Structures with pistes - different sizes.

Moti Gitik*

June 27, 2016

Abstract

We generalize [5] and introduce structures with pistes which may have different number of models in every cardinality.

1 Structures with pistes-general setting.

Assume GCH.
As in [5], the first part (1.1) describes this "linear" part of conditions in the main forcing. It is called a wide piste and incorporates together elementary chains of models of different cardinalities. The main forcing, defined in 1.2 , will be based on such wide pistes and involves an additional natural but non-linear component called splitting or reflection.

Definition 1.1 Let $\eta<\theta$ be regular cardinals, \mathfrak{S} be a function from the set $\{\tau \mid \eta \leq \tau \leq$ θ and τ is a regular cardinal $\}$ to θ, such that for every $\tau \in \operatorname{dom}(\mathfrak{S}), \mathfrak{S}(\tau)$ is a cardinal $<\tau^{1}$. Assume also that $\mathfrak{S}(\tau) \leq \mathfrak{S}(\theta)$, for every $\tau \in \operatorname{dom}(\mathfrak{S})$.
A $(\theta, \eta, \mathfrak{S})$-wide piste is a set $\left\langle\left\langle C^{\tau}, C^{\tau l i m}\right\rangle \mid \tau \in s\right\rangle$ such that the following hold. Let us first specify sizes of models that are involved.

1. (Support) s is a closed set of regular cardinals from the interval $[\eta, \theta]$ satisfying the following:
(a) $|s|<\eta,{ }^{2}$

[^0](b) $\eta, \theta \in s$.

Which means that the minimal and the maximal possible sizes are always present.
2. (Models) For every $\tau \in s$ and $A \in C^{\tau}$ the following holds:
(a) $A \preccurlyeq\left\langle H\left(\theta^{+}\right), \in, \leq, \mathfrak{S}, \eta\right\rangle$,
(b) $|A|=\tau$,
(c) $A \supseteq \tau$,
(d) $A \cap \tau^{+}$is an ordinal,
(e) elements of C^{τ} form a closed \in-chain with a largest element of a length $<\mathfrak{S}(\tau)$,
(f) if $X \in C^{\tau} \backslash C^{\tau l i m}$ is a non-limit model (i.e. is not a union of elements of C^{τ}), then ${ }^{\tau>} X \subseteq X$.
(g) if $X, Y \in C^{\tau}$ then $X \in Y$ iff $X \varsubsetneqq Y$,
3. (Potentially limit points) Let $\tau \in s$.
$C^{\tau l i m} \subseteq C^{\tau}$. We refer to its elements as potentially limit points.
The intuition behind is that once extending it will be possible to add new models unboundedly often below a potentially limit model, and this way it will be turned into a limit one.
Let $X \in C^{\tau l i m}$. Require the following:
(a) X is a successor point of C^{τ}.
(b) (Increasing union) There is an increasing continuous \in-chain $\left\langle X_{i} \mid i<\operatorname{cof}\left(\sup \left(X \cap \theta^{+}\right)\right)\right\rangle^{3}$ of elementary submodels of X such that
i. $\bigcup_{i<\operatorname{cof}\left(\sup \left(X \cap \theta^{+}\right)\right)} X_{i}=X$,
ii. $\left|X_{i}\right|=\tau$,
iii. $X_{i} \supseteq \tau$,
iv. $X_{i} \in X$,
v. ${ }^{\tau>} X_{i+1} \subseteq X_{i+1}$.
(c) (Degree of closure of potentially limit point)

Either

[^1]i. ${ }^{\tau>} X \subseteq X$
or
ii. $\operatorname{cof}\left(\sup \left(X \cap \theta^{+}\right)\right)=\xi$ for some $\xi \in s \cap \tau$ and then
A. ${ }^{\xi>} X \subseteq X$,
B. there are $X_{\theta} \in C^{\theta l i m}, X_{\xi} \in C^{\xi l i m}$ such that $X \cap \theta^{+}=\sup \left(X_{\xi} \cap \theta^{+}\right)=$ $\sup \left(X \cap \theta^{+}\right)$and there is a sequence $\left\langle X_{i} \mid i<\operatorname{cof}\left(\sup \left(X \cap \theta^{+}\right)\right)\right\rangle$witnessing $3(\mathrm{~b})$ which members belong to X_{ξ}.
Further the condition (9(b)) will imply that $X^{\prime} \supseteq X \supseteq X^{\prime \prime}$. Eventually (once extending) for every regular $\mu, \tau \leq \mu \leq \theta$ there will be $X^{\prime \prime \prime} \in$ $C^{\mu l i m}, X \subseteq X^{\prime \prime \prime} \subseteq X^{\prime}$.
Note that if $\left\langle X_{i} \mid i<\operatorname{cof}\left(\sup \left(X \cap \theta^{+}\right)\right)\right\rangle$and $\left\langle X_{i}^{\prime} \mid i<\operatorname{cof}\left(\sup \left(X \cap \theta^{+}\right)\right)\right\rangle$are two sequences which witness (3b) above, then the set $\left\{i<\operatorname{cof}\left(\sup \left(X \cap \theta^{+}\right)\right) \mid\right.$ $\left.X_{i}=X_{i}^{\prime}\right\}$ is closed and unbounded.
It is possible using the well ordering \leq to define a canonical witnessing sequence $\left\langle X_{i} \mid i<\operatorname{cof}\left(X \cap \theta^{+}\right)\right\rangle$for X.
Let first do this for X such that $\operatorname{cof}\left(X \cap \theta^{+}\right)=\tau$ (or for X_{ξ} of (3c(ii)(B)) above). Fix the well ordering $\left\langle x_{\nu} \mid \nu<\tau\right\rangle$. We proceed by induction. Once $i<\tau$ is a limit then set $X_{i}=\bigcup_{i^{\prime}<i} X_{i^{\prime}}$. Pick X_{i+1} to be the least elementary submodel of X such that

- $x_{i} \in X_{i+1}$,
- $X_{i} \in X_{i+1}$,
- $\left|X_{i}\right|=\tau$,
- $X_{i} \supseteq \tau$,
- ${ }^{\tau>} X_{i+1} \subseteq X_{i+1}$.

By (3b), it is possible to find such X_{i+1}.
Clearly $\bigcup_{i<\tau} X_{i}=X$.
Suppose now that $\operatorname{cof}\left(X \cap \theta^{+}\right)=\xi \in s \cap \tau$. Then let us use the canonical sequence $\left\langle X_{i \xi} \mid i<\xi=\operatorname{cof}\left(X \cap \theta^{+}\right)\right\rangle$for X_{ξ} in order to define the canonical sequence $\left\langle X_{i} \mid i<\operatorname{cof}\left(X \cap \theta^{+}\right)\right\rangle$for X.
Proceed by induction. Once $i<\tau$ is a limit then set $X_{i}=\bigcup_{i^{\prime}<i} X_{i^{\prime}}$. Pick X_{i+1} to be the least elementary submodel of $H(\theta)$ such that

- $X_{i+1} \in X_{\xi}$,
- $X_{i \xi} \in X_{i+1}$,
- $X_{i} \in X_{i+1}$,
- $\left|X_{i}\right|=\xi$,
- $X_{i} \supseteq \xi$,
- ${ }^{\xi>} X_{i+1} \subseteq X_{i+1}$.

By (3c(ii)B), it is possible to find such X_{i+1} inside X_{ξ}.
Note that the existence of such canonical sequences implies that X itself is definable from X_{ξ}.

The next condition prevent unneeded appearances of small models between big ones.
4. If $B_{0}, B_{1} \in C^{\rho}$, for some $\rho \in s, B_{1}$ is not a potentially limit point and B_{0} is its immediate predecessor, then there is no potentially limit point $A \in C^{\tau}$ with $\tau<\rho$ such that $B_{0} \in A \in B_{1}$.

It is possible to require that no A at all, i.e. potentially limit or not, appears between B_{0} and B_{1}. The requirement that B_{1} is not a potentially limit point is important here. Once dealing with potentially limit points, we would like to allow reflections which may add small intermediate models.

Next condition is of a similar flavor, but deals with smallest models.
5. If $B \in C^{\rho}$, for some $\rho \in s$, is not a potentially limit point and it is the least element of C^{ρ}, then there is no potentially limit point $A \in C^{\tau}$ with $\tau>\rho$ such that $A \in B^{4}$.

Both conditions 4 and 5 are desired to allow to add new models below potentially limit points which will be essential further for properness of the forcing.

The next condition deals with with closure and is desired to prevent some pathological patterns.
6. Let $B \in C^{\rho}$, for some $\rho \in s$, be a non-limit point of C^{ρ}. If there are models $A \in \bigcup_{\xi \in s} C^{\xi}$ with $\sup \left(A \cap \theta^{+}\right)<\sup \left(B \cap \theta^{+}\right)$, then there is $A \in B \cap \bigcup_{\xi \in s} C^{\xi}$ such that
(a) $\sup \left(A \cap \theta^{+}\right)<\sup \left(B \cap \theta^{+}\right)$,
(b) for every $A^{\prime} \in \bigcup_{\xi \in s} C^{\xi}$ with $\sup \left(A^{\prime} \cap \theta^{+}\right)<\sup \left(B \cap \theta^{+}\right), \sup \left(A^{\prime} \cap \theta^{+}\right) \leq \sup \left(A \cap \theta^{+}\right)$.

[^2]Such A is the "real" immediate predecessor of B. Further, in the definition of the order, we will require that once B is not a potentially limit point, then no models E such that $A \in E \in B$ can be added.

The purpose of the next two conditions is to allow to proceed down the pistes without interruptions at least before reaching a potentially limit point.
7. Let $\tau, \rho \in s, \tau<\rho, A \in C^{\tau}, B \in C^{\rho}$ and $B \in A$. Suppose that B is not a potentially limit point and B^{\prime} is its immediate predecessor in C^{ρ}, then $B^{\prime} \in A$.
8. Let $\tau, \rho \in s, \tau<\rho, A \in C^{\tau}, B \in C^{\rho}$ and $B \in A$. Suppose that B is a limit point in C^{ρ}. Let $\left\langle B_{\nu} \mid \nu<\nu^{*}<\delta\right\rangle$ be $C^{\rho} \cap B$. Then a closed unbounded subsequence of $\left\langle B_{\nu} \mid \nu<\nu^{*}\right\rangle$ is in A.
9. (Linearity) If $\tau, \rho \in s, \tau<\rho, A \in C^{\tau}, B \in C^{\rho}$, then
(a) $\sup \left(A \cap \theta^{+}\right)<\sup \left(B \cap \theta^{+}\right)$implies $A \in B$,
(b) $\sup \left(A \cap \theta^{+}\right)=\sup \left(B \cap \theta^{+}\right)$implies $A \subseteq B$.
10. If $\tau, \rho \in s, \tau<\rho, A \in C^{\tau}, B \in C^{\rho}, \sup \left(A \cap \theta^{+}\right)>\sup \left(B \cap \theta^{+}\right)$and $B \in A$, then for every $X \in \bigcup_{\mu \in s} C^{\mu}, \sup \left(X \cap \theta^{+}\right)=\sup \left(B \cap \theta^{+}\right)$and $|X| \in A$ implies $X \in A$.
11. (Immediate successor restriction) Let $\tau, \rho \in s, \tau<\rho, A \in C^{\tau}, B \in C^{\rho l i m}, \operatorname{cof}\left(\sup \left(B^{\prime} \cap\right.\right.$ $\left.\left.\theta^{+}\right)\right)>\tau$ and $B \in A$. Suppose that there a model $B^{\prime} \in B \cap C^{\rho}$ such that $\sup \left(B^{\prime} \cap \theta^{+}\right)>$ $\sup \left((A \cap B) \cap \theta^{+}\right)$, then the least such B^{\prime} is a potentially limit model. I.e., if there is a model in C^{ρ} between $A \cap B$ and B, then the least such model is a potentially limit model.

It is designed to prevent the situation when there is $E \in A \cap C^{\rho}$ which has a nonpotentially limit immediate successor $E^{\prime \prime}$ in B but not in A. Also it prevents a possibility that the least element Y of C^{ρ} is a non-potentially limit point which belongs to B is above $A \cap B$.
This condition is needed further for τ-properness argument.
12. (Covering) If $\tau, \rho \in s, \tau<\rho, B \in C^{\tau}, D \in C^{\rho}$ and $\sup \left(B \cap \theta^{+}\right)>\sup \left(D \cap \theta^{+}\right)$, then there is $D^{*} \in B \cap C^{\rho^{*}}$ such that $D^{*} \supseteq D^{5}$, where $\rho^{*}=\min ((B \backslash \rho) \cap$ Regular $)$, i.e. the least regular cardinal in the interval $[\rho, \theta]$ which belongs to B. In particular, $\rho^{*} \in s^{6}$.

[^3]The last condition describes a very particular way of covering and it is crucial for the properness arguments.
13. (Strong covering) Let $B \in C^{\tau}, D \in C^{\rho}, \rho>\tau$ and $\sup \left(D \cap \theta^{+}\right)<\sup \left(B \cap \theta^{+}\right)$. Then either
(a) $D \in B$, or
(b) $D \notin B$ and the least $D^{*} \in C^{\rho^{*}} \cap B, D^{*} \supset D$ is closed under $<\rho^{*}$ - sequence of its elements, where $\rho^{*}=\min ((B \backslash \rho) \cap$ Regular $)$. Then $B \cap D^{*} \subseteq D$ and

$$
\begin{aligned}
& \left\{D^{\prime} \in D^{*} \mid\left(\left|D^{\prime}\right|=\rho^{*}\right) \wedge(\exists n<\omega)\left(\exists Z_{n-1} \in \ldots \in Z_{0} \in B\right)\right. \\
& \left.\left.\left.\quad\left((\forall k<n)\left(\left|Z_{k}\right|<\rho^{*}\right)\right) \wedge D^{\prime} \in B \cup \bigcup_{k<n} Z_{k}\right)\right)\right\} \in D^{7} .
\end{aligned}
$$

Or
(c) $D \notin B$ and the least $D^{*} \in C^{\rho} \cap B, D^{*} \supset D$ is not closed under $<\rho$ - sequence of its elements.
Let $\operatorname{cof}\left(\sup \left(D^{*} \cap \theta^{+}\right)\right)=\xi$ for some $\xi \in s \cap \rho$ and let $E \in C^{\xi l i m}$ such that $\sup \left(E \cap \theta^{+}\right)=\sup \left(D^{*} \cap \theta^{+}\right.$) (such E exists by $3 \mathrm{c}(\mathrm{b})$ and $E \in B$ by 10, since $\left.D^{*} \in B\right)$.
Then either
i. $D \in E, B \cap D^{*} \subseteq D$ and

$$
\begin{aligned}
& \left\{D^{\prime} \in D^{*} \mid\left(\left|D^{\prime}\right| \leq \rho^{*}\right) \wedge(\exists n<\omega)\left(\exists Z_{n-1} \in \ldots \in Z_{0} \in B\right)\right. \\
& \left.\left.\left.\quad\left((\forall k<n)\left(\left|Z_{k}\right|<\xi\right)\right) \wedge D^{\prime} \in B \cup \bigcup_{k<n} Z_{k}\right)\right)\right\} \in D .
\end{aligned}
$$

ii. $D \notin E$, and then, let be the least $D^{* *} \in C^{\rho^{* *}} \cap E$ with $D^{* *} \supset D$, where $\rho^{* *}=\min ((E \backslash \rho) \cap$ Regular $)$. If $D^{* *}$ is closed under $<\rho^{* *}-$ sequence of its elements, then $B \cap D^{*} \subseteq D, E \cap D^{* *} \subseteq D$ and

$$
\begin{gathered}
\left\{D^{\prime} \in D^{* *} \mid\left(\left|D^{\prime}\right| \leq \rho^{* *}\right) \wedge(\exists n<\omega)\left(\exists Z_{n-1} \in \ldots \in Z_{0} \in B\right)\right. \\
\left.\left.\left.\left((\forall k<n)\left(\left|Z_{k}\right|<\rho^{* *}\right)\right) \wedge D^{\prime} \in B \cup \bigcup_{k<n} Z_{k}\right)\right)\right\} \in D
\end{gathered}
$$

[^4]If $D^{* *}$ is not closed under $<\rho^{* *}$ - sequence of its elements, then the process repeats itself going down below $D^{* *}$. After finitely many steps we will either reach D or D will be above everything related to B. Let us state this formally. So suppose that $D^{* *}$ is not closed under $<\rho-$ sequence of its elements.
Then are $n^{*}<\omega,\left\{\xi_{n} \mid n \leq n^{*}\right\} \subseteq s \backslash \eta+1,\left\langle E_{n} \mid n \leq n^{*}\right\rangle,\left\langle D_{n} \mid n \leq n^{*}\right\rangle$ such that for every $n \leq n^{*}$ the following hold:
A. $D_{0}=D^{*}$,
B. $E_{0}=E$,
C. $\rho_{0}=\rho^{*}$,
D. $D_{n} \in C^{\rho_{n}}$,
E. $D_{n} \supseteq D$,
F. $D_{n+1} \in D_{n}$,
G. $\operatorname{cof}\left(\sup \left(D_{n} \cap \theta^{+}\right)\right)=\xi_{n}$,
H. $E_{n} \in C^{\xi_{n}}$,
I. $\sup \left(D_{n} \cap \theta^{+}\right)=\sup \left(E_{n} \cap \theta^{+}\right)$,
J. $D_{n+1} \in E_{n}$ is the least in $C^{\rho_{n+1}} \cap E_{n}$ with $D_{n+1} \supset D$ and $\rho_{n+1}=\min \left(\left(E_{n} \backslash \rho\right) \cap\right.$ Regular $)$.
K. $B \cap D_{0} \subseteq D$,
L. $E_{n} \cap D_{n+1} \subseteq D$,
M. $\left\{D^{\prime} \in D_{n+1} \mid\left(\left|D^{\prime}\right|=\rho_{n+1}\right) \wedge(\exists m<\omega)\left(\exists Z_{m-1} \in \ldots \in Z_{0} \in B\right)\right.$

$$
\left.\left.\left.\left((\forall k<m)\left(\left|Z_{k}\right|<\xi_{n}\right)\right) \wedge D^{\prime} \in B \cup \bigcup_{k<m} Z_{k}\right)\right)\right\} \in D,
$$

N. $D_{n^{*}}=D$ or, we have, $D \in D_{n^{*}},{ }^{\rho_{n}} D_{n^{*}} \subseteq D_{n^{*}}$,

$$
\begin{aligned}
& \left\{D^{\prime} \in D_{n^{*}} \mid\left(\left|D^{\prime}\right|=\rho_{n^{*}}\right) \wedge(\exists m<\omega)\left(\exists Z_{m-1} \in \ldots \in Z_{0} \in B\right)\right. \\
& \left.\left.\left.\quad\left((\forall k<m)\left(\left|Z_{k}\right|<\rho_{n^{*}}\right)\right) \wedge D^{\prime} \in B \cup \bigcup_{k<m} Z_{k}\right)\right)\right\} \in D .
\end{aligned}
$$

14. (An addition to the strong covering condition) Let $B \in C^{\tau}, D \in C^{\rho}, \rho>\tau$ and $\sup \left(D \cap \theta^{+}\right)<\sup \left(B \cap \theta^{+}\right)$. Suppose that there is $X \in C^{\theta}$ with $\sup \left(B \cap \theta^{+}\right)=X \cap \theta^{+}$. Then either
(a) $D \in B$,
or
(b) $D \notin B$ and (b), (c) of (13) hold with B replaced by any model $Y, B \subseteq Y \subseteq X$ of a regular cardinality $\mu \in s, \tau<\mu<\rho$ which is definable in $\left\langle H\left(\theta^{+}\right), \in, \leq, \delta, \eta\right\rangle$ with parameters from the set $B \cup(\mu+1) \cup\{B\}^{8}$.

The next conditions are the versions of a strong covering used for chains of models. They are essential further for showing properness.
15. (Strong covering for chains of models) Let $B \in C^{\tau}, \rho>\tau, \rho \in B,\left\langle D_{i} \mid i \leq \alpha\right\rangle$ is an initial segment of C^{ρ}, for some $\alpha<\mathfrak{S}(\rho)$, and
$\sup \left(D_{\alpha} \cap \theta^{+}\right)<\sup \left(B \cap \theta^{+}\right)$. Then either
(a) $\left\langle D_{i} \mid i \leq \alpha\right\rangle \in B$, or
(b) there is $\alpha^{*}<\alpha$ such that $\left\langle D_{i} \mid i \leq \alpha^{*}\right\rangle \in B$ and the models of $\left\langle D_{i} \mid \alpha^{*}<i \leq \alpha\right\rangle$ satisfy $13(\mathrm{~b}, \mathrm{c}), 14(\mathrm{~b})$ with $D^{*} \in C^{\rho} \cap B$ the least above D_{α}.
16. (Strong covering for chains of models of size outside) Let $B \in C^{\tau}, \rho>\tau, \rho \notin B$, $\left\langle D_{i} \mid i \leq \alpha\right\rangle$ is an initial segment of C^{ρ}, for some $\alpha<\mathfrak{S}(\rho)$, and $\sup \left(D_{\alpha} \cap \theta^{+}\right)<\sup \left(B \cap \theta^{+}\right)$. Let $D^{*} \in C^{\rho^{*}} \cap B$ the least above D_{α}.
Then either
(a) the sequence $\left\langle D_{i} \mid i \leq \alpha\right\rangle$ satisfy $13(\mathrm{~b}, \mathrm{c}), 14(\mathrm{~b})$, or
(b) there are $\alpha^{*}<\alpha$ and a closed chain $\left\langle D_{i}^{*} \mid i \leq \alpha^{*}\right\rangle$ of members of $C^{\rho^{*}}$ such that
i. $\left\langle D_{i}^{*} \mid i \leq \alpha^{*}\right\rangle \in B$,
ii. $\left\langle D_{i}^{*} \mid \alpha^{*}<i \leq \alpha\right\rangle$ satisfy $13(\mathrm{~b}, \mathrm{c}), 14(\mathrm{~b})$,
iii. for every $i \leq \alpha^{*}$, if $D_{i}^{*} \in B$, or equivalently $i \in B$, then D_{i}^{*} is the least member of B which covers D_{i}.

Now we are ready to give the main definition.
Definition 1.2 Let $\eta<\theta$ be regular cardinals, \mathfrak{S} be a function from the set $\{\tau \mid \eta \leq \tau \leq$ θ and τ is a regular cardinal $\}$ to θ, such that for every $\tau \in \operatorname{dom}(\mathfrak{S}), \mathfrak{S}(\tau)$ is a cardinal $<\tau$.

[^5]A $(\theta, \eta, \mathfrak{S})$-structure with pistes is a set $\left\langle\left\langle A^{0 \tau}, A^{1 \tau}, A^{1 \tau l i m}, C^{\tau}\right\rangle \mid \tau \in s\right\rangle$ such that the following hold. ${ }^{9}$
Let us first specify sizes of models that are involved.

1. (Support) s is a closed set of regular cardinals from the interval $[\eta, \theta]$ satisfying the following:
(a) $|s|<\delta$,
(b) $\eta, \theta \in s$.

Which means that the minimal and the maximal possible sizes are always present.
2. (Models) For every $\tau \in s$ the following holds:
(a) $A^{0 \tau} \preccurlyeq\left\langle H\left(\theta^{+}\right), \in, \leq, \delta, \eta\right\rangle$,
(b) $\left|A^{0 \tau}\right|=\tau$,
(c) $A^{0 \tau} \in A^{1 \tau}$,
(d) $A^{1 \tau}$ is a set of less than δ elementary submodels of $A^{0 \tau}$,
(e) each element A of $A^{1 \tau}$ has cardinality $\tau, A \supseteq \tau$ and $A \cap \tau^{+}$is an ordinal and it is above the number of cardinals in the interval $[\eta, \theta]$.
3. (Potentially limit points) Let $\tau \in s$.
$A^{1 \tau l i m} \subseteq A^{1 \tau}$. We refer to its elements as potentially limit points.
The intuition behind is that once extending it will be possible to add new models unboundedly often below a potentially limit model, and this way it will be turned into a limit one.
4. (Piste function) The idea behind is to provide a canonical way to move from a model in the structure to one below.
Let $\tau \in s$.
Then, $\operatorname{dom}\left(C^{\tau}\right)=A^{1 \tau}$ and
for every $B \in \operatorname{dom}\left(C^{\tau}\right), C^{\tau}(B)$ is a closed chain of models in $A^{1 \tau} \cap(B \cup\{B\})$ such that the following holds:
(a) $B \in C^{\tau}(B)$,

[^6](b) if $X \in C^{\tau}(B)$, then $C^{\tau}(X)=\left\{Y \in C^{\tau}(B) \mid Y \in X \cup\{X\}\right\}$,
(c) if B has immediate predecessors in $A^{1 \tau}$, then one (and only one) of them is in $C^{\tau}(B)$,
5. (Wide piste) The set
$$
\left\langle C^{\tau}\left(A^{0 \tau}\right), C^{\tau}\left(A^{0 \tau}\right) \cap A^{1 \tau l i m} \mid \tau \in s\right\rangle
$$
is a $(\theta, \eta, \mathfrak{S})$-wide piste.
Next two condition describe the ways of splittings from wide pistes. This describes the structure of $A^{1 \tau}$ and the way pistes allow to move from one of its models to an other.
6. (Splitting points) Let $\tau \in s$. Let $X \in A^{1 \tau}$ be a non-limit model (but possibly a potentially limit), then either
(a) X is a minimal under \in or equivalently under \supsetneq,
or
(b) X has a unique immediate predecessor in $A^{1 \tau}$, or
(c) X has exactly two immediate predecessors X_{0}, X_{1} in $A^{1 \tau}$, non of X, X_{0}, X_{1} is a limit or potentially limit points and X, X_{0}, X_{1} form a Δ-system triple relatively to some $F_{0}, F_{1} \in A^{1 \tau^{*} l i m}$, for some $\tau^{*} \in s \backslash \tau+1^{10}$, which means the following:
i. $F_{0} \varsubsetneqq F_{1}$ and then $F_{0} \in C^{\tau^{*}}\left(F_{1}\right)$, or $F_{1} \varsubsetneqq F_{0}$ and then $F_{1} \in C^{\tau^{*}}\left(F_{0}\right)$,
ii. ${ }^{\tau^{*}>} F_{0} \subseteq F_{0}$ and ${ }^{\tau^{*}>} F_{1} \subseteq F_{1}$,
iii. $X_{0} \in F_{1}\left(\right.$ or $\left.X_{1} \in F_{0}\right)$,
iv. $F_{0} \in X_{0}$ and $F_{1} \in X_{1}$,
v. $X_{0} \cap X_{1}=X_{0} \cap F_{0}=X_{1} \cap F_{1}$,
vi. ${ }^{\tau>} X_{0} \subseteq X_{0}$ and ${ }^{\tau>} X_{1} \subseteq X_{1}$,
vii. the structures
$$
\left\langle X_{0}, \in,\left\langle X_{0} \cap A^{1 \rho}, X_{0} \cap A^{1 \rho l i m},\left(C^{\rho} \upharpoonright X_{0} \cap A^{1 \rho}\right) \cap X_{0} \mid \rho \in s \cap X_{0}\right\rangle\right\rangle
$$
and
$$
\left\langle X_{1}, \in,\left\langle X_{1} \cap A^{1 \rho}, X_{1} \cap A^{1 \rho l i m},\left(C^{\rho} \upharpoonright X_{1} \cap A^{1 \rho}\right) \cap X_{1} \mid \rho \in s \cap X_{1}\right\rangle\right\rangle
$$

[^7]are isomorphic over $X_{0} \cap X_{1}$. Denote by $\pi_{X_{0}, X_{1}}$ the corresponding isomorphism.
viii. $X \in A^{0 \tau *}$.

Further we will refer to such X as a splitting point.
Or
(d) (Splitting points of higher order) There are $G, G_{0}, G_{1} \in X \cap A^{1 \mu}$, for some $\mu \in$ $s \backslash \min (s \backslash \tau+1)$, which form a Δ-system triple with witnessing models in X such that
i. $X_{0} \in G_{0}$,
ii. $X_{1} \in G_{1}$,
iii. $X_{1}=\pi_{G_{0} G_{1}}\left[X_{0}\right]$.
iv. X is not a limit or potentially limit point,
v. $X \in A^{0 \mu}$,
vi. (Pistes go in the same direction) $G_{i} \in C^{\mu}(G) \Leftrightarrow X_{i} \in C^{\tau}(X), i<2$.

Further we will refer to such X as a splitting point of higher order.
7. Let $\tau, \rho \in s, X \in A^{1 \tau}, Y \in A^{1 \rho}$. Suppose that X is a successor point, but not potentially limit point and $X \in Y$. Then all immediate predecessors of X are in Y, as well as the witnesses, i.e. F_{0}, F_{1} if (6c) holds and G_{0}, G_{1}, G if (6 d) holds.
8. Let $\tau \in s$. If $X \in A^{1 \tau}, Y \in \bigcup_{\rho \in s} A^{1 \rho}$ and $Y \in X$, then Y is a piste reachable from X, i.e. there is a finite sequence $\langle X(i) \mid i \leq n\rangle$ of elements of $A^{1 \tau}$ which we call a piste leading to Y such that
(a) $X=X(0)$,
(b) for every $i, 0<i \leq n, X(i) \in C^{\tau}(X(i-1))$ or $X(i-1)$ has two immediate successors $X(i-1)_{0}, X(i-1)_{1}$ with $X(i-1)_{0} \in C^{\tau}(X(i-1)), X(i)=X(i-1)_{1}$ and $Y \in X(i-1)_{1} \backslash X(i-1)_{0}$ or $Y=X(i-1)_{1}$,
(c) $Y=X(n)$, if $Y \in A^{1 \tau}$ and if $Y \in A^{1 \rho}$, for some $\rho \neq \tau$, then $Y \in X(n), X(n)$ is a successor point and Y is not a member of any element of $X(n) \cap A^{1 \tau}$.

In particular, every $Y \in A^{1 \tau}$ is piste reachable from $A^{0 \tau}$.
In order formulate further requirement, we will need to describe a simple process of
changing the wide pistes. This leads to equivalent forcing conditions once the order will be defined.

Let $X \in A^{1 \tau}$. We will define X-wide piste. The definition will be by induction on number of turns (splits) needed in order to reach X by the piste from $A^{0 \tau}$.
First, if $X \in C^{\tau}\left(A^{0 \tau}\right)$, then X-wide piste is just $\left\langle C^{\xi}\left(A^{0 \xi}\right), C^{\xi}\left(A^{0 \xi}\right) \cap A^{1 \xi l i m} \mid \xi \in s\right\rangle$, i.e. the wide piste of the structure.

Second, if $X \notin C^{\tau}\left(A^{0 \tau}\right)$, but it is not a splitting point, then pick the least splitting point Y above X. Let Y_{0}, Y_{1} be its immediate predecessors with $Y_{0} \in C^{\tau}(Y)$. Then $X \in Y_{i} \cup\left\{Y_{i}\right\}$ for some $i<2$. Set X-wide piste to be the Y_{i}-wide piste.
So, in order to complete the definition, it remain to deal with the following principle case:
$X \in A^{1 \tau}$ a splitting point with witnesses $F_{0}, F_{1} \in C^{\tau^{*}}\left(A^{0 \tau^{*}}\right)$. Let X_{0}, X_{1} be its immediate predecessors with $X_{0} \in C^{\tau}(X)$. Assume that X-wide piste $\left\langle C_{X}^{\xi}, C_{X}^{\xi l i m}\right|$ $\xi \in s\rangle$ for X is defined and assume that $C^{\tau}(X)$ is an initial segment of C_{X}^{τ}.
Let the X_{0}-wide piste be $\left\langle C_{X}^{\xi}, C_{X}^{\xi l i m} \mid \xi \in s\right\rangle$.
Define X_{1} - wide piste $\left\langle C_{X_{1}}^{\xi}, C_{X_{1}}^{\xi l i m} \mid \xi \in s\right\rangle$ as follows:

- $C_{X_{1}}^{\xi}=C_{X}^{\xi}$, for every $\xi \geq \tau^{*}$.
I.e. no changes for models of cardinality $\geq \tau^{*}$.
- $C_{X_{1}}^{\xi l i m}=C_{X_{1}}^{\xi} \cap A^{1 \xi l i m}$, for every $\xi \in s$.

Models that were potentially limit remain such and no new are added.

- $C_{X_{1}}^{\tau}=\left(C_{X}^{\tau} \backslash X\right) \cup C^{\tau}\left(X_{1}\right)$.

Here we switched the piste from X_{0} to X_{1}.

- $C_{X_{1}}^{\xi}=\left\{Z \in C_{X}^{\xi} \mid \sup \left(Z \cap \theta^{+}\right)>\max \left(\sup \left(X_{0} \cap \theta^{+}\right), \sup \left(X_{1} \cap \theta^{+}\right)\right)\right\} \cup\left\{\pi_{X_{0}, X_{1}}(Z) \mid\right.$ $\left.Z \in C_{X}^{\xi} \cap X_{0}\right\}$, for every $\xi \in s \cap \tau^{* 11}$.

Now we require the following:
9. Let $\tau \in s$ and $X \in A^{1 \tau}$. Then X-wide piste is a wide piste, i.e. it satisfies 1.1. The problem is with (3c) of 5 which, in general, is not preserved while splitting.

Final conditions deal with largest models.

[^8]10. (Maximal models are above all the rest) For every $\tau \in s$ and $Z \in \bigcup_{\rho \in s} A^{1 \rho}$, if $Z \notin A^{0 \tau}$, then there is $\mu \in s$ such that $Z=A^{0 \mu}$.

Recall that by 5 , maximal models $A^{0 \tau}, \tau \in s$ are linearly ordered as top parts of the wide piste $\left\langle C^{\tau}\left(A^{0 \tau}\right), C^{\tau}\left(A^{0 \tau}\right) \cap A^{1 \tau l i m} \mid \tau \in s\right\rangle$.

This completes the definition of $(\theta, \eta, \mathfrak{S})$-structure with pistes.

1.1 The intersection property.

Recall two definitions from [5].
Definition 1.3 (Models of different sizes). Let $\left\langle\left\langle A^{0 \tau}, A^{1 \tau}, A^{1 \tau l i m}, C^{\tau}\right\rangle \mid \tau \in s\right\rangle$ be a $(\theta, \eta, \mathfrak{S})$-structure with pistes.

Let $A \in A^{1 \tau}, B \in A^{1 \rho}$ and $\tau<\rho$.
By $i p(A, B)$ we mean the following:

1. $B \in A$,
or
2. $A \subset B$,
or
3. $B \notin A, A \not \subset B$ and then

- there are $\eta_{1}<\ldots<\eta_{m}$ in $(s \backslash \rho) \cap A$ and $X_{1} \in A^{1 \eta_{1}} \cap A, \ldots, X_{m} \in A^{1 \eta_{m}} \cap A$ such that $A \cap B=A \cap X_{1} \cap \ldots \cap X_{m}$.

Definition 1.4 (Models of a same size). Let $\left\langle\left\langle A^{0 \tau}, A^{1 \tau}, A^{1 \tau l i m}, C^{\tau}\right\rangle \mid \tau \in s\right\rangle$ be a $(\theta, \eta, \mathfrak{S})$-structure with pistes.

Let $A, B \in A^{1 \tau}$. By $i p(A, B)$ we mean the following:

1. $A \subseteq B$, or
2. $B \subseteq A$,
or
3. $A \nsubseteq B, B \nsubseteq A$ and then

- there are $\eta_{1}<\ldots<\eta_{m}$ in $(s \backslash \tau) \cap A$ and $X_{1} \in A^{1 \eta_{1}} \cap A, \ldots, X_{m} \in A^{1 \eta_{m}} \cap A$ such that $A \cap B=A \cap X_{1} \cap \ldots \cap X_{m}$.

If both $i p(A, B)$ and $i p(B, A)$ hold, then we denote this by $i p b(A, B)$.
Lemma 1.5 Let $\left\langle\left\langle A^{0 \tau}, A^{1 \tau}, A^{1 \tau l i m}, C^{\tau}\right\rangle \mid \tau \in s\right\rangle$ be a $(\theta, \eta, \mathfrak{S})$-structure with pistes. Assume $A \in A^{1 \tau}, B \in A^{1 \rho}$, for some $\tau \leq \rho, \tau, \rho \in s$. Then ip (A, B) and if $\tau=\rho$, then also ipb (A, B).

The proof repeats those of the corresponding lemma of [5].

1.2 Forcing with structures with pistes of different sizes.

Definition 1.6 Define $\mathcal{P}_{\theta \eta \mathfrak{S}}$ to be the set of all $(\theta, \eta, \mathfrak{S})$-structures with pistes.
Let $p=\left\langle\left\langle A^{0 \tau}, A^{1 \tau}, A^{1 \tau l i m}, C^{\tau}\right\rangle \mid \tau \in s\right\rangle \in \mathcal{P}_{\theta \eta \mathfrak{S}}$.
Denote further $A^{0 \tau}$ by $A^{0 \tau}(p), A^{1 \tau}$ by $A^{0 \tau}(p), A^{1 \tau l i m}$ by $A^{1 \tau l i m}(p), C^{\tau}$ by $C^{\tau}(p)$ and s by $s(p)$. Call s the support of p.

Let us define a partial order on $\mathcal{P}_{\theta \eta \mathfrak{S}}$ as follows.
Definition 1.7 Let
$p_{0}=\left\langle\left\langle A_{0}^{0 \tau}, A_{0}^{1 \tau}, A_{0}^{1 \tau l i m}, C_{0}^{\tau}\right\rangle \mid \tau \in s_{0}\right\rangle, p_{1}=\left\langle\left\langle A_{1}^{0 \tau}, A_{1}^{1 \tau}, A_{1}^{1 \tau l i m}, C_{1}^{\tau}\right\rangle \mid \tau \in s_{1}\right\rangle$ be two elements of $\mathcal{P}_{\theta \eta \mathcal{E}}$.
Set $p_{0} \leq p_{1}\left(p_{1}\right.$ extends $\left.p_{0}\right)$ iff

1. $s_{0} \subseteq s_{1}$,
2. $A_{0}^{1 \tau} \subseteq A_{1}^{1 \tau}$, for every $\tau \in s_{0}$,
3. let $A \in A_{0}^{1 \tau}$, then $A \in A_{0}^{1 \tau l i m}$ iff $A \in A_{1}^{1 \tau l i m}$.

The next item deals with a property called switching in [1]. It allows to change piste directions.
4. For every $A \in A_{0}^{1 \tau}, C_{0}^{\tau}(A) \subseteq C_{1}^{\tau}(A)$, or
there are finitely many splitting (or generalized splitting) points $B(0), \ldots, B(k) \in A_{0}^{1 \tau}$ with $B(j)^{\prime}, B(j)^{\prime \prime}$ the immediate predecessors of $B(j)(j \leq k)$ such that
(a) $B(j)^{\prime} \in C_{0}^{\tau}(B(j))$,
(b) $B(j)^{\prime \prime} \in C_{1}^{\tau}(B(j))$.
5. If $A \in A_{0}^{1 \tau}$ is a splitting point or a splitting point of higher order in p_{0}, then it remains such in p_{1} with the same immediate predecessors.
6. Let $B \in A_{0}^{1 \tau}$ be a successor point, not in $A_{0}^{1 \tau \lim }$ and with a unique immediate predecessor. Consider the wide piste that runs via B (in p_{0}). Let A be as in 1.1(6). Then there is no model E in p_{1} such that $A \in E \in B$.

This requirement guaranties intervals without models, even after extending a condition.

By $1.7(6)$, potentially limit points are the only places where not end-extensions can be made.

Next two lemmas will insure that generic clubs produced by $\mathcal{P}_{\theta \eta \mathfrak{S}}$ run away from old sets of corresponding sizes. Their proofs repeat those of [5].

Lemma 1.8 Let $p=\left\langle\left\langle A^{0 \tau}, A^{1 \tau}, A^{1 \tau l i m}, C^{\tau}\right\rangle \mid \tau \in s\right\rangle$ be an element of $\mathcal{P}_{\theta \eta \mathfrak{E}}$. Let $X \in A^{1 \rho l i m}$, for some $\rho \in s$.
Assume that if $\operatorname{cof}\left(\sup \left(X \cap \theta^{+}\right)\right)<\rho$, then $\rho \in B$, where $B \in A^{1 \operatorname{cof}\left(\sup \left(X \cap \theta^{+}\right)\right) \text {lim }}$ is the model with $\sup \left(B \cap \theta^{+}\right)=\sup \left(X \cap \theta^{+}\right)$(exists by 1.1(3)(c)B) $)^{12}$.
Suppose that for every $t \in X$ there is $D \preceq X$ such that

1. $D \in X$,
2. $t \in D$,
3. $|D|=\rho$,
4. $D \supseteq \rho$
5. ${ }^{\rho>} D \subseteq D$,
6. D is a union of a chain of its elementary submodels which satisfy items $1-5^{13}$.

Then for every $\beta<\sup \left(X \cap \theta^{+}\right)$there is T of size ρ with
$\sup \left(T \cap \theta^{+}\right)>\beta, T \in X$ such that adding T as a potentially limit point and reflecting it through Δ-system type triples gives an extension of p.

Lemma 1.9 Let $p=\left\langle\left\langle A^{0 \tau}, A^{1 \tau}, A^{1 \tau l i m}, C^{\tau}\right\rangle \mid \tau \in s\right\rangle$ be an element of $\mathcal{P}_{\theta \eta \delta}$. Let $X \in A^{1 \rho l i m}$, for some $\rho \in s$.
Assume that if $\operatorname{cof}\left(\sup \left(X \cap \theta^{+}\right)\right)<\rho$, then $\rho \in B$, where $B \in A^{1 \operatorname{cof}\left(\sup \left(X \cap \theta^{+}\right)\right) \text {lim }}$ is the model with $\sup \left(B \cap \theta^{+}\right)=\sup \left(X \cap \theta^{+}\right)$(exists by 1.1(3)(c)B)).
Suppose that for every $t \in X$ there is $D \preceq X$ such that

1. $D \in X$,
2. $t \in D$,
3. $|D|=\rho$,

[^9]4. $D \supseteq \rho$
5. ${ }^{\rho>} D \subseteq D$,
6. D is a union of a chain of its elementary submodels which satisfy items 1-5.

Let $\beta<\sup \left(X \cap \theta^{+}\right)$and T be a potentially limit point of size ρ with
$\sup \left(T \cap \theta^{+}\right)>\beta, T \in X$ added by the previous lemma 1.8. Then for every $\gamma, \sup \left(T \cap \theta^{+}\right)<$ $\gamma<\sup \left(X \cap \theta^{+}\right)$there is T^{\prime} of size ρ with
$\sup \left(T^{\prime} \cap \theta^{+}\right)>\gamma, T^{\prime} \in X$ such that adding T^{\prime} as a non-potentially limit point and reflecting it through Δ-system type triples gives an extension of the previous condition.

Lemma 1.10 Let $p=\left\langle\left\langle A^{0 \tau}, A^{1 \tau}, A^{1 \tau l i m}, C^{\tau}\right\rangle \mid \tau \in s\right\rangle$ be an element of $\mathcal{P}_{\theta \eta \delta}$. Let $X \in A^{1 \rho l i m}$, for some $\rho \in s$.
Assume that $\operatorname{cof}\left(\sup \left(X \cap \theta^{+}\right)\right)=\tau<\rho, \rho \notin B$, for $B \in A^{1 \operatorname{cof}\left(\sup \left(X \cap \theta^{+}\right)\right) \text {lim }}$ such that $\sup \left(B \cap \theta^{+}\right)=\sup \left(X \cap \theta^{+}\right)$. Let $Y \in A^{1 \text { tlim }}$ with $Y \cap \theta^{+}=\sup \left(X \cap \theta^{+}\right)$(it exists by 1.1(3(c)B)). Suppose that for every $t \in Y$ there is $D \preceq Y$ such that

1. $D \in Y$,
2. $t \in D$,
3. $|D|=\theta$,
4. $D \supseteq \theta$
5. ${ }^{\theta>} D \subseteq D$,
6. D is a union of a chain of its elementary submodels which satisfy items 1-5.

Then for every $\beta<\sup \left(X \cap \theta^{+}\right)$there is T of size ρ with
$\sup \left(T \cap \theta^{+}\right)>\beta, T \in X$ such that adding T as a potentially limit point and reflecting it through Δ-system type triples gives an extension of p.

We turn now to properness of $\mathcal{P}_{\theta \eta \mathcal{E}}$. The arguments are similar to those of [5], but require a certain addition which allow to deal with unbounded chains.

Lemma 1.11 The forcing notion $\left\langle\mathcal{P}_{\theta \eta \mathfrak{E}}, \leq\right\rangle$ is η-proper

Proof. If $\mathfrak{S}(\tau) \leq \eta$, for every $\tau \in \operatorname{dom}(\mathfrak{S})$ then the proof completely repeats those of [5]. Suppose that it is not the case and suppose that $\mathfrak{S}(\theta)>\eta$.

Let $p \in \mathcal{P}_{\theta \eta \mathfrak{E}}$. Pick \mathfrak{M} to be an elementary submodel of $H(\chi)$ for some χ regular large enough such that such that

1. $|\mathfrak{M}|=\eta$,
2. $\mathfrak{M} \supseteq \eta$,
3. $\mathcal{P}_{\theta \eta \mathfrak{S}}, p \in \mathfrak{M}$,
4. ${ }^{\eta>} \mathfrak{M} \subseteq \mathfrak{M}$.

Set $M=\mathfrak{M} \cap H\left(\theta^{+}\right)$.
Clearly, M satisfies $1.1(3(\mathrm{~b}))$. Moreover, using the elementarity of \mathfrak{M}, for every $x \in M$ there will be $Z \in M$ such that

- $Z \preceq H\left(\theta^{+}\right)$,
- $|Z|=\theta$,
- $Z \supseteq \theta$,
- ${ }^{\theta>} Z \subseteq Z$,
- $x \in Z$.

This allows to find a chain of models $\left\langle N_{i} \mid i<\eta\right\rangle$ of size θ which members are in M, witnesses 1.1(3(b)) for $N:=\bigcup_{i<\eta} N_{i}$ and $N \supseteq M$.

Extend p by adding M as a new $A^{0 \eta}, N$ as a new $A^{0 \theta}$ and, in addition we add now the sequence $\left\langle N_{i} \mid i<\eta\right\rangle$. Require $M, N, N_{i+1}, i<\eta$ to be potentially limit points. Denote the result by $p \subset\left\{M, N,\left\langle N_{i} \mid i<\eta\right\rangle\right\}$.
We claim that $p^{\subset}\left\{M, N,\left\langle N_{i} \mid i<\eta\right\rangle\right\}$ is $\left(\mathcal{P}_{\theta \eta \mathfrak{S}}, \mathfrak{M}\right)$-generic. So, let $p^{\prime} \geq p^{\sim}\{M, N\}$ and $D \in M$ be a dense open subset of $\mathcal{P}_{\theta \eta \mathfrak{G}}$. It is enough to find $q \in \mathfrak{M} \cap D$ which is compatible with p^{\prime}.

Pick $i<\eta$ big enough such that $D \in N_{i+1}$. Now we pick $M^{\prime} \preceq N_{i+1}$ of size η, inside M such that

1. ${ }^{\eta>} M^{\prime} \subseteq M^{\prime}$
2. $D \in M^{\prime}$,
3. all components of p^{\prime} which belong to $N_{i+1} \cap M$ are in M^{\prime}.

Note that $\mathfrak{S}(\tau) \leq \tau$, and, so $\mathfrak{S}(\tau) \leq \theta$, for every $\tau \in \operatorname{dom}(\mathfrak{S})$. Hence, models of p^{\prime} which belong to N_{i+1} are bounded there. Remember that ${ }^{\theta>} N_{i+1} \subseteq N_{i+1}$. So, the set of models of p^{\prime} which belong to N_{i+1} is a member of N_{i+1}. Using $(15,16)$ of $1.1,{ }^{\eta>} M \subseteq M$ and since the support of $p^{\prime}, s\left(p^{\prime}\right)$, has cardinality $<\eta$, by $1.1(1(\mathrm{a}))$, it is possible to satisfy the requirement 3 above.
Now we continue as in [5], only replacing M there by M^{\prime}.

Our next tusk will be to show that the forcing notion $\left\langle\mathcal{P}_{\theta \eta \mathfrak{S}}, \leq\right\rangle$ is τ-proper for every regular $\tau, \eta \leq \tau \leq \theta$. The proof follows closely those of [5]. Let us address only a new point which appears in the present context.

Lemma 1.12 The forcing notion $\left\langle\mathcal{P}_{\theta \eta \delta}, \leq\right\rangle$ is τ-proper for every regular $\tau, \eta \leq \tau \leq \theta$.
Proof. Let τ be a regular cardinal in the interval $[\eta, \theta]$. We would like to show that $\left\langle\mathcal{P}_{\theta \eta \delta}, \leq\right\rangle$ is τ-proper. If $\tau=\eta$, then this follows by the previous lemma (1.11). Suppose that $\tau>\eta$. Let $p \in \mathcal{P}_{\theta \eta \delta}$. Pick \mathfrak{M} to be an elementary submodel of $H(\chi)$ for some χ regular large enough such that such that

1. $|\mathfrak{M}|=\tau$,
2. $\mathfrak{M} \supseteq \tau$,
3. $\mathcal{P}_{\theta \eta \mathfrak{S}}, p \in \mathfrak{M}$,
4. ${ }^{\tau>} \mathfrak{M} \subseteq \mathfrak{M}$.

Set $M=\mathfrak{M} \cap H\left(\theta^{+}\right)$.
Clearly, M satisfies $1.1(3(\mathrm{~b}))$. Moreover, using the elementarity of \mathfrak{M}, for every $x \in M$ there will be $Z \in M$ such that

- $Z \preceq H\left(\theta^{+}\right)$,
- $|Z|=\theta$,
- $Z \supseteq \theta$,
- ${ }^{\theta>} Z \subseteq Z$,
- $x \in Z$.

This allows to find a chain of models $\left\langle N_{i} \mid i<\tau\right\rangle$ of size θ which members are in M, witnesses 1.1(3(b)) for $N:=\bigcup_{i<\tau} N_{i}$ and $N \supseteq M$.

Extend p by adding M as a new $A^{0 \eta}, N$ as a new $A^{0 \theta}$ and, in addition we add now the sequence $\left\langle N_{i} \mid i<\tau\right\rangle$. Require $M, N, N_{i+1}, i<\eta$ to be potentially limit points. Denote the result by $p^{\curvearrowleft}\left\{M, N,\left\langle N_{i} \mid i<\eta\right\rangle\right\}$.
We claim that $p^{\frown}\left\{M, N,\left\langle N_{i} \mid i<\eta\right\rangle\right\}$ is $\left(\mathcal{P}_{\theta \eta \mathfrak{S}}, \mathfrak{M}\right)$-generic. So, let $D \in M$ be a dense open subset of $\mathcal{P}_{\theta \eta \mathfrak{S}}$ and $p^{\prime} \geq p^{\frown}\{M, N\}$ be in D.
Extend p^{\prime} further in order to achieve the following:

- for every $\xi \in s\left(p^{\prime}\right)$, there is a model B on the wide piste of p^{\prime} of cardinality ξ such that $M \subseteq B \subseteq N$.

In particular, $\sup \left(M \cap \theta^{+}\right)=\sup \left(B \cap \theta^{+}\right)=N \cap \theta^{+}$. Denote such B by M_{ξ}.
Let us denote such extension of p^{\prime} still by p^{\prime}.
Pick now $A \preceq H\left(\theta^{+}\right)$which satisfies the following:

- $|A|=\eta$,
- $A \supseteq \eta$,
- $A \cap \eta^{+}$is an ordinal,
- ${ }^{\eta>} A \subseteq A$,
- $p^{\prime} \in A$.

In particular every model of p^{\prime} belongs to A.
Extend p^{\prime} to $p^{\prime \prime}$ by adding A as new largest model of cardinality η, i.e. $p^{\prime \prime}=p^{\prime} \sim A$.
Pick $i<\eta$ big enough such that $D \in N_{i+1}$. Now we pick $M^{\prime} \preceq N_{i+1}$ of size τ, inside M such that

1. ${ }^{\eta>} M^{\prime} \subseteq M^{\prime}$
2. $D \in M^{\prime}$,
3. all components of $p^{\prime \prime}$ which belong to $N_{i+1} \cap M$ are in M^{\prime}.

Note that $\mathfrak{S}(\tau) \leq \tau$, and, so $\mathfrak{S}(\tau) \leq \theta$, for every $\tau \in \operatorname{dom}(\mathfrak{S})$. Hence, models of p^{\prime} which belong to N_{i+1} are bounded there. Remember that ${ }^{\theta>} N_{i+1} \subseteq N_{i+1}$. So, the set of models of p^{\prime} which belong to N_{i+1} is a member of N_{i+1}. Using $(15,16)$ of $1.1,{ }^{\eta>} M \subseteq M$ and since the support of $p^{\prime}, s\left(p^{\prime}\right)$, has cardinality $<\eta$, by $1.1(1(\mathrm{a}))$, it is possible to satisfy the requirement 3 above.

We reflect $A=A^{0 \eta}\left(p^{\prime \prime}\right)$ down to M^{\prime} over over $A^{0 \eta}\left(p^{\prime \prime}\right) \cap M^{\prime}$, i.e. we pick some $A^{\prime} \in M^{\prime}$ and q which realizes the same k-type (for some $k<\omega$ sufficiently big) over $A^{0 \eta}\left(p^{\prime \prime}\right) \cap M^{\prime}$ as $A^{0 \eta}\left(p^{\prime \prime}\right)$ and $p^{\prime \prime}$. Do this in a rich enough language which includes D as well.

Now we continue as in [5], only replacing M there by M^{\prime}.

The next lemma is straightforward.
Lemma 1.13 The forcing notion $\left\langle\mathcal{P}_{\theta \eta \mathfrak{S}}, \leq\right\rangle$ is $<\min (\{\mathfrak{S}(\tau) \mid \tau \in \operatorname{dom}(\mathfrak{S}\})$-strategically closed.

Combining together Lemmas 1.11,1.12, 1.13, we obtain the following:
Theorem 1.14 The forcing notion $\left\langle\mathcal{P}_{\theta \eta \mathfrak{S}}, \leq\right\rangle$ preserves all cardinals $\leq \min (\{\mathfrak{S}(\tau) \mid \tau \in$ $\operatorname{dom}(\mathfrak{S}\})$ and all cardinals $>\eta$.
In particular, if $\delta=\min (\{\mathfrak{S}(\tau) \mid \tau \in \operatorname{dom}(\mathfrak{S}\})$, then all cardinals are preserved.
As in [5], it is possible to use $\mathcal{P}_{\theta \eta \mathfrak{S}}$ for adding clubs and for blowing up the power of a singular cardinal.

References

[1] M. Gitik, Short extenders forcings I, http://www.math.tau.ac.il/~gitik/short\ extenders\ forcings\ 1.pdf
[2] M. Gitik, Remarks on non-closure of the preparation forcing and off-piste versions of it, http://www.math.tau.ac.il/~gitik/closed.pdf
[3] M. Gitik and S. Unger, Adding many ω-sequences to a singular cardinal, Notes from Appalachian Set Theory workshop April 3, 2010, http://www.math.tau.ac.il/~gitik/GitikAST.pdf
[4] M. Gitik, Short extenders forcings - doing without preparations.Bounded gaps. http://www.math.tau.ac.il/~gitik
[5] M. Gitik, Short extenders forcings - doing without preparations. http://www.math.tau.ac.il/~gitik
[6] M. Magidor, Changing co nality of cardinals, Fundamenta Mathematicae, 99(1):61-71, 1978.
[7] C. Merimovich, The short extenders gap two forcing is of Prikry type, Arch. Math. Logic, 48(2009), 737-747.
[8] C. Merimovich, The short extenders gap three forcing using a morass, Arch. Math. Logic,50(2011),115-135.
[9] W. Mitchell,
[10] L. Radin, Adding closed co nal sequences to large cardinals, Annals of Mathematical Logic, 22(3):243-261, 1982.
[11] S. Shelah, Proper and Improper forcing, Springer 1998.
[12] D. Velleman, Simplified morasses, JSL 49(1),257-271(1984)

[^0]: *The author was partially supported by Israel Science Foundation Grant No. 58/14.
 ${ }^{1}$ The requirement $\mathfrak{S}(\tau)<\tau$ is essential for properness arguments. Once $\mathfrak{S}(\tau)=\tau$, then we are basically in a situation of [1] and arguments around chain condition and strategic closure replace properness.
 ${ }^{2}$ We need the ability to cover s by models of the least possible size, so s of cardinality above η is not allowed. Also, models of the least allowed cardinality η are not more than $<\eta$-closed, so it puts an additional restriction on the size of the support.

[^1]: ${ }^{3}$ This models need not be in C^{τ}, but rather allow to add in future extensions models below X

[^2]: ${ }^{4}$ If we drop the requirement $\tau>\rho$, then it may be impossible further to add models of sizes $>\eta$ once a potencially limit point of size η is around.

[^3]: ${ }^{5}$ Note that the least such D^{*} must be a potentially limit point by 7,8 above.
 ${ }^{6}$ Note that the set $Z:=\{\mu \leq \theta \mid \mu$ is a regular cardinal $\}$ belongs to B, by elementarity. If its cardinality is at most τ, then $Z \subseteq B$. So, in this case $\rho^{*}=\rho$.

[^4]: ${ }^{7}$ Note that GCH is assumed, so the cardinality of this set is less than ρ. Then it is in D^{*}, once D^{*} is closed under $<\rho$-sequences of its elements.

[^5]: ${ }^{8}$ Note that the total number of such Y 's for a fixed regular $\mu \in s, \tau<\mu<\rho$ is $|B|=\tau$. Hence, there are less than ρ possibilities for Y 's. Also, note that the model X is definable from B, as it was observed above in (3)

[^6]: ${ }^{9}$ If for some regular $\delta \leq \eta, \mathfrak{S}(\tau)=\delta$, for every τ, then it is just a δ-structure with pistes over η of the length θ.

[^7]: ${ }^{10}$ If there are only finitely many cardinals between η and θ, then we can take τ^{*} to be just τ^{+}.

[^8]: ${ }^{11}$ In particular, due to this, the next condition implies that for $\xi \in s \cap \tau^{*}$, if $Z \in C_{X}^{\xi}, \sup \left(Z \cap \theta^{+}\right)>$ $\max \left(\sup \left(X_{0} \cap \theta^{+}\right), \sup \left(X_{1} \cap \theta^{+}\right)\right)$, then $\left\{\pi_{X_{0} X_{1}}\left(Z^{\prime}\right) \mid Z^{\prime} \in C_{X}^{\xi} \cap X_{0}\right\} \subseteq Z$.

[^9]: ${ }^{12}$ We will see further that it is possible to remove this assumption at least in interesting cases.
 ${ }^{13}$ The issue here is to satisfy $1.1(3(\mathrm{~b}))$.

