Short extenders forcings – doing without preparations. Dropping cofinalities.

Moti Gitik

January 15, 2012

The basic issue with dropping cofinalities is that models of small sizes relatively to κ_n 's are supposed to be used (basically much less than κ_n 's). The number of possible types inside such models is limited. Even not every measure of the extender over κ_n is in a model. So we will need to specify in advanced which types are allowed. Let us start with choosing a set of permitted types.

1 Dropping cofinalities–gap 3.

We deal here with the first relevant case– $2^{\kappa} = \kappa^{+3}$ with the witnessing scale has points of cofinality κ^{++} dropping down from κ_n 's to smaller λ_n 's.

Fix $n < \omega$. Let us define models that will be permitted to use over κ_n in order to allow a cofinality drop to λ_n , where $\lambda_0 < \kappa_0$ and $\kappa_{n-1} < \lambda_n < \kappa_n$, for every $n, 0 < n < \omega$, and λ_n, κ_n carry extenders $E_n^{\lambda_n}, E_n^{\kappa_n}$.

We deal with a simplest case of a single drop. Assume that the length of $E_n^{\kappa_n}$ is κ_n^{+n+2} and $E_n^{\lambda_n}$ is λ_n^{+n+2}

Fix some χ_n large enough. Let $\eta < \kappa_n^{+n+2}$ be such that every type of an ordinal $< \kappa_n^{+n+2}$ is realized below η and for every $\xi \ge \eta$ the type $tp_m(\xi)$ is realized unboundedly often below κ_n^{+n+2} , for each $m < \omega$.

Define by induction for every $\nu < \lambda_n$ two \in -increasing continuous sequences $\langle \mathfrak{M}_{i\nu} | i < \nu^{+n+2} \rangle$, $\langle \mathfrak{N}_{i\nu} | i < \nu^{+n+2} \rangle$ of elementary submodels of $H(\chi_n^{+\omega+1})$ such that

- 1. $|\mathfrak{M}_{i\nu}| = \kappa_n^{+n+1}$,
- 2. $\mathfrak{M}_{i\nu} \cap \kappa_n^{+n+2}$ is an ordinal above η of cofinality ν^{+n+2} ,
- 3. $|\mathfrak{N}_{i\nu}| = \nu^{+n+1}$,

4. $\mathfrak{M}_{i\nu} \in \mathfrak{N}_{i\nu}$, if i = 0 or i is a successor ordinal,

- 5. $\langle \mathfrak{M}_{j\nu} \mid j \leq i \rangle, \langle \mathfrak{N}_{j\nu} \mid j \leq i \rangle \in \mathfrak{M}_{i+1\nu},$
- 6. $\langle \mathfrak{M}_{j\nu} \mid j \leq i \rangle, \langle \mathfrak{N}_{j\nu} \mid j \leq i \rangle \in \mathfrak{N}_{i+1\nu},$
- 7. $^{\nu^{+n+1}}\mathfrak{M}_{i\nu} \subseteq \mathfrak{M}_{i\nu}$, if i = 0 or i is a successor ordinal,
- 8. $^{\nu^{+n}}\mathfrak{N}_{i\nu} \subseteq \mathfrak{N}_{i\nu}$, if i = 0 or i is a successor ordinal,
- 9. if $\nu < \nu'$, then $\langle \mathfrak{M}_{i\nu} \mid i < \nu^{+n+2} \rangle, \langle \mathfrak{N}_{i\nu} \mid i < \nu^{+n+2} \rangle \in \mathfrak{M}_{0\nu'} \cap \mathfrak{N}_{0\nu'}$.

The set of permitted types will be the set of all types of models $\mathfrak{M}_{i\nu}, \mathfrak{N}_{i\nu}$. Formally set

$$PT_{\nu}^{\kappa_{n}} = \{tp_{m}(\mathfrak{M}_{i\nu}) \mid i < \nu^{+n+2}, 2 < m < \omega\}, PT_{\nu}^{\lambda_{n}} = \{tp_{m}(\mathfrak{M}_{i\nu}) \mid i < \nu^{+n+2}, 2 < m < \omega\},$$
$$PT_{\nu} = PT_{\nu}^{\kappa_{n}} \cup PT_{\nu}^{\lambda_{n}}.$$

The idea behind the above is that once ν is an indiscernible (a member of one element Prikry sequence) for the normal measure of $E_n^{\lambda_n}$, then models with types in PT_{ν} are allowed to be used over κ_n .

Note that types of models $\mathfrak{N}_{i\nu}$'s are inside $\mathfrak{M}_{i\nu}$ by the choice of η and the item (2).

Let us turn to the assignment functions a of the level n (the isomorphisms function between the suitable structures) for κ^{++} and those of λ_n , and b of the level n for κ^{+3} and those of κ_n .

We require that each model A be in the domain of a is of the form $A' \cap \kappa^{++}$, for some $A' \in \text{dom}(b)$. The rest of the requirements on a are as in [2].

Turn to b. Let A be in the domain of b. If A has cardinality κ^{++} , then b(A) is a name of a model with type in $PT_{\nu}^{\kappa_n}$ depending on an indiscernible ν for the normal measure of $E_n^{\lambda_n}$.

If A has cardinality κ^+ , then $a(A) \cap \lambda_n^{+n+2}$ is an ordinal and b(A) is a name of a model with type as those of $\mathfrak{N}_{i\nu}$, where ν is an indiscernible for the normal measure and i is the indiscernible for the measure $a(A) \cap \lambda_n^{+n+2}$ of $E_n^{\lambda_n}$. Again, the rest of the requirements are as in [2].

Lemma 1.1 The forcing \mathcal{P} is κ^+ -proper (and even κ^+ -strongly proper).

Proof. Let $p \in \mathcal{P}$ and $M \prec H(\chi)$ with $|M| = \kappa^+$, $\kappa M \subseteq M$, $p, \mathcal{P} \in M$. $a_n(M \cap \kappa^{++})$ is some $\alpha < \lambda_n^{+n+2}$. Run the corresponding argument of [2]. We will get finally some $\beta < \alpha$ that corresponds to the part of the extension which belongs to M. Now we will have that on a set of measure one $\beta^* \in \alpha^*$, where β^* denotes an indiscernible for β and α^* denotes an indiscernible for α . Then $\mathfrak{N}_{\beta^*\nu} \in \mathfrak{N}_{\alpha^*\nu}$, where ν is an indiscernible for the normal measure. Hence we have no problem in getting the needed type inside $b(M \cap \kappa^{+3})$.

The argument of the next lemma is as those of [2], since models of big cardinality (κ_n^{+n+1}) are used here.

Lemma 1.2 The forcing \mathcal{P} is κ^{++} -proper (and even κ^{++} -strongly proper).

2 Dropping cofinalities–gap 4.

We like to blow up the power of κ to κ^{+4} with drops in cofinalities. Split into two cases according to places of drops.

2.1 κ^{+3} drops down to λ_n 's.

We deal here with the case $-2^{\kappa} = \kappa^{+4}$ and the witnessing scale has points of cofinality κ^{+3} dropping down from κ_n 's to smaller λ_n 's.

The main difference (related to the dropping cofinality) here from the previous section is that there are two sizes κ^+ and κ^{++} of models witnessing the drop. Their images to κ_n 's has sizes below λ_n . The issue of having enough types inside such models becomes a bit more delicate.

Fix $n < \omega$. Let $\lambda_n < \kappa_n, \eta < \kappa_n^{+n+2}$ be as above. The length of the extender $E_n^{\lambda_n}$ will be now λ_n^{+n+3} in order to accommodate three cardinals κ^+, κ^{++} and κ^{+3} . The assignment function *a* will act between κ^{+3} and λ_n^{+n+3} .

Define by induction for every $\nu < \lambda_n$ two \in -increasing continuous sequences $\langle \mathfrak{M}_{i\nu} | i < \nu^{+n+3} \rangle$, $\langle \mathfrak{N}_{i\nu} | i < \nu^{+n+3} \rangle$ and a sequence $\langle \mathfrak{S}_{x\nu} | x \in [\nu^{+n+3}]^{\leq \nu^{+n+1}} \rangle$ of elementary submodels of $H(\chi_n^{+\omega+1})$ such that

- 1. $|\mathfrak{M}_{i\nu}| = \kappa_n^{+n+1},$
- 2. $\mathfrak{M}_{i\nu} \cap \kappa_n^{+n+2}$ is an ordinal above η of cofinality ν^{+n+3} ,
- 3. $|\mathfrak{N}_{i\nu}| = \nu^{+n+2}$,
- 4. $\mathfrak{N}_{i\nu} \cap \nu^{+n+3}$ is an ordinal,
- 5. $|\mathfrak{S}_{x\nu}| = \nu^{+n+1}$,

- 6. $\mathfrak{S}_{x\nu} \cap \nu^{+n+2}$ is an ordinal,
- 7. $\mathfrak{M}_{i\nu} \in \mathfrak{N}_{i\nu}$, if i = 0 or i is a successor ordinal,
- 8. $\langle \mathfrak{M}_{j\nu} \mid j \leq i \rangle, \langle \mathfrak{N}_{j\nu} \mid j \leq i \rangle \in \mathfrak{M}_{i+1\nu},$
- 9. $\langle \mathfrak{M}_{j\nu} \mid j \leq i \rangle, \langle \mathfrak{N}_{j\nu} \mid j \leq i \rangle \in \mathfrak{N}_{i+1\nu},$
- 10. for each $x \in [\mathfrak{N}_{i+1\nu} \cap \nu^{+n+3}]^{\leq \nu^{+n+1}}, \mathfrak{S}_{x\nu} \in \mathfrak{N}_{i+1\nu},$
- 11. $^{\nu^{+n+2}}\mathfrak{M}_{i\nu} \subseteq \mathfrak{M}_{i\nu}$, if i = 0 or i is a successor ordinal,
- 12. $^{\nu^{+n+1}}\mathfrak{N}_{i\nu} \subseteq \mathfrak{N}_{i\nu}$, if i = 0 or i is a successor ordinal,
- 13. if $i, \mathfrak{N}_{i\nu} \cap \nu^{+n+3} \in x$, then $\mathfrak{M}_{i\nu}, \mathfrak{N}_{i\nu} \in \mathfrak{S}_{x\nu}$,
- 14. if $y \in x$, then $\mathfrak{S}_{y\nu} \in \mathfrak{S}_{x\nu}$,

15. if $\nu < \nu'$, then $\langle \mathfrak{M}_{i\nu} \mid i < \nu^{+n+3} \rangle, \langle \mathfrak{N}_{i\nu} \mid i < \nu^{+n+3} \rangle \in \mathfrak{M}_{0\nu'} \cap \mathfrak{N}_{0\nu'} \cap \mathfrak{S}_{\emptyset\nu'}$.

The set of permitted types will be the set of all types of models $\mathfrak{M}_{i\nu}$, with parameters ordinals bigger than κ_n^{++} types of models $\mathfrak{N}_{i\nu}, \mathfrak{S}_{x\nu}$ with parameters ordinals in ν^{+n+1} and ν^{+n} respectively. Formally set

$$PT_{\nu}^{\kappa_{n}} = \{tp_{m}(\mathfrak{M}_{i\nu}) \mid i < \nu^{+n+3}, 2 < m < \omega\}, PT_{\nu}^{\lambda_{n},2} = \{tp_{m}(\mathfrak{M}_{i\nu}) \mid i < \nu^{+n+3}, 2 < m < \omega\}, PT_{\nu}^{\lambda_{n},1} = \{tp_{m}(\mathfrak{S}_{x\nu}) \mid x \in [\nu^{+n+3}]^{\leq \nu^{+n+1}}, 2 < m < \omega\}, PT_{\nu} = PT_{\nu}^{\kappa_{n}} \cup PT_{\nu}^{\lambda_{n},1} \cup PT_{\nu}^{\lambda_{n},2}.$$

Let us turn to the assignment functions a of the level n (the isomorphisms function between the suitable structures) for κ^{+3} and those of λ_n , and b of the level n for κ^{+4} and those of κ_n .

We require that each model A be in the domain of a is of the form $A' \cap \kappa^{+3}$, for some $A' \in \text{dom}(b)$. The rest of the requirements on a are as in [2].

Turn to b. Let A be in the domain of b. If A has cardinality κ^{+3} , then b(A) is a name of a model with type in $PT_{\nu}^{\kappa_n}$ depending on an indiscernible ν for the normal measure of $E_n^{\lambda_n}$.

If A has cardinality κ^{++} , then $a(A) \cap \lambda_n^{+n+3}$ is an ordinal and b(A) is a name of a model with type as those of $\mathfrak{N}_{i\nu}$, where ν is an indiscernible for the normal measure and i is the indiscernible for the measure $a(A) \cap \lambda_n^{+n+3}$ of $E_n^{\lambda_n}$. The rest of the requirements are as in [2]. If A has cardinality κ^+ , then $a(A) \cap \lambda_n^{+n+3}$ is a set of cardinality λ_n^{+n+1} and b(A) is a name of a model with type as those of $\mathfrak{S}_{x\nu}$, where ν is an indiscernible for the normal measure and $x \in [\nu^{+n+3}]^{\leq \nu^{+n+1}}$ is the indiscernible for the measure $a(A) \cap \lambda_n^{+n+3}$ of $E_n^{\lambda_n}$. Again, the rest of the requirements are as in [2].

2.2 κ^{+3} does not drop down to λ_n 's.

We deal here with the case $-2^{\kappa} = \kappa^{+4}$ and the witnessing scale has points of cofinality κ^{++} dropping down from κ_n 's to smaller λ_n 's, but those of cofinality κ^{+3} do not drop down. Here only models of the size κ^+ will witness the drop. Their images to κ_n 's will have sizes below λ_n .

Fix $n < \omega$. Let $\lambda_n < \kappa_n, \eta < \kappa_n^{+n+2}$ be as above. The length of the extender $E_n^{\lambda_n}$ will be now λ_n^{+n+2} and of $E_n^{\kappa_n}$ will be κ_n^{+n+3} . The assignment function a will act between κ^{++} and λ_n^{+n+2} .

Define by induction for every $\nu < \lambda_n$ two \in -increasing continuous sequences $\langle \mathfrak{M}_{i\nu} | i < \nu^{+n+2} \rangle$, $\langle \mathfrak{B}_{i\nu} | i < \nu^{+n+2} \rangle$ and a sequence $\langle \mathfrak{N}_{i\nu} | i < \nu^{+n+2} \rangle$ of elementary submodels of $H(\chi_n^{+\omega+1})$ such that

- 1. $|\mathfrak{M}_{i\nu}| = \kappa_n^{+n+3}$,
- 2. $\mathfrak{M}_{i\nu} \cap \kappa_n^{+n+3}$ is an ordinal above η ,

3.
$$|\mathfrak{B}_{i\nu}| = \kappa_n^{+n+2}$$
,

4. $\mathfrak{B}_{i\nu} \cap \kappa_n^{+n+2}$ is an ordinal above η of cofinality ν^{+n+2} ,

5.
$$|\mathfrak{N}_{i\nu}| = \nu^{+n+1}$$
,

- 6. $\mathfrak{N}_{i\nu} \cap \nu^{+n+2}$ is an ordinal,
- 7. $\mathfrak{M}_{i\nu} \in \mathfrak{B}_{i\nu} \in \mathfrak{N}_{i\nu}$, if i = 0 or i is a successor ordinal,
- 8. $\langle \mathfrak{M}_{j\nu} \mid j \leq i \rangle, \langle \mathfrak{B}_{j\nu} \mid j \leq i \rangle, \langle \mathfrak{N}_{j\nu} \mid j \leq i \rangle \in \mathfrak{M}_{i+1\nu},$
- 9. $\langle \mathfrak{M}_{j\nu} \mid j \leq i \rangle, \langle \mathfrak{B}_{j\nu} \mid j \leq i \rangle, \langle \mathfrak{N}_{j\nu} \mid j \leq i \rangle \in \mathfrak{B}_{i+1\nu},$
- 10. $\langle \mathfrak{M}_{j\nu} \mid j \leq i \rangle, \langle \mathfrak{B}_{j\nu} \mid j \leq i \rangle, \langle \mathfrak{N}_{j\nu} \mid j \leq i \rangle \in \mathfrak{N}_{i+1\nu},$
- 11. for each $x \in [\mathfrak{N}_{i+1\nu} \cap \nu^{+n+3}]^{\leq \nu^{+n+1}}, \mathfrak{S}_{x\nu} \in \mathfrak{N}_{i+1\nu},$
- 12. $^{\nu^{+n+2}}\mathfrak{B}_{i\nu} \subseteq \mathfrak{B}_{i\nu}$, if i = 0 or i is a successor ordinal,
- 13. $^{\nu^{+n+1}}\mathfrak{N}_{i\nu} \subseteq \mathfrak{N}_{i\nu}$, if i = 0 or i is a successor ordinal,
- 14. $^{\kappa^{+n+1}}\mathfrak{M}_{i\nu} \subseteq \mathfrak{M}_{i\nu}$, if i = 0 or i is a successor ordinal,
- 15. if $\nu < \nu'$, then $\langle \mathfrak{M}_{i\nu} \mid i < \nu^{+n+3} \rangle$, $\langle \mathfrak{N}_{i\nu} \mid i < \nu^{+n+3} \rangle \in \mathfrak{M}_{0\nu'} \cap \mathfrak{B}_{0\nu'} \cap \mathfrak{N}_{0\nu'}$.

The set of permitted types will be the set of all types of models $\mathfrak{M}_{i\nu}$, $\mathfrak{B}_{i\nu}$, with parameters ordinals bigger than κ_n^{++} types of models $\mathfrak{N}_{i\nu}$ with parameters ordinals in ν^{+n} . Formally set

$$PT_{\nu}^{\lambda_{n}} = \{tp_{m}(\mathfrak{N}_{i\nu}) \mid i < \nu^{+n+2}, 2 < m < \omega\}, PT_{\nu}^{\kappa_{n},2} = \{tp_{m}(\mathfrak{M}_{i\nu}) \mid i < \nu^{+n+2}, 2 < m < \omega\}, PT_{\nu}^{\kappa_{n},1} = \{tp_{m}(\mathfrak{B}_{x\nu}) \mid x \in [\nu^{+n+2}]^{\leq \nu^{+n+1}}, 2 < m < \omega\}, PT_{\nu} = PT_{\nu}^{\lambda_{n}} \cup PT_{\nu}^{\kappa_{n},1} \cup PT_{\nu}^{\kappa_{n},2}.$$

Let us turn to the assignment functions a of the level n (the isomorphisms function between the suitable structures) for κ^{++} and those of λ_n , and b of the level n for κ^{+3} , κ^{+4} and those of κ_n .

We require that each model A be in the domain of a is of the form $A' \cap \kappa^{++}$, for some $A' \in \text{dom}(b)$. The rest of the requirements on a are as in [2].

Turn to b. Let A be in the domain of b. If A has cardinality κ^{+3} , then b(A) is a name of a model with type in $PT_{\nu}^{\kappa_n,2}$.

If A has cardinality κ^{++} , then b(A) is a name of a model with type in $PT_{\nu}^{\kappa_n,1}$ depending on an indiscernible ν for the normal measure of $E_n^{\lambda_n}$.

If A has cardinality κ^+ , then $a(A) \cap \lambda_n^{+n+2}$ is an ordinal and b(A) is a name of a model with type as those of $\mathfrak{N}_{i\nu}$, where ν is an indiscernible for the normal measure and i is the indiscernible for the measure $a(A) \cap \lambda_n^{+n+2}$ of $E_n^{\lambda_n}$.

The rest of the requirements are as in [2].

3 General case.

The treatment is similar to those used in Gap 4 case. We are free to choose a point of splitting between cardinals that go to λ_n 's and to κ_n 's as it was done in 2.1, 2.2.

References

- [1] M. Gitik, Short extenders forcings I, http://www.math.tau.ac.il/~gitik/short%20extenders%20forcings%201.pdf
- [2] M. Gitik, Short extenders forcings-doing without preparations.