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We would like to present a way of doing of short extenders forcings without forcing first

with a preparation forcings of type P ′ of [3]. The main issue with short extenders forcings is to

show that κ++ and cardinals above it are preserved in the final model. In [3] the preparation

forcing (which added a structure with pistes) was used eventually to show κ++-c.c. of the

main forcing. A negative side of this preparation forcing is that it is only strategically closed

which is not enough in order to preserve large cardinals like a supercompact. Actually it

adds a version of the square principle which is incompatible with supercompacts [4].

Carmi Merimovich [8] used for the gap 3 a variation of Velleman’s simplified morass [12]

instead. κ++-c.c. break down but he was able to show κ++–properness instead. The forcing

adding a simplified morass is directed closed enough in order to preserve supercompacts

cardinals. Unfortunately generalizations (at least those that we considered) of Merimovich’s

idea of first adding a simplified morass and then to use a properness instead of a chain

condition of the main forcing, run into server difficulties already for Gap 4.

Here we suggest an other way. The main forcing will be used directly over V without a

preparation. Actually a simple version of the preparation forcing of [3] will be incorporated

directly into the main forcing. Again as in [8] κ++-c.c. will break down and we will show a

properness instead.

In this paper we will deal with a simplified situation - the gap between a singular cardinal

κ and its power is bounded by κ+κ
+

= ℵκ+ .

∗The author was partially supported by Israel Science Foundation Grant No. 58/14.
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0.1 Structures with pistes–general setting.

Assume GCH.

The basic idea behind the structures defined below (0.2,δ−structure with pistes over η of

the length θ) is to stay as close as possible to an elementary chain of models. It cannot

be literally a chain since models of different sizes are involved and not models of bigger

cardinality can come before ones of a smaller. The first part (0.1) describes this ”linear”

part of conditions in the main forcing. It is called a wide piste and incorporates together

elementary chains of models of different cardinalities. The main forcing, defined in 0.2, will

be based on such wide pistes and involves an additional natural but non-linear component

called splitting or reflection.

Definition 0.1 Let δ ≤ η < θ be regular cardinals, θ < η+η
+

.

A (θ, η, δ)−wide piste is a set 〈〈Cτ , Cτlim〉 | τ ∈ s〉 such that the following hold.1

Let us first specify sizes of models that are involved.

1. (Support) s is a closed set of regular cardinals from the interval [η, θ] satisfying the

following:

(a) |s| < δ,

(b) η, θ ∈ s.
Which means that the minimal and the maximal possible sizes are always present.

2. (Models) For every τ ∈ s and A ∈ Cτ the following holds:

(a) A 4 〈H(θ+),∈,≤, δ, η〉,

(b) |A| = τ ,

(c) A ⊇ τ ,

(d) A ∩ τ+ is an ordinal,

(e) elements of Cτ form a closed ∈ −chain with a largest element of a length < δ,

(f) if X ∈ Cτ \Cτlim is a non-limit model (i.e. is not a union of elements of Cτ ), then
τ>X ⊆ X.

(g) if X, Y ∈ Cτ then X ∈ Y iff X  Y ,

1The main application will be to the case when η = κ+ for a cardinal κ which is an ω−limit of strong
enough (but not overlapping κ) cardinals. An other application is to forcing axioms, and for it we use
δ = η = ω.
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3. (Potentially limit points) Let τ ∈ s.
Cτlim ⊆ Cτ . We refer to its elements as potentially limit points.

The intuition behind is that once extending it will be possible to add new models

unboundedly often below a potentially limit model, and this way it will be turned into

a limit one.

Let X ∈ Cτlim. Require the following:

(a) X is a successor point of Cτ .

(b) (Increasing union) There is an increasing continuous ∈ −chain

〈Xi | i < cof(sup(X ∩ θ+))〉 2 of elementary submodels of X such that

i.
⋃
i<cof(sup(X∩θ+))Xi = X,

ii. |Xi| = τ ,

iii. Xi ⊇ τ ,

iv. Xi ∈ X,

v. τ>Xi+1 ⊆ Xi+1.

(c) (Degree of closure of potentially limit point)

Either

i. τ>X ⊆ X

or

ii. cof(sup(X ∩ θ+)) = ξ for some ξ ∈ s ∩ τ and then

A. ξ>X ⊆ X,

B. there are Xθ ∈ Cθlim, Xξ ∈ Cξlim such that X ∩ θ+ = sup(Xξ ∩ θ+) =

sup(X∩θ+) and there is a sequence 〈Xi | i < cof(sup(X∩θ+))〉 witnessing

3(b) which members belong to Xξ.

Further the condition (9(b)) will imply that X ′ ⊇ X ⊇ X ′′. Eventually

(once extending) for every regular µ, τ ≤ µ ≤ θ there will be X ′′′ ∈
Cµlim, X ⊆ X ′′′ ⊆ X ′.

Note that if 〈Xi | i < cof(sup(X ∩ θ+))〉 and 〈X ′i | i < cof(sup(X ∩ θ+))〉 are

two sequences which witness (3b) above, then the set {i < cof(sup(X ∩ θ+)) |
Xi = X ′i} is closed and unbounded.

It is possible using the well ordering ≤ to define a canonical witnessing se-

quence 〈Xi | i < cof(X ∩ θ+)〉 for X.

2This models need not be in Cτ , but rather allow to add in future extensions models below X
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Let first do this for X such that cof(X ∩ θ+) = τ (or for Xξ of (3c(ii)(B))

above). Fix the well ordering 〈xν | ν < τ〉. We proceed by induction. Once

i < τ is a limit then set Xi =
⋃
i′<iXi′ . Pick Xi+1 to be the least elementary

submodel of X such that

• xi ∈ Xi+1,

• Xi ∈ Xi+1,

• |Xi| = τ ,

• Xi ⊇ τ ,

• τ>Xi+1 ⊆ Xi+1.

By (3b), it is possible to find such Xi+1.

Clearly
⋃
i<τ Xi = X.

Suppose now that cof(X ∩ θ+) = ξ ∈ s ∩ τ . Then let us use the canonical

sequence 〈Xiξ | i < ξ = cof(X ∩ θ+)〉 for Xξ in order to define the canonical

sequence 〈Xi | i < cof(X ∩ θ+)〉 for X.

Proceed by induction. Once i < τ is a limit then set Xi =
⋃
i′<iXi′ . Pick

Xi+1 to be the least elementary submodel of H(θ) such that

• Xi+1 ∈ Xξ,

• Xiξ ∈ Xi+1,

• Xi ∈ Xi+1,

• |Xi| = ξ,

• Xi ⊇ ξ,

• ξ>Xi+1 ⊆ Xi+1.

By (3c(ii)B), it is possible to find such Xi+1 inside Xξ.

Note that the existence of such canonical sequences implies that X itself is

definable from Xξ.

The next condition prevent unneeded appearances of small models between big ones.

4. If B0, B1 ∈ Cρ, for some ρ ∈ s, B1 is not a potentially limit point and B0 is its

immediate predecessor, then there is no potentially limit point A ∈ Cτ with τ < ρ

such that B0 ∈ A ∈ B1.

It is possible to require that no A at all, i.e. potentially limit or not, appears between

B0 and B1. The requirement that B1 is not a potentially limit point is important here.
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Once dealing with potentially limit points, we would like to allow reflections which

may add small intermediate models.

Next condition is of a similar flavor, but deals with smallest models.

5. If B ∈ Cρ, for some ρ ∈ s, is not a potentially limit point and it is the least element of

Cρ, then there is no potentially limit point A ∈ Cτ with τ > ρ such that A ∈ B3.

Both conditions 4 and 5 are desired to allow to add new models below potentially limit

points which will be essential further for properness of the forcing.

The next condition deals with with closure and is desired to prevent some pathological

patterns.

6. Let B ∈ Cρ, for some ρ ∈ s, be a non-limit point of Cρ. If there are models A ∈
⋃
ξ∈sC

ξ

with sup(A ∩ θ+) < sup(B ∩ θ+), then there is A ∈ B ∩
⋃
ξ∈sC

ξ such that

(a) sup(A ∩ θ+) < sup(B ∩ θ+),

(b) for everyA′ ∈
⋃
ξ∈sC

ξ with sup(A′∩θ+) < sup(B∩θ+), sup(A′∩θ+) ≤ sup(A∩θ+).

Such A is the ”real” immediate predecessor of B. Further, in the definition of the

order, we will require that once B is not a potentially limit point, then no models E

such that A ∈ E ∈ B can be added.

The purpose of the next two conditions is to allow to proceed down the pistes without

interruptions at least before reaching a potentially limit point.

7. Let τ, ρ ∈ s, τ < ρ, A ∈ Cτ , B ∈ Cρ and B ∈ A. Suppose that B is not a potentially

limit point and B′ is its immediate predecessor in Cρ, then B′ ∈ A.

8. Let τ, ρ ∈ s, τ < ρ, A ∈ Cτ , B ∈ Cρ and B ∈ A. Suppose that B is a limit point

in Cρ. Let 〈Bν | ν < ν∗ < δ〉 be Cρ ∩ B. Then a closed unbounded subsequence of

〈Bν | ν < ν∗〉 is in A.

9. (Linearity) If τ, ρ ∈ s, τ < ρ, A ∈ Cτ , B ∈ Cρ, then

(a) sup(A ∩ θ+) < sup(B ∩ θ+) implies A ∈ B,

(b) sup(A ∩ θ+) = sup(B ∩ θ+) implies A ⊆ B.

3If we drop the requirement τ > ρ, then it may be impossible further to add models of sizes > η once a
potencially limit point of size η is around.
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10. If τ, ρ ∈ s, τ < ρ, A ∈ Cτ , B ∈ Cρ, sup(A ∩ θ+) > sup(B ∩ θ+) and B ∈ A, then for

every X ∈
⋃
µ∈sC

µ, sup(X ∩ θ+) = sup(B ∩ θ+) implies X ∈ A.

11. (Immediate successor restriction) Let τ, ρ ∈ s, τ < ρ, A ∈ Cτ , B ∈ Cρlim,cof(sup(B′ ∩
θ+)) > τ and B ∈ A. Suppose that there a model B′ ∈ B∩Cρ such that sup(B′∩θ+) >

sup((A ∩ B) ∩ θ+), then the least such B′ is a potentially limit model. I.e., if there is

a model in Cρ between A ∩ B and B, then the least such model is a potentially limit

model.

It is designed to prevent the situation when there is E ∈ A ∩ Cρ which has a non-

potentially limit immediate successor E ′′ in B but not in A. Also it prevents a possi-

bility that the least element Y of Cρ is a non-potentially limit point which belongs to

B is above A ∩B.

This condition is needed further for τ−properness argument4.

12. (Covering) If τ, ρ ∈ s, τ < ρ, B ∈ Cτ , D ∈ Cρ and sup(B ∩ θ+) > sup(D ∩ θ+), then

there is D∗ ∈ B ∩ Cρ such that D∗ ⊇ D5.

The last condition describes a very particular way of covering and it is crucial for the

properness arguments.

13. (Strong covering) Let B ∈ Cτ , D ∈ Cρ, ρ > τ and

sup(D ∩ θ+) < sup(B ∩ θ+). Then either

(a) D ∈ B,

or

(b) D 6∈ B and the least D∗ ∈ Cρ ∩ B,D∗ ⊃ D is closed under < ρ− sequence of its

elements. Then

{D′ ∈ D∗ | (|D′| = ρ) ∧ (∃n < ω)(∃Zn−1 ∈ ... ∈ Z0 ∈ B)

((∀k < n)(|Zk| < ρ)) ∧D′ ∈ B ∪
⋃
k<n

Zk))} ⊆ D6

4In an earlier version of the paper, we defined a model BA :=
⋃
i∈A∩cof(sup(B∩θ+))Bi ( where 〈Bi | i <

cof(sup(B ∩ θ+))〉 is a chain which witnesses (3(b)) and added it to Cρlim. Having such BA in Cρlim implies
impossibility of the situations above. Here we do without BA and this simplifies the major arguments like
intersection properties and properness. However getting a club that runs away from sets in V becomes a bit
more complicated.

5Note that the least such D∗ must be a potentially limit point by 7, 8 above.
6Note that GCH is assumed, so the cardinality of this set is less than ρ.
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and ⋃
{D′ ∈ D∗ | (|D′| = ρ) ∧ (∃n < ω)(∃Zn−1 ∈ ... ∈ Z0 ∈ B)

((∀k < n)(|Zk| < ρ)) ∧D′ ∈ B ∪
⋃
k<n

Zk))} ∈ D.

Or

(c) D 6∈ B and the least D∗ ∈ Cρ ∩B,D∗ ⊃ D is not closed under < ρ− sequence of

its elements.

Let cof(sup(D∗ ∩ θ+)) = ξ for some ξ ∈ s ∩ ρ and let E ∈ Cξlim such that

sup(E ∩ θ+) = sup(D∗ ∩ θ+) (such E exists by 3c(b) and E ∈ B by 10, since

D∗ ∈ B).

Then either

i. D ∈ E,

{D′ ∈ D∗ | (|D′| = ρ) ∧ (∃n < ω)(∃Zn−1 ∈ ... ∈ Z0 ∈ B)

((∀k < n)(|Zk| < ξ)) ∧D′ ∈ B ∪
⋃
k<n

Zk))} ⊆ D

and ⋃
{D′ ∈ D∗ | (|D′| = ρ) ∧ (∃n < ω)(∃Zn−1 ∈ ... ∈ Z0 ∈ B)

((∀k < n)(|Zk| < ξ)) ∧D′ ∈ B ∪
⋃
k<n

Zk))} ∈ D.

ii. D 6∈ E, and then, let be the least D∗∗ ∈ Cρ ∩ E with D∗∗ ⊃ D. If D∗∗ is

closed under < ρ− sequence of its elements, then

{D′ ∈ D∗∗ | (|D′| = ρ) ∧ (∃n < ω)(∃Zn−1 ∈ ... ∈ Z0 ∈ B)

((∀k < n)(|Zk| < ρ)) ∧D′ ∈ B ∪
⋃
k<n

Zk))} ⊆ D

and ⋃
{D′ ∈ D∗∗ | (|D′| = ρ) ∧ (∃n < ω)(∃Zn−1 ∈ ... ∈ Z0 ∈ B)

((∀k < n)(|Zk| < ρ)) ∧D′ ∈ B ∪
⋃
k<n

Zk))} ∈ D.

If D∗∗ is not closed under < ρ− sequence of its elements, then the process

repeats itself going down below D∗∗. After finitely many steps we will either
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reach D or D will be above everything related to B. Let us state this formally.

So suppose that D∗∗ is not closed under < ρ− sequence of its elements.

Then are n∗ < ω, {ξn | n ≤ n∗} ⊆ s \ η + 1, 〈En | n ≤ n∗〉, 〈Dn | n ≤ n∗〉 such

that for every n ≤ n∗ the following hold:

A. D0 = D∗,

B. E0 = E,

C. Dn ∈ Cρ,

D. Dn ⊇ D,

E. Dn+1 ∈ Dn,

F. cof(sup(Dn ∩ θ+)) = ξn,

G. En ∈ Cξn ,

H. sup(Dn ∩ θ+) = sup(En ∩ θ+),

I. Dn+1 ∈ En is the least in Cρ ∩ En with Dn+1 ⊃ D.

J. {D′ ∈ Dn+1 | (|D′| = ρ) ∧ (∃m < ω)(∃Zm−1 ∈ ... ∈ Z0 ∈ B)

((∀k < m)(|Zk| < ξn)) ∧D′ ∈ B ∪
⋃
k<m Zk))} ⊆ D,

K.
⋃
{D′ ∈ Dn+1 | (|D′| = ρ) ∧ (∃m < ω)(∃Zm−1 ∈ ... ∈ Z0 ∈ B)

((∀k < m)(|Zk| < ξn)) ∧D′ ∈ B ∪
⋃
k<m Zk))} ∈ D,

L. Dn∗ = D or, we have, D ∈ Dn∗ ,
ρDn∗ ⊆ Dn∗ ,

{D′ ∈ Dn∗ | (|D′| = ρ) ∧ (∃m < ω)(∃Zm−1 ∈ ... ∈ Z0 ∈ B)

((∀k < m)(|Zk| < ρ)) ∧D′ ∈ B ∪
⋃
k<m

Zk))} ⊆ D

and ⋃
{D′ ∈ Dn∗ | (|D′| = ρ) ∧ (∃m < ω)(∃Zm−1 ∈ ... ∈ Z0 ∈ B)

((∀k < m)(|Zk| < ρ)) ∧D′ ∈ B ∪
⋃
k<m

Zk))} ∈ D.

14. (An addition to the strong covering condition) Let B ∈ Cτ , D ∈ Cρ, ρ > τ and

sup(D∩θ+) < sup(B∩θ+). Suppose that there is X ∈ Cθ with sup(B∩θ+) = X ∩θ+.

Then either

(a) D ∈ B,

or
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(b) D 6∈ B and (b),(c) of (13) hold with B replaced by any model Y,B ⊆ Y ⊆ X of

a regular cardinality µ, τ < µ < ρ which is definable in 〈H(θ+),∈,≤, δ, η〉 with

parameters from the set B ∪ (µ+ 1) ∪ {B}7.

Now we are ready to give the main definition.

Definition 0.2 Let δ ≤ η < θ be regular cardinals, θ < η+η
+

.

δ−structure with pistes over η of the length θ is a set 〈〈A0τ , A1τ , A1τlim, Cτ 〉 | τ ∈ s〉 such

that the following hold.8

Let us first specify sizes of models that are involved.

1. (Support) s is a closed set of regular cardinals from the interval [η, θ] satisfying the

following:

(a) |s| < δ,

(b) η, θ ∈ s.
Which means that the minimal and the maximal possible sizes are always present.

2. (Models) For every τ ∈ s the following holds:

(a) A0τ 4 〈H(θ+),∈,≤, δ, η〉,

(b) |A0τ | = τ ,

(c) A0τ ∈ A1τ ,

(d) A1τ is a set of less than δ elementary submodels of A0τ ,

(e) each element A of A1τ has cardinality τ , A ⊇ τ and A∩ τ+ is an ordinal and it is

above the number of cardinals in the interval [η, θ].

3. (Potentially limit points) Let τ ∈ s.
A1τlim ⊆ A1τ . We refer to its elements as potentially limit points.

The intuition behind is that once extending it will be possible to add new models

unboundedly often below a potentially limit model, and this way it will be turned into

a limit one.

7Note that the total number of such Y ’s for a fixed regular µ, τ < µ < ρ is |B| = τ . Hence, there are less
than ρ possibilities for Y ’s. Also, note that the model X is definable from B, as it was observed above in (3)

8If δ = ω, then we call δ−structure with pistes over η of the length θ just a finite structure with pistes
over η of the length θ.
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4. (Piste function) The idea behind is to provide a canonical way to move from a model

in the structure to one below.

Let τ ∈ s.
Then, dom(Cτ ) = A1τ and

for every B ∈ dom(Cτ ), Cτ (B) is a closed chain of models in A1τ ∩ (B ∪ {B}) such

that the following holds:

(a) B ∈ Cτ (B),

(b) if X ∈ Cτ (B), then Cτ (X) = {Y ∈ Cτ (B) | Y ∈ X ∪ {X}},

(c) if B has immediate predecessors in A1τ , then one (and only one) of them is in

Cτ (B),

5. (Wide piste) The set

〈Cτ (A0τ ), Cτ (A0τ ) ∩ A1τlim | τ ∈ s〉

is a (θ, η, δ)−wide piste.

Next two condition describe the ways of splittings from wide pistes. This describes the

structure of A1τ and the way pistes allow to move from one of its models to an other.

6. (Splitting points) Let τ ∈ s. Let X ∈ A1τ be a non-limit model (but possibly a

potentially limit), then either

(a) X is a minimal under ∈ or equivalently under ),

or

(b) X has a unique immediate predecessor in A1τ ,

or

(c) X has exactly two immediate predecessors X0, X1 in A1τ , non of X,X0, X1 is a

limit or potentially limit points and X,X0, X1 form a ∆–system triple relatively

to some F0, F1 ∈ A1τ∗lim, for some τ ∗ ∈ s \ τ + 19, which means the following:

i. F0  F1 and then F0 ∈ Cτ∗(F1), or F1  F0 and then F1 ∈ Cτ∗(F0),

ii. τ∗>F0 ⊆ F0 and τ∗>F1 ⊆ F1,

iii. X0 ∈ F1 (or X1 ∈ F0),

iv. F0 ∈ X0 and F1 ∈ X1,

v. X0 ∩X1 = X0 ∩ F0 = X1 ∩ F1,

9If there are only finitely many cardinals between η and θ, then we can take τ∗ to be just τ+.
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vi. τ>X0 ⊆ X0 and τ>X1 ⊆ X1,

vii. the structures

〈X0,∈, 〈X0 ∩ A1ρ, X0 ∩ A1ρlim, (Cρ � X0 ∩ A1ρ) ∩X0 | ρ ∈ s ∩X0〉〉

and

〈X1,∈, 〈X1 ∩ A1ρ, X1 ∩ A1ρlim, (Cρ � X1 ∩ A1ρ) ∩X1 | ρ ∈ s ∩X1〉〉

are isomorphic over X0 ∩ X1. Denote by πX0,X1 the corresponding isomor-

phism.

viii. X ∈ A0τ∗.

Further we will refer to such X as a splitting point.

Or

(d) (Splitting points of higher order) There are G,G0, G1 ∈ X ∩ A1µ, for some µ ∈
s\min(s\ τ + 1), which form a ∆-system triple with witnessing models in X such

that

i. X0 ∈ G0,

ii. X1 ∈ G1,

iii. X1 = πG0G1 [X0].

iv. X is not a limit or potentially limit point,

v. X ∈ A0µ,

vi. (Pistes go in the same direction) Gi ∈ Cµ(G)⇔ Xi ∈ Cτ (X), i < 2.

Further we will refer to such X as a splitting point of higher order.

7. Let τ, ρ ∈ s, X ∈ A1τ , Y ∈ A1ρ. Suppose that X is a successor point, but not

potentially limit point and X ∈ Y . Then all immediate predecessors of X are in Y , as

well as the witnesses, i.e. F0, F1 if (6c) holds and G0, G1, G if (6d) holds.

8. Let τ ∈ s. If X ∈ A1τ , Y ∈
⋃
ρ∈sA

1ρ and Y ∈ X, then Y is a piste reachable from X,

i.e. there is a finite sequence 〈X(i) | i ≤ n〉 of elements of A1τ which we call a piste

leading to Y such that

(a) X = X(0),
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(b) for every i, 0 < i ≤ n, X(i) ∈ Cτ (X(i − 1)) or X(i − 1) has two immediate

successors X(i− 1)0, X(i− 1)1 with X(i− 1)0 ∈ Cτ (X(i− 1)), X(i) = X(i− 1)1

and Y ∈ X(i− 1)1 \X(i− 1)0 or Y = X(i− 1)1,

(c) Y = X(n), if Y ∈ A1τ and if Y ∈ A1ρ, for some ρ 6= τ , then Y ∈ X(n), X(n) is a

successor point and Y is not a member of any element of X(n) ∩ A1τ .

In particular, every Y ∈ A1τ is piste reachable from A0τ .

In order formulate further requirement, we will need to describe a simple process of

changing the wide pistes. This leads to equivalent forcing conditions once the order

will be defined.

Let X ∈ A1τ . We will define X−wide piste. The definition will be by induction on

number of turns (splits) needed in order to reach X by the piste from A0τ .

First, if X ∈ Cτ (A0τ ), then X−wide piste is just 〈Cξ(A0ξ), Cξ(A0ξ) ∩ A1ξlim | ξ ∈ s〉,
i.e. the wide piste of the structure.

Second, if X 6∈ Cτ (A0τ ), but it is not a splitting point, then pick the least splitting

point Y above X. Let Y0, Y1 be its immediate predecessors with Y0 ∈ Cτ (Y ). Then

X ∈ Yi ∪ {Yi} for some i < 2. Set X−wide piste to be the Yi−wide piste.

So, in order to complete the definition, it remain to deal with the following principle

case:

X ∈ A1τ a splitting point with witnesses F0, F1 ∈ Cτ∗(A0τ∗). Let X0, X1 be its

immediate predecessors with X0 ∈ Cτ (X). Assume that X−wide piste 〈Cξ
X , C

ξlim
X |

ξ ∈ s〉 for X is defined and assume that Cτ (X) is an initial segment of Cτ
X .

Let the X0−wide piste be 〈Cξ
X , C

ξlim
X | ξ ∈ s〉.

Define X1−wide piste 〈Cξ
X1
, Cξlim

X1
| ξ ∈ s〉 as follows:

• Cξ
X1

= Cξ
X , for every ξ ≥ τ ∗.

I.e. no changes for models of cardinality ≥ τ ∗.

• Cξlim
X1

= Cξ
X1
∩ A1ξlim, for every ξ ∈ s.

Models that were potentially limit remain such and no new are added.

• Cτ
X1

= (Cτ
X \X) ∪ Cτ (X1).

Here we switched the piste from X0 to X1.

• Cξ
X1

= {Z ∈ Cξ
X | sup(Z ∩θ+) > max(sup(X0∩θ+), sup(X1∩θ+))}∪{πX0,X1(Z) |

Z ∈ Cξ
X ∩X0}, for every ξ ∈ s ∩ τ ∗10.

10In particular, due to this, the next condition implies that for ξ ∈ s ∩ τ∗, if Z ∈ CξX , sup(Z ∩ θ+) >
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Now we require the following:

9. Let τ ∈ s and X ∈ A1τ . Then X−wide piste is a wide piste, i.e. it satisfies 0.1.

The problem is with (3c) of 5 which, in general, is not preserved while splitting.

Final conditions deal with largest models.

10. (Maximal models are above all the rest) For every τ ∈ s and Z ∈
⋃
ρ∈sA

1ρ, if Z 6∈ A0τ ,

then there is µ ∈ s such that Z = A0µ.

Recall that by 5, maximal models A0τ , τ ∈ s are linearly ordered as top parts of the

wide piste 〈Cτ (A0τ ), Cτ (A0τ ) ∩ A1τlim | τ ∈ s〉.

This completes the definition of δ−structure with pistes over η of the length θ.

max(sup(X0 ∩ θ+), sup(X1 ∩ θ+)), then {πX0X1(Z ′) | Z ′ ∈ CξX ∩X0} ⊆ Z.
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Let us turn now to the intersection property.

The intuition behind is to replace an arbitrary intersection of models by an internal one.

Definition 0.3 (Models of different sizes). Let 〈〈A0τ , A1τ , A1τlim, Cτ 〉 | τ ∈ s〉 be

a δ−structure with pistes over η of the length θ.

Let A ∈ A1τ , B ∈ A1ρ and τ < ρ.

By ip(A,B) we mean the following:

1. B ∈ A,

or

2. A ⊂ B,

or

3. B 6∈ A, A 6⊂ B and then

• there are η1 < ... < ηm in (s \ ρ) ∩ A and X1 ∈ A1η1 ∩ A, ..., Xm ∈ A1ηm ∩ A such

that A ∩B = A ∩X1 ∩ ... ∩Xm.

Definition 0.4 (Models of a same size). Let 〈〈A0τ , A1τ , A1τlim, Cτ 〉 | τ ∈ s〉 be

a δ−structure with pistes over η of the length θ.

Let A,B ∈ A1τ . By ip(A,B) we mean the following:

1. A ⊆ B,

or

2. B ⊆ A,

or

3. A 6⊆ B, B 6⊆ A and then

• there are η1 < ... < ηm in (s \ τ) ∩ A and X1 ∈ A1η1 ∩ A, ..., Xm ∈ A1ηm ∩ A such

that A ∩B = A ∩X1 ∩ ... ∩Xm.

If both ip(A,B) and ip(B,A) hold, then we denote this by ipb(A,B).

Lemma 0.5 Let 〈〈A0τ , A1τ , A1τlim, Cτ 〉 | τ ∈ s〉 be a δ structure with pistes over η of the

length θ. Assume A ∈ A1τ , B ∈ A1ρ, for some τ ≤ ρ, τ, ρ ∈ s. Then ip(A,B) and if τ = ρ,

then also ipb(A,B).
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Proof. We will basically split the proof into two main cases: ρ = τ and ρ 6= τ . However, the

inductive assumption will be used simultaneously for both.

Case A. ρ = τ .

So, A,B ∈ A1τ . Assume that A 6⊆ B and B 6⊆ A. Consider the pistes leading from A0τ

to A and to B. Let X be their last common point. Then, by 0.2(8), X is a successor model.

Subcase A1. X has a unique immediate predecessor. Let X0 be this immediate

predecessor. Then, one of A or B is in X0 and the other one is not. But, then it must be

equal to X0, which is impossible by our assumptions that A 6⊆ B and B 6⊆ A.

Subcase A2. X is a splitting point.

Let X0 and X1 be the immediate predecessors of X. Let F0 ∈ X0 and F1 ∈ X1 witness

that X,X0, X1 form a ∆−system triple. Then X0 ∩X1 = X0 ∩ F0 = X1 ∩ F1.

Assume that A ∈ X0 ∪ {X0} and B ∈ X1 ∪ {X1}.
If A = X0 and B = X1, then ipb(A,B) follows.

Suppose that A 6= X0 or B 6= X1. Say, B 6= X1. Set B′ = πX1,X0 [B]. Then B′ ∈ X0 and

B ∩X0 = B′ ∩ F0. Hence,

A ∩B = A ∩B ∩X0 = A ∩B′ ∩ F0 = (A ∩B′) ∩ (A ∩ F0).

Now we apply induction to get ip(A,B′) and ip(A,F0).

Subcase A3. X is a splitting point of higher order.

The proof essentially the same as in Subcase A2.

Case B. ρ > τ .

So, A ∈ A1τ , B ∈ A1ρ. Assume that A 6⊆ B and B 6∈ A.

Suppose first that A 6∈ A0ρ. Then 0.2(10), A = A0τ and if B 6∈ A0τ , then, again by 0.2(10),

B = A0ρ. But any two maximal models on the wide piste of the structure are compatible

as follows from 5. Thus, if sup(A0τ ∩ θ+) ≤ sup(A0ρ ∩ θ+), then A0τ ⊆ A0ρ by 5(9). If

sup(A0τ ∩ θ+) > sup(A0ρ ∩ θ+), then A0ρ ∈ A0τ , by 5(12).

Suppose that A ∈ A0ρ. Then B 6= A0ρ, as A 6⊆ B, and hence A,B ∈ A0ρ.

By 0.2(9) we can assume that A is on the wide piste of the structure. Consider the pistes

leading from A0ρ to A and to B. Let X ∈ Cρ(A0ρ be their last common point. The proof

proceeds by induction on rank(X). Then, by 0.2(8), X is a successor model.

Subcase B1. X is a splitting point.

The proof is essentially as in Subcase A2 above.

Subcase B2. X is a splitting point of higher order.

Let X0 and X1 be the immediate predecessors of X. Let G,G0, G1 ∈ X ∩ A1µ be a

corresponding ∆−system triple, for some µ ∈ s\ρ+1. Also let F0 ∈ G0∩X and F1 ∈ G1∩X
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witness this, i.e. G0 ∩G1 = G0 ∩ F0 = G1 ∩ F1.

Assume that A ∈ X0 and B ∈ X1 ∪ {X1}.
Set B′ = πG1,G0 [B]. Then A ∩ B = A ∩ B′ ∩ F0. The induction applies to A and B′, since

B′ ⊆ X0 ∈ X. Also it applies to A and F0, since F0 ∈ X. Hence, ip(A,B).

Subcase B3. X has a unique immediate predecessor.

Let X0 be this predecessor. Then either B = X0 or B ∈ X0.

Split into three cases according to the relation between A and X0.

Subsubcase B3.1. A ∈ X0.

Then B ∈ X0 as well, and we get a contradiction to the choice of X.

Subsubcase B3.2. X0 ∈ A.

Then again B ∈ X0. Let Z ∈ A ∩ A1ρ be a least model with B ∈ Z.

Claim. Z ∈ A1ρlim.

Proof. Suppose not. Then Z cannot be limit by 0.1(8) and the minimality of Z. So

Z ∈ A1ρ \ A1ρlim is a successor model. But then all immediate predecessors of Z are in A,

by 0.2(7). Then, none of this immediate predecessors can be B. Hence, B ∈ Z0, for some

immediate predecessors Z0 of Z. However, Z0 ∈ A, which contradicts the minimality of Z.

� of the claim.

Again, using 0.2(9), we may assume that both A and Z are on the wide piste of the

structure.

If B on the same piste (i.e. B ∈ Cρ(Z)), then, by 0.1(13), A ∩ Z = A ∩B.

Suppose that B 6∈ Cρ(Z). Proceed then down from Z to B on the piste Cρ(Z). Let D be the

last point before we split to B. Let D0, D1 be its immediate predecessors with D0 ∈ Cρ(Z).

Then B = Z1 or B ∈ Z1. Apply 0.1(13) to A and D0 and after the switching between D0, D1

(by 0.2(9)) to A and D1. By 0.1(3(b)), we have A ∩ D0 = A ∩ D1. Then it follows that

A ∩B = A ∩ πD1,D0 [B]. Now the induction applies.

Subsubcase B3.3. A 6∈ X0,A ⊂ X0.

If B = X0, then A ∩ B = A and we are done. So, B ∈ X0. Then, by 0.1(12), there is

S ∈ A ∩ Cρ(X0), B ∈ S.

Let then Z ∈ A ∩ A1ρ be a least model with B ∈ Z. Continue as in Subsubcase B3.2.

�

Lemma 0.6 Let 〈〈A0τ , A1τ , A1τlim, Cτ 〉 | τ ∈ s〉 be a δ−structure with pistes over η of the

length θ. Suppose that τ, ρ ∈ s, τ < ρ, A ∈ A1τ and A∩A1ρ 6= ∅. Then there is X ∈ A∩A1ρ

which includes every element of A ∩ A1ρ.
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Proof. If A 6∈ A0ρ, then A = A0τ , by 0.2(10), and again, by 0.2(10), then A0ρ ∈ A = A0τ . So

A0ρ will be as required.

Assume that A ∈ A0ρ. By 0.2(5), we may assume that A is on the wide piste of the structure.

Let Z ∈ Cρ(A0ρ) be the least model which includes A. Consider its immediate predecessor

Z ′ on the piste. It exists since, by the assumption of the lemma A ∩ A1ρ 6= ∅, and so the

piste continues to elements of this intersection.

Now, both A and Z ′ are on the wide piste, τ < ρ and A 6⊆ Z ′. Hence, by 0.1(9), sup(A∩θ+) >

sup(Z ′ ∩ θ+). Apply now 0.1(12) to A and Z ′. So, there will be X ∈ A ∩Cρ(A0ρ) such that

X ⊇ Z ′. But then Z ′ = X and we are done.

�

Lemma 0.7 Let 〈〈A0τ , A1τ , A1τlim, Cτ 〉 | τ ∈ s〉 be a δ−structure with pistes over η of the

length θ. Suppose that τ ∈ s, A ∈ A1τ and A∩A1τ 6= ∅. If A is a potentially limit point then

there is X ∈ A ∩ A1τ which includes every element of A ∩ A1τ .

Proof. Just by 0.2(6), A has a unique immediate predecessor. It will be as desired.

�

Note that if A is a splitting point or a splitting point of higher order then the lemma is

not true anymore.

Also, if one likes to find the largest model of a small cardinality inside a larger one, then it

should not be true in general (however any δ−structure with pistes over η of the length θ

can be extended to one that satisfies this). Thus, for example reflect in an increasing order

ω−many models of size η into a fixed potentially limit model A of size η+. There will be no

maximal model of cardinality η inside A. But an additional reflection will produce such.

Definition 0.8 Define Pθηδ to be the set of all

δ−structures with pistes over η of the length θ.

Let p = 〈〈A0τ , A1τ , A1τlim, Cτ 〉 | τ ∈ s〉 ∈ Pθηδ.
Denote further A0τ by A0τ (p), A1τ by A0τ (p), A1τlim by A1τlim(p), Cτ by Cτ (p) and s by s(p).

Call s the support of p.

Let us define a partial order on Pθηδ as follows.

Definition 0.9 Let

p0 = 〈〈A0τ
0 , A

1τ
0 , A

1τlim
0 , Cτ

0 〉 | τ ∈ s0〉, p1 = 〈〈A0τ
1 , A

1τ
1 , A

1τlim
1 , Cτ

1 〉 | τ ∈ s1〉 be two elements

of Pθηδ.
Set p0 ≤ p1 (p1 extends p0) iff
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1. s0 ⊆ s1,

2. A1τ
0 ⊆ A1τ

1 , for every τ ∈ s0,

3. let A ∈ A1τ
0 , then A ∈ A1τlim

0 iff A ∈ A1τlim
1 .

The next item deals with a property called switching in [3]. It allows to change piste

directions.

4. For every A ∈ A1τ
0 , Cτ

0 (A) ⊆ Cτ
1 (A),

or

there are finitely many splitting (or generalized splitting) points B(0), ..., B(k) ∈ A1τ
0

with B(j)′, B(j)′′ the immediate predecessors of B(j) (j ≤ k) such that

(a) B(j)′ ∈ Cτ
0 (B(j)),

(b) B(j)′′ ∈ Cτ
1 (B(j)).

5. If A ∈ A1τ
0 is a splitting point or a splitting point of higher order in p0, then it remains

such in p1 with the same immediate predecessors.

6. Let B ∈ A1τ
0 be a successor point, not in A1τ lim

0 and with a unique immediate prede-

cessor. Consider the wide piste that runs via B (in p0) Let A be as in 0.1(6). Then

there is no model E in p1 such that A ∈ E ∈ B.

This requirement guaranties intervals without models, even after extending a condition.

By 0.9(6), potentially limit points are the only places where not end-extensions can be

made.

Next two lemmas will insure that generic clubs produced by Pθηδ run away from old sets.

Lemma 0.10 Let p = 〈〈A0τ , A1τ , A1τlim, Cτ 〉 | τ ∈ s〉 be an element of Pθηδ. Let X ∈ A1ρlim,

for some ρ ∈ s. Suppose that for every t ∈ X there is D � X such that

1. D ∈ X,

2. t ∈ D,

3. |D| = ρ,

4. D ⊇ ρ

5. ρ>D ⊆ D,
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6. D is a union of a chain of its elementary submodels which satisfy items 1-5 11.

Then for every β < sup(X ∩ θ+) there is T of size ρ with

sup(T ∩ θ+) > β, T ∈ X such that adding T as a potentially limit point and reflecting it

through ∆−system type triples gives an extension of p.

Proof. Let τ := cof(sup(X ∩ θ+)). We deal with the case τ < ρ. The case τ = ρ is similar

and a bit simpler.

By 0.1(3(c(ii)), then τ ∈ s and there is B ∈ A1τlim such that sup(B ∩ θ+) = sup(X ∩ θ+)

and B ⊆ X.

Let 〈Xi | i < τ〉 be the canonical sequence of models of 0.1(3(b),(c)ii) which members are

in B. We have ρ>Xi+1 ⊆ Xi+1, for every i < τ . By the assumption, we can assume that for

every i < η, Xi+1 is a union of a chain of its elementary submodels which satisfy items 1,3-5

above.

Pick now T to be one of Xi+1, such that

1. sup(T ∩ θ+) > β,

2. for every model E which appears in p and belongs to X, require that E ∈ T ,

3. for every model Z which appears in p, has cardinality < τ and

sup(Z ∩ θ+) > sup(B ∩ θ+) = sup(X ∩ θ+), we require that Z ∩X ∈ T 12.

The next item is added in order to satisfy 0.1(14).

4. For every models Z, Y in p such that

(a) sup(Z ∩ θ+) = sup(Y ∩ θ+) > sup(B ∩ θ+) = sup(X ∩ θ+),

(b) |Y | = θ,

(c) |Z| = ζ, for some ζ < τ ,

we require that R ∩ X ∈ T , for every R of regular cardinality µ, ζ < µ < τ which is

definable in 〈H(θ+),∈,≤, δ, η〉 with parameters from the set Z ∪ (µ+ 1) ∪ {Z, Y }13.
11The issue here is to satisfy 0.1(3(b)).
12Recall that τ>X ⊆ X by 0.1(3(c)). So, Z ∩X ∈ X, and hence, Z ∩X ∈ Xi for every large enough i < τ .
13Note that the total number of such R’s for a fixed regular µ, ζ < µ < τ is |Z| = ζ. Hence, there are less

than τ possibilities for R’s.
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5. Let D,D0, D1 from p of a ∆−system triple, i.e. D is a splitting point and D0, D1 are

its immediate predecessors. Suppose that D0 ⊇ B14. Require the following analogs of

the above conditions (2),(3),(4):

• for every model E which appears in p and belongs to πD0,D1(X), require that

E ∈ πD0,D1(T )15,

• for every model Z which appears in p, has cardinality < τ and

sup(Z ∩ θ+) > sup(πD0,D1(B) ∩ θ+), we require that Z ∩ πD0,D1(X) ∈ πD0,D1(T ).

• For every models Z, Y in p such that

(a) sup(Z ∩ θ+) = sup(Y ∩ θ+) > sup(B ∩ θ+) = sup(X ∩ θ+),

(b) |Y | = θ,

(c) |Z| = ζ, for some ζ < τ ,

we require that R ∩ πD0,D1(X) ∈ πD0,D1(T ), for every R of regular cardinality

µ, ζ < µ < τ which is definable in 〈H(θ+),∈,≤, δ, η〉 with parameters from the

set Z ∪ (µ+ 1) ∪ {Z, Y }

Let us argue that T is as desired.

First note that if D is one of models of p and sup(D∩θ+) < sup(X∩θ+), then sup(D∩θ+) <

sup(T ∩ θ+).

It follows by (2) for models which are in X.

So, suppose that D 6∈ X. Changing the wide piste of p if necessary, we can assume that

both X and D are on the same wide piste. Apply 0.1(12) to X and D. There is D∗ ∈
X ∩ C |D|(A0|D|), D∗ ⊇ D. But then by (2) above we have D∗ ∈ T .

The requirement (3) insures 0.1(13).

Let us argue now that adding T does not case any harm once moving through ∆−system

type triples. Let D,D0, D1 from p of a ∆−system triple, i.e. D is a splitting point and

D0, D1 are its immediate predecessors.

Note that by (3) above T 6∈ Z, for any Z in p of cardinality < τ . So, let us assume that

|D| ≥ τ .

If B 6⊆ D0 and B 6⊆ D1, then then let us argue that T not in the domain of πD0,D1 and

πD1,D0 , and so, does not move. For this apply the intersection property ip(B,D0) (or similar

ip(B,D0)). Then

B ∩D0 = B ∩ T1 ∩ ... ∩ Tn,
14Note that then B ( D0, since by 0.2(6(c)), D0 is not a potentially limit point.
15Note that πD0,D1

does not move τ . Also note that E need not have a pre-image under πD0,D1
.
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for some T1, ..., Tn ∈ B. But B ⊆ X, and hence, by (2) above, T1, ..., Tn ∈ T . So T cannot

be in B ∩D0.

Now, if B ⊆ D0, then the condition (4) above provides the desired conclusion.

�

Lemma 0.11 Let p = 〈〈A0τ , A1τ , A1τlim, Cτ 〉 | τ ∈ s〉 be an element of Pθηδ. Let X ∈ A1ρlim,

for some ρ ∈ s. Suppose that for every t ∈ X there is D � X such that

1. D ∈ X,

2. t ∈ D,

3. |D| = ρ,

4. D ⊇ ρ

5. ρ>D ⊆ D,

6. D is a union of a chain of its elementary submodels which satisfy items 1-5.

Let β < sup(X ∩ θ+) and T be a potentially limit point of size ρ with

sup(T ∩ θ+) > β, T ∈ X added by the previous lemma 0.10. Then for every γ, sup(T ∩ θ+) <

γ < sup(X ∩ θ+) there is T ′ of size ρ with

sup(T ′ ∩ θ+) > γ, T ′ ∈ X such that adding T ′ as a non-potentially limit point and reflecting

it through ∆−system type triples gives an extension of the previous condition.

Proof. The proof repeats those of 0.10. The purpose of first adding T and only then T ′ is

to satisfy 0.1(11). Thus we add first a potentially limit point T above everything relevant,

then we are free to add above it a non-potentially limit point T ′.

�

We turn now to properness of Pθηδ.
Recall the following basic definition due to S. Shelah [11]:

Definition 0.12 Let µ ≥ ω be a regular cardinal and P a forcing notion. P is called µ–

proper iff for every p ∈ P and M ≺ H(λ) (for large enough λ) with |M | = µ, µ>M ⊆ M ,

P, p ∈M there is p′ ≥P p such that for every dense open D ⊆ P,D ∈M , p′  “D∩G∼∩M 6=
∅.” Such p′ is called (M,P )-generic.

The following is obvious:
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Lemma 0.13 If P is µ-proper, then it preserves µ+.

Lemma 0.14 The forcing notion 〈Pθηδ,≤ 〉 is η−proper

Proof. Let p ∈ Pθηδ. Pick M to be an elementary submodel of H(χ) for some χ regular large

enough such that such that

1. |M| = η,

2. M ⊇ η,

3. Pθηδ, p ∈M,

4. η>M ⊆M.

Set M = M ∩H(θ+).

Clearly, M satisfies 0.1(3(b)). Moreover, using the elementarity of M, for every x ∈M there

will be Z ∈M such that

• Z � H(θ+),

• |Z| = θ,

• Z ⊇ θ,

• θ>Z ⊆ Z,

• x ∈ Z.

This allows to find a chain of models 〈Ni | i < η〉 of size θ which members are in M , witnesses

0.1(3(b)) for N :=
⋃
i<ηNi and N ⊇M .

Extend p by adding M as a new A0η and N as a new A0θ. Require them to be a potentially

limit points. Denote the result by p_{M,N}.
We claim that p_{M,N} is (Pθηδ,M)−generic. So, let p′ ≥ p_{M,N} and D ∈ M be a

dense open subset of Pθηδ. It is enough to find q ∈M ∩D which is compatible with p′.

Let

p′ = 〈〈A0τ (p′), A1τ (p′), A1τlim(p′), Cτ (p′)〉 | τ ∈ s(p′)〉.

By 0.6,0.7, for every τ ∈ s there will be the maximal model in A1τ (p′) ∩ M (once non-

empty). They all are on the wide piste which runs through M . Just the wide piste that

runs through M runs trough N and all other relevant for maximality models, since |M | = η

22



is the smallest possible cardinality of the model and pistes of models of different sizes go in

the same directions by 0.2(9, 6d(vi)).

Let us argue that they are linear ordered by ∈,⊆. Thus, let τ, ρ ∈ s(p′), τ < ρ, A ∈
A1τ (p′)∩M,B ∈ A1ρ(p′)∩M be such maximal models. If sup(A∩ θ+) < sup(B ∩ θ+), then,

by 0.1(9(a)), A ∈ B. If sup(A ∩ θ+) = sup(B ∩ θ+), then, by 0.1(9(b)), A ⊆ B. Suppose

that sup(A∩ θ+) > sup(B∩ θ+), then then, by 0.1(12), there is B∗ ∈ A, |B∗| = ρ which is on

the same wide piste and B∗ ⊇ B. By maximality of B this may occur only when B∗ = B.

So, we are done.

Set

q′ = 〈〈max(A1τ (p′) ∩M), A1τ (p′) ∩M,A1τlim(p′) ∩M,Cτ (p′) � A1τ (p′) ∩M〉 | τ ∈ s(p′)〉.

It is routine to check that q′ ∈ Pθηδ and q′ ≤ p′. Also, q′ ∈M, since η>M ⊆M.

Now let q = 〈〈A0τ (q), A1τ (q), A1τlim(q), Cτ (q)〉 | τ ∈ s(q)〉 be an extension of q′ in M

which belongs to D.

We claim that p′ and q are compatible. Namely, set s = s(q). Let A0τ = A0τ (p′), for every

τ ∈ s(p′). Let 〈τi | i < i∗〉 be an increasing (or just any one to one) enumeration of s \ s(p′).
Pick ∈ −increasing sequence of models 〈Ai | i < i∗〉 such that for every i < i∗ the following

hold:

1. p′, q ∈ Ai,

2. |Ai| = τi,

3. Ai satisfies 0.2(2).

Set A0τi = Ai.

Finally let for every τ ∈ s,

A1τ = {A0τ} ∪ A1τ (p′) ∪ A1τ (q) ∪ {B |

∃(D,D0, D1) ∆− system triple in p′ with M ∈ dom(πD0,D1)

and there is a model A in q which does not appear in p′ such that B = πD0,D1(A)}∪

{B | ∃(D,D0, D1) ∆− system triple in q but not in p′ and there is a model

A ∈ dom(πD0,D1) in p′ which does not appear in q such that B = πD0,D1(A)}.

Intuitively, we just put together models (of same cardinalities) of p′ and q and to them

the images of new models (those in q and not in p′) under isomorphisms of models of p′ with
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M inside.

Define A0τlim and Cτ (τ ∈ s) in the obvious fashion now.

Set

p∗ = 〈〈A0τ , A1τ , A1τlim, Cτ 〉 | τ ∈ s〉.

We claim that p∗ ∈ Pθηδ and then, by 0.9 and the definition of p∗, p∗ ≥ p′, q.

Deal with the wide piste of p∗. The main issue is to show that it satisfies 0.1.

Let D ∈ A0ρ(p′) be on the wide piste of p′ for some ρ ∈ s\η+1. If sup(D∩θ+) ≥ sup(M∩θ+),

then M ⊆ D by 0.1(9). Hence every new model (i.e. one in q and not in p′) is in D.

Note it is impossible to have a situation when M ∈ D, D has an immediate predecessor with

sup below sup(M ∩ θ+) (or by 0.1(12), equivalently in M) and D is not a potentially limit

point. It follows by 0.1(4), since M is a potentially limit point.

Also such D cannot be both minimal in Cρ(A0ρ(p′)) and not potentially limit, by 0.1(5),

since N appears in p′. Actually, this the only reason of picking N and adding N to p.

Assume that sup(D ∩ θ+) < sup(M ∩ θ+). If D is in M , then D is in q′, and hence new

models are fine with D since they are in q ≥ q′. Assume that D 6∈ M . Let |D| = ρ. Then

ρ > η. Let A be on the wide piste of q. If A appears in p′, then we are done. Suppose

otherwise, i.e. A is a new model.

Case 1. sup(A ∩ θ+) < sup(D ∩ θ+).

Let D∗ be the least model in M above D in Cρ(A0ρ).

Subcase 1.1 A ∈ D∗.
Suppose first that cof(D∗∩ θ+) = ρ. By 0.1(3(b)) and elementarity of M there is a sequence

〈D∗i | i < cof(D∗∩θ+)〉 ∈M which witnesses 0.1(3(b)). Then , for some i∗ < cof(D∗∩θ+) =

ρ, i∗ ∈M , we have A ∈ D∗i∗ . Now, by 0.1(13(b)), D∗i∗ ∈ D, and so, D∗i∗ ⊆ D. Hence A ∈ D.

If cof(D∗ ∩ θ+) = ξ, for some ξ ∈ s ∩ ρ, then the argument is similar only using 0.1(13(c)).

Subcase 1.2 A 6∈ D∗.
Then necessary, |A| > ρ. Both A,D∗ are in q, hence there is the least model A∗ ∈
C |A|(A0|A|)(q) in D∗ above A. Apply the argument of Subcase 1.1 to A∗ and D∗. Then

A∗ ∈ D and so A,D satisfy 0.1(12). Also they satisfy 0.1(13), since A,D∗ satisfy it as

members of q and D ⊆ D∗.

Case 2. sup(A ∩ θ+) > sup(D ∩ θ+).

Let D∗ be the least model in M above D in Cρ(A0ρ). Then sup(A ∩ θ+) > sup(D∗ ∩ θ+),

since otherwise by 0.1(13) (applied to M and D∗) we will have sup(A ∩ θ+) < sup(D ∩ θ+).

Both A and D∗ are in q, so |A| ≥ ρ implies, by 0.1(9), that A ⊇ D∗ ⊇ D.

Suppose that |A| < ρ. If D∗ ∈ A, then, by 0.1(13), D∗ will be the least in A ∩ Cρ(A0ρ)
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above D. Suppose that D∗ 6∈ A. Then, since both A and D∗ in q, there will be the least

D∗∗ ∈ A ∩ Cρ(A0ρ)(q) above D∗, and this D∗∗ will satisfy 0.1(12) for A,D. The condition

0.1(13) holds for A,D since it is true for A,D∗ and for M,D .

Case 3. sup(A ∩ θ+) = sup(D ∩ θ+).

Let D∗ be the least model in M above D in Cρ(A0ρ). By 0.1(13) applied to M,D and

0.1(3(b)), we derive a contradiction.

Finally us deal with a situation where D is the wide piste of p′ and so of p∗.

Case A. D is not on the wide piste and the first splitting on the piste from A0ρ to D is

above M .

Then we just consider the image of M under such splitting and proceed with it as before.

Case B. D is not on the wide piste and the first splitting on the piste from A0ρ to D is

below M (according to sup of the models).

Change inside p′ the wide piste in order to put D on it. Such change will preserve M on the

wide piste since the relevant splittings are below M . Now, both D and M will be on the

(new) wide piste of p′ and p∗. Proceed as before.

The above shows that p∗ satisfies 0.2(5, 9). The rest of 0.2, as well as p∗ ≥ p′, q follows

easily from the definition of p∗ using 0.1(11).

�

Our next tusk will be to show that the forcing notion 〈Pθηδ,≤ 〉 is τ−proper for every

regular τ, η ≤ τ ≤ θ. Let us first prove three technical lemmas that allow to add new models

at places of specific type.

Lemma 0.15 Let p = 〈〈Cτ , Cτlim〉 | τ ∈ s〉 be a wide piste and B,D are models of p such

that |B| = τ , for some τ ∈ s ∩ θ, |D| = θ and sup(B ∩ θ+) = D ∩ θ+.

Let ρ ∈ (τ, θ) be a regular cardinal. Suppose that for every A ∈
⋃
µ<ρC

µ, if sup(A ∩ θ+) >

sup(B ∩ θ+), then B ∈ A. Then a model of cardinality ρ can be added to p between B and

D such that the result remains a wide piste.

Proof. Let B, D be as in the statement of the lemma and ρ ∈ (τ, θ) a regular cardinal.

Suppose that there is no model of size ρ between B and D inside p. Without loss of

generality we can assume that ρ ∈ s. Just otherwise extend p by adding the largest (under

∈) model of cardinality ρ making it potentially limit one.

Let E be the least elementary submodel of D such that

• |E| = ρ,
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• E ⊇ B,

• E ⊇ ρ,

• cof(sup(E∩θ+))>E ⊆ E.

Add E to Cρlim. Let us check that the result is a wide piste.

Once a model A appears in p and there is H ∈ A in p with sup(H ∩ θ+) = sup(E ∩ θ+),

then by 0.1(10) also B,D ∈ A, and then by elementarity, E ∈ A.

First note that if A ∈ Cξ, for some ξ ∈ s \ ρ, then either E ∈ A or A ∈ E. Thus if

sup(A∩θ+) > sup(E∩θ+), then sup(A∩θ+) > sup(B∩θ+), since sup(E∩θ+) = sup(B∩θ+).

Then, by 0.1(9), B ∈ A. Hence, by 0.1(10), D ∈ A, as sup(B ∩ θ+) = D ∩ θ+. But E is

definable from B,D, so E ∈ A.

Assume now that sup(A∩ θ+) < sup(E ∩ θ+). If A ∈ B, then we are done, since B ⊆ E. So,

suppose that A 6∈ B. Then, by 0.1(12), there is A∗ ∈ B ∩ Cρ(A0ρ) such that A∗ ⊇ A. But

then, A ∈ A∗, and by above A∗ ∈ E and |A∗| = ρ, so A∗ ⊆ E. Hence A ∈ E.

Let now A ∈ Cξ, for some ξ ∈ s ∩ ρ. If sup(A ∩ θ+) > sup(B ∩ θ+), then, by the

assumption of the lemma, B ∈ A. Then, as above, we conclude that E ∈ A.

Suppose now that sup(A ∩ θ+) < sup(E ∩ θ+).

If |A| = ξ ≤ ρ, then A ∈ B will trivially imply that A ∈ E. If A 6∈ B, then by 0.1(9), ξ > τ .

Apply then 0.1(12) to B and A and find least possible A∗ ∈ Cξ ∩ B which contains A. But

then A ∈ A∗ ∈ B ⊆ E and |E| = ρ ≥ |A∗| = ξ, hence A∗ ⊆ E, and so , A ∈ E.

Consider now the remaining case: ξ > ρ and A 6∈ E. It follows that A 6∈ B. Apply 0.1(12)

to B and A and find least possible A∗ ∈ Cξ∩B which contains A. Clearly it witnesses 0.1(12)

for E and A as well, but we would like to show that 0.1(13) holds for E and A. Note that

E is definable in 〈H(θ+),∈,≤, δ, η〉 using {B,D, ρ} as parameters. So, 0.1(14) applies to E

and A which implies 0.1(13) for them16.

Finally, 0.1(14) holds for E and A due to definability of E and 0.1(14) for B and A.

The rest of the conditions follow easily.

�

Lemma 0.16 Let p = 〈〈Cτ , Cτlim〉 | τ ∈ s〉 be a wide piste and B,D are models of p such

that |B| = τ , for some τ ∈ s ∩ θ, |D| = θ and sup(B ∩ θ+) = D ∩ θ+.

Let ρ ∈ (τ, θ) be a regular cardinal. Then a model of cardinality ρ can be added to p between

B and D such that the result remains a wide piste.

16Here is the only placed where we use 0.1(14).
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Proof. We just continue the argument of the previous lemma (0.15) from the point where

the appeal to the assumption ”for every A ∈
⋃
µ<ρ, if sup(A ∩ θ+) > sup(B ∩ θ+), then

B ∈ A” was made. So, assume that A ∈ Cξ, for some ξ ∈ s ∩ ρ,sup(A ∩ θ+) > sup(B ∩ θ+)

and B 6∈ A.

Assume that such A was picked to be the least possible (under ∈ −relation) with sup(A ∩
θ+) > sup(E ∩ θ+) and E 6∈ A. If there is A1 so that sup(A1 ∩ θ+) > sup(B∗ ∩ θ+) and

B∗ 6∈ A1, then either sup(A1 ∩ θ+) < sup(A∩ θ+) and, then |A1| > |A| (due to minimality of

A), or sup(A1∩ θ+) > sup(A∩ θ+) and, then |A1| < |A| (since |A1| ≥ |A| will imply A1 ⊇ A,

by 0.1(9)). Let us show that the former possibility is impossible.

Claim. It is impossible to have sup(A1 ∩ θ+) < sup(A ∩ θ+).

Proof. Suppose otherwise. Then, by minimality of of A, |A1| > |A| and B ∈ A1. If A1 ∈ A,

then 0.1(13) for A,B provides the desired contradiction. If A1 6∈ A, then then apply 0.1(12)

to A and A1 and find A∗1 ∈ A∩C |A1|(A0|A1) such that A1 ⊆ A∗1. Now we derive a contradiction

replacing A1 with A∗1.

� of the claim.

Consider now the later possibility.

Replace now A,B by A1, B
∗. We will reach, after finitely many steps, models B∗∗ ∈ Cτ (A0τ )

and D∗∗ ∈ Cθ with sup(B∗∗∩θ+) = D∗∗∩θ+ such that for every A′ in p, with sup(A′∩θ+) >

sup(B∗∗ ∩ θ+), we have B∗∗, D∗∗ ∈ A′. Apply the previous lemma 0.15 to B∗∗, D∗∗ and add

E∗∗, B∗∗ ⊆ E∗∗ ⊆ D∗∗. Then continue, go down and apply 0.15 again and again until finally

B and D will be reached.

�

Lemma 0.17 Let p = 〈〈A0τ , A1τ , A1τlim, Cτ 〉 | τ ∈ s〉 ∈ Pθηδ and B,D are models on the

wide piste of p such that |B| = τ , for some τ ∈ s ∩ θ, |D| = θ and sup(B ∩ θ+) = D ∩ θ+.

Then for every regular cardinal ρ ∈ (τ, θ) a model of cardinality ρ can be added to p between

B and D.

Proof. Let B, D be as in the statement of the lemma and ρ ∈ (τ, θ) a regular cardinal.

Suppose that there is no model of size ρ between B and D inside p. Without loss of

generality we can assume that ρ ∈ s. Just otherwise extend p by adding the largest (under

∈) model of cardinality ρ making it potentially limit one.

Let E be the least elementary submodel of D such that

• |E| = ρ,
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• E ⊇ B,

• E ⊇ ρ,

• cof(sup(E∩θ+))>E ⊆ E.

Now we would like to add E to p. However in order to so more models probably need to

be added. Namely we proceed as follows:

• add E to the wide piste of p,

• add to the wide piste of p models that are needed to be added by 0.16 together with

E,

• add all their images under ∆−system triples isomorphisms to A1ρlim,

• change the wide piste and add to new one models that may be needed by 0.16.

The result will be as desired.

�

Lemma 0.18 The forcing notion 〈Pθηδ,≤ 〉 is τ−proper for every regular τ, η ≤ τ ≤ θ.

Proof. Let τ be a regular cardinal in the interval [η, θ]. We would like to show that 〈Pθηδ,≤ 〉
is τ−proper. If τ = η, then this follows by the previous lemma (0.14). Suppose that τ > η.

Let p ∈ Pθηδ. Pick M to be an elementary submodel of H(χ) for some χ regular large enough

such that

1. |M| = τ ,

2. M ⊇ τ ,

3. Pθηδ, p ∈M,

4. τ>M ⊆M.

Set M = M ∩H(θ+).

Clearly, M satisfies 0.1(3(b)). Moreover, using the elementarity of M, for every x ∈M there

will be Z ∈M such that

• Z � H(θ+),
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• |Z| = θ,

• Z ⊇ θ,

• θ>Z ⊆ Z,

• x ∈ Z.

This allows to find a chain 〈Ni | i < η〉 of models of size θ which members are in M , witnesses

0.1(3(b)) for N :=
⋃
i<ηNi and N ⊇M .

Extend p by adding M as a new A0η and N as a new A0θ. Require them to be a potentially

limit points. Denote the result by p_{M,N}.
We claim that p_{M,N} is (Pθηδ,M)−generic. So, let p′ ≥ p_M and D ∈ M be a dense

open subset of Pθηδ.
Extending p′ more if necessary, we can assume, without loss of generality, that p′ ∈ D.

Extend p′ further, by applying repeatedly Lemma 0.17, in order to achieve the following:

• for every ξ ∈ s(p′), there is a model B on the wide piste of p′ of cardinality ξ such that

M ⊆ B ⊆ N .

In particular, sup(M ∩ θ+) = sup(B ∩ θ+) = N ∩ θ+. Denote such B by Mξ.

Let us denote such extension of p′ still by p′.

Pick now A � H(θ+) which satisfies the following:

• |A| = η,

• A ⊇ η,

• A ∩ η+ is an ordinal,

• η>A ⊆ A,

• p′ ∈ A.

In particular every model of p′ belongs to A.

Extend p′ to p′′ by adding A as new largest model of cardinality η, i.e. p′′ = p′_A.

Let us reflect A = A0η(p′′) down to M over over A0η(p′′) ∩M , i.e. we pick some A′ ∈ M
and q which realizes the same k-type (for some k < ω sufficiently big) over A0η(p′′) ∩M as
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A0η(p′′) and p′′. Do this in a rich enough language which includes D as well. 17

In particular q ∈ D ∩M .

Let us argue that q is compatible with p′′.

Set s = s(q) = s(p′′). Let 〈τi | i < i∗〉 be an increasing enumeration of s. Pick ∈ −increasing

sequence of models 〈Ai | i < i∗〉 such that for every i < i∗ the following hold:

1. p′′, q ∈ Ai,

2. |Ai| = τi,

3. Ai satisfies 0.2(2).

Set A0τi = Ai.

Finally let for every τ ∈ s,

A1τ = {A0τ} ∪ A1τ (p′′) ∪ A1τ (q).

Define A0τlim and Cτ (τ ∈ s) in the obvious fashion now, but do not make A0ξ, ξ ∈ s

potentially limit.

Set

p∗ = 〈〈A0τ , A1τ , A1τlim, Cτ 〉 | τ ∈ s〉.

Then, in p∗, the triple (A0η, A0η(p′′), A0η(q)) will form a ∆–system triple relatively to M

and to the model which corresponds to M under the reflection.

Let check that the wide piste of p∗ satisfies 0.1. Suppose that it goes through C0ξ(A0ξ)(p′′),

for each ξ ∈ s ∩ τ , i.e. via the part before the reflection.

Let B ∈ Cρ(A0ρ) be above M (i.e. sup(B ∩ θ+) > sup(M ∩ θ+)). If B is A0ρ, then p′′, q ∈ B,

and so, every model which is below M is in B.

Suppose that B 6= A0ρ. Then B is in p′′.

Case 1. ρ ∈ s \ τ .

By 0.1(9(a)), for p′′, we have M ∈ B. Hence, all models added by reflection are in Z as

well. In addition, by 0.1(9(b)), for p′′, we have N ∈ B. So, by 0.1(5), Z cannot be minimal

in Cρ(A0ρ)(p′′). In addition, the least B on Cρ(A0ρ)(p′′) which contains M should be a

potentially limit point. So, adding new models of size ρ below M is legitimate.

17We follow here a suggestion by Carmi Merimovich to include D into the language which simplifies the
original argument considerably.
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Case 2. ρ ∈ s ∩ τ .

Then B is among models of p′′ that reflect down to M .

Suppose now that D ∈ Cξ(A0ζ) is below B. Assume that D does not appear in p′′. Then D

is below M and is the image of a model of p′′ under the reflection.

If D is on the wide piste of p∗, then ξ ≥ τ . Then there is a model Dξ on the wide piste of p′

of cardinality ξ such that M ⊆ Dξ ⊆ N . Clearly, D ⊆ Dξ and D ∈ Dξ.

So, B,D satisfy 0.1(12).

Let B ∈ Cρ(A0ρ) be below M (i.e. sup(B ∩ θ+) < sup(M ∩ θ+)). If ρ ≤ τ , then B ∈ M
either by 0.1(9), if B appears in p′ or by the reflection otherwise.

Suppose that ρ > τ . If B 6∈ M , then B in p′ and there is B∗ ∈ Cρ(A0ρ) ∩ M the least

such above B, by 0.1(12) for p′. Let B̃ be the image of B under the reflection. Then

B̃ ∈ Cρ(A0ρ)∩M and also B̃ ∈ B∗, since B satisfies this. Then by 0.1(13) (for p′ ) we must

to have B̃ ∈ B. Note that by 0.1(11) (for p′,M,B∗ ), B̃ can be added since the least element

of B∗ ∩ Cρ(A0ρ) which is above B∗ ∩M is a potentially limit point.

Let us turn to 0.2. The only non-trivial thing to check here is what happens once we

change the wide piste to the one that replaces the part of p∗ that was reflected by its

reflection, according to 0.2(9) .

So, suppose that such switching between the reflecting part and its reflection was made.

We need to argue that the result still satisfies 0.1. The issue is the covering. Namely the

conditions (12),(13) and (14) of 0.1.

Start with (12).

Let ξ, ρ ∈ s, ξ < ρ, B ∈ Cξ(A0ξ), D ∈ Cρ(A0ρ) and sup(B ∩ θ+) > sup(D ∩ θ+)). The

principle case is when τ ≤ ξ, ρ, B is above M and D is below M . Just all models but the

maximal ones of cardinalities below τ are below M on the new piste under the consideration.

Recall now that by the choice of p′, there is a model Mρ,M ⊆Mρ ⊆ N in Cρ(p′)(A0ρ(p′)).

Then D ⊆ Mρ, since D ∈ M . Apply 0.1(12) to B,Mρ. It is possible since both are on the

wide piste of p′. The model obtained witnesses 0.1(12) for B and D.

Deal now with the requirements (13),(14).

Note that once B of cardinality ξ ≥ τ is above M and both are on the wide piste of p′, we

have B ⊇ M , by 0.1(9). But, D is below M implies D ∈ M , since the reflection made is

into M . So, D ∈ B and we are done.

�

The next lemma is straightforward.

Lemma 0.19 The forcing notion 〈Pθηδ,≤ 〉 is < δ−strategically closed.

31



Proof. Use the strategy to switch each time back to the same (extended) wide piste. Take

unions along the wide piste at limit stages. Note that 0.1(12, 13,14) will hold with such limit

models, since non-limit ones are closed at least under < η−sequences and in particular, once

including members of an increasing sequence (which length is less than δ ≤ η) will have the

limit inside. Also definable parts (relevant for 0.1(13,14)), will have cofinality ≥ η, and so

cannot break down with this new limit models.

�

Combining together Lemmas 0.14,0.18, 0.19, we obtain the following:

Theorem 0.20 The forcing notion 〈Pθηδ,≤ 〉 preserves all cardinals ≤ δ and all cardinals

> η.

In particular, if δ = η, then all cardinals are preserved.
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We are not going to force with Pθηδ in the cardinal arithmetic applications, but rather to

use its members as domains of conditions of a further forcing. However, the forcing with it

is of an interest. Thus, for example, Pθ,ω,ω, where θ < ℵω1 regular, may be of an interest on

its own since the forcing with it will add a club subset to θ by finite conditions which runs

away from every countable set in the ground model.

Let G ⊆ Pθ,η,δ be a generic. Set

C = {X ∩ θ+ | ∃p ∈ G(X ∈ A1θlim(p) ∧ cof(X ∩ θ+) = θ)}

and let

C ′ = {α < θ+ | α is a limit of points in C}.

Lemma 0.21 Let α ∈ C ′ be of cofinality θ, then α ∈ C.

Proof. Suppose otherwise. Let p ∈ Pθηδ and α < θ+ be of cofinality θ and

p  α 6∈ C∼ and C∼ is unbounded in α.

Split into two cases.

Case 1. There is no model A in p with sup(A ∩ θ+) = α.

Pick then B to be the least model on the wide piste of p with sup(B ∩ θ+) > α. Let A ∈ B
be given by 0.1(6). Then, sup(A ∩ θ+) < α.

If B is not a potentially limit point, then, by 0.9(6), no models can be added between A and

B, which contradicts unboundedness of C in α.

If B is a potentially limit point, then we would like to use 0.10 and 0.11 to add a potentially

limit point T and a non potentially limit model T ′ such that

1. A ∈ T ∈ T ′ ∈ B,

2. T, T ′ ∈ C |B|(B),

3. sup(T ∩ θ+) < α < sup(T ′ ∩ θ+).

This will provide a contradiction, since no element of C then will be inside the interval

(sup(T ∩ θ+), sup(T ′ ∩ θ+)).

By the assumption cof(α) = θ, |p| < δ and

p  C∼ is unbounded in α,
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we can find such T and then by 0.11 also T ′.

Case 2. There is a model B in p with sup(B ∩ θ+) = α.

B is then in A1θ, since cof(α) = θ. Hence α ∈ C. Contradiction.

�

Lemma 0.22 Let α ∈ C ′ be of cofinality < δ, then α ∈ C.

Proof. Suppose otherwise. Let p ∈ Pθηδ and α < θ+ be of cofinality < η and

p  α 6∈ C∼ and C∼ is unbounded in α.

Split into two cases.

Case 1. p (There is no model A in an element of G∼ with sup(A ∩ θ+) = α).

We use the assumption

p  C∼ is unbounded in α

and construct an increasing sequence of extensions of p of the length cof(α) having an upper

bound which decide elements of C below α. Let q be such an upper bound. Then by

0.1(2(e)), there will be A ∈ A1θ(q) with A ∩ θ+ = α. Contradiction.

Case 2. p 6(There is no model A in an element of G∼ with sup(A ∩ θ+) = α).

Extend p to some p′ such that

p′ (There is a model A in an element of G∼ with sup(A ∩ θ+) = α).

Let p′′ ≥ p′ decides such A. If |A| = θ, then we are done. Suppose that |A| < θ.

Without loss of generality assume that A is on the wide piste of p′′. Being A not limit or

not potentially limit contradicts to unboundedness of C in α.

Subcase 2.1. A is a potentially limit point.

Let r ≥ p′′. We extend it to some q which has a model D of cardinality θ with D ∩ θ+ = α.

Proceed as follows.

Let 〈Ai | i < cof(sup(A ∩ θ+))〉 be the sequence which witnesses 0.1(3(b)) for A.

Claim. For every i < cof(sup(A ∩ θ+)) there is D ∈ A such that

1. |D| = θ,

2. D ⊇ θ,

3. D � H(θ+),

4. θ>D ⊆ D,
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5. Ai ∈ D.

Proof. By the assumptions on α and on p, there is t ≥ r which has a model D′ satisfying the

conditions of the claim with D′ ∩ θ+ < sup(A ∩ θ+). However such D′ may not be in A. If

this is the case, then apply 0.1(12) to A and D′ (in t). So we will get a model D∗ ∈ A which

contains D′ and satisfies all conditions of the claim, but may be not (4). Apply elementarity

then:

H(θ+) |= ∃D ∈ D∗ which satisfies (1),(2),(4),(5) and D � D∗.

Hence there will be such D in B as well.

� of the claim.

Take now the least ∈ −increasing continuous chain of models 〈Di | i < cof(sup(A∩ θ+))〉
with members in A, satisfy (1)-(3) of the claim and successor models satisfy in addition also

(4),(5).

Set D =
⋃
i<cof(sup(A∩θ+))Di. Now it is possible to add this D to t as a potentially limit point

and reflecting under ∆−systems, if necessary, we obtain a desired strengthening q of t.

Subcase 2.2. B is a limit point.

Then, we can use the arguments of Subcase 2.1 and to construct an increasing continuous

chain of extensions of p′ with the upper bound q which has a limit model D ∈ A1θ, D∩θ+ = α.

�

Lemma 0.23 Let x ∈ V be a subset of θ+ of cardinality δ. Then x 6⊆ C ′.

Proof. Let x ∈ V be a set of cardinality δ and p ∈ Pθηδ. Without loss of generality assume

that sup(x) is a limit ordinal of cofinality δ. Set ν = sup(x).

If

p  (C∼
′ is bounded in ν),

then we are done. So, suppose that

p  (C∼
′ is unbounded in ν).

Split models of p into two groups. Set

H0 = {A | A appears in p and sup(A ∩ ν) < ν}
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and

H1 = {A | A appears in p and sup(A ∩ ν) = ν}.

Note that since the total number of models in p is less than δ and δ is a regular, we have⋃
A∈H0

sup(A ∩ ν) < ν. Also, if δ < η, then ν ∈ A, for every A ∈ H1.

Let ν∗ =
⋃
A∈H0

sup(A ∩ ν).

Take now any B ∈ H1.

Claim. For every β, ν∗ < β < ν, there is D ∈ B such that

1. |D| = θ,

2. D ⊆ θ,

3. θ>D ⊆ D,

4. β < D ∩ θ+ < ν,

5. D satisfies 0.1(3(b)).

Proof. Assume that β ∈ B, since B ∈ H1 just replacing it by a bigger ordinal if necessary.

We have

p  (C∼
′ is bounded in ν).

Let p ∈ G. So in V [G], there is D′ ∈ C such that β < D′∩θ+ < ν. Then there is an extension

q of p with D′ inside. If D′ ∈ B, then we are done. Suppose otherwise. Apply 0.1(13) to

B,D′ for q. Then there will be D′′ ∈ B∩A1θlim which includes D′ and D′∩θ+ < D′′∩θ+ < ν,

since B ∈ H1.

Now,

H(θ+) |= ∃D ∈ D′′(β ∈ D and it satisfies conditions (1)-(5) of the claim).

Just D′ witnesses this. By elementarity then

B |= ∃D ∈ D′′(β ∈ D and it satisfies conditions (1)-(5) of the claim).

� of the claim.

Suppose that the following holds in V [G]:

(*) There is an elementary ∈ −chain 〈Di | i < δ〉 of elementary submodels of

〈H(θ+),∈,≤, δ, η〉 such that
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• for every A ∈ H1 on the wide piste of p, {Di | i < δ} ⊆ A,

• each Di satisfies the items (1),(2),(4)(without β),(5) of the claim,

• {Di ∩ θ+ | i < δ} is unbounded in ν.

Without loss of generality we can assume that 〈Di | i < δ〉 is a closed chain.

Recall that

p  (C∼
′ is unbounded in ν).

Hence for every i < δ there is the least i′, i < i′ < δ such that

Di′+1 |= ∃D � Di′(D satisfies the items (1)-(5) of the claim, with (4)without β ∧Di ∈ D).

Pick the least such D and make it the new Di+1.

Let p′ be an extension of p which adds a model X in C above ν∗, but below ν. Change, if

necessary, our sequence 〈Di | i < δ〉 by removing an initial segment such that X ∈ D1.

Now we pick some ξ ∈ x,D1 ∩ θ+ < ξ < Di∗+1 ∩ θ+, for some i∗ < δ. Next, add D1, Di∗+1 to

p, D1 as a potentially limit point and D2 as a non-limit and non-potentially limit point. The

requirement 0.1(11) will hold, since D1 is a potentially limit point above X (this for models

in H0) and D1, Di∗+1 are in every model of H1 on the wide piste. Reflect them through all

relevant splittings. Let q be the result. Then

q  x * C∼,

since nothing can be added between D1 and Di∗+1.

Let us now argue that (*) holds.

Split into two cases.

Case 1. δ > ω.

Work in V [G] with p ∈ G. Let 〈Ei | i < δ〉 be an increasing sequence of members of C

unbounded in ν with Ei ∩ θ+ < ν.

Let A ∈ H1 be a non-limit model on the main piste of p and i < δ. Pick an extension pi ∈ G
of p such that Ei appears in pi. Then, by 0.1(12), there is EA

i ∈ A ∩ Cθ(A0θ)(pi) the least

which contains Ei. By 0.1(13), EA
i ∩ θ+ < ν, since A ∈ H1.

Consider {EA
i | i < δ}. Adding limit models if necessary we can assume that it is a closed

chain. A is a non-limit, hence it is closed under less than δ−sequence of its elements, so,

{EA
i | i < δ} ⊆ A. Set

Y A := {EA
i ∩ θ+ | i < δ}.
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Consider

Y :=
⋂
{Y A | A ∈ H1 non-limit and on the wide piste of p}.

Then Y is an intersection of fewer than δ clubs, and hence is a club in ν. Now, Y ⊆ A, for

every A ∈ H1 non-limit and on the wide piste of p. If B is a limit model on the wide piste

of p and B ∈ H1, then B is an increasing union of less than δ non-limit models from the

wide piste. Then the final segment of them is in H1, and hence contains Y . So, Y ⊆ B.

Finally note that if E,E ′ two models which appear in A1θ(r), for some r, and E∩θ+ = E ′∩θ+,

then E = E ′, by 0.1(2). So, take any A ∈ H1 non-limit and on the wide piste of p, consider

the sequence

〈EA
i | i < δ, EA

i ∩ θ+ ∈ Y 〉.

It will witness (*).

Case 2. δ = ω.

Work in V . Conditions are finite now.

Pick now the least A on the wide piste of p of cardinality η in H1. It easy to insure that

such A exists just by extending p, if necessary.

Apply the claim to A and construct an elementary chain 〈Di | i < δ〉 such that

• {Di | i < δ} ⊆ A,

• for every i < δ, Di+1 satisfies the conditions (1)-(5) of the claim.

If {Di | i < δ} ⊆ B, for every B ∈ H1 on the wide piste, then we are done.

Suppose now that there is B ∈ H1 on the wide piste which does not contain {Di | i < δ}.
Then, necessary, θ > |B| > η and sup(B ∩ θ+) < sup(A ∩ θ+) by 0.1(9).

Let A1 be such B of the least possible cardinality and the least such of this cardinality.

Denote η1 = |A1|.
If A1 ∈ A, then set A∗1 = A1. Otherwise, use 0.1(13). There will A∗1 ∈ A∩Cη1(A0η1)(p), A∗1 ⊇
A1 with A∩A1 = A∩A∗1. Let 〈D1

i | i < δ〉 be the sequence defined inside A but applying the

claim to A∗1 and picking the least possible model there. So, {D1
i | i < δ} ⊆ A∩A∗1 = A∩A1.

If {D1
i | i < δ} ⊆ B, for every B ∈ H1 on the wide piste, then we are done.

Suppose that there is B ∈ H1 on the wide piste which does not contain {D1
i | i < δ}. Then,

necessary, θ > |B| > η1 and sup(B ∩ θ+) < sup(A1 ∩ θ+) by 0.1(9).

Let A2 be such B of the least possible cardinality and the least such of this cardinality.

Denote η2 = |A2|.
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Set A∗2 = A2, if A2 ∈ A. Otherwise, use 0.1(13). There will A∗2 ∈ A ∩ Cη1(A0η1)(p), A∗2 ⊇ A2

with A ∩ A2 = A ∩ A∗2.
If A∗2 ∈ A∗1, then let 〈D2

i | i < δ〉 be the sequence defined inside A but applying the claim to

A∗2 and picking the least possible model there. So, {D2
i | i < δ} ⊆ A∩A∗1∩A∗2 = A∩A1∩A2.

Suppose that A∗2 6∈ A∗1. If A∗2 ⊇ A∗1, then 〈D1
i | i < δ〉 will do for A∩A1∩A2, which is not the

case. Hence A∗2 6⊇ A∗1. Then sup(A∗2∩ θ+) < sup(A∗1∩ θ+), since η1 < η2. Apply 0.1(13)to A∗2

and A∗1. So there is A12 ∈ A∗1 ∩Cη2(A0η2)(p), A12 ⊇ A∗2 with A∗1 ∩A12 = A∗1 ∩A∗2. If A12 ∈ A,

then we look for a sequence inside it. If A12 6∈ A, then apply 0.1(13) to A12 and A and get

A∗12 ∈ A ∩ Cη2(A0η2)(p), A∗12 ⊇ A12. The process necessarily terminates after finitely many

steps, since δ = ω, and hence, p is finite.

Suppose for simplicity that already A∗12 ∈ A∗1.
Let then 〈D3

i | i < δ〉 be the sequence defined inside A but applying the claim to A∗12 and

picking the least possible model there. So,

{D3
i | i < δ} ⊆ A ∩ A∗1 ∩ A∗12 = (A ∩ A∗12) ∩ A∗1 = A ∩ A12 ∩ A∗1 = A ∩ (A12 ∩ A∗1) =

A ∩ A∗2 ∩ A∗1 = A ∩ A2 ∩ A∗1 = (A ∩ A∗1) ∩ A2 = A ∩ A1 ∩ A2.

If {D3
i | i < δ} ⊆ B, for every B ∈ H1 on the wide piste, then we are done. Otherwise

there is B ∈ H1 on the wide piste which does not contain {D3
i | i < δ}. Then, necessary,

θ > |B| > η2 and sup(B ∩ θ+) < sup(A2 ∩ θ+) by 0.1(9). So, again we are going down. After

finitely many steps the desired sequence will be reached.

�

In particular, taking δ = η = ω, we obtain the following generalization of corresponding

results by J. Baumgartner [1], S. Friedman [2] and by W. Mitchell [9] to higher cardinals18:

Corollary 0.24 The forcing Pθωω is cardinals preserving forcing adding a club in θ+ using

finite conditions.

Remark 0.25 Given a stationary subset S of θ+ such that for every α < θ+ if cof(α) < θ,

then α ∈ S. It is easy to modify the forcing Pθηδ such that it will add a club through S.

Only require that for every X of cardinality θ in a condition we have X ∩ θ+ ∈ S.

0.2 Suitable structures.

We reorganize here the structures with pistes of the previous section in order to allow iso-

morphisms of them over different cardinals.

18Note that Magidor and Radin forcings ([6],[10]) also add clubs by finite conditions.
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Definition 0.26 Let δ < κ < θ be cardinals and δ, θ is a regular. A structure X =

〈X,E,Elim, C, S,∈,⊆ 〉, where E ⊆ [X]2 and C ⊆ [X]3 is called a δ−suitable structure

with pistes over κ of the length θ iff there is a δ structure with pistes over κ+ of the length θ

p(X) = 〈〈A0τ (X), A1τ (X), A1τlim(X), Cτ (X)〉 | τ ∈ s(X)〉 such that

1. X = A0η(X) ∪ {A0η(X)}, where η ∈ s(X) is such that for every τ ∈ s(X) we have then

A0τ (X) ∈ X or A0τ (X) ⊆ X,

2. S = s(X),

3. 〈a, b〉 ∈ E iff a ∈ S and b ∈ A1a(X),

4. 〈a, b〉 ∈ Elim iff a ∈ S and b ∈ A1alim(X),

5. 〈a, b, d〉 ∈ C iff a ∈ S, b ∈ A1a(X) and d ∈ Ca(X)(b).

Let us refer to X for shortness as a a δ−suitable structure once κ, θ are fixed.

Note that p(X) is uniquely defined from X. Also, it is easy to define a δ-suitable structure

from p ∈ Pκ+θδ.

Definition 0.27 Let X,Y be δ-suitable structures. Set X ≤ Y iff p(X) ≤ p(Y).

0.3 Forcing conditions.

Let κ be a limit of an increasing sequence of cardinals 〈κn | n < ω〉 with each κn being strong

up to the least Mahlo cardinal λn above κn as witnessed by an extender En.

For every n < ω define Qn0.

Definition 0.28 Let Qn0 be the set of the triples 〈a,A, f〉 so that:

1. f is a partial function from θ+ to κn of cardinality at most κ,

2. a is an isomorphism between a κn–suitable structure X over κ of the length θ and a

κn–suitable structure X′over κ+nn of the length λn such that

(a) X ′ is above every model which appears in (
⋃
τ∈s(X′)A

1τ (X′)) \ {X ′}, in the order

≤En , (or actually after codding X ′ by an ordinal),
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(b) if t ∈
⋃
τ∈s(X′)A

1τ (X′),then for some k, 2 < k < ω, t ≺ H(χ+k), with χ big enough

fixed in advance.

Further passing from Qn0 to P we will require that for every k < ω for all but

finitely many n’s the n-th image t of a model from X will be elementary submodel

of H(χ+k).

The way to compare such models t1 ≺ H(χ+k1), t2 ≺ H(χ+k2), when k1 6= k2, say

k1 < k2, will be as follows:

move to H(χ+k1), i.e. compare t1 with t2 ∩H(χ+k1).

3. A ∈ EnX′ ,

4. for every ordinals α, β, γ which code models in
⋃
τ∈s(X′)A

1τ (X′), we have

α ≥En β ≥En γ implies

πEn
αγ (ρ) = πEn

βγ (πEn
αβ (ρ)),

for every ρ ∈ π′′X′αA.

Definition 0.29 Let 〈a,A, f〉, 〈b, B, g〉 be in Qn0. Set 〈a,A, f〉 ≥n0 〈b, B, g〉 iff

1. dom(a) ≥ dom(b),

2. ran(a) ≥ ran(b),

3. a ⊇ b,

4. f ⊇ g,

5. πEn

max(ran(a)),max(ran(b)“A ⊆ B.

Definition 0.30 Qn1 consists of all partial functions f : θ → κn with |f | ≤ κ. If f, g ∈ Qn1,

then set f ≥n1 g iff f ⊇ g.

Definition 0.31 Define Qn = Qn0 ∪Qn1 and ≤∗n=≤n0 ∪ ≤n1.
Let p = 〈a,A, f〉 ∈ Qn0 and ν ∈ A. Set

p_ν = f ∪ {〈α, πmax(ran(a)),a(α)(ν) | α ∈ A1θ(dom(a)) \ dom(f)}.

Note that here a contributes only the values for α’s in dom(a) \ dom(f) and the values on

common α’s come from f . Also only the ordinals in A1θ(dom(a)) are used to produce non

direct extensions, the rest of models disappear.
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Now, if p, q ∈ Qn, then we set p ≥n q iff either p ≥∗n q or p ∈ Qn1, q = 〈b, B, g〉 ∈ Qn0 and

for some ν ∈ B, p ≥n1 q_ν.

Definition 0.32 The set P consists of all sequences p = 〈pn | n < ω〉 so that

1. for every n < ω, pn ∈ Qn,

2. there is `(p) < ω such that

(a) for every n < `(p), pn ∈ Qn1,

(b) for every n ≥ `(p), we have pn = 〈an, An, fn〉 ∈ Qn0,

(c) if `(p) ≤ n ≤ m, then dom(an) ≤ dom(am),

(d) if `(p) ≤ n ≤ m, then max(dom(an)) = max(dom(am)).

3. For every n ≥ m ≥ `(p), dom(am) ⊆ dom(an),

4. for every n, `(p) ≤ n < ω, and X ∈ dom(an) we have that for each k < ω the set

{m < ω | ¬(am(X) ∩ H(χ+k) ≺ H(χ+k))} is finite.] (Alternatively require only that

am(X) ⊆ λm but there is X̃ ≺ H(χ+k)) such that am(X) = X̃ ∩ λm. It is possible to

define being k-good this way as well).

5. For every n ≥ `(p) and α ∈ dom(fn) there is m,n ≤ m < ω such that α ∈ dom(am) \
dom(fm).

6. There is a κ-structure with pistes p over κ such that

(a) p ≥ dom(an), for every n, `(p) ≤ n < ω,

(b) if a model A appears in p, then A appears in dom(an) for some n, `(p) ≤ n < ω

(and then in a final segment of them),

(c) max(dom(an)) = max(p) (actually this follows from the previous condition).

Note that p of 0.32(6) is uniquely determined by p. Let us refer to it further as the

κ-structure with pistes over κ of p.

Lemma 0.33 〈Qn0,≤n0 〉 is < κn-strategically closed.

Lemma 0.34 〈P ,≤∗ 〉 does not add new sequences of ordinals of the length < κ0.

Lemma 0.35 〈P ,≤∗ 〉 satisfies the Prikry condition.
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Lemma 0.36 Let p ∈ P and α < θ+, then there are q ≥∗ p and β, α < β < θ+ such that

β = M ∩ θ+, for some M which appears in q.

Proof. Pick some M ≺ H(θ+) of size θ which is above the maximal model of p (say p ∈M)

and such that M ∩ θ+ > α. Add it to p. Let q be the resulting condition. Then it is as

desired.

�

The next lemma follows now:

Lemma 0.37 Let G be a generic subset of 〈P ,≤ 〉. Then in V [G] there are cof((θ+)V )–many

ω–sequences of ordinals below κ.

Define → on P as in [3].

κ++–c.c. and even θ+–c.c. break down here for the forcing 〈P ,→ 〉.
Following C. Merimovich [8] we replace them by properness.

0.4 Properness.

We will turn now to the properness of the forcing. The proofs repeat almost completely

those of Lemmas 0.14,0.18

Lemma 0.38 〈P ,→ 〉 is κ+-proper.

Lemma 0.39 〈P ,→ 〉 is η-proper, for every regular η, κ+ < η ≤ θ.

The proofs repeat almost completely those of Lemmas 0.14,0.18. The only additional

ingredient is to put new models that were added below κ in the process of extension of

conditions inside old ones. As usual, in [3], we use←→ for this purpose and pass to equivalent

models.

Finally, combining together Lemmas 0.34, 0.35, 0.37, 0.38, 0.39, we obtain the following:

Theorem 0.40 Let G be a generic subset of 〈P ,→ 〉. Then V [G] is cofinalities preserving

extension of V in which 2κ = κω = θ+.
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