Short extenders forcings - doing without preparations. Dropping cofinalities.

Moti Gitik

January 15, 2012

The basic issue with dropping cofinalities is that models of small sizes relatively to κ_{n} 's are supposed to be used (basically much less than κ_{n} 's). The number of possible types inside such models is limited. Even not every measure of the extender over κ_{n} is in a model. So we will need to specify in advanced which types are allowed. Let us start with choosing a set of permitted types.

1 Dropping cofinalities-gap 3.

We deal here with the first relevant case $-2^{\kappa}=\kappa^{+3}$ with the witnessing scale has points of cofinality κ^{++}dropping down from κ_{n} 's to smaller λ_{n} 's.
Fix $n<\omega$. Let us define models that will be permitted to use over κ_{n} in order to allow a cofinality drop to λ_{n}, where $\lambda_{0}<\kappa_{0}$ and $\kappa_{n-1}<\lambda_{n}<\kappa_{n}$, for every $n, 0<n<\omega$, and λ_{n}, κ_{n} carry extenders $E_{n}^{\lambda_{n}}, E_{n}^{\kappa_{n}}$.
We deal with a simplest case of a single drop. Assume that the length of $E_{n}^{\kappa_{n}}$ is κ_{n}^{+n+2} and $E_{n}^{\lambda_{n}}$ is λ_{n}^{+n+2}

Fix some χ_{n} large enough. Let $\eta<\kappa_{n}^{+n+2}$ be such that every type of an ordinal $<\kappa_{n}^{+n+2}$ is realized below η and for every $\xi \geq \eta$ the type $t p_{m}(\xi)$ is realized unboundedly often below κ_{n}^{+n+2}, for each $m<\omega$.
Define by induction for every $\nu<\lambda_{n}$ two \in-increasing continuous sequences $\left\langle\mathfrak{M}_{i \nu}\right| i<$ $\left.\nu^{+n+2}\right\rangle,\left\langle\mathfrak{N}_{i \nu}\right| i\left\langle\nu^{+n+2}\right\rangle$ of elementary submodels of $H\left(\chi_{n}^{+\omega+1}\right)$ such that

1. $\left|\mathfrak{M}_{i \nu}\right|=\kappa_{n}^{+n+1}$,
2. $\mathfrak{M}_{i \nu} \cap \kappa_{n}^{+n+2}$ is an ordinal above η of cofinality ν^{+n+2},
3. $\left|\mathfrak{N}_{i \nu}\right|=\nu^{+n+1}$,
4. $\mathfrak{M}_{i \nu} \in \mathfrak{N}_{i \nu}$, if $i=0$ or i is a successor ordinal,
5. $\left\langle\mathfrak{M}_{j \nu} \mid j \leq i\right\rangle,\left\langle\mathfrak{N}_{j \nu} \mid j \leq i\right\rangle \in \mathfrak{M}_{i+1 \nu}$,
6. $\left\langle\mathfrak{M}_{j \nu} \mid j \leq i\right\rangle,\left\langle\mathfrak{N}_{j \nu} \mid j \leq i\right\rangle \in \mathfrak{N}_{i+1 \nu}$,
7. ${ }^{\nu^{+n+1}} \mathfrak{M}_{i \nu} \subseteq \mathfrak{M}_{i \nu}$, if $i=0$ or i is a successor ordinal,
8. ${ }^{\nu^{+n}} \mathfrak{N}_{i \nu} \subseteq \mathfrak{N}_{i \nu}$, if $i=0$ or i is a successor ordinal,
9. if $\nu<\nu^{\prime}$, then $\left\langle\mathfrak{M}_{i \nu} \mid i<\nu^{+n+2}\right\rangle,\left\langle\mathfrak{N}_{i \nu} \mid i<\nu^{+n+2}\right\rangle \in \mathfrak{M}_{0 \nu^{\prime}} \cap \mathfrak{N}_{0 \nu^{\prime}}$.

The set of permitted types will be the set of all types of models $\mathfrak{M}_{i \nu}, \mathfrak{N}_{i \nu}$. Formally set

$$
\begin{gathered}
P T_{\nu}^{\kappa_{n}}=\left\{t p_{m}\left(\mathfrak{M}_{i \nu}\right) \mid i<\nu^{+n+2}, 2<m<\omega\right\}, P T_{\nu}^{\lambda_{n}}=\left\{t p_{m}\left(\mathfrak{N}_{i \nu}\right) \mid i<\nu^{+n+2}, 2<m<\omega\right\}, \\
P T_{\nu}=P T_{\nu}^{\kappa_{n}} \cup P T_{\nu}^{\lambda_{n}} .
\end{gathered}
$$

The idea behind the above is that once ν is an indiscernible (a member of one element Prikry sequence) for the normal measure of $E_{n}^{\lambda_{n}}$, then models with types in $P T_{\nu}$ are allowed to be used over κ_{n}.
Note that types of models $\mathfrak{N}_{i \nu}$'s are inside $\mathfrak{M}_{i \nu}$ by the choice of η and the item (2).
Let us turn to the assignment functions a of the level n (the isomorphisms function between the suitable structures) for κ^{++}and those of λ_{n}, and b of the level n for κ^{+3} and those of κ_{n}.
We require that each model A be in the domain of a is of the form $A^{\prime} \cap \kappa^{++}$, for some $A^{\prime} \in \operatorname{dom}(b)$. The rest of the requirements on a are as in [2].
Turn to b. Let A be in the domain of b. If A has cardinality κ^{++}, then $b(A)$ is a name of a model with type in $P T_{\nu}^{\kappa_{n}}$ depending on an indiscernible ν for the normal measure of $E_{n}^{\lambda_{n}}$. If A has cardinality κ^{+}, then $a(A) \cap \lambda_{n}^{+n+2}$ is an ordinal and $b(A)$ is a name of a model with type as those of $\mathfrak{N}_{i \nu}$, where ν is an indiscernible for the normal measure and i is the indiscernible for the measure $a(A) \cap \lambda_{n}^{+n+2}$ of $E_{n}^{\lambda_{n}}$. Again, the rest of the requirements are as in [2].

Lemma 1.1 The forcing \mathcal{P} is κ^{+}-proper (and even $\kappa^{+}-$strongly proper).

Proof. Let $p \in \mathcal{P}$ and $M \prec H(\chi)$ with $|M|=\kappa^{+},{ }^{\kappa} M \subseteq M, p, \mathcal{P} \in M . a_{n}\left(M \cap \kappa^{++}\right)$is some $\alpha<\lambda_{n}^{+n+2}$. Run the corresponding argument of [2]. We will get finally some $\beta<\alpha$ that corresponds to the part of the extension which belongs to M. Now we will have that
on a set of measure one $\beta^{*} \in \alpha^{*}$, where β^{*} denotes an indiscernible for β and α^{*} denotes an indiscernible for α. Then $\mathfrak{N}_{\beta^{*} \nu} \in \mathfrak{N}_{\alpha^{*} \nu}$, where ν is an indiscernible for the normal measure. Hence we have no problem in getting the needed type inside $b\left(M \cap \kappa^{+3}\right)$.

The argument of the next lemma is as those of [2], since models of big cardinality $\left(\kappa_{n}^{+n+1}\right)$ are used here.

Lemma 1.2 The forcing \mathcal{P} is $\kappa^{++}{ }_{-}$proper (and even $\kappa^{++}{ }_{- \text {strongly }}$ proper).

2 Dropping cofinalities-gap 4.

We like to blow up the power of κ to κ^{+4} with drops in cofinalities.
Split into two cases according to places of drops.

$2.1 \quad \kappa^{+3}$ drops down to λ_{n} 's.

We deal here with the case $-2^{\kappa}=\kappa^{+4}$ and the witnessing scale has points of cofinality κ^{+3} dropping down from κ_{n} 's to smaller λ_{n} 's.
The main difference (related to the dropping cofinality) here from the previous section is that there are two sizes κ^{+}and κ^{++}of models witnessing the drop. Their images to κ_{n} 's has sizes below λ_{n}. The issue of having enough types inside such models becomes a bit more delicate.

Fix $n<\omega$. Let $\lambda_{n}<\kappa_{n}, \eta<\kappa_{n}^{+n+2}$ be as above. The length of the extender $E_{n}^{\lambda_{n}}$ will be now λ_{n}^{+n+3} in order to accommodate three cardinals κ^{+}, κ^{++}and κ^{+3}. The assignment function a will act between κ^{+3} and λ_{n}^{+n+3}.

Define by induction for every $\nu<\lambda_{n}$ two \in-increasing continuous sequences $\left\langle\mathfrak{M}_{i \nu}\right| i<$ $\left.\nu^{+n+3}\right\rangle,\left\langle\mathfrak{N}_{i \nu} \mid i<\nu^{+n+3}\right\rangle$ and a sequence $\left\langle\mathfrak{S}_{x \nu} \mid x \in\left[\nu^{+n+3}\right] \leq \nu^{+n+1}\right\rangle$ of elementary submodels of $H\left(\chi_{n}^{+\omega+1}\right)$ such that

1. $\left|\mathfrak{M}_{i \nu}\right|=\kappa_{n}^{+n+1}$,
2. $\mathfrak{M}_{i \nu} \cap \kappa_{n}^{+n+2}$ is an ordinal above η of cofinality ν^{+n+3},
3. $\left|\mathfrak{N}_{i \nu}\right|=\nu^{+n+2}$,
4. $\mathfrak{N}_{i \nu} \cap \nu^{+n+3}$ is an ordinal,
5. $\left|\mathfrak{S}_{x \nu}\right|=\nu^{+n+1}$,
6. $\mathfrak{S}_{x \nu} \cap \nu^{+n+2}$ is an ordinal,
7. $\mathfrak{M}_{i \nu} \in \mathfrak{N}_{i \nu}$, if $i=0$ or i is a successor ordinal,
8. $\left\langle\mathfrak{M}_{j \nu} \mid j \leq i\right\rangle,\left\langle\mathfrak{N}_{j \nu} \mid j \leq i\right\rangle \in \mathfrak{M}_{i+1 \nu}$,
9. $\left\langle\mathfrak{M}_{j \nu} \mid j \leq i\right\rangle,\left\langle\mathfrak{N}_{j \nu} \mid j \leq i\right\rangle \in \mathfrak{N}_{i+1 \nu}$,
10. for each $x \in\left[\mathfrak{N}_{i+1 \nu} \cap \nu^{+n+3}\right]^{\leq \nu^{+n+1}}, \mathfrak{S}_{x \nu} \in \mathfrak{N}_{i+1 \nu}$,
11. ${ }^{\nu^{+n+2}} \mathfrak{M}_{i \nu} \subseteq \mathfrak{M}_{i \nu}$, if $i=0$ or i is a successor ordinal,
12. ${ }^{\nu^{+n+1}} \mathfrak{N}_{i \nu} \subseteq \mathfrak{N}_{i \nu}$, if $i=0$ or i is a successor ordinal,
13. if $i, \mathfrak{N}_{i \nu} \cap \nu^{+n+3} \in x$, then $\mathfrak{M}_{i \nu}, \mathfrak{N}_{i \nu} \in \mathfrak{S}_{x \nu}$,
14. if $y \in x$, then $\mathfrak{S}_{y \nu} \in \mathfrak{S}_{x \nu}$,
15. if $\nu<\nu^{\prime}$, then $\left\langle\mathfrak{M}_{i \nu} \mid i<\nu^{+n+3}\right\rangle,\left\langle\mathfrak{N}_{i \nu} \mid i<\nu^{+n+3}\right\rangle \in \mathfrak{M}_{0 \nu^{\prime}} \cap \mathfrak{N}_{0 \nu^{\prime}} \cap \mathfrak{S}_{\emptyset \nu^{\prime}}$.

The set of permitted types will be the set of all types of models $\mathfrak{M}_{i \nu}$, with parameters ordinals bigger than κ_{n}^{++}types of models $\mathfrak{N}_{i \nu}, \mathfrak{S}_{x \nu}$ with parameters ordinals in ν^{+n+1} and ν^{+n} respectively. Formally set

$$
\begin{gathered}
P T_{\nu}^{\kappa_{n}}=\left\{t p_{m}\left(\mathfrak{M}_{i \nu}\right) \mid i<\nu^{+n+3}, 2<m<\omega\right\}, P T_{\nu}^{\lambda_{n}, 2}=\left\{t p_{m}\left(\mathfrak{N}_{i \nu}\right) \mid i<\nu^{+n+3}, 2<m<\omega\right\} \\
P T_{\nu}^{\lambda_{n}, 1}=\left\{t p_{m}\left(\mathfrak{S}_{x \nu}\right) \mid x \in\left[\nu^{+n+3}\right]^{\leq \nu^{+n+1}}, 2<m<\omega\right\}, P T_{\nu}=P T_{\nu}^{\kappa_{n}} \cup P T_{\nu}^{\lambda_{n}, 1} \cup P T_{\nu}^{\lambda_{n}, 2}
\end{gathered}
$$

Let us turn to the assignment functions a of the level n (the isomorphisms function between the suitable structures) for κ^{+3} and those of λ_{n}, and b of the level n for κ^{+4} and those of κ_{n}.
We require that each model A be in the domain of a is of the form $A^{\prime} \cap \kappa^{+3}$, for some $A^{\prime} \in \operatorname{dom}(b)$. The rest of the requirements on a are as in [2].
Turn to b. Let A be in the domain of b. If A has cardinality κ^{+3}, then $b(A)$ is a name of a model with type in $P T_{\nu}^{\kappa_{n}}$ depending on an indiscernible ν for the normal measure of $E_{n}^{\lambda_{n}}$. If A has cardinality κ^{++}, then $a(A) \cap \lambda_{n}^{+n+3}$ is an ordinal and $b(A)$ is a name of a model with type as those of $\mathfrak{N}_{i \nu}$, where ν is an indiscernible for the normal measure and i is the indiscernible for the measure $a(A) \cap \lambda_{n}^{+n+3}$ of $E_{n}^{\lambda_{n}}$. The rest of the requirements are as in [2]. If A has cardinality κ^{+}, then $a(A) \cap \lambda_{n}^{+n+3}$ is a set of cardinality λ_{n}^{+n+1} and $b(A)$ is a name of a model with type as those of $\mathfrak{S}_{x \nu}$, where ν is an indiscernible for the normal measure and $x \in\left[\nu^{+n+3}\right]^{\leq \nu^{+n+1}}$ is the indiscernible for the measure $a(A) \cap \lambda_{n}^{+n+3}$ of $E_{n}^{\lambda_{n}}$. Again, the rest of the requirements are as in [2].

$2.2 \kappa^{+3}$ does not drop down to λ_{n} 's.

We deal here with the case $-2^{\kappa}=\kappa^{+4}$ and the witnessing scale has points of cofinality κ^{++} dropping down from κ_{n} 's to smaller λ_{n} 's, but those of cofinality κ^{+3} do not drop down.
Here only models of the size κ^{+}will witness the drop. Their images to κ_{n} 's will have sizes below λ_{n}.

Fix $n<\omega$. Let $\lambda_{n}<\kappa_{n}, \eta<\kappa_{n}^{+n+2}$ be as above. The length of the extender $E_{n}^{\lambda_{n}}$ will be now λ_{n}^{+n+2} and of $E_{n}^{\kappa_{n}}$ will be κ_{n}^{+n+3}. The assignment function a will act between κ^{++}and λ_{n}^{+n+2}.

Define by induction for every $\nu<\lambda_{n}$ two \in-increasing continuous sequences $\left\langle\mathfrak{M}_{i \nu}\right| i<$ $\left.\nu^{+n+2}\right\rangle,\left\langle\mathfrak{B}_{i \nu} \mid i<\nu^{+n+2}\right\rangle$ and a sequence $\left\langle\mathfrak{N}_{i \nu}\right| i\left\langle\nu^{+n+2}\right\rangle$ of elementary submodels of $H\left(\chi_{n}^{+\omega+1}\right)$ such that

1. $\left|\mathfrak{M}_{i \nu}\right|=\kappa_{n}^{+n+3}$,
2. $\mathfrak{M}_{i \nu} \cap \kappa_{n}^{+n+3}$ is an ordinal above η,
3. $\left|\mathfrak{B}_{i \nu}\right|=\kappa_{n}^{+n+2}$,
4. $\mathfrak{B}_{i \nu} \cap \kappa_{n}^{+n+2}$ is an ordinal above η of cofinality ν^{+n+2},
5. $\left|\mathfrak{N}_{i \nu}\right|=\nu^{+n+1}$,
6. $\mathfrak{N}_{i \nu} \cap \nu^{+n+2}$ is an ordinal,
7. $\mathfrak{M}_{i \nu} \in \mathfrak{B}_{i \nu} \in \mathfrak{N}_{i \nu}$, if $i=0$ or i is a successor ordinal,
8. $\left\langle\mathfrak{M}_{j \nu} \mid j \leq i\right\rangle,\left\langle\mathfrak{B}_{j \nu} \mid j \leq i\right\rangle,\left\langle\mathfrak{N}_{j \nu} \mid j \leq i\right\rangle \in \mathfrak{M}_{i+1 \nu}$,
9. $\left\langle\mathfrak{M}_{j \nu} \mid j \leq i\right\rangle,\left\langle\mathfrak{B}_{j \nu} \mid j \leq i\right\rangle,\left\langle\mathfrak{N}_{j \nu} \mid j \leq i\right\rangle \in \mathfrak{B}_{i+1 \nu}$,
10. $\left\langle\mathfrak{M}_{j \nu} \mid j \leq i\right\rangle,\left\langle\mathfrak{B}_{j \nu} \mid j \leq i\right\rangle,\left\langle\mathfrak{N}_{j \nu} \mid j \leq i\right\rangle \in \mathfrak{N}_{i+1 \nu}$,
11. for each $x \in\left[\mathfrak{N}_{i+1 \nu} \cap \nu^{+n+3}\right]^{\leq \nu^{+n+1}}, \mathfrak{S}_{x \nu} \in \mathfrak{N}_{i+1 \nu}$,
12. ${ }^{\nu^{+n+2}} \mathfrak{B}_{i \nu} \subseteq \mathfrak{B}_{i \nu}$, if $i=0$ or i is a successor ordinal,
13. ${ }^{\nu^{+n+1}} \mathfrak{N}_{i \nu} \subseteq \mathfrak{N}_{i \nu}$, if $i=0$ or i is a successor ordinal,
14. ${ }^{{ }^{+n+1}} \mathfrak{M}_{i \nu} \subseteq \mathfrak{M}_{i \nu}$, if $i=0$ or i is a successor ordinal,
15. if $\nu<\nu^{\prime}$, then $\left\langle\mathfrak{M}_{i \nu} \mid i<\nu^{+n+3}\right\rangle,\left\langle\mathfrak{N}_{i \nu} \mid i<\nu^{+n+3}\right\rangle \in \mathfrak{M}_{0 \nu^{\prime}} \cap \mathfrak{B}_{0 \nu^{\prime}} \cap \mathfrak{N}_{0 \nu^{\prime}}$.

The set of permitted types will be the set of all types of models $\mathfrak{M}_{i \nu}, \mathfrak{B}_{i \nu}$, with parameters ordinals bigger than κ_{n}^{++}types of models $\mathfrak{N}_{i \nu}$ with parameters ordinals in ν^{+n}. Formally set

$$
\begin{gathered}
P T_{\nu}^{\lambda_{n}}=\left\{t p_{m}\left(\mathfrak{N}_{i \nu}\right) \mid i<\nu^{+n+2}, 2<m<\omega\right\}, P T_{\nu}^{\kappa_{n}, 2}=\left\{t p_{m}\left(\mathfrak{M}_{i \nu}\right) \mid i<\nu^{+n+2}, 2<m<\omega\right\}, \\
P T_{\nu}^{\kappa_{n}, 1}=\left\{t p_{m}\left(\mathfrak{B}_{x \nu}\right) \mid x \in\left[\nu^{+n+2}\right]^{\leq \nu^{+n+1}}, 2<m<\omega\right\}, P T_{\nu}=P T_{\nu}^{\lambda_{n}} \cup P T_{\nu}^{\kappa_{n}, 1} \cup P T_{\nu}^{\kappa_{n}, 2} .
\end{gathered}
$$

Let us turn to the assignment functions a of the level n (the isomorphisms function between the suitable structures) for κ^{++}and those of λ_{n}, and b of the level n for κ^{+3}, κ^{+4} and those of κ_{n}.
We require that each model A be in the domain of a is of the form $A^{\prime} \cap \kappa^{++}$, for some $A^{\prime} \in \operatorname{dom}(b)$. The rest of the requirements on a are as in [2].
Turn to b. Let A be in the domain of b. If A has cardinality κ^{+3}, then $b(A)$ is a name of a model with type in $P T_{\nu}^{\kappa_{n}, 2}$.
If A has cardinality κ^{++}, then $b(A)$ is a name of a model with type in $P T_{\nu}^{\kappa_{n}, 1}$ depending on an indiscernible ν for the normal measure of $E_{n}^{\lambda_{n}}$.
If A has cardinality κ^{+}, then $a(A) \cap \lambda_{n}^{+n+2}$ is an ordinal and $b(A)$ is a name of a model with type as those of $\mathfrak{N}_{i \nu}$, where ν is an indiscernible for the normal measure and i is the indiscernible for the measure $a(A) \cap \lambda_{n}^{+n+2}$ of $E_{n}^{\lambda_{n}}$.
The rest of the requirements are as in [2].

3 General case.

The treatment is similar to those used in Gap 4 case. We are free to choose a point of splitting between cardinals that go to λ_{n} 's and to κ_{n} 's as it was done in 2.1, 2.2.

References

[1] M. Gitik, Short extenders forcings I,
http://www.math.tau.ac.il/~gitik/short\ extenders\ forcings\ 1.pdf
[2] M. Gitik, Short extenders forcings-doing without preparations.

