for some \((q, \rho) \in G \),
Let us call further the part of this connection that is not the automatic connection by manual connection.

Denote for $\alpha, n < \omega, m < g_n(m), \alpha_1 < \alpha_2 < \omega_1$,

\[
\text{connect}(\alpha, n, m) = \{ (\beta, n_1, m_1) \mid \exists (q, \rho) \in G \quad (\beta, n_1, m_1) \in q(\alpha, n, m) \}, \quad \text{or} \quad (\beta, n_1, m_1)
\]

is automatically connected to (a, n, m) and $\rho(\beta, \alpha) \leq n_1$,

\[
\text{connect}(\alpha_1, \alpha_2) = \{ (n_1, m_1), (n_2, m_2) \mid (\alpha_1, n_1, m_1) \in \text{connect}(\alpha_2, n_2, m_2) \},
\]

\[
\text{aconnect}(\alpha_1, \alpha_2) = \{ (n_1, m_1), (n_2, m_2) \in \text{connect}(\alpha_1, \alpha_2) \mid (\alpha_1, n_1, m_1), (\alpha_2, n_2, m_2)
\]

are automatically connected and for some $(q, \rho) \in G$ we have $\rho(\alpha_1, \alpha_2) \leq n_1$.

\[
\text{mconnect}(\alpha_1, \alpha_2) = \text{connect}(\alpha_1, \alpha_2) \setminus \text{aconnect}(\alpha_1, \alpha_2).
\]

Let us refer further to elements of $\text{mconnect}(\alpha_1, \alpha_2)$ connected by the manual connection.

Lemma 1.4.5 Suppose that (β, r, s) is a block of β and $\alpha > \beta$. Then for some $n, m < \omega$ we have $(\beta, r, s) \in \text{connect}(\alpha, n, m)$.

Proof. Let $(q, \rho) \in Q$. We will construct a stronger condition (q^*, ρ^*) with $(\alpha, n, m) \in \text{dom}(q^*)$ and $(\beta, r, s) \in q^*(\alpha, n, m)$, or $\rho^*(\beta, \alpha) \leq r$ and (β, r, s) is automatically connected with (α, n, m), for some $n, m < \omega$.

If (β, r, s) is automatically connected with (α, n, m), for some $n, m < \omega$ and $(\beta, \alpha) \notin \text{dom}(\rho)$ or $(\beta, \alpha) \in \text{dom}(\rho), \rho(\beta, \alpha) \leq r$, then just set $\rho^*(\beta, \alpha) = r$ or $\rho^*(\beta, \alpha) = \rho(\beta, \alpha)$, if defined and we are done.

Suppose now that the above is not the case.

If both $\alpha, \beta \in \text{dom}(\text{dom}(q))$, then just apply (5) of 1.4.2 in order to produce q^*. Suppose that $\alpha \in \text{dom}(\text{dom}(q))$, if not then we add first α exactly in the fashion in which β will be added below.

Let us add β. Pick γ to be the largest element of $\text{dom}(\text{dom}(q))$ below β and assume that α is the first element of $\text{dom}(\text{dom}(q))$ above β (if not just replace α by such element extend and use transitivity).

We set $\rho(\gamma, \beta)$ to be the same as $\rho(\beta, \alpha)$ and be at least $\max(\rho(\gamma, \alpha), l(\gamma, \beta), l(\beta, \alpha))$. This will leave enough room in order to insure the commutativity between γ, β, α.

□

Lemma 1.4.6 Let $\beta < \alpha < \alpha' < \omega_1, r, s, n', m' < \omega$. Suppose that $(\beta, r, s) \in \text{connect}(\alpha', n', m')$. Then, for some $n, m < \omega$, with $(\alpha, n, m) \in \text{aconnect}(\alpha, n', m')$ we have $(\beta, r, s) \in \text{connect}(\alpha, n, m)$.
Proof. This follows from 1.4.2(4h) by the density argument. Thus if for some \((q, \rho) \in G\) we have \(\langle \beta, r, s \rangle \in q(\alpha', n', m')\), then once \(n \geq \rho(\alpha, \alpha')\) 1.4.2(4h) implies \(\langle \beta, r, s \rangle \in q(\alpha, n, m)\), for some \(m < g_\alpha(n)\) such that \(\langle \alpha, n, m \rangle\) is automatically connected with \(\langle \alpha', n', m' \rangle\).

If \(\langle \beta, r, s \rangle\) is automatically connected with \(\langle \alpha', n', m' \rangle\), then by the density argument one can find a desired \(\langle \alpha, n, m \rangle\).

□

Lemma 1.4.7 The connection defined with \(G\) has no \(\omega_1\)-branches.

Proof. Suppose otherwise. Let \(\langle \alpha_i, n_i, m_i \rangle \mid i < \omega_1\) be an \(\omega_1\)-branch, i.e. \(\langle \alpha_i, n_i, m_i \rangle \in \text{connect}(\alpha_j, n_j, m_j)\), for every \(i < j < \omega_1\). Assume without loss of generality that \(\alpha_i \geq i\), for every \(i < \omega_1\). Let \(q_i \in G\) be such that \(\langle \alpha_i, n_i, m_i \rangle \in \text{dom}(q_i)\). Then \(q_i(\alpha_i, n_i, m_i)\) is finite. Split it into \(q_i^0\) and \(q_i^1\) such that \(q_i^0 = q_i \cap i\) and \(q_i^1 = q_i \setminus i\). Shrink to a stationary \(S \subseteq \omega_1\) stabilizing \(q_i^0\)'s. Then for every \(i < j < \omega_1\), \(\langle \alpha_i, n_i, m_i \rangle\) will be connected automatically with \(\langle \alpha_j, n_j, m_j \rangle\). So we have an \(\omega_1\) chain under the automatic connection, which is impossible.

□

Lemma 1.4.8 For every \(\alpha < \omega_1\), \(n, n' < \omega\) and \(m < g_\alpha(n), m' < g_\alpha(n')\). \(\text{connect}(\alpha, n, m) \cap \text{connect}(\alpha, n', m')\) is bounded in \(\alpha\), unless \(n = n'\) and \(m = m'\).

Proof. Note that the automatic connection has this property (even we have disjoint sets by 1.4.1). The additions made (if at all) are finite.

□

In order to realize the defined above connection there is a need in dropping cofinalities technics. Thus, for example, for some \(\alpha\) the very first block of \(\alpha\) may be connected (by the manual connection) to the last block of a level \(n > 0\) of \(\alpha + 1\). So in order to accommodate all the blocks of levels \(\leq n\) of \(\alpha + 1\) on and below the very first block of \(\alpha\) there is a need to drop down below \(\alpha\). Note that on \(\alpha - 1\) there is enough places to which such blocks are connected automatically, just starting with a higher enough level of \(\alpha - 1\).

In this respect \(\alpha = 0\) should be treated separately, since \(\alpha - 1\) does not exist and so no place to drop. Let us just assume that all blocks of 0 are connected to blocks of 1 automatically. This can be achieved easily by changing \(g_0, g_1\) a bit in order to fit together nicely. In addition do not allow to use blocks of 0 in the forcing \(Q\) above.
1.5 The preparation forcing.

For every successor or zero ordinal \(\alpha < \omega_1 \) and \(n < \omega \) we would like to have a generic set for the forcing \(P' \) of Chapter Preserving strongs of [17] applied to the interval \([\kappa_{\alpha-1}^+, \kappa_{\alpha,n}] \) (where \(\kappa_{-1} \) is, say \(\omega \)), i.e. the smallest model has size \(\kappa_{\alpha-1}^+ \) and the largest less than \(\kappa_{\alpha,n} \).

Following the notation of Chapter Preserving strongs of [17] denote this forcing by \(P'(\kappa_{\alpha,n}) \). The forcing \(P'(\kappa_{\alpha,n}) \) preserves all the cardinals, it does not effect the degree of strongness of \(\kappa_{\beta,m}'s \) for \(\beta \neq \alpha \) or even for \(\beta = \alpha \) but \(m > n \) due to the size and closure properties. We would like to preserve strongness of every \(\kappa_{\alpha,m} \) with \(m \leq n \) as well. Sufficient conditions stated in Chapter Preserving strongs of [17] may be used for this purpose.

Let us deal with the simplest. Assume that for some regular cardinal \(\theta \) the following set is stationary:

\[
S = \{ \nu < \theta \mid \nu \text{ is a superstrong with the target } \theta \}
\]

(i.e. there is \(i : V \rightarrow M, \text{crit}(i) = \nu \) and \(M \supseteq V_\theta \}).

Return to the definition of \(\kappa_{\gamma} \)'s and \(\kappa_{\gamma,k} \)'s. Let us choose them by induction such that all \(\kappa_{\gamma,k} \)'s are from \(S \).

Force with \(P'(\theta) \) with a smallest size of models say \(\aleph_8 \). Then, by Lemma 1.10 of Chapter Preserving strongs of [17], each \(\kappa_{\alpha,n} \) will remain \(\kappa_{\alpha} \)–strong (even \(\kappa_{\alpha+1}^+ \)–strong. Moreover, \(P'(\kappa_{\alpha,n}) \) is a nice subforcing of \(P'(\theta) \) by Lemma 1.5 of Chapter Preserving strongs of [17], since \(V_{\kappa_{\alpha,n}} \preceq V_\theta \) due to the choice of \(\kappa_{\alpha,n} \) in \(S \). Hence it will be enough to have a single generic \(G' \subseteq P'(\theta) \) all the rest will be its intersections with \(P'(\kappa_{\alpha,n}) \)'s.

An other way of doing this which uses initial assumptions below \(\theta^4 \) is as follows.

Let \(\theta \) be a 2-Mahlo cardinal and \(\kappa < \theta \) be a strong up to \(\theta \) cardinal. Pick \(\delta, \kappa < \delta < \theta \) a Mahlo cardinal such that \(V_\delta \preceq_{\Sigma_1} V_\theta \). By Lemma 1.2 of Chapter Preserving strongs of [17] or just directly, there will unboundedly many cardinals \(\eta < \kappa \) with \(\delta_\eta < \kappa \) such that the function \(\eta \mapsto \delta_\eta \) represents \(\delta \) and \(V_{\delta_\eta} \preceq_{\Sigma_1} V_\theta \). Then by Lemma 1.5 of Chapter Preserving strongs of [17], \(P'(\delta_\eta) \) is a nice subforcing of \(P'(\theta) \). Force now with \(P'(\theta) \). Let \(G' \) be a generic. By Lemma 1.11 of Chapter Preserving strongs of [17], embeddings witnessing \(\delta \)-strongness of \(\kappa \) for large enough \(\delta \)'s below \(\theta \) extend in \(V[G'] \). Then, below \(\kappa \) in \(V[G'] \), we will have unboundedly many \(\eta \)'s which are strong up to \(\delta_\eta \) for which \(V_{\delta_\eta}[G' \cap V_{\delta_\eta}] \preceq_{\Sigma_1} V_\theta[G'] \).

Now change the cofinality of \(\kappa \) to \(\omega_1 \) so that between any two members \(\kappa_\alpha \) and \(\kappa_{\alpha+1} \) of a generic Magidor sequence \(\langle \kappa_\nu \mid \nu < \omega_1 \rangle \) will be \(\omega \) many such \(\eta \)'s and \(\delta_\eta \)'s which we denote by \(\kappa_{\alpha+1,n} \).
1.6 Types of Models

We work in \(V[G']\). For each successor or zero ordinal \(\alpha < \omega_1\) and \(n < \omega\) let us fix a \((\kappa_{a,n}, \kappa_{a,n,g_a(n)-1,\omega_1})\)– extender \(E_{an}\), i.e. an extender with the critical point \(\kappa_{a,n}\) which ultrapower contains \(V_{\kappa_{a,n,g_a(n)-1,\omega_1}+2}\). Also, using GCH (we assume GCH in \(V\) and then it will holds in \(V[G']\) as well), fix an enumeration \(\langle x_\gamma \mid \gamma < \kappa_{an} \rangle\) of \([\kappa_{an}]^{<\kappa_{an}}\) so that for every successor cardinal \(\delta < \kappa_{an}\) the initial segment \(\langle x_\gamma \mid \gamma < \delta \rangle\) enumerates \([\delta]^{<\delta}\) and every element of \([\delta]^{<\delta}\) appears stationary many times in each cofinality \(< \delta\) in the enumeration. Let \(j_{an}(\langle x_\gamma \mid \gamma < \kappa_{an} \rangle) = \langle x_\gamma \mid \gamma < j_{an}(\kappa_{an}) \rangle\), where \(j_{an}\) is a canonical embedding of \(E_{an}\). Then \(\langle x_\gamma \mid \gamma < \kappa_{a,n,g_a(n)-1,\omega_1}^{++} \rangle\) will enumerate \([\kappa_{a,n,g_a(n)-1,\omega_1}^{++}]^{\leq \kappa_{a,n,g_a(n)-1,\omega_1}}\).

For every \(k \leq \omega\), we consider a structure

\[
\mathfrak{A}_{a,n,k} = \langle H(\chi^{+k}), \mathcal{E}_{an}, \kappa_{an}, \kappa_{a,n,g_a(n)-1,\omega_1}, \langle \kappa_{a,n,m,i} \mid m < g_a(n), i \leq \omega_1 \rangle, \chi, (x_\gamma \mid \gamma < \kappa_{a,n,g_a(n)-1,\omega_1})^+, G', \theta, \langle \kappa_{an,m} \mid \beta < \omega_1, \beta \text{ is a successor ordinal or zero } \rangle, m < \omega, \rangle
\]

in an appropriate language which we denote \(\mathcal{L}_{a,n,k}\), with a large enough regular cardinal \(\chi\). Note that we have \(G'\) inside, so suitable structures may be chosen inside \(G'\) or \(G' \cap P'((\kappa_{a,n})\).

Let \(\mathcal{L}'_{a,n,k}\) be the expansion of \(\mathcal{L}_{a,n,k}\) by adding a new constant \(c'\). For \(a \in H(\chi^{+k})\) of cardinality less or equal than \(\kappa_{a,n,g_a(n)-1,\omega_1}\) let \(\mathfrak{A}_{a,n,k,a}\) be the expansion of \(\mathfrak{A}_{a,n,k}\) obtained by interpreting \(c'\) as \(a\).

Let \(a, b \in H(\chi^{+k})\) be two sets of cardinality less or equal than \(\kappa_{a,n,g_a(n)-1,\omega_1}\). Denote by \(tp_{a,n,k}(b)\) the \(\mathcal{L}_{a,n,k}\)-type realized by \(b\) in \(\mathfrak{A}_{a,n,k}\). Further we identify it with the ordinal coding it and refer to it as the \(k\)-type of \(b\). Let \(tp_{a,n,k}(a,b)\) be a the \(\mathcal{L}'_{a,n,k}\)-type realized by \(b\) in \(\mathfrak{A}_{a,n,k,a}\). Note that coding \(a,b\) by ordinals we can transform this to the ordinal types of [2].

Now, repeating the usual arguments we obtain the following:

Lemma 1.6.1

(a) \(|\{tp_{a,n,k}(b) \mid b \in H(\chi^{+k})\}| = \kappa_{an}^{+k+1}\)

(b) \(|\{tp_{a,n,k}(a,b) \mid a, b \in H(\chi^{+k})\}| = \kappa_{an}^{+k+1}\)

Lemma 1.6.2 Let \(A < \mathfrak{A}_{a,n,k+1}\) and \(|A| \geq \kappa_{an}^{+k+1}\). Then the following holds:

(a) for every \(a, b \in H(\chi^{+k})\) there \(c, d \in A \cap H(\chi^{+k})\) with \(tp_{a,n,k}(a,b) = tp_{a,n,k}(c,d)\)

(b) for every \(a \in A\) and \(b \in H(\chi^{+k})\) there is \(d \in A \cap H(\chi^{+k})\) so that \(tp_{a,n,k}(a \cap H(\chi^{+k}), b) = tp_{a,n,k}(a \cap H(\chi^{+k}), d)\).
Lemma 1.6.3 Suppose that $A \prec A_{\alpha,n,k+1}, |A| \geq \kappa^{+k+1}_n$. Let τ be a cardinal in the interval $[\kappa^{++}, \kappa^{+n+2}_{\alpha,n,g_n(n)-1,\omega_1}]$; then $k + 1$-type is realized unboundedly often below $\kappa^{+n+2}_{\alpha,n,g_n(n)-1,\omega_1}$. Then there are $\tau' < \tau$ and $A' \prec A \cap H(\chi^+)$ such that $(\tau', A') \in A$ and $(\tau, A \cap H(\chi^+))$ realize the same $tp_{\alpha,n,k}$. Moreover, if $|A| \in A$, then we can find such A' of cardinality $|A|$.

Lemma 1.6.4 Suppose that $A \prec A_{\alpha,n,k+1}, |A| \geq \kappa^{+k+1}_n$, $B \prec A_{\alpha,n,k}$, and $C \in P(B) \cap A \cap H(\chi^+)$. Then there is D so that

(a) $D \in A$

(b) $C \subseteq D$

(c) $D \prec A \cap H(\chi^+) \prec H(\chi^+)$.

(d) $tp_{\alpha,n,k}(C, B) = tp_{\alpha,n,k}(C, D)$.

The next definition is analogous to those of [10] which in turn is similar to those of [2], but deals with cardinals rather than ordinals. The first two cases are added here for notational simplicity.

Definition 1.6.5 Let $k \leq n$ and $\nu = \kappa^{+\beta+1}_n$ for some $\beta \leq \kappa^{+n+2}_{\alpha,n,g_n(n)-1,\omega_1}$. The cardinal ν is called k-good if $\nu = \kappa^{+n+1}_n$ (i.e. $\beta = n + 1$) or $\nu = \delta_n$ (i.e. $\beta = \kappa^{+n+2}_n$) or the following holds

(1) β is a limit ordinal of cofinality at least κ^{++}_n

(2) for every $\gamma < \beta$ $tp_{\alpha,n,k}(\gamma, \beta)$ is realized unboundedly many times in $\kappa^{+n+2}_{\alpha,n}$ or equivalently $tp_{\alpha,n,k}(\kappa^{++}_n, \nu)$ is realized unboundedly many times in $\kappa^{+n+2}_{\alpha,n,g_n(n)-1,\omega_1}$.

ν is called good if for some $k \leq n$ ν is k-good.

The following lemma was proved in [2] in context of ordinals, but is true easily for cardinals as well.

Lemma 1.6.6 Suppose that a cardinal $\nu = \kappa^{+\beta+1}_n$ is k-good for some $k, 0 < k \leq n$ and $\beta, n + 1 < \beta < \kappa^{+n+2}_n$. Then there are arbitrary large $k - 1$-good cardinals below $\kappa^{+\beta}_n$. 19
1.7 The Main Forcing.

Suitable structures and suitable generic structures are defined similar to those in Section ??.

We would like to define the main forcing \(P \). Let us split the definition into \(\omega \)-many steps. First we define pure conditions \(P_0 \), at the next step \(P_1 \) will be the set of all one step non direct extensions of elements of \(P_0 \), then \(P_2 \) will be the set of all one step non direct extensions of elements of \(P_1 \), etc. Finally \(P \) will be \(\bigcup_{n<\omega} P_n \).

Definition 1.7.1 The set \(P_0 \) consists of all sequences

\[\langle p_\alpha \mid \alpha < \omega_1 \text{ and } (\alpha = 0 \text{ or } \alpha \text{ is a successor ordinal }) \rangle \]

such that

1. \(p_\alpha = \langle p_{\alpha\beta} \mid \alpha < \beta < \omega_1 \text{ is a successor ordinal } \rangle \) and for all \(n < \omega, \alpha < \beta < \omega_1 \text{ is a successor ordinal } \) the following hold:

 (a) \(p_{\alpha\beta} = \langle p_{\alpha\beta x} \mid x \in \text{connect}(\alpha, \beta) \rangle \), where for every \(x \in \text{connect}(\alpha, \beta) \) we have
 \[p_{\alpha\beta x} = \langle a_{\alpha\beta x}, A_{\alpha x}, f_{\alpha\beta x} \rangle \]
 is such that:
 i. if \(x \in a\text{connect}(\alpha, \beta), x = ((k_1, n_1), (k_2, n_2)) \), for some \(k_1, k_2, n_1, n_2 < \omega \), then
 A. \(a_{\alpha\beta x} \) is an isomorphism between a generic suitable structure from the the interval \([\kappa_{\beta-1}, \kappa_{\beta,n_1}] \) and those at the level of \(n_1 \) of \(\alpha \). Recall that once automatic connection acts between \(\alpha \) and \(\beta \), then \(n_2 \leq n_1 \).
 Actually the domain of \(a_{\alpha\beta x} \) may be rather a name in the part of the forcing above \(\kappa_\alpha \). Namely it may depend on Prikry sequences for \(\beta \) up to the level \(n_2 \) of \(\beta \). So together \(\langle a_{\alpha\beta x} \mid x \in \text{connect}(\alpha, \beta) \rangle \) may depend full Prikry sequences of \(\beta \), i.e. on the forcing \(P \setminus \kappa_\beta \). This is needed in order to prove the Prikry condition of our forcing.
 B. \(|a_{\alpha\beta x}| < \kappa_{\alpha,x} \);

 C. \(A_{\alpha,x} \) is the set of measure one for \(E_{\alpha,x,\eta} \), for some \(\eta \) which is above (in the order of the extender \(E_{\alpha,x} \)) of \(\max(\text{rng}(a_{\alpha\beta x})) \).
 Note that \(A_{\alpha,x} \) does not depend on \(\beta \), i.e. we have the same set of measure one for each \(\beta \). Further let us denote this \(\eta \) by \(mc(\alpha, x) \) (the maximal coordinate of \(\alpha, x \)).

 D. \(f_{\alpha\beta x} \) is a partial function from \(\kappa_{\beta,x} \) to \(\kappa_{\alpha,x} \) of cardinality at most \(\kappa_{\beta-1} \).
ii. If $x \in m\text{connect}(\alpha, \beta)$, $x = ((k_1, n_1), (k_2, n_2))$, for some $k_1, k_2, n_1, n_2 < \omega$, then the following holds

A. $a_{\alpha\beta x}$ is an isomorphism between a generic suitable structure from the interval $[\kappa_{\beta,-1}^+, \kappa_{\beta,n_2}]$ and those at the block k_1 of the level n_1 of α. A drop will occur here to some $\alpha' < \alpha$.

Again the domain of $a_{\alpha\beta x}$ may be rather a name in the part of the forcing above κ_α. Namely it may depend on Prikry sequences for β up to the level n_2 of β. So together $\langle a_{\alpha\beta x} | x \in \text{connect}(\alpha, \beta) \rangle$ may depend full Prikry sequences of β, i.e. on the forcing $P \setminus \kappa_\beta$.

B. $|a_{\alpha\beta x}| < \kappa_\alpha'$;

C. $A_{\alpha,x}$ is the set of measure one for $E_{\alpha,x,\eta}$, for some η which is above (in the order of the extender $E_{\alpha,x}$) of $\max(\text{rng}(a_{\alpha\beta x}))$.

We require that $A_{\alpha,x}$ does not depend on (n_2, k_2) and depends only on α, n_1, k_1.

Further let us denote this η by $mc(\alpha, x)$ (the maximal coordinate of α, x).

D. $f_{\alpha\beta x}$ is a partial function from $\kappa_{\beta,x}$ to $\kappa_{\alpha,x}$ of cardinality at most κ_{β}^{+1}.

(b) (Commutativity of connections) Let β, γ be successor ordinals, $\alpha < \beta < \gamma < \omega_1$ and $n < \omega$. Assume that k_α-th block of n_α-th level of α is connected to k_β-th block of a level n_β of β and to k_γ-th block of a level n_γ of γ. Suppose that in addition that k_β-th block of a level n_β of β and k_γ-th block of a level n_γ of γ are connected.

Then for each $Z \in \text{dom}(a_{\alpha\gamma((k_\alpha,n_\alpha),(k_\gamma,n_\gamma)))}$ we have $Z \in \text{dom}(a_{\beta\gamma((k_\beta,n_\beta),(k_\gamma,n_\gamma)))}$ and

$$a_{\alpha\gamma((k_\alpha,n_\alpha),(k_\gamma,n_\gamma))}(Z) = a_{\alpha\gamma((k_\beta,n_\beta),(k_\gamma,n_\gamma))}(a_{\beta\gamma((k_\beta,n_\beta),(k_\gamma,n_\gamma))}(Z)),$$

where Z_γ is a name of the indiscernible corresponding to Z.

2. We need to deal here simultaneously with ω–many levels for every interval $(\kappa_\beta, \kappa_{\beta+1})$, $\beta < \omega_1$. Moreover we will need to split the forcing into the part $P \setminus \kappa_\beta$ above κ_β (i.e. one that blows up $pp(\kappa_{\beta+1})$ adding ω–sequences in the interval $(\kappa_\beta, \kappa_{\beta+1})$ and up but not below), and the part $P \upharpoonright \kappa_{\beta+1}$ that is responsible to reach this interval from below.

Let $\{Z_n | n^* \leq n < \omega\}$ be models in the interval $(\kappa_\beta, \kappa_{\beta+1})$, for some $\beta < \omega_1$ and $n^* < \omega$. Each Z_n is in V, but the sequence may be in $V^P \setminus \kappa_\beta$. So we actually deal with a name.

Suppose that Z_n sits at the level n of β, for each $n, n^* \leq n < \omega$, and for every
$n_1, n_2 \geq n^*$, Z_{n_1}, Z_{n_2} are of the same piste order (i.e. if they are on the central line then otp of their places is the same, if not on the central line then pistes leading to them are the same etc.). The for each $k < \omega$ the set of triples $\langle \alpha, \beta, x \rangle$ such that $Z_n \in \text{dom}(a_{\alpha\beta x})$ and $a_{\alpha\beta x}(Z_n)$ is not k-good is finite. This type of condition is used since generic suitable structures are here not sitting over a single cardinal (level), but are rather spread over ω-levels. Thus, in particular, $\{Z_n \mid n^* \leq n < \omega\}$, as a replacement of a single maximal set in a generic suitable structure in previous settings.

shita nosefet: Require that $Z_{n+1} \cap$ with the last element of the last block of the level n is Z_n. At least for top models of same cardinality of each level.

For every model Z that appears in one of p_α’s, for every $k < \omega$, the set of all triples $\langle \alpha, \beta, x \rangle$ such that $Z \in \text{dom}(a_{\alpha\beta x})$ and $a_{\alpha\beta x}(Z)$ is not k–good – is finite.

Note that the number of triples $\langle \alpha, \beta, x \rangle$ such that $Z \in \text{dom}(a_{\alpha\beta x})$ is at most countable, since for some $\gamma < \omega_1$ we have $Z \subseteq H(\kappa_\gamma)$ and then it will not appear at all above κ_γ. Here is the point why the present construction breaks down above ω_1. Thus once above it – there may be Z’s which appear at uncountably many places. This implies that for some $k < \omega$ uncountably many images of such Z are at most k–good and this prevents us from defining the equivalence relation \leftrightarrow effectively.

3. We describe here situations in which dropping in cofinalities occurs and state the related requirements.

Let $\alpha + 1 < \omega_1$. If α is a successor ordinal, say $\alpha = \tau + 1$, then we consider first the connections from $\alpha + 1$ to $\tau + 1$ and then further down. If α is a limit ordinal, then fix then in advance a cofinal in α sequence $\langle \alpha_i \mid i < \omega \rangle$. Denote $\rho(\alpha_i, \alpha)$ by n_i. An isomorphism between suitable structures will move one over first n_0 levels over $\alpha + 1$ to those over the level n_0 of α_0 (a connection). There may be in addition blocks over levels $\leq n_0$ of α_0 connected manually to blocks of the first n_0 levels of $\alpha + 1$. We keep such connections. Note that this may result in moving models of different cardinalities into models of a same cardinality (still ”\in”–relation is preserved).

In general if $k < \omega$, then an isomorphism between suitable structures (i.e. α_{ω_k}) will move one over first n_k levels over $\alpha + 1$ to those over the level n_k of α_k (a connection). There may be in addition blocks over levels $\leq n_k$ of α_k connected manually to blocks of the first n_k levels of $\alpha + 1$. We keep such connections.

The rest of connections, i.e. connections of α with β’s below α_0, or $\beta \in (\alpha_k, \alpha_{k+1})$ will obtained using the commutativity. Thus, in order to get to $\beta \in (\alpha_k, \alpha_{k+1})$, let us go
down to α_{k+1} first using aconnect and then continue from α_{k+1} to β.

Note that by 1.4.2(4i) aconnected elements cannot mix with the rest. Namely, if a block m of a level n of $\alpha + 1$ is connected manually to a block s of a level r of β_k, then $n > r$ and so $\langle \alpha + 1, n, m \rangle$ cannot be connected automatically to the level r of β_k.

Suppose now that certain block $\langle \beta, r, s \rangle$ is manually connected to a block $\langle \alpha + 1, n, m \rangle$, where $\beta = \tau$, if $\alpha = \tau + 1$, or β is one of α_k’s if α is a limit ordinal. In such situation dropping should occur. Organize the dropping in cofinalities as follows. Denote by X the set of blocks of $\alpha + 1$ connected to the block $\langle \beta, r, s \rangle$. Let $\langle x_i \mid i < j \leq \omega \rangle$ be the listing of X increasing in the lexicographical order. Let $x_i = \langle \alpha + 1, n_i, m_i \rangle$.

Assume that x_0 is a-connected to $\langle \beta, r, s \rangle$. Consider x_1. We let x_i block to correspond to $\langle \beta, r, s \rangle$ and the blocks below it (i.e. $\langle \alpha + 1, n, m \rangle$ with $n = n_i$ and $m < m_i$, or $n < n_i$) to drop below β to places which is a-connected to $\langle \alpha + 1, n_1, m_1 - 1 \rangle$, if $m_1 > 0$, or with $\langle \alpha + 1, n_1 - 1, g_{\alpha+1}(n_1 - 1) - 1 \rangle$, if $m_1 = 0$. Note that ω–many possibilities for a drop in cofinality are allowed here. Use splitting into intervals in order to incorporate drops to different levels below β, similar to what was done in Section 6 of [17]. Such setting allows us to gain a closure once a non-direct extension is made at some γ below β. Just the only drops that remain active are those to points above γ.

Continue in the same fashion with every $i > 1$.

Denote this last block before x_i by x_i^*. On x_i^* and the blocks below the isomorphism between suitable structures will respect cardinalities, but not on x_i itself. Thus there may be models from x_j ($j > i$) with images having same cardinalities as those from x_i. Still require that \in–relation is preserved.

A model Z (from the domain of an isomorphism) is connected starting from a certain level only by an a-connection.

This requirement prevents cardinals collapses (and actually insures the right chain condition).

As in (2) above, Z is (or is identified) with a sequence $\langle Z_n \mid n < \omega \rangle$ such that Z_{n+1} is an end extension of Z_n to the next level (above those of Z_n) and $Z = \bigcup_{n<\omega} Z_n$. Note that once we have models $Y \in Z$, $|Y| > |Z|$ and $Z' \in Y$ need to be added, where Z, Z', Y are of Δ–system type, then we can go to a level from which both Z, Y are a-connected. At this level and above the difference in cardinalities of Y, Z is respected.

So it is possible to find the image for Z' inside the image of Y over the image of $Z \cap Y$, since the image of $Z \cap Y$ has cardinality of the image of Z and so is bounded in the image of Y.
Definition 1.7.2 Suppose \(p = \{ p_\alpha \mid \alpha < \omega_1 \text{ and } (\alpha = 0 \text{ or } \alpha \text{ is a successor ordinal} \} \in \mathcal{P}_0, \alpha < \omega_1 \) be zero or a successor ordinal, \(\beta, \alpha < \beta < \omega_1 \) a successor ordinal and \(x = ((n_\alpha, m_\alpha), (n_\beta, m_\beta)) \in \text{connect}(\alpha, \beta) \). Let \(p_{\alpha\beta x} = \langle a_{\alpha\beta x}, A_{\alpha,x}, f_{\alpha\beta x} \rangle \) and \(\eta \in A_{\alpha,x} \). Define \(p^\eta \), the one element non direct extension of \(p \) by \(\eta \), to be \(q = \{ q_\xi \mid \xi < \omega_1 \text{ and } (\xi = 0 \text{ or } \xi \text{ is a successor ordinal} \} \) so that

1. for every \(\xi, \zeta, \alpha < \xi < \zeta < \omega_1 \), \(p_{\xi\zeta} = q_{\xi\zeta} \),

2. for every \(y \in \text{connect}(\alpha, \beta) \) with the level on \(\alpha \) bigger than \(n_\alpha \) we have \(p_{\alpha\beta y} = q_{\alpha\beta y} \).

3. for every successor ordinal \(\beta, \alpha < \beta < \omega_1 \), \(q_{\alpha\beta y} = f_{\alpha\beta y} \cup \{ (\tau, \pi_{mc(\alpha,n)}, a_{\alpha\beta y}(\tau)(\eta)) \mid \tau \in \text{dom}(a_{\alpha\beta y}) \} \), where \(y \in \text{connect}(\alpha, \beta) \) and the level of \(y \) over \(\alpha \) is \(n_\alpha \) as those of \(x \).

4. Let \(\alpha', \tau, \alpha' > \alpha > \tau, \) be successor ordinals or zero. Then connections \(a_{\tau\alpha'y} \) of \(p \) will split now in \(q \) into connections from \(\alpha' \) to \(\alpha \) followed by a connection from \(\alpha \) to \(\tau \). Namely, let \(\{ \tau, r, s \} \) be connected with \(\langle \alpha', n', m' \rangle \). For each \((n, m) \) such that \(((n, m), (n', m')) \in a\text{connect}(\alpha', \alpha) \) and \(\langle \tau, r, s \rangle \in \text{connect}(\alpha, n, m) \) (the are such \(n, m \) by Lemma 1.4.6) split \(a_{\alpha',n',m'}(\tau, r, s) \) into \(a_{\alpha,n,m}(\tau, r, s) \) followed by \(a_{\tau, r, s}(\alpha, n, m) \).

5. For each level \(n' < n_\alpha \) of \(\alpha \), the same things occur, i.e. 2-4 above hold with \((n_\alpha, m_\alpha) \) replaced by \((n', k') \), where \(k' \) is any block of the level \(n' \).

6. Each connection which drops in cofinality below the block of \(\eta \), i.e. below the level \(n_\alpha \) of \(\alpha \), we freeze such drops and deal only with drops to cofinalities above \(\eta \) in a fashion used in Section 6 of [17] for same purpose.

Definition 1.7.3 Set \(\mathcal{P}_1 \) to be the set all \(p^\eta \) as in Definition 1.7.2. Proceed by induction. For each \(n < \omega \), once \(\mathcal{P}_n \) is defined, define \(\mathcal{P}_{n+1} \) to be the set of all \(p^\eta \), where \(p \in \mathcal{P}_n \). Finally set \(\mathcal{P} = \bigcup_{n<\omega} \mathcal{P}_n \).

Definition 1.7.4 Let \(p, q \in \mathcal{P} \).

1. We say that \(p \) is a direct extension of \(q \) and denote this by \(p \geq^* q \) iff \(p \) is obtained from \(q \) by extending \(a_{\alpha\beta x}, f_{\alpha\beta x} \)'s and by shrinking the sets of measures one probably by passing to bigger measure first.

2. The forcing order \(\geq \) is defined as follows:

\(p \geq q \) iff there are \(\eta_1, \ldots, \eta_n \) such that \(q^\eta \) is defined and \(p \geq^* q^\eta \).

24
For each $\alpha < \omega_1$, \mathcal{P} splits into $(\mathcal{P}\setminus \kappa_\alpha) \ast \mathcal{P} \upharpoonright \kappa_{\alpha+1}$, where $\mathcal{P}\setminus \kappa_\alpha$ is the part of \mathcal{P} is defined as \mathcal{P} but with $\kappa_{\alpha+1}$ replacing κ_0, i.e. everything is above κ_α and the first cardinal we deal with is $\kappa_{\alpha+1}$. $\mathcal{P} \upharpoonright \kappa_{\alpha+1}$ is defined in $V^{\mathcal{P}\setminus \kappa_\alpha}$ as \mathcal{P} was defined in V, but cutting everything at $\kappa_{\alpha+1}$.

Lemma 1.7.5

(a) For every $\alpha < \omega_1$, $\delta < \alpha$, $\langle \mathcal{P}\setminus \kappa_{\alpha+1}, \leq^* \rangle$ is κ_δ–strategically closed above any non direct extension made over $\kappa_{\alpha+1}$ and κ_δ.

(b) For every limit $\alpha < \omega_1$ and $\delta < \alpha$, $\langle \mathcal{P}\setminus \kappa_\alpha, \leq^* \rangle$ is κ_δ–strategically closed above a non direct extension.

Proof. Let us deal with (a), the part (b) is similar. Suppose that a non-direct extension was made at a level n of $\alpha + 1$. Then for any successor ordinals $\beta, \gamma, \alpha + 1 < \beta < \omega_1, \gamma < \alpha$ connections from β to γ will split to those from β to $\alpha + 1$ and then further down from $\alpha + 1$ to γ. There may be some blocks of $\alpha + 1$ of levels above n which are manually connected to those of β. Then drops occur at such places. This results in a lack of completeness. Let us compensate it as follows. Just pick $\delta < \alpha + 1$ big enough and make a non-direct extension over δ. This will ensure that all dropping points of $\alpha + 1$ which drop below δ will split into parts up to δ and from δ further down. The parts up to δ of them will be now δ–complete (according to \leq^*) due to the definition of such splitting.

□

In particular:

Lemma 1.7.6 $\langle \mathcal{P}, \leq, \leq^* \rangle$ is κ_{00}-strategically closed.

Now we can deduce the following:

Lemma 1.7.7 $\langle \mathcal{P}, \leq, \leq^* \rangle$ is a Prikry type forcing notion.

Proof. Let $p \in \mathcal{P}$ and σ be a statement of the forcing language. We need to show that a direct extension of p decides σ. Suppose otherwise. Let us build by induction sequences of extensions of p. Proceed as follows. Go below over α’s less than ω_1. Suppose that $\alpha < \omega_1$ and we did it for every $\beta < \alpha$. Let $p^\alpha \geq^* p$ be the resulting condition. We deal with levels of α by induction again. So let n be a level of α. Pick η from the set of measure one of p^α at this level. If there is an extension $q = q^{\alpha n} \circ p^{\alpha} \setminus \eta$ which is non-direct only below α and decides σ, then we keep a ”direct addition” of $q^{\alpha n}$ to p^α from the level n of α and up and set back all the rest (i.e. over n and below). Denote it by $p^{\alpha n}$. If there is no such q, then
we keep \(p^\alpha \) unchanged and set \(p^{\alpha n} = p^\alpha \).
Note that once \(\eta \) was added the connections from \(\alpha' > \alpha \) to ordinals below \(\alpha \) split leaving the part from \(\alpha' \) to \(\alpha \) closed enough. This allows us to accumulate things above \(\alpha \) together and proceed the argument.
At the next step we pick the least \(\xi \) in the set of measure one above \(\eta \) and repeat the above with \(p^{\alpha n \eta} \). Define \(q^{\alpha n \xi} \) and \(p^{\alpha n \xi} \) as above.
Continue further in the same fashion through all elements of the measure one set. There is no problem at limit steps due to the degree of closure above the level \(n \) and above \(\alpha \) Let \(r^{\alpha n} \) be the direct extension of \(p^\alpha \) obtained using the process above. Now we shrink the set of measure one in order to have about \(\sigma \) (i.e. if it is forced by by \(r^{\alpha n} \cap \tau \cap q^{\alpha n \tau} \) or its negation is forced by by \(r^{\alpha n} \cap \tau \cap q^{\alpha n \tau} \) or no such extension of \(r^{\alpha n} \cap \tau \) can decide \(\sigma \)). Let \(p^{\alpha n} \) be the condition obtained from \(r^{\alpha n} \) by replacing the set of measure one by this shrunken set. We claim that no decision about \(\sigma \) was made. Just otherwise we shrink more to stabilize the non-direct addition below \(n \). Then actually the decision can be made without extending at the level \(n \). Note only that parts of connecting functions will turn to be names which depend on a choice of an element from the measure one set. By the assumption there is no way to decide \(\sigma \) using non-direct additions from below the level \(n \).
Hence, no decision about \(\sigma \) was made at \(n \) as well. Continue then to the levels \(n + 1, n + 2, \) etc. and further to bigger \(\alpha \)'s. Finally this process will produce a direct extension of \(p \) which has no extension (direct or indirect) which decides \(\sigma \). Which is clearly impossible.
Contradiction.

Let us examine and rearrange the connections in the forcing \(\mathcal{P} \upharpoonright \kappa_{\alpha + 1} \) over \(V^{\mathcal{P} \upharpoonright \kappa_{\alpha}} \). By Lemma 1.7.5, no new bounded subsets are added to \(\kappa_{\alpha + 1} \). All connections from ordinals \(\gamma, \alpha + 1 < \gamma < \omega_1 \) to ordinals below \(\alpha + 1 \) are replaced by connections to \(\alpha + 1 \) (which are very closed) and from \(\alpha + 1 \) down.
We split into two cases according to \(\alpha \) being a successor or limit.

Case 1. \(\alpha \) is a limit ordinal.
Fix then in advance a cofinal in \(\alpha \) sequence \(\langle \alpha_i \mid i < \omega \rangle \). Denote \(\rho(\alpha_i, \alpha) \) by \(n_i \). An isomorphism between suitable structures will move one over first \(n_0 \) levels over \(\alpha + 1 \) to those over the level \(n_0 \) of \(\alpha_0 \) (a connection). There may be in addition blocks over levels \(\leq n_0 \) of \(\alpha_0 \) connected manually to blocks of the first \(n_0 \) levels of \(\alpha + 1 \). We keep such connections. Note that this may result in moving models of different cardinalities into models of a same cardinality (still \(" \in " \)-relation is preserved).
In general if $k < \omega$, then an isomorphism between suitable structures will move one over first n_k levels over $\alpha + 1$ to those over the level n_k of α_k (a connection). There may be in addition blocks over levels $\leq n_k$ of α_k connected manually to blocks of the first n_k levels of $\alpha + 1$. We keep such connections.

The rest of connections, i.e. connections of α with β's below α_0, or $\beta \in (\alpha_k, \alpha_{k+1})$ will obtained using the commutativity. Thus, in order to get to $\beta \in (\alpha_k, \alpha_{k+1})$, let us go down to α_{k+1} first using a connect and then continue from α_{k+1} to β.

Note that by 1.4.2(4i) a connected elements cannot mix with the rest. Namely, if a block m of a level n of $\alpha + 1$ is connected manually to a block s of a level r of β_k, then $n > r$ and so $\langle \alpha + 1, n, m \rangle$ cannot be connected automatically to the level r of β_k.

Case 2. $\alpha = \tau + 1$.

In this case send all connections which go from $\alpha + 1$ down, first to $\tau + 1$ and then from $\tau + 1$ further down.

Suppose now that $\langle \alpha + 1, n_1, m_1 \rangle, \langle \alpha + 1, n_2, m_2 \rangle$ are both connected to $\langle \beta, r, s \rangle$ at same stage $n < \omega$(i.e. once a level n and levels below of $\alpha + 1$ are considered, in particular $n_1, n_2 \leq n$), where $\beta = \beta_k$, for some $k < \omega$ in Case 1, or $\beta = \tau + 1$ in Case 2. Then this connections should be both manual by 1.4.2(4i), since the automatic connection cannot connect two different blocks for $\alpha + 1$ to same block down, so at least one of the blocks is connected manually and then r is below the level of this block which is at most n. Recall that automatic connection in this case connects between first n-levels of $\alpha + 1$ and the level n of β. We have $r < n$, hence the connection to the level r here can be only the manual one. Let us describe the dropping in cofinality that occurs here. Note that there may be infinitely many blocks of $\alpha + 1$ connected to the block $\langle \beta, r, s \rangle$. At most one of them is a-connected to $\langle \beta, r, s \rangle$. Organize the dropping in cofinalities as follows. Denote by X the set of blocks of $\alpha + 1$ connected to the block $\langle \beta, r, s \rangle$. Let $\langle x_i \mid i < j \leq \omega \rangle$ be the listing of X increasing in the lexicographical order. Let $x_i = \langle \alpha + 1, n_i, m_i \rangle$. Assume that x_0 is a-connected to $\langle \beta, r, s \rangle$. Consider x_1. We let x_i block to correspond to $\langle \beta, r, s \rangle$ and the blocks below it (i.e. $\langle \alpha + 1, n, m \rangle$ with $n = n_i$ and $m < m_i$, or $n < n_i$) to drop below β to places which is a-connected to $\langle \alpha + 1, n_1, m_1 - 1 \rangle$, if $m_1 > 0$, or with $\langle \alpha + 1, n_1 - 1, g_{\alpha+1}(n_1 - 1) - 1 \rangle$, if $m_1 = 0$. Note that ω-many possibilities for a drop in cofinality are allowed here. Use splitting into intervals in order to incorporate drops to different levels below β, similar to what was done in Section 6 of [17]. Such setting allows us to gain a closure once a non-direct extension is made at some γ below β. Just the only drops that remain active are those to points above γ. 27
Continue in the same fashion with every $i > 1$.

Denote this last block before x_i by x_i^*. On x_i^* and the blocks below the isomorphism between suitable structures will respect cardinalities, but not on x_i itself. Thus there may be models from x_j ($j > i$) with images having same cardinalities as those from x_i. Still \in-relation is preserved. The thing that prevents cardinals collapses (and actually insures the right chain condition) is the requirement that any model Z (from the domain of an isomorphism) is connected starting from a certain level only by an a-connection. As in 1.4.2 (2) Z is (or is identified) with a sequence $\langle Z_n \mid n < \omega \rangle$ such that Z_{n+1} is an end extension of Z_n to the next level (above those of Z_n) and $Z = \bigcup_{n<\omega} Z_n$. Note that once we have models $Y \in Z$, $|Y| > |Z|$ and $Z' \in Y$ need to be added, where Z, Z', Y are of Δ–system type, then we can go to a level from which both Z, Y are a-connected. At this level and above the difference in cardinalities of Y, Z is respected. So it is possible to find the image for Z' inside the image of Y over the image of $Z \cap Y$, since the image of $Z \cap Y$ has cardinality of the image of Z and so is bounded in the image of Y.

Define $\leftarrow\rightarrow$ and \rightarrow.

Definition 1.7.8 Let $p, q \in \mathcal{P}$. Set $p \leftarrow\rightarrow q$ iff there is $\alpha < \omega_1$ such that

1. $p \setminus \kappa_\alpha = q \setminus \kappa_\alpha$,

2. $p \upharpoonright \kappa_{\alpha+1} \leftarrow\rightarrow p \upharpoonright \kappa_{\alpha+1} q \upharpoonright \kappa_{\alpha+1}$, where $\leftarrow\rightarrow$ in the usual fashion requiring that for each $k < \omega$ all but finitely many coordinates realize the same k-type. Moreover always the same 4-type is realized.

Now we define \rightarrow in the usual fashion.

Definition 1.7.9 Let $p, q \in \mathcal{P}$. Set $p \rightarrow q$ iff there is a sequence of conditions $\langle r_k \mid k < m < \omega \rangle$ so that

1. $r_0 = p$

2. $r_{m-1} = q$

3. for every $k < m - 1$,

$$r_k \leq r_{k+1} \quad \text{or} \quad r_k \leftarrow\rightarrow r_{k+1}.$$

Lemma 1.7.10 Let $\alpha < \omega_1$. Then, in $V^{\mathcal{P}' \setminus \mathcal{P} \setminus \kappa_\alpha}$, the forcing $\langle \mathcal{P} \upharpoonright \kappa_{\alpha+1}, \rightarrow \rangle$ satisfies κ_{α}^{++}-c.c.
Proof. The main issue here is a possibility of adding models to a given condition. The rest of the argument repeats the one of previous settings, see [17]. A new point is that the connection functions are not one to one anymore. Thus the following may happen. Suppose we have $B \in A$, $|B| > |A|$ and we need to add $A' \in B$ such that A, A' are of a Δ-system type over $A \cap A'$. If the connection function a of a condition (i.e. an isomorphism between suitable structures) moves both A and B to models of a same cardinality, then adding of such A' will be just impossible, since then $a(A) \supseteq a(B)$ which leaves no room for A'. Now, in order to overcome this obstacle, note that $|a(A)| = |a(B)|$ (or even $|a(A)| \geq |a(B)|$) may occur only finitely many times (levels). So starting with a certain level n we should have $|a(A)| < |a(B)|$ which allows to add A'.

Lemma 1.7.11 The forcing $\langle P, \rightarrow \rangle$ over $V[G']$ preserves all the cardinals (and every cofinality).

Proof. Let η be a cardinal in $V[G']$. We show by induction on $\alpha < \omega_1$ that if $\eta \leq \kappa_\alpha$ then it is preserved in the generic extension. Clearly, it is enough to deal only with regular η’s. Hence, we need to consider only the following situation:

$$\kappa_\alpha < \eta < \kappa_{\alpha+1},$$

for some $\alpha < \omega_1$. Split the forcing P into $P \setminus \kappa_\alpha$ followed by $P \restriction \kappa_{\alpha+1}$. By Lemma 1.7.5, $P \setminus \kappa_\alpha$ does not add new bounded subsets to $\kappa_{\alpha+1}$ (namely, this lemma together with the Prikry condition imply that no new subsets are added to $\kappa_{\alpha+1, 0}$, but taking non-direct extensions over $\kappa_{\alpha+1, n}$’s it is easy to push this up to $\kappa_{\alpha+1}$). By Lemma 1.7.10 the forcing $P \restriction \kappa_{\alpha+1}$ preserves all the cardinals above κ_α^+. So, the only case that remains is $\eta = \kappa_\alpha^+$. But it is not problematic, since we have here the successor of the singular cardinal and the usual arguments apply.

□

29
Chapter 2

Some further ideas

PCF structure - some further ideas:
\ otp > \omega_1; \text{ down to } \aleph_\omega.

2.1 \ \ otp > \omega_1.

2.1.1 Finitely many cardinals.

Let \theta be a 2-Mahlo cardinal and \kappa < \theta be a strong cardinal up to \theta. Fix some \ k, 1 < k < \omega.
Force with the preparation forcing \mathcal{P}', as in Chapter 1. Then we change cofinality of \kappa to
\omega_1 \text{ simultaneously blowing up its power to } \kappa^{+k}.
This forcing will not effect the preparation since it satisfies \kappa^{++}-c.c. and smallest models (over \kappa and above) is \kappa^+.
The same is true below \kappa by splitting the Magidor extender based forcing into an upper part which is closed and a lower part which satisfies the chain condition.
The power of the last cardinal of each block should be blown up. The main forcing then
should be made together with the Magidor extender based forcing. \kappa^{++}-c.c. of the combined
forcing should be checked.

2.1.2 Countably many cardinals.

Fix some \eta, \omega \leq \eta < \omega_1. We present it as an increasing union \eta = \bigcup_{n<\omega} Z_n of finite sets \ Z_n.
Force with the preparation forcing \mathcal{P}', as in Chapter 1. Then we change cofinality of \kappa to
\omega_1 \text{ simultaneously blowing up its power to } \kappa^{+\eta}.
Force with the main forcing as above (in 1.1), but for each \alpha < \omega_1 (a successor ordinal or 0)
at a level n of \alpha we deal only with the indiscernibles for members of \ Z_n.

31
2.1.3 \aleph_1 many cardinals.

Let us deal with ω_1 itself. In the general case given $\eta, \omega_1 \leq \eta < \omega_2$, we present it as an increasing union of countable sets and proceed similar.

For every $\alpha < \omega_1$ let $\alpha = \bigcup_{n<\omega} Z_{\alpha n}$, for some increasing sequence of finite sets $\langle Z_{\alpha n} \mid n < \omega \rangle$. Now, in the main forcing, for each $\alpha < \omega_1$ (a successor ordinal or 0) at a level n of α we deal only with the indiscernibles for members of $Z_{\alpha n}$.

2.2 Problems with moving down to \aleph_ω.

The basic idea will be to use a supercompact Prikry forcings and Levy collapses in order get rid of unwanted cardinals. Thus, for a successor $\alpha < \omega_1$ or $\alpha = 0$ we would like to use a supercompact Prikry forcing in order to collapse all the cardinal between $\kappa_{\alpha-1}$ and the indiscernible of the first level for κ_{ω_1} over α to $\kappa_{\alpha-1}$. Then Levy collapses will be used in order to collapse the rest of unwanted cardinals.

There are at least two immediate problems with this approach. The first one is that the crucial indiscernibles which we like to preserve ($\rho_{\alpha n\omega_1}$'s) are the successors of cardinals of cofinality ω_1. By Shelah [23], it is impossible to turn such a cardinal into the immediate successor of a cardinal of cofinality ω.

In order to overcome this we would like to replace from the beginning all $\rho_{\alpha n\omega_1}$'s by regular (successor) cardinals.

The second is that we should know the values of such indiscernibles somehow in advance in order to specify the length of the supercompact Prikry forcing. Actually, a supercompact Magidor forcing is more appropriate here since we need to deal with ω_1 many cardinals more or less simultaneously. This complicates the matter even more.

Let θ be a 2-Mahlo cardinal and $\kappa < \theta$ be a θ-supercompact cardinal. Fix some $\mu, \kappa < \mu < \theta$ which is strong enough and reflects θ in a sense of elementary substructures. Let $\eta, \mu < \eta < \theta$ be a higher enough regular cardinal. Let U be a θ-supercompact measure over $\mathcal{P}_\kappa(\theta)$. We assume that for some $f : \kappa \to \kappa$, $[f]_U = \mu$ and for some $g : \kappa \to \kappa$, $[g]_U = \eta$. Now force with one element extender based forcing with $(f(\nu), g(\nu)^+)$-extender for each inaccessible $\nu < \kappa$. Similar, force over κ itself with (μ, η^{++})-extender. Denote by η^* the indiscernible for the η^+-measure of the extender over μ and for each inaccessible $\nu < \kappa$, let $\eta^{\nu*}$ be the one for $g(\nu)^+$. Fix a coherent sequence $\langle U^i \mid i < \omega_1 \rangle$ of normal ultrafilters over $\mathcal{P}_\kappa(\theta)$ starting with U.

For each $\alpha < \omega_1$ let U_α the restriction of U^α to $\mathcal{P}_\kappa((\eta^*)^-)$, where $(\eta^*)^-$ is the immediate
predecessor of η^*. The forcing used for changing cofinality of κ to ω_1 will be the Magidor forcing with $(U_\alpha \mid \alpha < \omega_1)$.

Now, given $\alpha < \omega_1$ (say limit > 0), we will have the α-th member of the Magidor sequence κ_α and the corresponding coherent sequence $(V_i \mid i < \alpha)$ with V_i being a normal ultrafilter over $\mathcal{P}_{\kappa_\alpha}(\eta^*_{\kappa_\alpha})$.

So κ_α and all regular cardinals below $\eta^*_{\kappa_\alpha}$ will change their cofinality to ω. $\eta^*_{\kappa_\alpha}$ will be preserved. We will collapse to it everything up to the next indiscernible of α (i.e. as before we will have ω many levels of α and each level will consist of finitely many blocks with blocks being finite as well here and not of length ω_1).

Note that it is bad to leave a cardinal uncollapsed, except once it is an indiscernible. Thus if we leave unboundedly many in κ (i.e. ω_1-many) of them, then the localization property will break done in the final structure, which implies in turn that the forcing will collapse cardinals that we would like to preserve.

It looks like the same type of problem persists even after collapses to indiscernibles. Just least indiscernibles for each α will inherit the property of collapsed to them cardinals and pcf of any countably many of them will correspond to the first cardinal above their supremum. This again conflicts with the localization.
Chapter 3

Bibliography
Bibliography

[14] M. Gitik, Preserving strong cardinals
[15] M. Gitik, Dropping cofinalities-gap 3-single drop
[16] M. Gitik, Dropping cofinalities– gap 3 with infinite repetitions
[17] M. Gitik, Short extenders forcings I
[18] T. Jech, Set Theory