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Abstract

A model with otp(pcf(a)) = ω1 + 1 is constructed, for countable set a of regular
cardinals.

1 Preliminary Settings

Let 〈κα | α < ω1〉 be an an increasing continuous sequence of singular cardinals of cofinality

ω so that for each α < ω1, if α = 0 or α is a successor ordinal, then κα is a limit of an

increasing sequence 〈κα,n | n < ω〉 of cardinals such that

(1) κα,n is strong up to a 2-Mahlo cardinal < κα,n+1,

(2) κα,0 > κα−1.

Fix a sequence 〈gα | α < ω1, α = 0 or it is a successor ordinal〉 of functions from ω to ω

such that for every α, β, α < β which are zero or successor ordinals below ω1 the following

holds

(a) 〈gα(n) | n < ω〉 is increasing

(b) there is m(α, β) < ω such that for every n ≥ m(α, β)

gα(n) ≥
n∑

m=0

gβ(m) .

∗The work was partially supported by ISF grants 234/08,58/14. The material was presented during
2014-2015 in a course at the Hebrew University of Jerusalem. We are grateful to all participants for their
helpful comments, remarks and corrections. Our special thanks are due to Menachem Magidor for his
enormous patience in listening the arguments, going through previous versions and his crucial comments
and corrections.
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The easiest way is probably to force such a sequence.

Conditions are of the form

〈n, {hα|α ∈ I}〉, where n < ω, I is a finite subset of ω1 and hα : n→ ω.

The order is defined as follows:

〈n, {hα|α ∈ I}〉 ≤ 〈m, {tβ|β ∈ J}〉 iff n ≤ m, I ⊆ J , for every α ≤ β, α, β ∈ I, we have

tα|n = hα and if n ≤ k < m then require that tα(k) ≥
∑

0≤s≤k tβ(s).

It is possible to construct such a sequence in ZFC. Pick first a sequence 〈hα|α < ω1〉 of

functions from ω to ω such that

(1) 〈hα(n) | n < ω〉 is non-decreasing and converges to infinity;

(2) if α < β then hα > hβ mod finite.

Replace now each hα by h′α such that h′α(n) = hα(n) + n+ 1.

Define gα(n) to be 2(2....(2
h′α(n))...)

where the number of powers is h′α(n).

Let us argue that it is as required. Let α < β. Pick m(α, β) to be such that for every

n ≥ m(α, β) we have h′α(n) > h′β(n).

Let n ≥ m(α, β). Consider
∑

0≤s≤n gβ(s).

Then ∑
0≤s≤n

gβ(s) ≤ (n+ 1) · gβ(n) ≤ (gβ(n))2 ≤ 2gβ(n) ≤ gα(n).

2 A basic description of the pcf- structure with ω1–

many cardinals

We would like to blow up the powers and pseudo-powers (pp) of all κα, α < ω1 to κ+
ω1

.1

The first tusk will be to arrange an appropriate pcf–structure that will be realized further.

It requires some work since we allow only finitely many blocks at each level. Note that in

view of [9] one cannot allow infinitely many blocks at least not under the large cardinals

assumptions used here (below a strong or a little bit more).

Organize the things as follows.

Let n < ω and 1 ≤ α < ω1 be a successor ordinal or α = 0. We reserve at level n a splitting

into gα(n)–blocks one above another:

〈κα,n,m,i | m < gα(n), i ≤ ω1〉,

so that

1pp(λ) = sup{cof(
∏
a/D | a ⊆ λ is a set of at most cof(λ) of regular cardinals, unbounded in λ and D

an ultrafilter over a including all cobounded subsets of a}.
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1. κα,n < κα,n,0,0,

2. κα,n,m,i′ < κα,n,m,i, for every m < gα(n), i′ < i ≤ ω1,

3. κα,n,m,ω1 < κα,n,m+1,0, for every m,m+ 1 < gα(n),

4. for every successor ordinal i < ω1 or if i = 0 let κα,n,m,i be large enough (say a Mahlo

or even measurable),

5. for every limit i, 0 < i ≤ ω1 let κα,n,m,i = sup({κα,n,m,i′ | i′ < i}),

6. κα,n,m,ω1 < κα,n+1, for every m < gα(n).

For each successor or zero ordinal α < ω1 and n < ω, we will fix a (κα,n, κ
++
α,n,gα(n)−1,ω1

)–

extender Eαn, i.e. an extender with the critical point κα,n which ultrapower contains

Vκα,n,gα(n)−1,ω1
+2.

Let α < ω1 be a successor ordinal or 0.

We will refer further to καn’s (or, simplicity just to n’s) as levels of κα (or, again, for

simplicity just of α). In addition, if n < ω and m < gα(n), then we refer to κα,n,m,i’s (i ≤ ω1)

as members of the m−th block (of the level n of α).

Let us incorporate indiscernibles that will be generated by extender based forcings with

Eαn’s into the blocks as follows.2 Denote as above the indiscernible for κα,n,m,i by ρα,n,m,i.

[κ+
α−1, ρ

+
α,0,0,ω1

] will be the first block of α of the level 0 (if α = 0, then let it be [ω1, ρ
+
0,0,0,ω1

]).

Then for every m < gα(0) let m–th block of α of the level 0 be [ρ++
α,0,m−1,ω1

, ρ+
α,0,m,ω1

]. The

first block of the level 1 of α will be [ρ++
α,0,gα(0)−1,ω1

, ρ+
α,1,0,ω1

]. In general the first block of the

level n > 0 of α will be [ρ++
α,n−1,gα(n−1)−1,ω1

, ρ+
α,n,0,ω1

]. The m-th block (m > 0) of the level

n > 0 of α will be [ρ++
α,n,m−1,ω1

, ρ+
α,n,m,ω1

].

Special attention will be devoted to the very last blocks of each level,

i.e. to [ρ++
α,n,gα(n)−2,ω1

, ρ+
α,n,gα(n)−1,ω1

].

In the final (after the main forcing) model we will have the following structure:

1. every element of the set {κ+
β | α < β < ω1} will be represented at each α′ ≤ α;

2. the set of indiscernibles

{ρ+
α,n,m,ω1

| n < ω,m < gα(n)}

will be a countable set with uncountable pcf over α;

2By indiscernibles here we mean members of a generic (one element) Prikry sequences produced by
one-element Extender Based Prikry forcings with Eα,n’s.
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3. for every successor ordinal β, α < β < ω1, each indiscernible ρ+
β,n,m,ω1

(n < ω,m <

gβ(n)) will be in the pcf of this set. Thus, we will have the following:

pcf({ρ+
α,n,m,ω1

| n < ω,m < gα(n)}) ⊇

{ρ+
β,n,m,ω1

| α < β < ω1, β is a successor ordinal,n < ω,m < gβ(n)} ∪ {κ+
ω1
};

4. for each limit ordinal γ, α < γ ≤ ω1, the following will hold:

pcf({ρ+
α,n,m,γ | n < ω,m < gα(n)}) ⊇

{ρ+
β,n,m,γ | α < β < γ, β is a successor ordinal,n < ω,m < gβ(n)} ∪ {κ+

γ }.

Note that for γ < ω1 the set on the right side is countable.

3 Automatic connection

Let us establish the first connection between the levels and blocks by induction.

Start with a connection of levels and blocks of κ1 to the levels and blocks of κ0.

Consider m(0, 1), i.e. the least m < ω such that for every n ≥ m we have

g0(n) ≥
n∑
k=0

g1(k) .

This is a place from which blocks of the second level fit nicely inside those of the first level.

Let us arrange the connection as follows. Connect all the blocks of the levels n, n ≤ m(0, 1)

of κ1 to the blocks of the level m(0, 1) of κ0 (or in short - of 0) moving to the right as much

as possible, i.e. if r = g0(m(0, 1)) −
m(0,1)∑
k=0

g1(k), then the first block of κ1 (in short - 1) is

connected to the r–th block of the level m(0, 1) of κ0, the second block of κ1 is connected to

r + 1-th block of the level m(0, 1) of κ0 etc., the last block of the level m(0, 1) of κ1 will be

connected to the last block of the level m(0, 1) of κ0.

For every s,m(0, 1) ≤ s < ω, we continue to connect blocks of all the levels s′ ≤ s of 1 to

the s block of 0 in the same fashion, moving to the right as much as possible.

Let us deal now with a level α > 1. Fix an enumeration 〈αi | i < ω〉 of α (if α < ω, then

the construction is the same). Connect blocks of levels of α to those of levels of α0 exactly

as above (i.e. κ1 and κ0).

Let us deal now with α1. We would like to have a tree order at least on the very last blocks

of each level. Thus we would not allow a block of α to be connected to two unconnected
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blocks of α0 and α1. Split into two cases.

Case 1. α1 > α0. Let l(α0, α1) be the first level where the connection between α0 and

α1 starts. Then, by induction, l(α0, α1) ≥ m(α0, α1). Let l(α0, α) be the first level where

the connection between α0 and α starts. By the definition we have l(α0, α) = m(α0, α).

Consider m(α1, α). It is tempting to start the connection between α and α1 with the levels

m(α1, α), but we would like to avoid a situation when the last block of a level n of α is

connected to last blocks of levels n of both α0 and α1, which are disconnected, i.e. the

connection order is not a tree order. So set l(α1, α) = max(l(α0, α1),m(α1, α)). Note that

m(α0, α) = l(α0, α) ≤ l(α1, α), since l(α0, α1) ≥ m(α0, α1).

Also note that there is a commutativity here, and for each n ≥ l(α1, α), blocks of α of levels

≤ n are connected to the level n of α1 and the levels ≤ n of α1 are connected to the level n

of α0.

Case 2. α1 < α0.

The treatment is similar only now α0 is connected to α1. Set

l(α1, α) = max(l(α1, α0), l(α0, α),m(α1, α)).

Continue in the same fashion by induction.

Let us called the established connection automatic connection. Last blocks of levels

ordered by this connection form a tree order by the construction.

It is not hard to show that there is no ω1–branches. The automatic connection is defined so

that if α < α′ < ω1 and for some n < ω, blocks of n-th levels of α and α′ are connected,

then for every n′, n ≤ n′ < ω, blocks of n′-th levels of α and α′ are automatically connected

as well. However, the ability to connect between blocks of lower levels does not imply that

they will be actually connected by the automatic connection.

For example, suppose that gα(0) = gα′(0) = 1, but gα(1) < gα′(1). In this case we have

m(α, α′) > 1, so the automatic connection will not start at 0, nerveless, the number of

blocks of the first levels of α and α′ is the same.

Let α < ω1, n < ω and m < gα(n). Set

aα(n,m) = {(α′, n′,m′) | α′ < α, the block m′ of level n′ of α′

is connected automatically to those of m of level n of α}.

The next lemma is obvious.

Lemma 3.1 Let α < ω1, n1, n2 < ω, m1 < gα(n1),m2 < gα(n2) and (n1 6= n2 or n1 = n2

but m1 6= m2). Then aα(n1,m1) ∩ aα(n2,m2) = ∅.
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4 Manual connection

Note that the automatic connection of the previous section leaves many blocks unconnected.

If no further connection will be made, then the following will occur. Unconnected blocks of

levels of an α < ω1 will correspond to κ+
α in the sense of pcf generators, i.e. their regular

cardinals will be in the pcf generator bκ+α . By [8], we will have here always max(pcf(κ+
α | α <

β)) = κ+
β , for every β < ω1, since the initial large cardinal assumptions are mild ones. So,

eventually there may be β < ω1 such that all blocks of all levels of all α < β will correspond

to κ+
β . It is clearly bad for our purpose.

We would like to extend the automatic connection such that for every α, if ρ and η are

the last members of different blocks of α (it does not matter if levels are the same or not),

then bρ+ 6= bη+ , where bλ denotes the pcf generator of λ. A problematic for us situation

is once a connection was established in a way that for some α < ω1 there are two different

blocks of α that are connected to same blocks of α − 1, for unboundedly many levels, if α

is a successor ordinal, and to same blocks of α′’s for unboundedly many α′’s below α, if α

is a limit ordinal. A problem will be then with κ++
α −chain condition of the forcing that will

realize the pcf-structure.

Note that by Localization Property (see [12] or [1]) once pcf of a countable set is uncountable,

there will be countable sets which correspond to cardinals much above their sup. Our

construction uses only finitely many blocks at each level. If the connection is not built

properly, then some countable set of blocks that should be connected with ℵ1–many may

turn to be connected with a single block of some α < ω1 which will spoil everything.

In order to take care of above problems, let us force with a c.c.c. forcing a new connection

based on the automatic connection.

Definition 4.1 Let Q be a set consisting of all pairs of finite functions q, ρ such that

1. ρ : {(α, β) | α < β < ω1, α = 0 or it is a successor ordinal,

β is a successor ordinal } → ω \ {0} is a partial finite function,

2. l(α, β) ≤ ρ(α, β) < ω, for every α < β in the domain of ρ.

Intuitively, ρ(α, β) will specify the place from which the automatic connection between

α and β will step into the play.

3. dom(q) ⊆ {α < ω1 | α = 0 or it is a successor ordinal} × (ω × ω),

4. for every (α, n,m) ∈ dom(q), q(α, n,m) is a non-empty finite subset of α×ω×ω such

that
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(a) m < gα(n),

(b) if 〈β, r, s〉 ∈ q(α, n,m), then s < gβ(r).

This will mean that s-th block of the level r of β is connected to m-th block of

the level n of α.

(c) (β, α) ∈ dom(ρ) iff α > β and α ∈ dom(dom(q)) and there are n,m, r, s < ω such

that (β, s, r) ∈ q(α, n,m),

(d) if (β, r, s) ∈ q(α, n,m), (β, r, s′) ∈ q(α, n′,m′), and if s 6= s′ , then either n 6= n′

or, n = n′ and then m′ 6= m, moreover s′ < s implies m′ < m,

(e) if (β, r, s) ∈ q(α, n,m) and the connection is not automatic, then n > r,

(f) if (β, r, s) ∈ q(α, n,m) and (α, n,m) ∈ q(α′, n′,m′), then (β, r, s) ∈ q(α′, n′,m′),

Let us define the order on Q.

Definition 4.2 Let 〈q1, ρ1〉, 〈q2, ρ2〉 ∈ Q. Set 〈q1, ρ1〉 ≥ 〈q2, ρ2〉 iff

1. ρ1 ⊇ ρ2,

2. q1 ⊃ q2, i.e.

(a) dom(q1) ⊇ dom(q2),

(b) for every 〈α, n,m〉 ∈ dom(q2) we have q2(α, n,m) = q1(α, n,m).

Let us give a bit more intuition behind the definition of Q and explain the reason of

adding ρ instead of just using the function l of the automatic connection.

The point is to prevent a situation like this: let γ < β < α, α, γ ∈ dom(dom(q)), β 6∈
dom(dom(q)) and we like to add it, for some q ∈ Q. Suppose that l(γ, α) = n < l(β, α) and

the level n of γ is connected automatically in q to all the blocks of α up to and including

the level n. We need to add β. In order to do this the level n of γ should be connected to

β. Then, due to the commutativity, the established connection is continued to α to the level

n or below. One may try to use blocks of β of the level n and below for this purpose, but

the total number of such blocks may be less than the number of blocks of the level n of γ,

i.e. of gγ(n). So some non connected automatically to α blocks of higher levels of β should

be used. There may be no such blocks at all or even if there are still this may conflict with

automatic connections of bigger than α ordinals in the domain of q.

Once we have ρ, it is possible just to ”fix” the automatic connection setting ρ(β, α) (i.e. the

point from which the automatic connection starts actually to work) higher enough.
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Lemma 4.3 Q satisfies c.c.c.

Proof. Suppose that 〈〈qi, ρi〉 | i < ω1〉 is a sequence of ω1 elements of Q. Let us concentrate

on qi’s. Set bi = dom(dom(qi)) ∪ dom(rng(qi) (i.e. the finite sequence of ordinals of dom(qi)

and of its range). Form a ∆-system. Suppose that 〈bi | i < ω1〉 is already a ∆-system and

let b∗ be its kernel. By shrinking more if necessary, we can assume that the following holds:

• for every i < j < ω1, sup(bi) < min(bj \ b∗),

• for every i < j < ω1, qi and qj are isomorphic over ω ∪ sup(b∗),

• ρi � b∗ = ρj � b∗.

Now, let i < j < ω1. Then 〈qi ∪ qj, ρi ∪ ρj〉 will be a condition in Q stronger than both

〈qi, ρi〉 and 〈qj, ρj〉.
�

Let G be a generic subset of Q. It naturally defines a connection between blocks. Namely

we connect s-th block of a level r of β with m-th block of a level n of α iff for some (q, ρ) ∈ G,

〈β, r, s〉 ∈ q(α, n,m). Let us call further the part of this connection that is not the automatic

connection by manual connection .

Denote for α, n < ω,m < gα(m), α1 < α2 < ω1, α, α1, α2 either 0 or successor ordinals

connect′(α, n,m) = {〈β, n1,m1〉 | ∃(q, ρ) ∈ G 〈β, n1,m1〉 ∈ q(α, n,m)}, or 〈β, n1,m1〉

is automatically connected to 〈a, n,m〉 and ρ(β, α) ≤ n1},

connect′(α1, α2) = {(n1,m1), (n2,m2)) | 〈α1, n1,m1〉 ∈ connect′(α2, n2,m2)},

aconnect′(α1, α2) = {(n1,m1), (n2,m2)) ∈ connect′(α1, α2) | 〈α1, n1,m1〉, 〈α2, n2,m2〉

are automatically connected and for some (q, ρ) ∈ G we have ρ(α1, α2) ≤ n1}.

mconnect′(α1, α2) = connect′(α1, α2) \ aconnect′(α1, α2).

Let us refer further to elements of mconnect′(α1, α2) connected by the manual connection .

Lemma 4.4 Suppose that 〈β, r, s〉 is a block of β and α > β. Then for some n,m < ω we

have 〈β, r, s〉 ∈ connect′(α, n,m).
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Proof. Let 〈q, ρ〉 ∈ Q. We will construct a stronger condition 〈q∗, ρ∗〉 with 〈α, n,m〉 ∈
dom(q∗) and 〈β, r, s〉 ∈ q∗(α, n,m), or ρ∗(β, α) ≤ r and 〈β, r, s〉 is automatically connected

with 〈α, n,m〉, for some n,m < ω.

If 〈β, r, s〉 is automatically connected with 〈α, n,m〉, for some n,m < ω and (β, α) 6∈ dom(ρ)

or (β, α) ∈ dom(ρ), ρ(β, α) ≤ r, then just set ρ∗(β, α) = r or ρ∗(β, α) = ρ(β, α), if defined

and we are done.

Suppose now that the above is not the case. So r < ρ(β, α) or ρ(β, α) is undefined. In the

later case define it just to take any value above r. Pick n < ω to be big enough such that

(α, n) does not appears in q. Extend q to q∗ by adding 〈α, n, gα(n)− 1〉 to its domain. Set

q∗(α, n, gα(n)− 1) = {(β, r, s)}.
�

Lemma 4.5 For every 〈β, r, s〉, 〈β, r′, s′〉 with β < ω1, r, r
′ < ω, r 6= r′, s < gβ(r), s′ < gβ(r′)

there are α < ω1 and even α < β + ω,n < ω,m < gα(n) such that 〈β, r, s〉, 〈β, r′, s′〉 ∈
connect′(α, n,m).

Proof. This follows by the density argument.

Assume that r < r′.

Let 〈q, ρ〉 ∈ Q. We will construct a stronger condition 〈q∗, ρ∗〉 as follows. First let us pick

α > β which does not appear in q. If the automatic connection between β and α starts at a

level ≤ r′ and the block s′ is connected by it, then just set ρ∗(β, α) = r′. Let n = r′ and m

be the block of the level n of α which corresponds to the block s′ of the level r′ of β. Extend

q to q∗ by adding 〈α, n,m〉 to its domain. Set q∗(α, n,m) = {(β, r, s)}.
Suppose now that the automatic connection between β and α starts at a level > r′ or it

starts at a level ≤ r′, but the block s′ is too low and remains unconnected by it.

Set then ρ∗(β, α) to be the place where automatic connection between β and α starts.

Pick a level n above it. Extend q to q∗ by adding 〈α, n, gα(n) − 1〉 to its domain. Set

q∗(α, n, gα(n)− 1) = {(β, r, s), (β, r′, s′)}.
�

The next lemma is similar.

Lemma 4.6 For every 〈β, r, s〉 with β < ω1, r < ω, s < gβ(r) and every α′, β + ω ≤ α′ < ω1

the following hold:

1. 〈β, r, s〉 ∈ aconnect′(α′, n′,m′), for some n′ < ω,m′ < gα′(n
′),

or
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2. there are α, β ≤ α < β + ω,n < ω,m < gα(n) such that 〈β, r, s〉 ∈ connect′(α, n,m)

and 〈α, n,m〉 ∈ aconnect′(α′, n′,m′), for some n′ < ω,m′ < gα′(n
′).

Proof. Use density argument.

Let 〈q, ρ〉 ∈ Q. If for some n′ < ω,m′ < gα′(n
′), the triples 〈β, r, s〉, 〈α′, n′,m′〉 are automat-

ically connected and ρ(β, α′) ≤ r, then the first possibility is forced by 〈q, ρ〉.
Suppose that this is not the case. Then for every n′ < ω,m′ < gα′(n

′), if the triples

〈β, r, s〉, 〈α′, n′,m′〉 are automatically connected, then ρ(β, α′) > r.

We will construct a stronger condition 〈q∗, ρ∗〉 as follows.

Pick some n′ < ω,m′ < gα′(n
′) such that (α′, n′,m′) 6∈ dom(q). In addition pick α, β < α <

β + ω which does not appear in q (possible since q is finite). Now, there are n, r < n <

ω,m < gα(n) such that 〈α, n,m〉 is automatically connected to 〈α′, n′,m′〉.
Set ρ∗ = ρ ∪ {((β, α),max(`(β, α), n)), ((α, α′), `(α, α′)} and let q∗ be obtained from q by

adding to its domain (α, n,m), (α′, n′,m′) and setting

(β, r, s) ∈ q∗(α, n,m), (β, r, s), (α, n,m) ∈ q∗(α′, n′,m′).
�

Lemma 4.7 For every α < ω1, n, n′ < ω and m < gα(n),m′ < gα(n′). connect′(α, n,m) ∩
connect′(α, n′,m′) is bounded in α, unless n = n′ and m = m′.

Proof. Note that the automatic connection has this property (even we have disjoint sets by

3.1). The additions made (if at all) are finite.

�

In order to realize the defined above connection there is a need in dropping cofinalities

technics. Thus, for example, for some α the very first block of α may be connected (by the

manual connection) to the last block of a level n > 0 of α+ 1. So, in order to accommodate

all the blocks of levels ≤ n of α + 1 on and below the very first block of α there is a need

to drop down below α. Note that on α − 1 there is enough places to which such blocks are

connected automatically, just starting with a higher enough level of α− 1.

In this respect α = 0 should be treated separately, since α − 1 does not exist and so

no place to drop. Let us just assume that all blocks of 0 are connected to blocks of 1

automatically. This can be achieved easily by changing g0, g1 a bit in order that numbers of

blocks fit together nicely.

Under the same lines, we would like to simplify the connection defined generically above a

bit more.
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First we assume (arrange) that for every limit α > 0,

gα+1(0) = gα+2(0) and ∀n > 0(gα+1(n) =
∑
k≤n

gα+2(k)),

i.e. the blocks of α + 1 and α + 2 fit precisely one to another.

Do the same 0 and 1, i.e.

g0(0) = g1(0) and ∀n > 0(g0(n) =
∑
k≤n

g1(k)).

We require that all connections to α+1 or to 0 from above go via α+2 or via 1, respectively,

and the only connections between α+ 2 and α+ 1, 1 and 0, are automatic with all blocks of

α + 1 (or of 0) connected to blocks of α + 2 (or, respectively, to 1) by a−connections.

This way α + 1 (or 0) will be used for dropping from α + 2 (or from 1).

Also, if α < α′ are both limit, then connections from α′+k′, 0 < k′ < ω to α+k, 0 < k < ω are

only a−connections. I.e. manual connections applied only between α+s, α+s′, 0 < s, s′ < ω

with a same limit α < ω1.

Note that in view of Lemma 4.6, no harm is made by such a change, i.e. each block of a

lower level will be still connected to blocks of arbitrary higher levels.

Let us define now explicitly the connections that will be used further in the main forcing

and will eventually give the desired pcf-structure.

Set

connect(0, 1) = {((n1,m1), (n2,m2)) | 〈0, n1,m1〉 is automatically connected to 〈1, n2,m2〉}.

Since

g0(0) = g1(0) and ∀n > 0(g0(n) =
∑
k≤n

g1(k)),

each block of each level of 0 will be connected automatically to those of 1.

Set aconnect(0, 1) = connect(0, 1).

Suppose now that α < ω1 is a limit non-zero ordinal. Set

connect(α + 1, α + 2) = {((n1,m1), (n2,m2)) | 〈α + 1, n1,m1〉

is automatically connected to 〈α + 2, n2,m2〉}.

Since

gα+1(0) = gα+2(0) and ∀n > 0(gα+1(n) =
∑
k≤n

gα+2(k)),
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each block of each level of α + 1 will be connected automatically to those of α + 2.

Set aconnect(α + 1, α + 2) = connect(α + 1, α + 2).

Let now 1 ≤ t1 < t2 < ω. Set connect(t1, t2) = connect′(t1, t2), aconnect(t1, t2) =

aconnect′(t1, t2) and mconnect(t1, t2) = mconnect′(t1, t2).

Let t, 1 < t < ω connect 0 to t via the connections of 0 to 1 and of 1 to t:

connect(0, t) = {((n0,m0), (n2,m2)) | ∃(n1,m1)(〈0, n0,m0〉 is automatically connected to

〈1, n1,m1〉 and ((n1,m1), (n2,m2)) ∈ connect(1, t))}.

aconnect(0, t) = {((n0,m0), (n2,m2)) | ∃(n1,m1)(〈0, n0,m0〉 is automatically connected to

〈1, n1,m1〉 and ((n1,m1), (n2,m2)) ∈ aconnect(1, t))}.

mconnect(0, t) = {((n0,m0), (n2,m2)) | ∃(n1,m1)(〈0, n0,m0〉 is automatically connected to

〈1, n1,m1〉 and ((n1,m1), (n2,m2)) ∈ mconnect(1, t))}.

We deal similar with α < ω1 which is a limit non-zero ordinal. Thus, let now α+2 ≤ α1 <

α2 < α + ω. Set connect(α1, α2) = connect′(α1, α2), aconnect(α1, α2) = aconnect′(α1, α2)

and mconnect(α1, α2) = mconnect′(α1, α2).

Let γ, α + 2 < γ < α + ω connect α + 1 to γ via the connections of α + 1 to α + 2 and of

α + 2 to γ:

connect(α + 1, t) = {((n0,m0), (n2,m2)) | ∃(n1,m1)(〈α + 1, n0,m0〉

is automatically connected to 〈α + 2, n1,m1〉

and ((n1,m1), (n2,m2)) ∈ connect(α + 2, γ))}.

aconnect(α + 1, t) = {((n0,m0), (n2,m2)) | ∃(n1,m1)(〈α + 1, n0,m0〉

is automatically connected to 〈α + 2, n1,m1〉

and ((n1,m1), (n2,m2)) ∈ aconnect(α + 2, γ))}.
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mconnect(α + 1, t) = {((n0,m0), (n2,m2)) | ∃(n1,m1)(〈α + 1, n0,m0〉

is automatically connected to 〈α + 2, n1,m1〉

and ((n1,m1), (n2,m2)) ∈ mconnect(α + 2, γ))}.

Let now β, ω < β < ω1 be a successor ordinal and 0 < t < ω. Define aconnect(t, β) =

aconnect′(t, β). Set

connect(t, β) = aconnect(t, β) ∪ {((n0,m0), (n2,m2)) | ∃t1 < ω∃(n1,m1)

(((n0,m0), (n1,m1)) ∈ connect(t, t1) and ((n1,m1), (n2,m2)) ∈ aconnect(t1, β))}.

Connect 0 to β via 1. Namely, we set

connect(0, β) = {((n0,m0), (n2,m2)) | ∃(n1,m1)(〈0, n0,m0〉 is automatically connected to

〈1, n1,m1〉 and ((n1,m1), (n2,m2)) ∈ connect(1, β))}

and

aconnect(0, β) = {((n0,m0), (n2,m2)) | ∃(n1,m1)(〈0, n0,m0〉 is automatically connected to

〈1, n1,m1〉 and ((n1,m1), (n2,m2)) ∈ aconnect(1, β))}.

Deal in a similar fashion with α < ω1 which is a limit non-zero ordinal.

Let β, α+ω < β < ω1 be a successor ordinal and α+2 ≤ γ < α+ω. Define aconnect(γ, β) =

aconnect′(γ, β).

Set

connect(γ, β) = aconnect(γ, β) ∪ {((n0,m0), (n2,m2)) | ∃γ1 < α + ω∃(n1,m1)

(((n0,m0), (n1,m1)) ∈ connect(γ, γ1) and ((n1,m1), (n2,m2)) ∈ aconnect(γ1, β))}.

Connect α + 1 to β via α + 2. Namely, we set

connect(α + 1, β) = {((n0,m0), (n2,m2)) | ∃(n1,m1)(〈α + 1, n0,m0〉

is automatically connected to 〈α+ 2, n1,m1〉 and ((n1,m1), (n2,m2)) ∈ connect(α+ 2, β))}

and

aconnect(α + 1, β) = {((n0,m0), (n2,m2)) | ∃(n1,m1)(〈α + 1, n0,m0〉 is automatically

connected to 〈α + 2, n1,m1〉 and ((n1,m1), (n2,m2)) ∈ aconnect(α + 2, β))}.
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5 The preparation forcing.

We would like to use a generic set for the forcing P ′ of Chapter 3 (Preserving Strong Car-

dinals) of [6] in order to supply models for the main forcing defined further. Some degree

of strongness of κα,n will be needed as well, for every successor or zero ordinal α < ω1 and

n < ω.

Two ways were described in Chapter 3 of [6]. Either can be applied for our purpose.

The first one is as follows.

Assume that for some regular cardinal θ the following set is stationary:

S = {ν < θ | ν is a superstrong with the target θ(i.e. there is i : V →M, crit(i) = ν

i(ν) = θ and M ⊇ Vθ)}.

Return to the definition of κγ’s and κγ,k’s. Let us choose them by induction such that

all κγ,k’s are from S. Suppose that 〈κγ,k | k < ω〉 is defined. Then κγ =
⋃
k<ω κγ,k. Let κ̃γ

be the next element of S. Pick κγ+1,0 to be an element of S above κ̃γ.

Force with P ′(θ) with a smallest size of models say ℵ8. Then, by Lemma 3.0.23 of Chapter 3

(Preserving Strong Cardinals) of [6], each κα,n will remain κ̃α–strong (and even κ+
ω1

–strong).

Moreover, P ′(κ̃α) is a nice subforcing of P ′(θ) by Lemma 3.0.18 of Chapter 3 (Preserving

Strong Cardinals) of [6], since Vκ̃α � Vθ due to the choice of κ̃α in S.

An other way, which uses initial assumptions below 0¶, is as follows.

Let θ be a 2-Mahlo cardinal and κ < θ be a strong up to θ cardinal. Pick δ, κ < δ < θ

a Mahlo cardinal such that Vδ ≺Σ1 Vθ. By Lemma 3.0.15 of Chapter 3 (Preserving Strong

Cardinals) of [6] or just directly, there will unboundedly many cardinals η < κ with δη < κ

such that the function η 7→ δη represents δ and Vδη ≺Σ1 Vθ. Then, by Lemma 3.0.18 of

Chapter 3 of [6], P ′(δη) is a nice subforcing of P ′(θ).
Denote by S the set of all such η’s.

Force now with P ′(θ). Let G′ be a generic. By Lemma 3.0.24 of Chapter 3 of [6], embeddings

wich witness δ-strongness of κ for large enough δ’s below θ extend in V [G′]. Then, below κ

in V [G′], we will have unboundedly many η’s which are strong up to δη for which

Vδη [G
′ ∩ Vδη ] ≺Σ1 Vθ[G

′], since every η ∈ S is like this.

We define now by induction κγ,k’s, κγ’s and κ̃γ’s using such η’s and δη’s.

Let η0 be the first element of S. Define κ̃0 be δη0 . Set κ00 to be the least element of S above

κ̃0. Let κ01 to be the least element of S above δκ00 . Continue by induction. Suppose that

n < ω and κ0n ∈ S is defined. Let then κ0n+1 to be the least element of S above δκ0n .
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Set κ0 =
⋃
k<ω κ0k.

Continue to γ > 0 in a similar fashion.

Thus, if γ, 0 < γ < ω1 is a limit ordinal and 〈κγ′ | γ′ < γ〉 is defined, then set κγ =
⋃
γ′<γ κγ′ .

Suppose now that κγ is defined. Define 〈κγ+1,k | k < ω〉 and κγ+1.

Let κ̃γ = δη for the least η > κγ, η ∈ S. Pick κγ+1,0 to be the first η ∈ S above κ̃γ and κγ+1,1

to be the first η ∈ S above δκγ+1,0 , etc. Finally, set κγ+1 =
⋃
k<ω κγ+1,k.

6 Suitable and suitable generic structures.

Suitable structures and suitable generic structures are defined similar to those in Sections

1.2 or 2.4 of [6].

Let us briefly address main components of the preparation forcing P ′ (P ′(θ)) used here.

A typical member of P ′ is of the form 〈〈A0τ , A1τ , Cτ 〉 | τ ∈ s〉.

• s is a closed set of cardinals from the interval [ℵ8, θ] having the Easton support.

For every τ ∈ s the following holds:

• A1τ is a set of cardinality at most τ consisting of elementary submodels of H(θ) of size

τ , and A0τ is its largest element under both ∈,⊆.

• Cτ (pistes) is function with domain A1τ which attach to every X ∈ A1τ an increasing

continuous sequence of models in (X ∩A1τ )∪{X} with X being the maximal element.

• The basic property here is that every B ∈ A1τ can be reached in finitely many steps

from the top model A0τ going down by pistes of Cτ .

• For every τ ∈ s, Cτ (A0τ ) is called τ−central line and 〈Cτ (A0τ | τ ∈ s〉 is called central

line (or the main piste ) of the condition 〈〈A0τ , A1τ , Cτ 〉 | τ ∈ s〉.

It is allowed to change directions of pistes (this is called switching) of elements of P ′ in

the obvious sense, i.e. at splitting points we can choose a direction which is different from

one given by the central line. Such process will create a new central line. This way equivalent

conditions (in the forcing sense) are obtained.

The order (pre-order) on P ′ is defined by combining switchings with end-extensions.

The notions of a suitable and suitable generic structures (from SEF I) are used in the

main forcing.

The idea is to code elements of P ′ as a single structure (i.e. not three sorted as appears in
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the definition of P ′) and then to deal with isomorphisms of such structures over different

cardinals. Suitable structures are such codes. Let us recall the definition.

Definition 6.1 A structure X = 〈X ∪ {X}, E, C ∈,⊆ 〉, where E ⊆ [X ∪ {X}]2 and

C ⊆ [X ∪ {X}]3 is called suitable structure iff there is

p(X) = 〈〈A0τ (X), A1τ (X), Cτ (X)〉 | τ ∈ s(X)〉 ∈ P ′ such that

1. X = A0κ+(X),

2. s(X) ∈ X,

3. s(X) ⊆ X,

4. 〈a, b〉 ∈ E iff a ∈ s(X) and b ∈ A1a(X),

5. 〈a, b, d〉 ∈ C iff a ∈ s(X), b ∈ A1a(X) and d ∈ Ca(X)(b).

We will use further suitable structures over β of level n, where β = 0 or is a successor

ordinal < ω1 and n < ω. The definition is the same only P ′ is replaced by P ′ ∩ Vδκβ,n .

Let G(P ′) be a generic subset of P ′.
A suitable generic structure is basically a substructure (not necessarily elementary) of the

suitable structure generated by an element of G(P ′). It can and, typically, would have a

smaller cardinality, which is archived by omitting some models from the pistes.

Let us state the main properties.

A suitable structure X = 〈X,E,C ∈,⊆ 〉 is called suitable generic structure iff there is

〈〈A0τ , A1τ , Cτ 〉 | τ ∈ s〉 ∈ G(P ′) such that

• 〈〈A0τ , A1τ , Cτ 〉 | τ ∈ s \ {µ}〉 ∈ A0µ, where µ ∈ s is a regular cardinal and it is the

least size of models of our particular interest. Typically, µ is a successor of a singular

cardinal which power blows up and the forcing used for this purpose satisfies µ+−c.c.

For example, in our particular setting, once we would like to show that κ++
α is preserved,

for some α < ω1, µ = κ+
α will be taken.

• X is a substructure (not necessarily elementary) of the suitable structure generated by

〈〈A0τ , A1τ , Cτ 〉 | τ ∈ s〉, i.e.

〈A0µ ∪ {A0µ}, {〈τ, B〉 | τ ∈ s, B ∈ A1τ}, {〈τ, B,D〉 | τ ∈ s, B ∈ A1τ , D ∈ Cτ (B)},

• X ∈ Cµ(A0µ),
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• p(X) (the decoding of X) and 〈〈A0τ , A1τ , Cτ 〉 | τ ∈ s〉 agree about the pistes to members

of X ∩
⋃
{A1τ | τ ∈ s}. In other words we require that all the elements of pistes in

〈〈A0τ , A1τ , Cτ 〉 | τ ∈ s〉 to elements of X ∩
⋃
{A1τ | τ ∈ s} are in X.

The idea here is to reduce the cardinality of the structure still keeping all the essential

information.

7 Types of Models

Force with P ′. Let G′ ⊆ P ′ be a generic subset. Work in V [G′]. For each successor or zero

ordinal α < ω1 and n < ω let us fix a (κα,n, κ
++
α,n,gα(n)−1,ω1

)– extender Eαn, i.e. an extender

with the critical point κα,n which ultrapower contains Vκα,n,gα(n)−1,ω1
+2.

Also, using GCH (we assume GCH in V and then it will holds in V [G′] as well), fix an

enumeration 〈xγ | γ < καn〉 of [καn]<καn so that for every successor cardinal δ < καn the

initial segment 〈xγ | γ < δ〉 enumerates [δ]<δ and every element of [δ]<δ appears stationary

many times in each cofinality < δ in the enumeration. Let jαn(〈xγ | γ < καn〉) = 〈xγ | γ <
jαn(καn)〉, where jαn is a canonical embedding of Eαn. Then 〈xγ | γ < κ++

α,n,gα(n)−1,ω1
〉 will

enumerate [κ++
α,n,gα(n)−1,ω1

]
≤κ+

α,n,gα(n)−1,ω1 .

For every k < ω, we consider a structure

Aα,n,k = 〈H(χ+k),∈,⊆,≤, χ, Eαn, 〈κβ | β < ω1〉,

〈κβs | β < ω1 is a successor ordinal or zero , s < ω〉,

〈κβ,s,r,i | β < ω1 is a successor ordinal or zero , s < ω, r < gβ(s), i ≤ ω1〉,

〈xγ | γ < κ++
α,n,gα(n)−1,ω1

〉, G′, θ, 0, 1, . . . , ξ, . . . | ξ < κ+k
αn〉

in an appropriate language which we denote Lα,n,k, with a large enough regular cardinal χ.

Note that we have G′ inside, so suitable structures may be chosen inside G′ or G′∩P ′(κα,n).

Let L′α,n,k be the expansion of Lα,n,k by adding a new constant c′. For a ∈ H(χ+k) of

cardinality less or equal than κ+
α,n,gα(n)−1,ω1

let Aα,n,k,a be the expansion of Aα,n,k obtained

by interpreting c′ as a.

Let a, b ∈ H(χ+k) be two sets of cardinality less or equal than κ+
α,n,gα(n)−1,ω1

. Denote

by tpα,n,k(b) the Lα,n,k-type realized by b in Aα,n,k. Further we identify it with the ordinal

coding it and refer to it as the k-type of b. Let tpα,n,k(a, b) be a the L′α,n,k-type realized by

b in Aα,n,k,a. Note that coding a, b by ordinals we can transform this to the ordinal types of

[2].
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Now, repeating the usual arguments we obtain the following:

Lemma 7.1 (a) |{tpα,n,k(b) | b ∈ H(χ+k)}| = κ+k+1
αn

(b) |{tpα,n,κ(a, b) | a, b ∈ H(χ+k)}| = κ+k+1
αn

Lemma 7.2 Let A ≺ Aα,n,k+1 and |A| ≥ κ+k+1
αn . Then the following holds:

(a) for every a, b ∈ H(χ+k) there c, d ∈ A ∩H(χ+k) with tpα,n,k(a, b) = tpα,n,k(c, d)

(b) for every a ∈ A and b ∈ H(χ+k) there is d ∈ A ∩H(χ+k) so that

tpα,n,k(a ∩H(χ+k), b)=tpα,n,k(a ∩H(χ+k), d).

Lemma 7.3 Suppose that A ≺ Aα,n,k+1, |A| ≥ κ+k+1
αn . Let τ be an ordinal less than

κ+
α,n,gα(n)−1,ω1

those k + 1-type is realized unboundedly often below κ+
α,n,gα(n)−1,ω1

. Then there

are τ ′ and A′ ≺ A∩H(χ+k) such that τ ′, A′ ∈ A and 〈τ ′, A′〉 and 〈τ, A∩H(χ+k)〉 realize the

same tpα,n,k. Moreover, if |A| ∈ A, then we can find such A′ of cardinality |A|.

Lemma 7.4 Suppose that A ≺ Aα,n,k+1, |A| ≥ κ+k+1
αn , B ≺ Aα,n,k, and C ∈ P(B) ∩ A ∩

H(χ+k). Then there is D so that

(a) D ∈ A

(b) C ⊆ D

(c) D ≺ H(χ+k).

(d) tpα,n,k(C,B) = tpα,n,k(C,D).

8 The Main Forcing.

Generic connections (connect(α1, α2)’s, aconnect(α1, α2)’s,mconnect(α1, α2)’s)

were defined in Section 4. Our aim here will be to define a forcing that turns them into

pcf-structure.

In order to do this, we realize the connection as isomorphism functions between suitable

structures.

It is rather natural to define (see 8.1.1 below) such isomorphisms for automatically connected

blocks, i.e. those in aconnect(α1, α2)’s.

A slight complication here is that rather than connecting (i.e. making correspond by iso-

morphisms) blocks of cardinals provided by the automatic connection, we connect the one
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element Prikry sequences (i.e. indiscernibles) of higher blocks to blocks below. The reason

for doing this is that the cardinals outside of blocks of indiscernibles naturally belong to

pcf-generators for some κ+
α ’s, since GCH is assumed in the ground model. This will not

allow us to proceed all the way up to κ+
ω1

.

Turn now to the manual connection.

Let us explain the reason for using it at all.

The point is that without it there will be plenty blocks that left unconnected to higher ones.

Just note that the functions gα, α < ω1, α = 0 or α is a successor ordinal, which were used

for the connections, satisfy

gα(n) ≥
n∑

m=0

gβ(m) ,

for β > α and actually,

gα(n) >
n∑

m=0

gβ(m) ,

must hold at many places. This strong inequality generates unconnected (automatically)

blocks from the level α to the level β.

Now this unconnected blocks (or more precisely the cardinals inside them) will be then in

pcf-generators of some κ+
ξ , for limit ξ’s below ω1. Then the Localization Property ([12]) will

not allow to climb all the way up to κ+
ω1

.

A complication with manual connections is that in contrast with the automatic ones, the

number of blocks does not fit together nicely.

For example - for some α < β < ω1, α limit non-zero ordinal and α + 2 < β < α + ω,

the very first block of the first level [κ+
α+2, κ

+
α+2,0,0,ω1

] of α+ 2 may correspond (by a manual

connection) to say 10-th block of the second level of β, i.e. to [κ++
β,1,9,ω1

, κ+
β,1,10,ω1

].

Now, by No Hole Principle ([12]), the blocks of β starting from 9 and below (or their regular

cardinals) should be connected to those below the first of α + 2. However, α + 2 has no

blocks below its first one.

The solution is to drop down to α + 1. In order to so, we need a variation of a drop in

cofinality which was used in Section 4 of [6].

The situation (a bit simplified one) is as follows. Suppose that we would like to have a nice

scale of functions 〈fξ | ξ < µ+3〉 in
∏

n<ω µ
+n+2, for some regular cardinals µn’s unbounded in

µ such that {µ+rn
n | n < ω, rn < n+2} correspond to µ+. We must have that {µ+n+2 | n < ω}

corresponds to µ+3. But what about µ++? Usually, the set which correspond to it is obtained

from the one for µ+3 by reducing each member by one, i.e. {µ+n+1 | n < ω}. But here we

have that {µ+n+1 | n < ω} corresponds to µ+. So, going down is needed in order to realize
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such configuration. Namely, for ξ’s less than µ+3 of cofinality µ++, the cofinality of fξ(n)’s

should drop down below µn.

We turn now to the definition of the main forcing P . Let us split the definition into

ω–many steps. First we define pure conditions P0, at the next step P1 will be the set of all

one step non direct extensions of elements of P0, then P2 will be the set of all one step non

direct extensions of elements of P1, etc. Finally P will be
⋃
n<ω Pn.

Definition 8.1 The set P0 consists of all sequences

〈pα | α < ω1 and (α = 0 or α is a successor ordinal )〉

such that pα = 〈pαβ | α < β < ω1 is a successor ordinal 〉, and for all n < ω, α < β <

ω1 is a successor ordinal ,

pαβ = 〈pαβx | x ∈ connect(α, β)〉, where for every x ∈ connect(α, β),

pαβx = 〈aαβx, Aαβx, fαβx〉 is such that:

1. (Automatic connection)

If x ∈ aconnect(α, β), x = ((n1, k1), (n2, k2)), for some k1, k2, n1, n2 < ω, 3 then

(a) Aαβx = Aαn1 , i.e. it does not depend on β, x, but rather on on level n1 of α (and

α itself).

It is a set of measure one for some measure of the extender Eκαn1 . Denote the

corresponding coordinate in Eκαn1 by coor(Aαn1).

(b) aαβx = aαβn1 , i.e. it depends on α, β and n1 only.

(c) aαβn1 is an isomorphism between a (
∏

k≤n1
Aβk)−name of a generic suitable struc-

ture X∼
β
αβn1

of size < καn1 over β of the level n1 and a suitable structure Xα
αβn1

of

α of the level n1.

(d) For each k ≤ n1 and η ∈ Aβk let us denote by ρβk the projection of η to the

normal measure of the extender Eβk.

For each m < gβ(k) and γ ≤ ω1 let ρβkmγ be πcoor(Aβk)κβkmγ (η), i.e. the indis-

cernible which corresponds to κβkmγ, where coor(Aβk) is the coordinate of Eκβk

to which Aβk belongs.4

We require that for each

3Note that then ρ(α, β) ≤ n2 ≤ n1 and the level n1 of β is also automatically connected to the level n1
of α.

4It is not hard to arrange that ρβk already determines all ρβkmγ ’s, for every k ≤ n1,m < gβ(k) and
β < γ ≤ ω1.
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〈η0, ..., ηn1〉 ∈
∏

k≤n1
Aβk, for every k ≤ n1,m < gβ(k) and β < γ ≤ ω1,

aαβn1 [〈η0, ..., ηn2〉] (i.e. the interpretation of aαβn2 according to 〈η0, ..., ηn2〉) is the

isomorphism between X∼
β
αβn1

[〈η0, ..., ηn2〉] and Xα
αβn1

which maps models of sizes

ρβkmγ and (ρβkmγ)
+ to models over the level n1 of α of cardinalities καn1m∗γ and

(καn1m∗γ)
+ respectively, where m∗ = (gα(n1)−

∑n1

s=k gβ(s)) + m (i.e. we start as

far right as possible).

This means, in particular, that once a non-direct extension was made at the level

n1 of α, then ρβkmγ and (ρβkmγ)
+ will correspond to ραn1m∗γ and (ραn1m∗γ)

+ re-

spectively.

Models of sizes from the interval ((ρβkm−1ω1)
+, ρβkmβ+1) will be connected with

models of sizes in the interval (κ+
αn1m∗0, καn1m∗β+1), if m > 0.

If m = 0 and k > 0, then models of sizes from ((ρβk−1gβ(k−1)−1ω1)
+, κβk−1) ∪

[κβk−1, ρβk0β+1) will be connected with (κ+
αn1m∗0, καn1m∗β+1).

If m = 0 and k = 0, then (κβ−1, ρβ00β+1) will be connected with

(καn1m∗β, καn1m∗β+1).

(e) fαβx = fαβn1 is a (
∏

k≤n1
Aβk)−name of a partial function from κβ,n1 to κα,n1 of

cardinality at most κβ−1.

2. (Manual connection)

x ∈ mconnect(α, β), x = ((n1, k1), (n2, k2)), for some k1, k2, n1, n2 < ω.

The cardinals corresponding is similar to the case of the automatic connection. Note

that m−connection connects to a single level and the rest drops down. Describe such

droppings.

Describe now manual connections droppings and state commutativity requirements.

Suppose that two blocks of some levels of β are connected to the same block of some

level of α. In particular, one (at least one) must be then m−connected.

Let (α, n,m) be connected with (β, r, s) and (β, r′, s′), where β > α, r′ > r.

It may be the case that r′ ≤ n, and then necessary (β, r′, s′) is a part of a−connection

of the level n of β to the level n of α.

By genericity of connections, there will be γ, β < γ < β +ω,t, u < ω such that (γ, u, t)

is a−connected to (β, r′, s′) and (β, r, s) is m−connected to it.

We will require the obvious commutativity here in the further item (7).

Similar we treat the situation in which β > α + ω is connected (a−connection, since

β > α+ω) to (α, n), but its connection to α+1 starts above level n, i.e. ρ(α+1, β) > n.
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Thus, by genericity of connections, there will be some (r, s)(actually, there will be

infinitely many such r’s) so that (α, n, gα(n)− 1) is connected manually to (α+ 1, r, s)

and also, (β, n) is a−connected to it. We will require commutativity here as well.

This way, in particular, we will not loose information on connection of (β, n), (α, n)

once a non-direct extension made over α + 1.

Let us describe dropping in cofinality that occurs here.

Suppose that α is a non-limit ordinal, β > α + 1 and we have the following:

(β, n′) connected to levels n and n′ of α + 1 (say n′ > n), with a−connection to

(α + 1, n′).

Both (α + 1, n), (α + 1, n′) are connected to a same level at α.

It may be the case that level n of α is a−connected with the level n of α + 1, but

it is possible that this does not occurs and then a block (α, k, l) is m−connected to

blocks (α+ 1, n,m) and (α+ 1, n′,m′). Consider the least block s′ < gα+1(n′) which is

connected to α (i.e. to k−th level of α). Then below it the drop to α− 1 occurs.

If the connection from α to the n−th level of α + 1 is not automatic, then there will

be s < gα+1(n) the last with connection to α (i.e. to k−th level of α). So, again, drop

will occur here to α − 1. We have n′ big enough so the connections to (α + 1, n′),

(α+ 1, n) which are from n′−level of β cover all blocks including s, s′ (counting down

from above). So, commutativity requirements apply to all relevant blocks before those

that drop to α− 1.

Let n′ drops to some ñ′ ≥ n′ (over α − 1) and n to ñ ≥ n, where ñ′, ñ depend on

places where the a−connection between β and α − 1 starts to work. Also ñ′ > ñ.

This implies that the corresponding assignment functions ( b∼’s) will have domains of

different cardinalities (< κα−1ñ′ and < κα−1ñ). Repeat Section 4 of [6] and split into

intervals over central pistes of suitable structures.

3. Let β be a successor ordinal. Assume that for some successor or zero ordinal α < β

and x ∈ connect(α, β), aα,β,x is defined. Then for every Z ∈ dom(aα,β,x), for every

k < ω

the set

{(γ, y) | γ < β, x ∈ connect(γ, β), aγ,β,y is defined, Z ∈ dom(aγ,β,y) and

¬(aγ,β,y(Z) ∩H(χ+k
γ,n1

) � H(χ+k
γ,n1

))} is finite,

where y = ((n1,m1), (n2,m2)) and χγ,n1 is a regular cardinal large enough in the

interval (κ++
γ,n1,gγ(n1)−1,ω1

, κγ,n1+1)

22



4. Let α be zero or a successor ordinal and β, α < β < ω1, be a successor ordinal. Suppose

that ((n1,m1), (n2,m2)), ((n′1,m
′
1), (n′2,m

′
2)) ∈ aconnect(α, β) and n1 < n′1. Then

dom(aαβ((n1,m1),(n2,m2))) ⊆ dom(aαβ((n′1,m
′
1),(n′2,m

′
2))).

5. Let α be zero or a successor ordinal and β, α < β < ω1, be a successor ordinal. Suppose

that ((n1,m1), (n2,m2))) ∈ mconnect(α, β) and ((n′1,m
′
1), (n2,m2))) ∈ aconnect(α, β).

Then dom(aαβ((n1,m1),(n2,m2))) ⊆ dom(aαβ((n′1,m
′
1),(n2,m2))).

6. Let α be zero or a successor ordinal and β, α < β < ω1, be a successor ordinal. Suppose

that x ∈ connect(α, β). Then dom(fαβx) ∩ dom(aαβx) = ∅.

7. (Commutativity of connections) Let α be zero or a successor ordinal and β, γ be suc-

cessor ordinals, α < β < γ < ω1 and n < ω. Assume that kα−th block of nα−th level

of α is connected to kβ−th block of a level nβ of β and to kγ−th block of a level nγ of

γ. Suppose that in addition that kβ−th block of a level nβ of β and kγ−th block of a

level nγ of γ are connected.

Then for each Z ∈ dom(aαγ((nα,kα),(nγ ,kγ))) we have Z ∈ dom(aβγ((nβ ,kβ),(nγ ,knγ))) and

aαγ((nα,kα),(nγ ,kγ))(Z) = aαβ((nα,kα),(nβ ,kβ))(aβγ((nβ ,kβ),(nγ ,kγ))(Z)
∼

),

where aβγ((nβ ,kβ),(nγ ,kγ))(Z)
∼

is a name of the indiscernible

which corresponds to aβγ((nβ ,kβ),(nγ ,kγ))(Z).

Definition 8.2 (One element extension.)

Suppose p = 〈pα | α < ω1 and (α = 0 or α is a successor ordinal )〉 ∈ P0, α < ω1 be zero

or a successor ordinal, β, α < β < ω1 a successor ordinal and x = ((nα,mα), (nβ,mβ)) ∈
connect(α, β). Let pαβx = 〈aαβx, Aα,x, fαβx〉 and η ∈ Aα,x.
Assume that nα = 0. In general, if nα 6= 0, then taking a non-direct extension over the level

nα we would like simultaneously to make a non-direct extension at each level n < nα over α.

Define p_η, the one element non direct extension of p by η, to be q = 〈qξ | ξ < ω1 and (ξ =

0 or ξ is a successor ordinal )〉 so that

1. for every ξ, ζ, α < ξ < ζ < ω1, y ∈ connect(ξ, ζ), pξζy = qξζy,

2. for every y ∈ connect(α, γ) with the level on α bigger than nα we have pαβy = qαβy.

3. for every successor ordinal γ, α < γ < ω1,

qαγy = fαγy ∪ {〈τ, πEκα,nαmc(α,n),aαγy(τ)(η)〉 | τ ∈ dom(aαγy)},

where y ∈ connect(α, γ) and the level of y over α is nα as those of x.
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4. Let α′, τ ,α′ > α > τ , be successor ordinals or zero. Then connections aτα′y of p

will split now in q into connections from α′ to α followed by a connection from α

to τ . Namely, let 〈τ, r, s〉 be connected with 〈α′, n′,m′〉. For each (n,m) such that

((n,m), (n′,m′)) ∈ aconnect(α′, α) and 〈τ, r, s〉 ∈ connect(α, n,m) (there are such

n,m by Lemma 4.5) split a(α′,n′,m′),(γ,r,s) into a(α′,n′,m′),(α,n,m) followed by a(γ,r,s),(α,n,m).

5. For each level n′ < nα of α, the same things occur, i.e. 2-4 above hold with (nα,mα)

replaced by (n′, k′), where k′ is any block of the level n′.

6. For every connection which drops in cofinality below the block of η, i.e. below the

level nα of α, we freeze such drops and deal only with drops to cofinalities above η in

a fashion used in Section 6 of [6] for same purpose.

Definition 8.3 Set P1 to be the set all p_η as in Definition 8.2. Proceed by induction. For

each n < ω, once Pn is defined, define Pn+1 to be the set of all p_η, where p ∈ Pn. Finally

set P =
⋃
n<ω Pn.

Definition 8.4 Let p, q ∈ P .

1. We say that p is a direct extension of q and denote this by p ≥∗ q iff p is obtained

from q by extending aαβx, fαβx’s and by shrinking the sets of measures one probably

by passing to bigger measure first.

2. The forcing order ≥ is defined as follows:

p ≥ q iff there are q1, ..., qn ∈ P , η1, ..., ηn such that

(a) q ≤∗ q1,

(b) for every k, 1 ≤ k ≤ n, qk
_ηk ∈ P ,

(c) for every k, 1 ≤ k < n, qk
_ηk ≤∗ qk+1,

(d) qn
_ηn ≤∗ p.

For each α < ω1. P splits into (P\κα) ∗P � κα+1, where P\κα is the part of P is defined

as P but with κα+1 replacing κ0, i.e. everything is above κα and the first cardinal we deal

with is κα+1,0. P � κα+1 is defined in V [G′]P\κα as P was defined in V [G′], but cutting

everything at κα+1, where G′ = G(P ′) is a generic subset of the preparation forcing P ′.
Let us prove now the Prikry condition.

24



Lemma 8.5 〈P ,≤,≤∗ 〉 is a Prikry type forcing notion.

Proof. Work in V [G(P ′)]. Let σ be a statement of the forcing language and p ∈ P . Suppose

for simplicity that p ∈ P0.

We peak an elementary chain of elementary submodels of Hχ (for χ big enough)

〈M(καn, ξ) | α < ω1, 0 or non-limit ordinal , n < ω, ξ ≤ καn〉

such that

1. p, σ ∈M(κ00, 0),

2. |M(καn, ξ)| = καn,

3. if ξ is a limit ordinal then M(καn, ξ) =
⋃
ξ′<ξM(καn, ξ

′),

4. 〈M(καn, ξ
′) | ξ′ < ξ〉 ∈M(καn, ξ), for every successor ξ,

5. 〈M(καn, ξ) | ξ ≤ καn〉 ∈M(καn+1, 0),

6. 〈M(καn, ξ) ∈ G(P ′).

7. Let M(κω1) =
⋃
α<ω1,n<ω

M(καn, καn).

Then

(a) M(κω1) ∈ G(P ′),

(b) each model M(καn, ξ) is on the main piste of M(κω1).

Proceed by induction. Suppose we got to level n of some α. Denote by X the corre-

sponding set of measure one of the condition q built (i.e. Aαn of it). Continue by induction

on members of X. We use here models 〈M(καn, ξ) | ξ ≤ καn〉. Thus, if ν ∈ X, then work

inside M(καn, ν + 1). We ask if there is an extension of q(ν)_ν (where q(ν) was formed on

the previous stage) which decides σ and is a direct extension above α, n. If so, then pick such

extension and add M(καn, ν + 1) to be the largest model. Otherwise, we make no change.

Non-direct parts below α, n will be stabilized once all ν’s in X are considered. More precisely,

we stabilize each 〈τ ν1 , ..., τ νs 〉 that is below ν and a direct extension of q(ν)_〈τ ν1 , ..., τ νs 〉
_ν

decides σ. Isomorphisms between structures (a’s) and Cohen functions (f ’s) below are dealt

as names depending on ν’s.

Being of models M(κβm)’s on the central line of M(κω1) allows freely to take unions.

�
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Lemma 8.6 〈P ,≤ 〉 does not add new bounded subsets to κ0.

Proof. Let p ∈ P , z∼ be a P−name and p  z∼ is a bounded subset of κ0. Extending p if

necessary we can assume that p  z∼ ⊆ κ0m, for some m < ω. Extend p further, if necessary,

and assume that non-direct extensions were made in it at every level n ≤ m of 0.

Pick an elementary submodel M � Hχ of cardinality κ+
0 such that

1. p, z∼ ∈M ,

2. M ∈ G(P ′),

3. there is an increasing continuous sequence 〈Mξ | ξ < κ0m〉 of elementary submodels of

M such that

(a) p, z∼ ∈M0,

(b) 〈Mξ | ξ < κ0m〉 on the piste of M of models of size κ+
0 ,

(c) M =
⋃
ξ<κ0m

Mξ.

Now, we use the previous lemma 8.5 and build by induction a ≤∗ −increasing sequence

〈p(ξ) | ξ < κ0m〉 of extensions of p such that p(ξ) ∈Mξ+1 and p(ξ)‖ξ ∈ z∼.

We have enough closure to run the process and eventually the upper bound of 〈p(ξ) | ξ < κ0m〉
will decide z∼ completely.

�

Similar argument gives the following:

Lemma 8.7 For every α < ω1, 〈P \ κα,≤ 〉 does not add new bounded subsets to κα+1.

Define now ←→ and −→.

Definition 8.8 Let p, q ∈ P . Set p←→ q iff there is α < ω1 such that

1. p \ κα = q \ κα,

2. for every k < ω, for all but finitely many β ≤ α, for all but finitely many n < ω the

following hold:

(a) if no non-direct extension was made at the level n of β in pβ and qβ, then

0P\κβ P\κβ over the level n of β the following hold in pβ and qβ:

i. f ’s, A’s and dom(a)’s are the same,
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ii. rng(a)’s realize the same k-type;

(b) if a non-direct extension was made at the level n of β in one of pβ or qβ, then it

was made in another as well, and they are equal.

This means basically that p � κα+1 ←→P�κα+1 q � κα+1,

where ←→P�κα+1 states that for each k < ω all but finitely many coordinates realize

the same k-type.

Now we define −→ in the usual fashion.

Definition 8.9 Let p, q ∈ P . Set p −→ q iff there is a sequence of conditions 〈rk | k < m <

ω〉 so that

(1) r0 = p

(2) rm−1 = q

(3) for every k < m− 1,

rk ≤ rk+1 or rk ←→ rk+1 .

Lemma 8.10 Let α < ω1. Then, in V P
′∗P\κα, the forcing 〈P � κα+1,−→ 〉 satisfies κ++

α -c.c.

Proof. Suppose otherwise. Assume that

0P\κα P\κα {p∼ξ
| ξ < κ++

α } ⊆ P � κα+1 is an antichain .

Force over V [G(P ′)] (not over V [G(P ′)][G(P \ κα)]!) with the obvious forcing (i.e. initial

segments) which produces a κ++
α -chain of members of G(P ′) of size κ+

α . This forcing does

not add new sequences of length ≤ κ+
α .

Pick an elementary submodel M � Hχ of such generic extension which is a union of an

elementary chain 〈Mξ | ξ < κ++
α 〉 of its elementary submodels of size κ+

α which are in G(P ′),
and such that for every ξ < κ++

α ,

〈Mξ′ | ξ′ < ξ〉 ∈Mξ and is on the central piste of Mξ.

Now we proceed by induction. On stage ξ decide p
∼ξ

inside Mξ and add Mξ as a largest

model. The rest of the proof follows completely the lines of the analogues arguments for

short extenders forcings (see, for example, Sec 1 of [6]). Eventually, we will have ξ < ρ < κ++
α

and a condition in P \ κα which forces compatibility of p
∼ξ

and p
∼ρ

.

�
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Lemma 8.11 The forcing 〈P ,−→ 〉 over V [G′] preserves all the cardinals (and every cofi-

nality).

Proof. Let η be a cardinal in V [G′]. We show by induction on α < ω1 that if η ≤ κα then

it is preserved in the generic extension. Clearly, it is enough to deal only with regular η’s.

Hence, we need to consider only the following situation:

κα < η < κα+1,

for some α < ω1. Split the forcing P into P\κα followed by P � κα+1. By Lemma 8.7, P\κα
does not add new bounded subsets to κα+1 (namely, this lemma together with the Prikry

condition imply that no new subsets are added to κα+1,0, but taking non-direct extensions

over κα+1,n’s it is easy to push this up to κα+1). By Lemma 8.10 the forcing P � κα+1

preserves all the cardinals above κ+
α . So, the only case that remains is η = κ+

α . But it is

not problematic, since we have here the successor of the singular cardinal and the usual

arguments apply.

�

Lemma 8.12 For every α < ω1, α non-accumulation point (i.e. α = 0 or α non-limit

ordinal) the following hold in V P
′∗〈P,−→〉:

pcf({(ραnmω1)
+ | n < ω,m < gα(n)}) \ κα =

{(ρβrsω1)
+ | α < β < ω1 is a successor ordinal, r < ω, s < gβ(r)} ∪ {κ+

ω1
},

moreover, for every limit γ, α < γ < ω1,

pcf({(ραnmγ)+ | n < ω,m < gα(n)}) \ κα =

{(ρβrsγ)+ | α < β < γ is a successor ordinal, r < ω, s < gβ(r)} ∪ {κ+
γ },

where ρδtuξ denotes the indiscernible for κδtuξ.

Proof. The proof is by induction on β using the assignment functions (a’s) of the conditions

and that pcf(pcf(A)) = pcf(A).

�
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9 Concluding remarks.

The construction of the previous section gives a countable set of regular cardinals a with

otp(pcf(a)) = ω1 + 1. It is natural to try to get a bigger order type. The present methods

allow to obtain ω1 · α + 1, for every α < ω1. Just repeat the construction α– many times

(one above another). However it is unclear how to get to ω1 ·ω1 + 1 and beyond. In addition

the resulting countable set a will have the order type ω · α, and it is unclear whether it is

possible to have a set of regular cardinals a of order type ω with otp(pcf(a)) > ω1 + 1.

Question 1. Is it possible to increase otp(pcf(a)) beyond ω1 · ω1, for a countable set of

regular cardinals a?

We think that it may be possible under same lines, but using more elaborated techniques,

to get any successor order type < ω2.

Shelah Weak Hypothesis (SWH) states that the set

{η | η < κ, η is a singular cardinal and pp(η) > κ}

is at most countable.

The construction of the previous section provides a counterexample, but very restricted one.

The cardinality and even the order type there is ω1. So the following question is natural:

Question 2. Is it possible to increase the cardinality of the set

{η | η < κ, η is a singular cardinal and pp(η) > κ}

beyond ω1, for a cardinal κ?

Note that no upper bound on cardinality of

{η | η < κ, η is a singular cardinal and pp(η) > κ}

is known.

Going further beyond ω1, in view of results of [7] and [9] will require some completely new

ideas. The same once one likes to have a set {η | η < κ, cof(η) > ω, pp(η) > κ} infinite, for

some κ.

Question 3. How to move everything down, in particular is it possible to get down to

ℵω?

It is possible to add collapses to the present construction, but only very inessential ones.

By [8], the supercompact Prikry forcing looks be needed in order to collapse successors of

singular cardinals, but this complicates the matters largely. It is unclear how to combine

this forcing with short extenders forcings in a productive way.
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