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Abstract

σ−complete uniform ultrafilters where extensively studied in early seventies. Many
nice results were obtained, specially by J. Ketonen (see [11]).
Recently, G. Goldberg returned to the subject and proved a remarkable result that
under The Ultrapower Axiom the first strongly compact cardinal is a supercompact.
The purpose of the present paper is to provide some concrete examples of σ−complete
uniform ultrafilters.

1 Some basic definitions and facts.

Definition 1.1 Let U ⊆ P(λ) be an ultrafilter on λ.

1. U is called uniform iff for every A of cardinality < λ, λ \ A ∈ U .

2. U is called κ−complete iff the intersection of any less than κ members of U is in U .

3. U is called κ−complete exactly iff U is κ−complete, but not κ+−complete.

If κ is a strongly compact cardinal, then for every λ ≥ κ there is a uniform κ−complete

ultrafilter over λ. By J. Ketonen [11] the opposite is true as well.

Here we would like to examine the existence of σ−complete uniform ultrafilters over a car-

dinal λ which are exactly κ−complete for some κ < λ under much weaker assumptions.

Note that if U is a σ−complete uniform ultrafilter over a cardinal λ and

jU : V →MU ' Ult(V, U) is the corresponding elementary embedding, then

sup(jU
′′λ) ≤ [id]U < jU(λ).

Also, if U is κ−complete for some κ < λ, then cof(λ) ≥ κ.

The following notion replaces the normality in the present context.

∗The work was partially supported by Israel Science Foundation Grants No. 58/14, 1216/18. We are
grateful to the referee of the paper for his long list of suggestions, remarks and corrections.
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Definition 1.2 A uniform ultrafilter U over λ is called weakly normal iff for every A ∈ U
and every regressive f : A→ λ there is α < λ such that the set {ν ∈ A | f(ν) < α} is in U.

Note that (for σ−complete ultrafilters) this is equivalent to the statement that [id]U is

the least function which is not bounded by [cγ]U , for γ < λ, i.e. [id]U = sup(jU
′′λ).

Clearly, if U is exactly κ−complete ultrafilter over λ, then κ must be a measurable and

the critical point of the corresponding elementary embedding jU : V →MU ' λV/U .

Further by κ−completeness we will mean the exact κ−completeness.

Let us address the strength of the existence of such ultrafilters.

Proposition 1.3 Assume that ¬0¶.1

Suppose that there exists a κ−complete uniform ultrafilter over λ > κ. Then the following

hold:

1. κ and cof(λ) are measurable cardinals in the core model,

2. if cof(λ) < λ, then either

(a) λ is a measurable cardinal in the core model,

or

(b) λ is singular limit of measurable cardinals in the core model.

Proof. Let U be κ−complete uniform ultrafilter over λ > κ. Let K denotes the core model.

Consider jU : V → MU ' Ult(V,U) the corresponding elementary embedding. By W.

Mitchell [14], j := jU � K is an iterated ultrapower of K by its measures or extenders.

Note that κ is a critical point of j, and so, it is a measurable cardinal in K.

If cof(λ) is not a measurable in K, then sup(j′′cof(λ)) = j(cof(λ)), and so, sup(j′′λ) =

j(λ), which is impossible due to the uniformity of U .

Suppose now that cof(λ) < λ and λ is not a measurable cardinal in K.

Assume that in K, λ is not a limit of measurable cardinals. Let µ be a supremum of

measurable cardinals of K below λ.

Consider [id]U . Then there are n < ω and f : [µ]n → On such that j(f)(a) = [id]U , for some

a ∈ [j(µ)]n = j(dom(f)). So, [id]U ∈ rng(j(f)). Let Z = rng(f), then |Z| ≤ µ. However,

[id]U ∈ j(Z) = rng(j(f)) implies that Z ∈ U and this contradicts the uniformity of U .

�
1This means that there is no inner model with a sharp for a strong cardinal.
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2 Basic constructions.

Given two measurable cardinals κ < λ, it is easy to define a uniform ultrafilter U over λ

which is exactly κ−complete.

Thus, fix some normal ultrafilters V on κ and U on λ. Let jU : V → MU be the ultrapower

embedding by U . Clearly, V remains a normal ultrafilter in MU . Let

jMUV : MU → N := MMU
V

be its ultrapower embedding there.

Set

i = jMUV ◦ jU .

Define a desired uniform κ−complete (exactly) ultrafilter W on λ as follows:

X ∈ W ⇔ λ+ κ ∈ i(X).

Such W is not weakly normal, since i′′λ = λ < [id]W = λ+ κ.

It follows also that the weakly normal ultrafilter Rudin-Keisler below W is actually U .

It is not hard to construct a model with a uniform weakly normal, κ−complete ultrafilter

which is not normal.

Start with a GCH model with two measurable cardinals κ < λ.

Add a Cohen function fα : α → α for every inaccessible α, κ < α ≤ λ (with the Easton

support iteration).

Extend the embedding i (of the previous construction) and change the value of fi(λ)(λ)

to κ.

The resulting extension of U will be as desired, and, moreover it will be Rudin-Keisler

equivalent to W defined as above using λ+ κ.

3 Suslin trees.

It is possible (again from two measurables) to construct a model with

a uniform κ−complete ultrafilter U over λ in which λ is not a measurable.

The basic idea goes back to K. Kunen’s [13] construction of a model with a λ−saturated

ideal over λ. Here we would like to add a λ−Suslin tree to λ and then to argue that in the

ultrapower by a normal ultrafilter over κ λ−branches are added to its image. This will allow

us to extend embeddings by measures over λ.

3



Theorem 3.1 Assume GCH. Let κ < λ be two measurable cardinals. Then there is a

cofinality preserving generic extension which satisfies the following:

1. GCH,

2. λ is not measurable,

3. there is a uniform κ−complete ultrafilter over λ.

Moreover, every U which is a normal ultrafilter over λ in V extends to a uniform

κ−complete ultrafilter over λ.

Proof. Fix some normal ultrafilters V on κ and U on λ. Let jU : V →MU be the ultrapower

embedding by U . Clearly, V remains a normal ultrafilter in MU . Let

i := jMUV : MU → N := MMU
V

be its ultrapower embedding there.

Our first attempt will be to add a λ−Suslin tree T such that its image under jV has a

branch in V .

Let η, κ < η ≤ λ be a 2-Mahlo cardinal. Define a forcing notion Qη as follows:

〈T, ~f〉 ∈ Qη iff

1. T ⊆ η>2 is a normal tree of a successor height ht(T ) below η,

2. ~f = 〈fα | α < ht(T )〉, where

(a) for every α < ht(T ), fα : κ→ Levα(T ),

(b) for every α, β < ht(T ), if α < β, then the set {ν < κ | fα(ν) <T fβ(ν)}
is co-bounded in κ.

The idea behind is that [fα]V would eventually generate an η−branch in the

ultrapower.

The order on Qη is defined in the natural fashion by taking end extensions2.

The following lemma is easy:

Lemma 3.2 The forcing Qη is < η−strategically closed.

2We denote the fact that a condition p is stronger than a condition q by p ≥ q.
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Proof. Let τ < η. Define a winning strategy for Player II (the one that plays even stages

including limit ones)by induction.

Suppose that 〈〈T ζ , ~f ζ〉 | ζ < ξ < τ〉, ξ even is a play according to this strategy. Define the

ξ−th move of Player II. Let T =
⋃
ζ<ξ T

ζ and T ξ will be the tree obtained from T by adding

the last level. We just continue all maximal branches of T to this level.

Note that there are maximal branches, since trees in Qη are normal, have successor heights

and at each limit stage of the construction (below ξ) we do the same, i.e. all maximal

branches of the union are continued.

Now, set ~f to be the union of all ~f ζ , ζ < ξ. Let ξ∗ be the last level of T ξ. Define f ξ
∗

and

then add it to ~f .

Suppose first that ξ is a limit stage. Let f ξ
∗
(ν), ν < κ, be the point at the level ξ∗ which is a

continuation of the branch {t ∈ T | ∃ζ < ξ(ζ is even and (~f ζ(ht(T ζ))(ν) ≥T t)}. We assume

by induction that all ~f ζ(ht(T ζ))(ν), for even ζ are on the same branch.

In particular, for every two even ordinals ζ < ξ < τ , we will have
~f ζ(ht(T ζ))(ν) ≤T ~f ξ(ht(T ξ))(ν), for every ν < κ.

Suppose now that ξ is a successor stage.

Set

X = {ν < κ | ~f ξ−1(ht(T ξ−1))(ν) ≥T ~f ξ−2(ht(T ξ−2))(ν)}.

For every ν ∈ X, let f ξ
∗
(ν) be a point at the level ξ∗ which is above ~f ξ−1(ht(T ξ−1))(ν).

For every ν ∈ κ \X, let f ξ
∗
(ν) be a point at the level ξ∗ which is above ~f ξ−2(ht(T ξ−2))(ν).

Clearly such defined f ξ
∗

is as desired.

�

Let now G ⊆ Qη be generic and T (G) be the η−tree added by G.

Lemma 3.3 T (G) is an η−Suslin tree.

Proof. Work in V . Let A∼ be a name of a maximal antichain in T (G). Using the strategy

of the previous lemma define 〈T, ~f〉 of a limit height δ < η of cofinality κ and an increasing

continuous sequence 〈δγ | γ < κ〉 with limit δ such that for every γ ≤ γ′ < κ,

1. 〈T � δγ + 1, ~f � δγ + 1〉 ∈ Qη,

2. for every t ∈ T � δγ + 1 there is t∗ ∈ T � δγ+1 + 1, t∗ ≥T t or t ≥T t∗,
〈T � δγ+1 + 1, ~f � δγ+1 + 1〉  t∗ ∈ A∼.
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3. For every ν < κ, fδγ (ν) ≤T fδγ′ (ν).

Denote by A∗ the set of all such t∗’s.

We would like now to freeze A∼. As usual, to do so we will continue to the level δ only

branches that pass via an element of A∗. An additional thing to take care here is an extension

of ~f . Namely we need to define a function fδ from κ to the level δ of the tree which respects

the item 2b of the definition of Qη.

Let fδν = ~f(δν), for every ν < κ.

Consider first fδ0(0). Pick a δ−branch through T which passes via fδ0(0) and an element

of A∗. Note that there is such a branch, since, following the strategy, we continue at limit

stages of the construction all maximal branches. Continue it to the level δ and set fδ(0) to

be this continuation.

Proceed by induction on µ < κ and define fδ(µ) be above fδµ(µ) and an element of A∗.

Note that fδµ(µ) ≥T fδµ′ (µ), for every µ′ ≤ µ.

Then, for every µ < κ, we will have that for every ν, µ ≤ ν < κ, fδ(ν) ≥T fδµ(ν). Clearly,

the last set is co-bounded, and so, we are done.

�

In particular the natural forcing for adding a branch into T (G) satisfies η−c.c.. Consider

the other forcing F associated with G.

Let f be in F iff there is 〈T, ~f〉 ∈ G such that for some α < ht(T ), f = fα. Set f 1 ≥F f 2 iff

for every ν < κ, f 1(ν) ≥T (G) f
2(ν).

The intuition behind is that we would like to extend G(T ) to the level η. A generic for F

allows to define η−branches and fη, i.e. the function to the level η of such tree.

Let us argue that the forcing 〈F,≤F 〉 satisfies η−c.c..

Lemma 3.4 〈F,≤F 〉 satisfies η−c.c..

Proof. Work in V . Let A∼ be a name of a maximal antichain in 〈F,≤F 〉.
η is a 2-Mahlo cardinal3, so there an elementary submodel N of a large enough fragment of

V such that A∼ ∈ N and N ∩ η = η′, η
′>N ⊆ N , for some Mahlo cardinal η′ < η.

We will construct by induction a pair 〈T, ~f〉 with T of height η′, using the strategy defined

in Lemma 3.2. Player II will follow the strategy at even stages and at odd stages we will

deal with A∼. Note that, according to this strategy, all maximal branches are continued at

3It is possible to use weaker assumptions, but it does matter much since λ is a measurable, and so, there
are many such cardinals below it.
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limit steps, so we need not worry what to do there. Let us concentrate on the construction

at odd stages.

For every s ∈ T we will define by induction an η′−branch bs such that:

for every η′′ < η′, for every 〈sρ | ρ < κ〉 ∈ [T � η′′ + 1]κ with the set

{ρ < κ | bsρ(η′′) = fη′′(ρ)} co-bounded, there is η′′′, η′′ ≤ η′′′ < η′ such that

{(ρ, bsρ(η′′′)) | ρ < κ} is forced (by an initial segment of 〈T, ~f〉) to be above an element of A.

Proceed as follows.

Start with a condition in Qη ∩N . Extend it inside N to a condition 〈T 0, ~f 0〉 which decides

an element of A. Let g be this element and αg < ht(T 0) its level.

Then the set {ν < κ | g(ν) <T 0 f 0
ht(T 0)(ν)} is co-bounded, since g = f 0

αg .

Branches 〈bg(ν) | ν < κ〉 will be used to form fα, for every even level α ≤ η′, i.e. at stages

where Player II plays.

We continue by induction using the fact that η′κ = η′ = 2<η
′
.

Thus, fix an enumeration π : η′ → [2<η
′
]κ such that the pre-image of each element of [2<η

′
]κ

is stationary.

Suppose that for some η′′ < η′, 〈T � η′′ + 1, ~f � η′′ + 1〉 is defined.

Consider π(η′′). If π(η′′) 6∈ [T � η′′+1]κ, then nothing special is done. If π(η′′) ∈ [T � η′′+1]κ,

then let π(η′′) = 〈sρ | ρ < κ〉.
If the set {ρ < κ | bsρ(η′′) = fη′′(ρ)} is not co-bounded, then again, do nothing special.

If the set {ρ < κ | bsρ(η′′) = fη′′(ρ)} is co-bounded, but {(ρ, bsρ(η′′)) | ρ < κ} is not forced

by 〈T � η′′ + 1, ~f � η′′ + 1〉 to be a condition, then do nothing special.

Suppose now that the set {ρ < κ | bsρ(η′′) = fη′′(ρ)} is co-bounded and {(ρ, bsρ(η′′)) | ρ < κ}
is forced by 〈T � η′′ + 1, ~f � η′′ + 1〉 to be a condition.

If {(ρ, bsρ(η′′)) | ρ < κ} is forced by 〈T � η′′ + 1, ~f � η′′ + 1〉 to be above an element of A,

then do nothing special.

If {(ρ, bsρ(η′′)) | ρ < κ} is not forced by 〈T � η′′ + 1, ~f � η′′ + 1〉 to be above an element of

A, then we extend 〈T � η′′ + 1, ~f � η′′ + 1〉 to a condition 〈T ′, ~f ′〉 which decides an element

of A above {(ρ, bsρ(η′′)) | ρ < κ}. Let η′′′, η′′ < η′′′ < ht(T ′) be the level of such element

of A. Denote this element by 〈aρ | ρ < κ〉. Then for every ρ < κ, bsρ(η
′′) <T ′ aρ. Pick

now a′ρ >T ′ aρ at the level ht(T ′) − 1 such that a′ρ = f ′ht(T ′)−1(ρ), if f ′ht(T ′)−1(ρ) >T ′ aρ, and

arbitrary otherwise4.

Set bsρ � ht(T
′) = {x ∈ T ′ | x ≤ a′ρ}.

Define bs � ht(T ′) to be an arbitrary extension of bs � η′′ + 1, if s 6= sρ, for some ρ < κ.

4Note that for co-boundedly many ρ’s, we will have f ′ht(T ′)−1(ρ) >T ′ aρ.
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Now we add to T the last level (the level η′) by continuing branches bs, s ∈ T only. Set

fη′(ν) to be the continuation of bg(ν) to the level η′, for every ν < κ.

Denote by 〈T ∗, ~f〉 such extension.

Let us show that the condition 〈T ∗, ~f〉 forces that A ⊆ [T ]κ. Suppose otherwise. Then there

is 〈S,~g〉 ≥Qη 〈T ∗, ~f〉 and ξ, η′ < ξ < ht(S) such that

〈S,~g〉  gξ ∈ A∼.

For every ρ < κ, let aρ the predecessor of gξ(ρ) at level η′. Then, for every ρ < κ, there is

sρ ∈ T such that aρ = bsρ . Find η′′ < η′ such that π(η′′) = 〈sρ | ρ < κ〉 and 〈sρ | ρ < κ〉 ∈
[T � η′′ + 1]κ.

The set {ρ < κ | bsρ(η′′) = fη′′(ρ)} co-bounded, since bsρ(η
′′) is the predecessor of gξ(ρ) at

the level η′′ and the set {ρ < κ | gξ(ρ) >S fη′′(ρ)} co-bounded, by the definition of Qη.

Then, by the construction, there is η′′′, η′′ ≤ η′′′ < η′ such that

{(ρ, bsρ(η′′′)) | ρ < κ} is forced (by an initial segment of 〈T, ~f〉) to be above an element of A.

Which is impossible since A is an anti-chain.

Contradiction.

�

We force in the interval (κ, λ) a η−Suslin tree T (η) with the forcing Qη, and then, we

force with the forcing 〈Fη,≤Fη 〉, defined above, branches trough T (η), for every 2-Mahlo

cardinal η.

More precisely, Easton support iteration is used between κ and λ. At all but 2-Mahlo

cardinals the forcing is trivial and if η, κ < η < λ is a 2-Mahlo cardinal, then we force with

Qη ∗ Fη. Denote this iteration by P.

Now, over λ itself, force only a λ−Suslin tree T (λ) with Qλ.

Note that jV(λ) = λ.

Let G ⊆ P ∗Qλ be a generic.

We extend jV in a natural fashion to j∗V : V [G] → MV [G∗]. Namely, jV
′′G will generate

G∗ ⊂ jV(P ∗ Qλ) generic over MV , since the forcing P ∗ Qλ is more than κ−strategically

closed.

Then λ does not move and, by elementarity, j∗V(T (λ)) is a λ−Suslin tree in MV [G∗].

Let 〈fGα | α < λ〉 be the part of G � Qλ which consists of functions.

For every α < β < λ, the set {ν < κ | fGα (ν) 6<T (λ) f
G
β (ν)} is bounded in κ by some δ(α, β).

By elementarity, the set

{ν < jV(κ) | j∗V(fGα )(ν) <j∗V (T (λ))
j∗V(fGβ )(ν)} ⊇ jV(κ) \ δ(α, β).
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Note that there are unboundedly many α < λ such that jV(α) = α, for example, every

inaccessible α, κ < α < λ is a fixed point of jV .

Set

bν := {t ∈ j∗V(T (λ)) | ∃α < λ(t <j∗V (T (λ))
j∗V(fGα )(ν))},

for every ν, κ ≤ ν < jV(κ). Then the sequence 〈bν | κ ≤ ν < jV(κ)〉 is in V [G], and it is a

sequence of λ−branches through j∗V(T (λ)).

Consider

H = {fG∗γ | γ < λ, exists α, γ < α < λ for every ν < jV(κ)(fG
∗

γ (ν) <j∗V (T (λ))
j∗V(fGα )(ν))}.

Then H is close to produce a MV [G∗]−generic set for the forcing 〈Fλ,≤Fλ 〉 with the tree

j∗V(T (λ)) in MV [G∗]. It follows from the fact that in MV [G∗] the forcing satisfies λ−c.c..

Thus, suppose that A ⊆ Fλ is a maximal anti-chain. Then there is δ < λ such that each

function in A acts at a level of j∗V(T (λ)) below δ. Take an inaccessible α, δ < α < λ. Consider

j∗V(fGα ). It is compatible with an element of A, but since j∗V(fGα ) acts at the level α > δ, it

should be above this element. The only problem is that for β, α < β < λ, j∗V(fGα )(ν) need

not be below j∗V(fGβ )(ν) for every ν, but rather for ν ≥ κ. It is not hard to fix this and we

do it below.

We would like to use U to extend further the elementary embedding and eventually to

produce an extension of U which is as desired.

The problematic point is that j∗V(T (λ)) extended to the level λ by extending the branches

〈bν | κ ≤ ν < jV(κ)〉 to the level λ is not normal. Namely there will be many t ∈ j∗V(T (λ))

without a λ−branch through t.

In order to prevent this, let us revise the construction and use homogeneous trees instead

of arbitrary ones.

Define a forcing notion Qhom
η as follows:

〈T, ~f〉 ∈ Qhom
η iff

1. T ⊆ η>2 is a normal tree of a successor height ht(T ) below η,

2. T is homogeneous in the following sense:

if s0, s1 ∈ T are on a same level, then Ts0 = Ts1
5.

3. ~f = 〈fα | α < ht(T )〉, where

(a) for every α < ht(T ), fα : κ→ Levα(T ),

5If s ∈ T , then Ts denotes {t � η \ |s| | t ∈ T, t ≥T s}.
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(b) for every α, β < ht(T ), if α < β, then the set {ν < κ | fα(ν) <T fβ(ν)}
is co-bounded in κ.

The order on Qhom
η is defined in the natural fashion by taking end extensions.

The next lemma is as in the previous setting:

Lemma 3.5 The forcing Qhom
η is < η−strategically closed.

Let now G ⊆ Qhom
η be generic and T (G) be the η−tree added by G.

Lemma 3.6 T (G) is an η−Suslin tree.

Proof. Work in V . Let A∼ be a name of a maximal antichain in T (G).

Fix an increasing continuous elementary chain 〈Nγ | γ < κ〉 of elementary submodels of Hχ

for χ large enough such that

1. Qhom
η , A∼ ∈ N0,

2. for every γ < κ, Nγ ∩ λ = δγ for some cardinal δγ,

3. for every successor γ < κ, δγ is a regular cardinal and δγ>Nγ ⊆ Nγ.

For every successor γ < κ, we work inside Nγ and define by induction a homogeneous

normal tree T γ of height δγ, functions ~fγ for T γ and 〈bγt | t ∈ T γ〉 such that

1. T γ end-extends T γ−1,

2. ~fγ end-extends ~fγ−1,

3. for every t ∈ T γ, bγt is a δγ−branch through T γ,

4. if t ∈ T γ−1, then bγt � δγ−1 = bγ−1t ,

5. 〈T γ, ~fγ〉 decides A∼ ∩ T
γ,

6. for every t ∈ T γ, 〈T γ, ~fγ〉 forces that an element of A∼ belongs to bγt ,

7. for every t, s ∈ Tγ which are on a same level α < δγ, b
γ
t \ α + 1 = bγs \ α + 1.
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Now, we extend all δγ−branches of T γ to the level δγ, and not only the chosen bγt ’s.

In addition, for every α ≤ δγ, we will have a function fα = fγα from κ to the α−th level.

They are defined together with trees as in Lemma 3.3.

Set δκ =
⋃
γ<κ δγ, T

κ =
⋃
γ<κ T

γ and for every t ∈ T κ, bt =
⋃
γ<κ b

γ
t .

Extend T κ to the level δκ, but now continue only the branches bt, t ∈ T κ.
Let us define fδκ , i.e. the function for the level δκ.

Consider first fδ0(0). Set fδκ(0) be the continuation of bfδ0 (0) to the level δκ.

Given γ < κ, set fδκ(γ) be the continuation of bfδγ (γ) to the level δκ.

Then for every γ < κ,

{ν < κ | fδκ(ν) >Tκ fδγ (ν)} ⊇ κ \ γ.

�

In particular the natural forcing for adding a branch into T (G) satisfies η−c.c.. Consider

the other forcing F associated with G.

Let f be in F iff there are ξf < κ and 〈T, ~f〉 ∈ G such that for some α < ht(T ), f = fα \ ξf .
Set f 1 ≥F f 2 iff ξf1 = ξf2 and for every ν, ξf1 ≤ ν < κ, f 1(ν) ≥T (G) f

2(ν).

F can be viewed as a set of pairs 〈f, ξf〉.
The intuition behind this is that we would like to extend G(T ) to the level η. An η−branch

(together with homogeneity) allows to extend the tree T (G) and a generic for F allows to

define fη, i.e. the function to the level η of such tree.

The next lemma is a “homogeneous” analog of Lemma 3.4

Lemma 3.7 〈F,≤F 〉 satisfies η−c.c..

Proof. Let A ⊆ F be an anti-chain. Our aim is to show that |A| < η. We can split A into at

most κ−many anti-chains according to the values of ξf ’s of its members. It is enough to show

that each part of such splitting has cardinality less than η. So deal with them separately.

Assume for simplicity that for every f ∈ A, ξf = 0.

Work in V . Let A∼ be a name of A.

Proceed as in 3.4.

η is a 2-Mahlo cardinal, so there an elementary submodel N of a large enough fragment of

V such that A∼ ∈ N and N ∩ η = η′, η
′>N ⊆ N , for some Mahlo cardinal η′ < η.

We will construct by induction a pair 〈T, ~f〉 with T of height η′, using the strategy defined

in Lemma 3.2. Player II will follow the strategy at even stages and at odd stages we will deal

with A∼. Note that, according to this strategy, all maximal branches are continued at limit
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steps, so we need not worry what to do there. The main attention will be to the construction

at odd stages.

We will associate a maximal branch bs through s, for every s ∈ T . Only this branches will

be continued to the final level η′, as it was done in 3.4. This will insure the following:

for every η′′ < η′, for every 〈sρ | ρ < κ〉 ∈ [T � η′′ + 1]κ with the set

{ρ < κ | bsρ(η′′) = fη′′(ρ)} co-bounded,

if there is an extension of 〈T, ~f〉 which decides an element of A above {(ρ, bsρ(η′′)) | ρ < κ},
then there is η′′′, η′′ ≤ η′′′ < η′ such that

{(ρ, bsρ(η′′′)) | ρ < κ} is forced (by an initial segment of 〈T, ~f〉) to be above

an element of A.

There is an additional requirement here - a homogeneity of the final tree. In order to

insure this, the inductive construction of T will provide the following:

(∗)T for every s, t ∈ T which are on a same level α < η′, for every bx with s ∈ bx there

is y ∈ T such that t ∈ by and bx \ α = by \ α.

Proceed as follows.

Start with a condition 〈T 0, ~f 0〉 ∈ Qη ∩N .

Let us define a sequence of maximal branches 〈bT0s | s ∈ T0〉 through T 0 which has the

property (∗)T 0 . Such bT0s ’s will be initial segments of the final branches bs’s through T . Let

η0 + 1 be the height of T 0. Proceed by induction on levels α ≤ η0.

Consider the first level.

Suppose that 〈0〉 is there. Pick some b at the last level of T 0 (i.e. a 0 − 1 sequence of the

length η0) which extends 〈0〉, or simply, its first element is 0. Set bT0〈0〉 = b. Also, set bT0s = b

for every s ∈ T 0 which is on b, i.e. for every initial segment of b.

Now deal with the next element (if there is such) of the first level of T 0.

So consider 〈1〉. By homogeneity of T 0, we have T 0
〈0〉 = T 0

〈1〉. In particular, b1 := 〈1〉_b \ 1 ∈
T 0. Set bT0〈1〉 = b1 and let bT0s = b1, for every s ∈ T 0 which is on b1, i.e. for every initial

segment of b1.

Now, suppose we got to a level α and there is s at this level with bT0s undefined. Set

bT0s = s_bT
0

〈0〉 \α. Also, set bT0t = bT0s for every t ∈ T 0 which is on bT0s and is above the level α.

Fix an enumeration π : η′ → [2<η
′
]κ such that the pre-image of each element of [2<η

′
]κ is

stationary.

Suppose that for some η′′ < η′, 〈T � η′′ + 1, ~f � η′′ + 1〉 is defined.

Consider π(η′′). If π(η′′) 6∈ [T � η′′+1]κ, then nothing special is done. If π(η′′) ∈ [T � η′′+1]κ,

then let π(η′′) = 〈sρ | ρ < κ〉.
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If the set {ρ < κ | bsρ(η′′) = fη′′(ρ)} is not co-bounded, then again, do nothing special.

If the set {ρ < κ | bsρ(η′′) = fη′′(ρ)} is co-bounded, but {(ρ, bsρ(η′′)) | ρ < κ} is not forced

by 〈T � η′′ + 1, ~f � η′′ + 1〉 to be a condition, then do nothing special.

Suppose now that the set {ρ < κ | bsρ(η′′) = fη′′(ρ)} is co-bounded and {(ρ, bsρ(η′′)) | ρ < κ}
is forced by 〈T � η′′ + 1, ~f � η′′ + 1〉 to be a condition.

If {(ρ, bsρ(η′′)) | ρ < κ} is forced by 〈T � η′′ + 1, ~f � η′′ + 1〉 to be above an element of A,

then do nothing special.

If {(ρ, bsρ(η′′)) | ρ < κ} is not forced by 〈T � η′′ + 1, ~f � η′′ + 1〉 to be above an element

of A, and no extension 〈T ′, ~f ′〉 of 〈T � η′′ + 1, ~f � η′′ + 1〉 decides an element of A above

{(ρ, bsρ(η′′)) | ρ < κ}, then do nothing special. Note that now this may happens, since we

deal with an antichain which is not maximal.

If {(ρ, bsρ(η′′)) | ρ < κ} is not forced by 〈T � η′′ + 1, ~f � η′′ + 1〉 to be above an element of A

and there is an extension 〈T ′, ~f ′〉 of 〈T � η′′ + 1, ~f � η′′ + 1〉 which decides an element of A

above {(ρ, bsρ(η′′)) | ρ < κ}.
By extending if necessary, we can assume that ht(T ′)− 1 is an inaccessible cardinal.

Let η′′′, η′′ < η′′′ < ht(T ′) be the level of such element of A. Denote this element by

〈aρ | ρ < κ〉. Then for every ρ < κ, bsρ(η
′′) <T ′ aρ. Pick now a′ρ >T ′ aρ at the level ht(T ′)−1

such that a′ρ = f ′ht(T ′(ρ), if f ′ht(T ′)−1(ρ) >T ′ aρ, and arbitrary otherwise6.

Set bT
′

sρ = bsρ � ht(T
′) = {x ∈ T ′ | x ≤T ′ a′ρ}.

Set bT
′

t = bt � ht(T ′) = {x ∈ T ′ | x ≤T ′ a′ρ}, for every t ∈ T ′, t ≤T ′ a′ρ which sits on a level

> η′′.

Apply the homogeneity of T ′ now.

For every ρ, 0 < ρ < κ there is a′ρ,0 at the last level of T ′ which is above bs0(η
′′) and

a′ρ \ η′′ = a′ρ,0 \ η′′.
Proceed by induction on levels of T ′ above η′′ and define bT

′
t = bt � ht(T ′) for t’s in T ′bs0 (η′′)

which are ≤T ′ a′ρ,0, ρ < κ.

Thus, suppose t ∈ T ′bs0 (η′′) is like this and bt � ht(T ′) is still undefined. Pick ρ < κ to be the

least such that t ≤T ′ a′ρ,0 and set bT
′

t = bt � ht(T ′) = a′ρ,0
7.

Repeat the same process above every bsµ(η′′), 0 < µ < κ, i.e., with µ replacing 0.

There may be still s’s in T ′ with bT
′

s undefined. Proceed by induction on levels of T ′

starting from η′′.

Thus, let, for example, s ∈ Levη′′(T ) \ {bsρ(η′′) | ρ < κ}.
6Note that for co-boundedly many ρ’s, we will have f ′ht(T ′)−1(ρ) >T ′ aρ.
7Recall that nodes of T ′ are just sequences and we identify between them.

13



Use the homogeneity of T ′. For every ρ < κ there is a′s,ρ >T ′ s at the last level ht(T ′)− 1 of

T ′ such that a′s,ρ \ η′′ = a′ρ \ η′′. We set bT
′

s = bs � ht(T ′) = a′s,0 and repeat the settings made

above bs0(η
′′) to those above s.

Let us argue that the choice of the branches bT
′

s above gives the property (∗)T ′ .
Claim. (∗)T ′ holds.

Proof. First note that by the construction, for every t ∈ T ′, there is ρ < κ such that

bT
′

t \ ht(t) = a′ρ \ ht(t).
The second point is that the branches which lead to a′ρ’s, ρ < κ, split completely before

the final level ht(T ′) − 1, i.e., there is η̃, η′′ < η̃ < ht(T ′) − 1 such that 〈a′ρ(η̃) | ρ < κ〉 are

different points of the level η̃ of T ′. This follows from an inaccessibility of ht(T ′)− 1.

So, by the construction, for every t ∈ T ′, ρ < κ, there will be x ≥T ′ t such that bT
′

x \ ht(t) =

a′ρ \ ht(t).
Now (∗)T ′ follows.

� of the claim.

This completes the construction of T and 〈bs | s ∈ T 〉.
We continue only the branches bs, s ∈ T to the level η′.

The rest of the proof is as in 3.4.

�

Now we are ready to complete the proof of 3.1.

Proceed as it was done after Lemma 3.4.

We force in the interval (κ, λ) a η−Suslin tree T (η) with the forcing Qη, and then, we force

with the forcing 〈Fη,≤Fη 〉, defined above, branches trough T (η), for every 2-Mahlo cardinal

η.

More precisely, Easton support iteration is used between κ and λ. At all but 2-Mahlo

cardinals the forcing is trivial and if η, κ < η < λ is a 2-Mahlo cardinal, then we force with

Qη ∗ Fη. Denote this iteration by P.

Now, over λ itself, force only a λ−Suslin tree T (λ) with Qλ.

Note that jV(λ) = λ.

Let G ⊆ P ∗Qλ be a generic.

We extend jV in a natural fashion to j∗V : V [G] → MV [G∗]. Namely, jV
′′G will generate

G∗ ⊂ jV(P ∗ Qλ) generic over MV , since the forcing P ∗ Qλ is more than κ−strategically

closed.

Then λ does not move and, by elementarity, j∗V(T (λ)) is a λ−Suslin tree in MV [G∗].

Let 〈fGα | α < λ〉 be the part of G � Qλ which consists of functions.
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For every α < β < λ, the set {ν < κ | fGα (ν) 6<T (λ) f
G
β (ν)} is bounded in κ by some δ(α, β).

By elementarity, the set

{ν < jV(κ) | j∗V(fGα )(ν) <j∗V (T (λ))
j∗V(fGβ )(ν)} ⊇ jV(κ) \ δ(α, β).

Note that there are unboundedly many α < λ such that jV(α) = α, for example, every

inaccessible α, κ < α < λ is a fixed point of jV .

Set

bν := {t ∈ j∗V(T (λ)) | ∃α < λ(t <j∗V (T (λ))
j∗V(fGα )(ν))},

for every ν, κ ≤ ν < jV(κ). Then the sequence 〈bν | κ ≤ ν < jV(κ)〉 is in V [G], and it is a

sequence of λ−branches through j∗V(T (λ)).

Consider

H = {〈fG∗γ , κ〉 | γ < λ, exists α, γ < α < λ, for every ν, κ ≤ ν < jV(κ)

(fG
∗

γ (ν) <j∗V (T (λ))
j∗V(fGα )(ν))}.

Let us argue now that such defined H is a MV [G∗]−generic set for the forcing 〈Fλ,≤Fλ 〉
with the tree j∗V(T (λ)) in MV [G∗], with ξf = κ.

First, we have that for every β, α < β < λ, j∗V(fGα )(ν) is below j∗V(fGβ )(ν) for every ν,

κ ≤ ν < jV(κ).

Second, let us argue that H meets maximal antichains. It follows from the fact that in

MV [G∗] the forcing satisfies λ−c.c.. Thus, suppose that A ⊆ Fλ is a maximal anti-chain.

Then there is δ < λ such that each function in A acts at a level of j∗V(T (λ)) below δ. Take

an inaccessible α, δ < α < λ.

Consider 〈j∗V(fGα ), κ〉. It is compatible with an element of A. Let 〈g, κ〉 be such an element.

Then the level on which g acts should be below δ. However, j∗V(fGα ) acts at the level α > δ.

Hence, for every ν, κ ≤ ν < jV(κ), j∗V(fGα ) >j∗V (T (λ))
g(ν).

So, g ∈ H ∩ A.

Let U be a normal ultrafilter over λ in V . Consider its elementary embedding jU : V →
MU . The critical point of jU is λ, and so, V does not move.

Let i : V →M be the composition of jU with jMUV : MU →M ' Ult(MU ,V).

It is well-known that M is just the ultrapower by U ×V ( or equivaletly by V ×U ) and i is

just the corresponding elementary embedding.

Consider the forcing jU(P ∗ Qλ) in MU . It splits into the part P ∗ Qλ ∗ Fλ and the part

P(κ,jU (λ)) ∗QjU (λ) above λ.
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The part above λ is more than λ−strategically closed. So, we can construct a master

condition sequence 〈 q
∼ζ
| ζ < λ+〉.

Now use jMUV and move to M . Then 〈jMUV ( q
∼ζ

) | ζ < λ+〉 will be a master condition sequence

there. We refer to J. Cummings handbook article [5] for this type of arguments.

Finally, plugging in G∗ and H, the embedding i extends to

i∗ : V [G]→M [G∗, H,R],

where R is generated by 〈jMUV ( q
∼ζ

)G∗∗H | ζ < λ+〉.
Define U∗ in V [G] as follows:

X ∈ U∗ iff λ ∈ i∗(X).

Clearly, U∗ ⊇ U , and so U∗ is a uniform ultrafilter over λ.

It is not hard to see that the embedding i∗ is actually the ultrapower embedding by U∗, since

the only generators of the original i are κ and λ, but we can obtain κ from H. So, only λ

remains.

Clearly, sup(i′′λ) = λ. So, iU∗ = i∗ ⊇ i implies that U∗ is a weakly normal ultrafilter over λ.

Finally, λ is not a measurable cardinal in V [G], since there exists a λ−Suslin tree.

�

3.1 Extensions with different degrees of completeness.

The construction above provides an extension of normal ultrafilter U over λ to a κ−complete

uniform weakly normal ultrafilter.

Let us argue that from a bit stronger assumptions it is possible to obtain extensions with

different degrees of completeness.

Theorem 3.8 Assume GCH. Let κ < λ be two measurable cardinals.

Assume that κ is a limit of measurable cardinals. Then there is a cofinality preserving generic

extension which satisfies the following:

1. GCH,

2. λ is not measurable,

3. there is a uniform κ−complete ultrafilter over λ.

Moreover, every U which is a normal ultrafilter over λ in V extends to a uniform

κ−complete ultrafilter over λ.

16



4. For every δ < κ there is δ′, δ ≤ δ′ < κ and a uniform δ′−complete ultrafilter over λ.

Moreover, every U which is a normal ultrafilter over λ in V extends to a uniform

δ′−complete ultrafilter over λ.

Proof. We will combine the construction of the previous section with those of Theorem 3.1.

Fix some normal ultrafilters V on κ and U on λ. Fix in addition normal ultrafilters Vδ over

δ, for every δ < κ

Iterate first the Cohen forcing and add function fα : α→ α for every inaccessible α, α ≤ κ.

Each of the ultrafilters above extends to a normal ultrafilter.

Let V ′δ and U ′ be an extensions of Vδ and U , for every measurable δ < κ.

Further we shall abuse the notation and refer to them as Vδ and U .

Over κ let us define extensions V(δ) of V , for every measurable δ ≤ κ. Pick V(κ) to be a

normal ultrafilter which extends V .

For every measurable δ < κ, consider in V ,

iδ := jV ◦ jVδ : V →M(δ).

Extend the embedding iδ to i∗δ and change

the value of fiδ(κ)(κ) to δ. Let V(δ) be the corresponding extension of V .

Then it is a uniform weakly normal δ−complete ultrafilter over κ.

We construct a Suslin tree as in 3.1. Now, any of V(δ), δ ≤ κ, can be used to move κ,

and so, to produce λ−branches in the tree.

This in turn will produce extensions of U with various degrees of completeness.

�

J. Bagaria and M. Magidor [2] considered the following variation of strong compactness:

Every λ−complete filter can be extended to a κ−complete ultrafilter.

This clearly holds if λ is a strongly compact, but in general λ need not be even a mea-

surable.

Thus J. Bagaria and M. Magidor [2] showed that it is possible to have such situation even

with a singular λ.

Let us point out that our constructions can be used to provide additional examples.

Theorem 3.9 Assume GCH. Let λ be a supercompact cardinal and κ < λ be a measurable.

Then there is a cofinality preserving generic extension which satisfies the following:

1. GCH,
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2. λ is not measurable,

3. every λ−complete filter can be extended to a κ−complete ultrafilter.

Proof. We use the construction of 3.1, only instead of using a normal ultrafilter U over λ and

extending its embedding jU , supercompact ultrafilters over Pλ(µ) for various µ’s are used.

Suppose that in the extension F is a λ−complete filter on an ordinal and let µ be a

regular large enough such that |F | ≤ µ. Let F = {Zα | α < µ}. Pick names F∼ and Z∼α’s for

F and Zα’s. Assume that the weakest condition already forces all of this.

Work in V . Let V be a normal ultrafilter over κ, U a normal ultrafilter over Pλ(µ) and

i = jMVjV (U).

Then jV(F∼) is forced to consist of jV({Z∼α | α < µ}).
Set jV({Z∼α | α < µ}) = {Z∼

′
α | α < jV(µ)}.

The ultrapower M := MMV
jV (U) of MV by jV(U) is closed, inside MV , under jV(µ)−sequences

of its elements. In particular, {i(Z∼
′
α) | α < jV(µ)} ∈M .

We have σ = i ◦ jV : V →M .

It extends in the generic extension to σ∗ : V [G]→M [G∗], as in 3.1.

By elementarity, σ∗(F ) is a σ(λ) > jV(µ) complete filter. Also, Z ′′α := (i(Z∼
′
α))G∗ ∈ σ∗(F ),

for every α < jV(µ).

Hence, there is some η ∈
⋂
α<jV (µ)

Z ′′α.

Now we can define a desired extension F ∗ of F be setting

Z ∈ F ∗ ⇔ η ∈ σ∗(Z).

�

It is possible to modify the construction a bit in order to insure that λ is the least cardinal

which satisfies (3), i.e. every λ−complete filter can be extended to a σ−complete ultrafilter.

We just follow Y. Kimchi and M. Magidor [12] and add non-reflecting stationary subsets of

{α ∈ (γ, γ+) | cof(α) = ω},

for cofinally many γ < λ preserving supercompactness of λ.

The next result is similar, only 3.8 is used instead of 3.1.

Theorem 3.10 Assume GCH. Let λ be a supercompact cardinal and κ < λ be a measurable.

Assume that κ is a limit of measurable cardinals. Then there is a cofinality preserving generic

extension which satisfies the following:
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1. GCH,

2. λ is not measurable,

3. every λ−complete filter can be extended to a κ−complete ultrafilter,

4. for every δ < κ there is δ′, δ ≤ δ′ < κ such that every λ−complete filter can be extended

to a δ′−complete ultrafilter.

Again, using Y. Kimchi and M. Magidor [12] it is possible to insure that λ is the least

such that every λ−complete filter can be extended to a σ−complete ultrafilter.

4 σ−complete ultrafilters over singular cardinals.

Let κ be a measurable cardinal.

Note that if λ > κ is a singular cardinal of cofinality κ, then it is easy to define a

κ−complete ultrafilter over λ.

Namely, let 〈λα | α < κ〉 be a cofinal in λ sequence and let V be a κ−complete ultrafilter

over κ.

Set X ⊆ λ to be in U iff {α < κ | λα ∈ X} ∈ V .
Clearly, such U is not uniform on λ, but rather concentrates on a set of cardinality κ and it

is is a copy of V to this set.

It is not hard to get a uniform ultrafilter.

Proposition 4.1 Let κ be a measurable cardinal and λ > κ a singular cardinal of cofinality

κ. Suppose that λ is a limit of measurable cardinals. Then there exists a uniform κ−complete

ultrafilter over λ.

Proof. Fix a cofinal in λ sequence 〈λα | α < κ〉 whose members are measurable cardinals.

Let V be a κ−complete ultrafilter over κ and Vα be a λα−complete ultrafilter over λα, for

every α < κ. Define U over λ as follows:

X ∈ U iff {α < κ | X ∩ λα ∈ Vα} ∈ V .

It is easy to see that U is as desired.

�

The following is easy:
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Proposition 4.2 Suppose that U is a κ−complete weakly normal ultrafilter over a cardinal

λ of cofinality κ.

Then U concentrates on a set of cardinality κ. In particular, U is not uniform unless κ = λ.

Proof. By weak normality [id]U = sup(jU
′′λ).

Let 〈λα | α < κ〉 be an increasing continuous cofinal in λ sequence. Then in MU ,

sup({jU(λα) | α < κ}) = sup(jU
′′λ) = [id]U .

So, [id]U ∈ jU({λα | α < κ}), since the image of a closed set is a closed set.

�

Proposition 4.3 Assume that κ is a measurable cardinal and λ > κ with o(λ) = κ.

Then there is a cardinal preserving forcing extension such that cof(λ) = κ and there is

a κ−complete uniform ultrafilter over λ which extends

a normal ultrafilter U over λ in V . In addition, U extends to a κ−complete ultrafilter over

λ which concentrates on a set of cardinality κ.

Proof. We will use the Magidor forcing and the idea similar to Bagaria-Magidor [2].

Assume GCH for simplicity. Let V be a normal ultrafilter over κ,
~U = 〈U(λ, α) | α < κ〉 be a coherent sequence of normal measures over λ. We refer, for

example, to [6] for the relevant definitions.

We would like to change the cofinality of λ to κ using the Magidor forcing M~U .

Apply first V . Let

i := jV : V →MV = Ult(V,V).

Let i(~U) = 〈U ′(λ, α) | α < i(κ)〉. Then, U ′(λ, α) = U(λ, α) ∩MV , for every α < κ.

Now, in MV , each U ′(λ, α), α < i(κ), is a normal ultrafilter. In particular, U ′(λ, κ) is

such. So, if C is a closed unbounded subset of λ in V , then i(C) is such in MV , and so,

i(C) ∈ U ′(λ, κ).

Still in MV , we apply U ′(λ, κ):

jMVU ′(λ,κ) : MV →MMV
U ′(λ,κ).

Denote U ′(λ, κ) by U1, jMVU ′(λ,κ) by j1, M
MV
U ′(λ,κ) by M1 and j1(λ) by λ1. Clearly, crit(j1) = λ,

and so, λ < λ1. Also, λ ∈ j1(i(C)) ∈ j1(U1).
Consider j2 := jM1

j1(U ′(λ,0)) : M1 →M2 := MM1

j1(U ′(λ,0)).

Denote j2(λ1) by λ2.
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Then, for every X ⊆ λ,

X ∈ U(λ, 0)⇔ i(X) ∈ U ′(λ, 0)⇔ j1(i(X)) ∈ j1(U ′(λ, 0))⇔ λ1 ∈ j2(j1(i(X))).

Denote j2 ◦ j1 ◦ i by σ. Then σ(λ) = λ2 and o(λ2) = i(κ) in M2.

Force now with M~U . Let G be a generic.

Note that (identifing G with the Magidor sequence which it generates)

it will be M~U�(λ,κ)−generic over MV .

Define U over λ in V [G] as follows:

X ∈ U iff, in M2, there is p ∈ σ(M~U�(λ,κ)) = Mσ(~U)�(jU (λ),i(κ)) such that

p � λ+ 1 ∈ G, p \ λ+ 1 ≥∗ 〈λ2, λ2 \ λ1 + 1〉 and p  (λ1 ∈ σ(X∼)).

The requirement p \ λ+ 1 ≥∗ 〈λ2, λ2 \ λ1 + 1〉 insures that the first element of the Magidor

sequence in which is above λ will be above λ1, as well. This will be used for a uniformity

argument.

Then, U is a κ−complete ultrafilter which extends the normal ultrafilter U(λ, 0)

over λ in V .

It is possible to argue that jU � V is further iteration of σ starting with λ2 and using the

measures of the coherent sequence on it. The critical points of these embeddings will generate

the Magidor sequence over the image of M2.

Let us argue now that U is uniform.

Lemma 4.4 U is a uniform ultrafilter over λ in V [G].

Proof. Suppose otherwise. Then there is a set Z ⊆ λ of cardinality less than λ inside U . Let

|Z| = δ < λ.

It follows that in MU ,|jU(Z)| = jU(δ) < jU(λ), but jU � λ = i � λ, and so, in MU ,|jU(Z)| =
jU(δ) = i(δ) < λ.

Now, λ1 is a regular cardinal in MU . Hence, jU(Z) ∩ λ1 is bounded in λ1. Pick some bound

ξ < λ1.

Then ξ = jU(h)(κ, λ), for some h : κ × λ → λ, h ∈ V . Without loss of generality, we can

assume that h : λ → λ, since otherwise ξ can be replaced by a bigger ordinal which is still

below λ1 but is represented by such a function.

Now, in V [G], define a function g : λ→ λ as follows:

g(ν) = min(Z \ h(ν)).
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Then, jU(g)(λ) = λ1.

Note that λ is the κ−th element of the Magidor sequence for jU(λ) in MU .

Denote the Magidor sequence of G by 〈λν | ν < κ〉.
We are interested in 〈g(λν) | ν < κ〉.
Note that in MU , the κ+ 1−th element of the Magidor sequence for jU(λ) is already above

λ1. So, g(λν) < λν+1, for every ν < κ.

Using standard arguments on Magidor forcing, it is possible to find f : λ → λ, f ∈ V such

that f(λν) ≥ g(λν), for every ν < κ.

Then, in MU , jU(f)(λ) ≥ jU(g)(λ) = λ1.

But this is impossible, since jU � V starts with σ and σ(f)(λ) = j1(i(f)(λ)) < λ1.

�

It is not hard to find in V [G] an extension of U(λ, 0) to a κ−complete ultrafilter over λ

which concentrates on a set of cardinality κ. Just note that the set {λν+1 | ν < κ} is almost

contained in every set in U(λ, 0). We can just copy V onto this set which will produce the

desired extension.

�

It is possible to obtain a similar result with λ = κ+κ in the extension.

Proposition 4.5 Assume that κ is a measurable cardinal and λ > κ is P2(λ)−hyper-

measurable. Then in a forcing extension λ = κ+κ and there is a κ−complete uniform

ultrafilter over λ which extends a measure over λ in V .

Proof. We will use the Radin forcing with guiding generic for collapses (see for example

J. Cummings [4]) and the idea similar to Bagaria-Magidor [2]. Note that the κ−complete

ultrafilter over λ of Bagaria-Magidor [2] (with translation to the present context) is not

uniform, but rather concentrates on a set of cardinality κ, namely on the ordinals of the

Radin sequence. But we can use a different one which has an additional generator, i.e.

〈λ, µ〉. The argument for showing uniformity, repeats basically those of Lemma 4.4.

�

5 Blowing up the power of κ to λ.

We would like to construct a model with 2κ ≥ λ and with a uniform κ−complete ultrafilter

U over λ.

Note that it is easy to do so starting from a supercompact cardinal κ and blowing up
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its power preserving supercompactness. However, in such construction κ+ will not be a

continuity point of jU , i.e. jU(κ+) > sup(jU
′′κ+).

We will start from a weaker assumptions and in our model κ+ will be a continuity point of

jU .

Assume GCH. Let κ be a superstrong cardinal with a regular target, i.e. there is j :

V → M , crit(j) = κ, j(κ) is a regular cardinal in V and M ⊇ Vj(κ). Assume that j is the

embedding by an extender.

Let λ, κ < λ < j(κ) be a measurable cardinal.

We can assume that λ = j(hλ)(κ) for some function hλ : κ→ κ, see [6] for the argument.

We would like to add λ−many Cohen functions from κ to κ. Do it as follows:

define the Easton support iteration 〈Pα, Q∼β
| α ≤ j(κ), β < j(κ)〉 where

1. P0 = ∅;

2. if β is not inaccessible or β is an inaccessible, but β is not closed under j(hλ), then let

Qβ be a trivial forcing;

3. if β is an inaccessible and β is closed under j(hλ), then let Qβ = Cohen(β, j(hλ)(β)).

Back in V , let U be a normal ultrafilter over λ. Consider, in M , its image j(U). Let

i : M → N be its ultrapower embedding. Set σ = i ◦ j.
Clearly,

X ∈ U ⇔ j(X) ∈ j(U)⇔ j(λ) ∈ σ(X).

So,

U = {X ⊆ λ | j(λ) ∈ σ(X)}.

We would like to extend the embedding σ. In order to do this, let us force Cohen subsets

to j(κ) over V Pj(κ) . Force with Cohen(j(κ), j(λ)).

Note that |j(κ)| = |j(λ)| = |j(λ+)| = |σ(λ)|, since j is the embedding by an extender. So,

we can arrange σ(λ)−Cohen functions from j(κ) to j(κ).

Note that if G ⊆ Cohen(j(κ), σ(λ))−generic over V Pj(κ) ,

G is not Cohen(j(κ), σ(λ))−generic over MPj(κ) .

Moreover, G is not a subset of Cohen(j(κ), σ(λ))M
Pj(κ)

. Namely, j′′κ+ 6∈M , but, in V ,

〈j(α), 〈0, 0〉〉 | α < κ+〉

is a legitimate condition in Cohen(j(κ), σ(λ)).

In order to overcome this, we proceed as follows. Let 〈fα | α < σ(λ)〉 be a sequence that
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is Cohen(j(κ), σ(λ))−generic over V Pj(κ) . Due to j(κ)+−c.c. of the forcing, they will be

Cohen(j(κ), σ(λ))−generic over MPj(κ) as well.

Namely,

G′ = {p ∈ Cohen(j(κ), σ(λ))M
Pj(κ) | ∀α ∈ dom(p)(p(α) ⊆ fα)}

will be Cohen(j(κ), σ(λ))−generic over MPj(κ) .

Thus, let in MPj(κ) , A be a maximal antichain in this forcing. Then |A| ≤ j(κ). So, there is

B ⊆ σ(λ) of size j(κ) (in MPj(κ)) such that

A ⊆ Cohen(j(κ), B)M
Pj(κ)

= Cohen(j(κ), B)V
Pj(κ)

.

But then 〈fα | α ∈ B〉 will generate G′ � B and G′ � B will be V Pj(κ)−generic for

Cohen(j(κ), B) and so will intersect A.

Finally, we need to change these functions a bit in order to include σ′′G(Cohen(κ, λ)) =

j′′G(Cohen(κ, λ)), where G(Cohen(κ, λ)) ⊆ Cohen(κ, λ) is generic. Note that for every set

of ordinals A of cardinality less than j(κ) in M , |A∩j′′λ| ≤ κ, since the extender producing j

is on κ. So, the usual argument of Woodin allows to make the desired change, see Cummings

[5]. The rest of the argument is standard.

Let σ∗ : V [G(Pj(κ)+1)]→ N [G∗] be the resulting extension of σ.

Define

U = {X ⊆ λ | j(λ) ∈ σ∗(X)}.

Then U ⊇ U be a weakly normal uniform κ−complete ultrafilter.

Note that jU(κ) < j(κ), since |jU(κ)| ≤ λκ = λ < j(κ).

So only a part of the embedding σ∗ is actually used.

Note that all regular cardinals in the interval (κ, λ) are continuity points of σ∗ and jU .

Menachem Magidor (unpublished) gave an other very elegant construction of a uniform

ultrafilter with this property. He started with a supercompact cardinal and used intersection

of dense open sets for Cohen forcing to generate the desired ultrafilter.

If we use a (κ, λ+)−extender E instead of (κ, j(κ))−extender, then the only missing

element will be a generic for Cohen(jE(κ), jE(λ)) over ME. H. Woodin used originally the

forcing Cohen(κ+, λ+) over V in order to produce the desired generic. Recently Yoav Ben

Shalom [3] showed that this additional Cohen forcing is unneeded, if we would like to blow

up the power of κ below κ+κ. It is unclear whether this is true in general, and, in particular

in the case that we consider (i.e. blowing up the power of κ to a measurable λ).

However, if κ is λ+−supercompact, then, using the standard methods, it is possible to blow

up the power of κ to λ (or to λ+). Moreover, if W is a normal measure over Pκ(λ+), then

the corresponding embedding jW : V →MW ' Pκ(λ
+)V/W extends in the generic extension
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to j∗W : V [G] → M [G∗] (as well as W to W ∗ which gives the embedding). The only forcing

performed at cardinals ≥ κ is Cohen(κ, λ). Now, let us derive a (κ, λ+)−extender E∗

(actually it is equivalent to a measure over κ) from j∗W :

X ∈ E∗a ⇔ a ∈ j∗W (X),

for every finite a ⊆ λ+ and X ⊆ [κ]|a|. Then E∗ is a natural extension of a (κ, λ+)−extender

E (now not equivalent to a measure over κ) from jW in the same fashion.

Now the ultrapower ME∗ by E∗ need not be in general a generic extension of the correspond-

ing ultrapower ME by E. It depends on particular MW−generics for Cohen(jW (κ), jW (λ)).

However, it is possible always to find E∗ which is (κ, τ)−extender for some τ of cardinality

λ+ which restriction E to V will be like this. For example pick an elementary submodel Y

of large enough portion of MW of cardinality jW (λ+) such that Y [G∗] is elementary in the

extension MW [G∗]. Then the transitive collapse of Y ∩ jW (κ) will generate such E∗ and E.

This means, in particular, that we have ME−generic subsets of the missing Cohen part

Cohen(jE(κ), jE(λ)).

We will explore this idea further in the next section.

6 On a question of J. Hamkins.

In [10], J. Hamkins introduced the following large cardinal:

Definition 6.1 A cardinal κ is called strongly tall iff for every δ > κ there is a uniform

κ−complete ultrafilter U such that jU(κ) > δ.

Clearly, if κ is strongly compact then it is strongly tall. Hamkins [10] asked if the opposite

is true as well.

In [1], a negative answer was claimed, however G. Goldberg found a gap in the argument.8

Goldberg proved several very nice results in the opposite direction. Thus for example he

showed that under GCH strong tallness implies strong compactness.

The next proposition shows that still - the answer to the question is negative.

Proposition 6.2 Assume GCH and let κ < λ be supercompact cardinals. Then there is a

cofinality preserving extension in which the following hold:

1. κ is strongly tall, but not strongly compact,

8The mistake is due solely to the second author.
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2. 2κ = λ,

3. every λ−complete filter extends to a κ−complete ultrafilter.

Proof. The argument will be similar to the one of the previous section, only instead of a

single normal ultrafilter over λ we will use normal ultrafilters over Pλ(µ) for µ’s above λ.

We force the iteration similar the one of the previous section:

the Easton support iteration

〈Pα, Q∼β
| α ≤ κ+ 1, β ≤ κ〉,

where for every β < κ, Q
∼β

is trivial unless β is a strongly inaccessible in V Pβ ,

and if β is a strongly inaccessible in V Pβ , then we first force an ordinal β̄ < κ with an atomic

forcing and then force with the Cohen forcing Cohen(β, β̄) to add β̄−many Cohen subsets

to β.

Finally, over κ, Q
∼κ

= Cohen(κ, λ).

Back in V , let µ ≥ λ be a regular. Pick a normal ultrafilter U over Pλ(µ).

Let V be a normal ultrafilter over Pκ(µ+). Proceed as in the previous section with j = jV

and i = jMVj(U).

Now, as it was explained at the end of the previous section, by supercompactness of κ we

will have an appropriate generic for Cohen(j(κ), j(µ+)).

This allows to define a uniform κ−complete ultrafilter U(µ) over µ, namely, it will extend

the one in V generated by sup(jU
′′µ), i.e. {X ⊆ µ | sup(jU

′′µ) ∈ jU(X)}.
In order to destroy the strong compactness κ we just add in addition a non-reflecting

stationary subset to κ+ of some fixed cofinality below κ. Do this as a product and not an

iteration, i.e. over V Pκ we force with Cohen(κ, λ)× R, where R denotes the forcing adding

such a set.

Let us argue that in the final model every λ−complete filter extends to a κ−complete

ultrafilter.

Suppose that F is such a filter on an ordinal and let µ be a regular large enough such that

|F | ≤ µ. Let F = {Zα | α < µ}. Pick names F∼ and Z∼α’s for F and Zα’s. Assume that the

weakest condition already forces all of this.

Work in V . Let V ,U , i be as above.

Then jV(F∼) is forced to consist of jV({Zα | α < µ}).
Set jV({Zα | α < µ}) = {Z∼

′
α | α < jV(µ)}.

The ultrapower M := MMV
jV (U) of MV by jV(U) is closed, inside MV , under jV(µ)−sequences
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of its elements. In particular, {i(Z∼
′
α) | α < jV(µ)} ∈M .

We have σ = i ◦ jV : V →M .

It extends in the generic extension to σ∗ : V [G] → M [G∗], where G is a generic subset of

Pκ ∗ (Cohen(κ, λ)×R).

By elementarity, σ∗(F ) is σ(λ) > jV(µ) complete filter. Also, Z ′′α := (i(Z∼)′α)G∗ ∈ σ∗(F ), for

every α < jV(µ).

Hence, there is some η ∈
⋂
α<jV (µ)

Z ′′α.

Now we can define a desired extension F ∗ of F be setting

Z ∈ F ∗ ⇔ η ∈ σ∗(Z).

Claim 1 κ is strongly tall in the generic extension.

Proof. Let µ > λ be a cardinal of countable cofinality.

Let F be a λ−complete uniform ultrafilter over µ+ in V with jF (λ) > µ,

say F = {X ⊆ µ+ | sup(jU
′′µ+) ∈ jU(X)}, where U is a normal ultrafilter over Pλ(µ+).

Then, F is still a λ−complete filter in V [G], since the forcing used has λ−c.c. and so every

A ⊆ F, |A| < λ can be covered by some B ∈ V, |B| < λ.

Let F ∗ ⊇ F be a κ−complete ultrafilter.

Note that κ ≤ crit(jF ∗) ≤ λ is a measurable cardinal and 2κ = λ, hence crit(jF ∗) = κ.

In V , jF (λ) > µ. So there are jF (λ)−many functions from µ+ to λ increasing mod F . We

have F ∗ ⊇ F , hence they will be such mod F ∗. In particular, jF ∗(λ) > µ. In V [G], 2κ = λ,

so by elementarity, in MF ∗ , 2jF∗ (κ) = jF ∗(λ) > µ.

Recall that we have GCH above λ in V [G]. Hence, jF ∗(κ) > µ.

� of the claim.

�

7 An example of a not (κ, κ+)−regular uniform

κ−complete ultrafilter over κ+.

In [11], J. Ketonen proved many interesting results concerning regularity of σ−complete

ultrafilters. The existence of a not (κ, κ+)−regular9 uniform κ−complete ultrafilter over κ+

remained open, at least to the best of our knowledge.

The example below shows that it is possible to have such ultrafilters.

9An ultrafilter U is called (κ, λ) regular iff there is subset of U of cardinality λ such that any κ−members
of it have empty intersection.
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Proposition 7.1 Suppose that κ is a huge cardinal. Then there is an extension with a

κ−complete uniform weakly normal ultrafilter U over κ+ such that

{ν < κ+ | cof(ν) = κ} ∈ U .

In particular, by Ketonen, [11], U is not (κ, κ+)−regular.

Proof. Assume GCH and let V be a normal ultrafilter over Pκ(κ1)10 witnessing hugeness of

κ, with jV(κ) = κ1.

Let us use the almost huge part of the embedding. Namely, for every λ < κ1, set

Wλ = {X ⊆ Pκ(λ) | jV ′′λ ∈ jV(X)}.

Let j : V →M be the corresponding direct limit embedding of the system 〈Wλ | λ < κ1〉.
Note that the following hold:

1. j(κ) = κ1,

2. j � κ1 = jV � κ1,

3. κ1>M ⊆M ,

4. j′′κ1 6∈M ,

5. j(κ1) = sup(jV
′′κ1),

6. |κ2| = κ1, where κ2 = j(κ1),

7. j(κ+1 ) =
⋃
j′′κ+1 = κ+1 .

By the elementarity of j, κ1 is a huge cardinal with the target κ2 in M , as witnessed by

j(V).

Form an ultrapower N of M using j(V). Let i : M → N be the corresponding embedding.

Then i(κ1) = κ2,
κ2N ∩M ⊆ N , δ2 := sup(i′′κ2) < κ3 := i(κ2). So, κ1>N ⊆ N . In addition

note that in M , |κ3| = κ+2 , and so, in V , κ+1 = j(κ+1 ) = (κ+2 )M < κ3 < κ++
1 .

Set σ = i ◦ j. Then σ : V → N , σ(κ) = κ2, σ(κ1) = κ3.

N |= cof(δ2) = κ2 = σ(κ).

Also, if ξ < δ2, then there is ξ′ < κ2 such that ξ < i(ξ′). But κ2 = sup(j′′κ1), hence there is

ζ < κ1 such that ξ′ < j(ζ), and so,

ξ < i(ξ′) < i(j(ζ)) = σ(ζ), which means that σ′′κ1 is unbounded in δ2.

10Pκ(λ) = {X ⊆ λ | otp(X) = κ}.
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Consider now

U = {Z ⊆ κ1 | δ2 ∈ σ(Z)}.

It is a uniform, weakly normal, κ−complete ultrafilter over κ1 and {ν < κ1 | cof(ν) = κ} ∈ U .

We would like now to force in order to turn κ1 into κ+.

Do this as follows.

Define by induction the Easton support iteration 〈Pα, Q∼β
| α ≤ κ, β < κ〉 Suppose that

α < κ and Pα is defined. Define Qα. Let Qα be trivial unless α is a strongly inaccessible in

V Pα .

Suppose that α is a strongly inaccessible in V Pα . Then choose (force with an atomic forcing)

an inaccessible cardinal ᾱ, α < ᾱ < κ and set Qα = Col(α,< ᾱ).

In V Pκ , we force finally with Col(κ,< κ1).

Let Gκ ∗H be a generic subset of Pκ ∗ Col(κ,< κ1).

Extend σ to σ∗ : V [Gκ ∗H]→ N∗ = N [Gκ ∗H ∗G(κ1,κ2) ∗H∗].
In order to get G(κ1,κ2) ∗H∗, we will force with (P(κ1,κ2) ∗ Col(κ2, < κ3))

N over V [Gκ ∗H].

It is a < κ1−closed forcing of cardinality κ+1 , which is equivalent to Col(κ1, κ
+
1 ).

We have, in N∗, σ∗(Col(κ1, κ
+
1 )) = Col(κ2, κ

+
2 ).

So, using a generic for Col(κ1, κ
+
1 ), we can generate an N∗−generic for Col(κ2, κ

+
2 )N

∗
.

Let R be V [Gκ∗H]−generic subset of Col(κ1, κ
+
1 ) and R∗ the corresponding to it N∗−generic

for Col(κ2, κ
+
2 )N

∗
.

Turn now to the master condition.

We need to insure that σ′′Gκ ∗H ∗ R ⊆ Gκ ∗H ∗G(κ1,κ2) ∗H∗ ∗ R∗. The problematic parts

here are H∗ and R∗. In general, it should not be the case that σ′′H ⊆ H∗ and σ′′R ⊆ R∗.

However, it is possible, using the Woodin method, see [5], to change H∗ and R∗ a bit in

order to satisfy the inclusions above.

The property used for this is that |σ′′κ1 ∩ x| < κ1, for any x ∈ N with |x|N < κ2.

Let us argue that this is true.

Suppose otherwise. Let x be a set of ordinals in N , |x|N < κ2 and |σ′′κ1 ∩ x| = κ1.

Then there is y ⊆ κ1 of cardinality κ1 such that σ′′y = σ′′κ1 ∩ x. So, σ′′y is covered by the

set x.

We have σ′′κ1 that is unbounded in δ2 and that in M (and so in N) the cofinality of δ2 is

κ2, as was shown above.

But then, also σ′′y will be unbounded in δ2, which implies that x ∩ δ2 is unbounded in δ2.

This is impossible, since x ∈ N and |x|N < κ2.
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After such changes, we will have an extension of σ:

σ∗∗ : V [Gκ ∗H ∗R]→ N∗ = N [Gκ ∗H ∗G(κ1,κ2) ∗H∗ ∗R∗].

Finally, in V [Gκ ∗H ∗R], we define an extension of U :

U∗ = {Z ⊆ κ1 | δ2 ∈ σ∗∗(Z)}.

It is a uniform, weakly normal, κ−complete ultrafilter over κ1 and

{ν < κ1 | cof(ν) = κ} ∈ U∗. However now κ1 = κ+.

�

8 A remark on the Prikry forcing.

Let U be a κ−complete uniform ultrafilter over a regular cardinal λ > κ.

In the classical paper [15], K. Prikry showed that U can be used in order to change the

cofinality of λ to ω. Conditions are of the form 〈t, T 〉, where t ∈ [λ]<ω and T ⊆ [λ]<ω is a

tree with a trunk t with splittings in U , i.e. for every s ∈ T, s ≥T t, SucT (s) ∈ U . Denote

this forcing by PU .

Let G ⊆ PU be generic.

Proposition 8.1 The following hold in V [G]:

1. κ and λ change their cofinality to ω,

2. if δ is a regular cardinal in V and singular in V [G], then cof(δ) = ω in V [G],

3. a regular in V cardinal changes its cofinality in V [G] iff

it is a discontinuity point of jU .

4. Suppose that δ, κ < δ ≤ λ is a successor cardinal of V which changes its cofinality in

V [G]. Then there is a limit cardinal µ, κ ≤ µ < δ, such that, in V [G],

(a) µ is a cardinal,

(b) cof(µ) = ω,

(c) all regular cardinals of V in the interval [µ, δ] change their cofinality to ω,

(d) cofV (µ) ≥ κ.
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Proof. (1) is clear.

(2). Suppose that δ is a regular cardinal in V and singular in V [G]. Suppose for a

moment that it has an uncountable cofinality µ < δ there. Let 〈δξ | ξ < µ〉 be a cofinal

sequence. For every ξ < µ, pick a condition 〈tξ, Aξ〉 ∈ G which decides δξ, i.e. forces that

the ξ−th element of the cofinal sequence is δξ. Then there a single t such that for µ−many

ξ’s, we have tξ = t. Denote by Y the set of all such ξ’s. Clearly, otp(Y ) = µ,
⋃
ξ∈Y δξ = δ.

But now in V , consider the set

Z = {τ | ∃ξ < µ∃A ∈ U(〈t, A〉  (τ̌ = δ∼ξ))}.

Then Z = Y , which is impossible, since Z ∈ V and δ > µ is regular in V .

(3). Let us suppose now that a regular cardinal δ is a discontinuity point of jU , i.e.

sup(jU
′′δ) < jU(δ). Set

Uδ = {X ⊆ δ | sup(jU
′′δ) ∈ jU(X)}.

Then Uδ is a uniform at least κ−complete weakly normal ultrafilter over δ. In addition it is

Rudin-Keisler below U , since any function which represents sup(jU
′′δ) in MU will project U

onto Uδ. Let πδ : λ→ δ be such a function.

Now, if 〈λn | n < ω〉 is a Prikry sequence for U , then 〈πδ(λn) | n < ω〉 will be a Prikry

sequence for Uδ.
Suppose now that some regular in V cardinal δ changes its cofinality in V [G]. Let us

argue that it must be a discontinuity point of jU .

Suppose otherwise, i.e. sup(jU
′′δ) = jU(δ).

Clearly, κ < δ < λ. By the observation above, cof(δ) = ω in V [G]. Pick a cofinal sequence

〈δn | n < ω〉.
Use a standard argument to find a condition in G which non-direct extensions of a same

length decide values for δ∼n’s. Just work in V and build inductively a tree with splittings in

U which graduately decide δ∼n’s.

Namely, we construct a tree T such that for every t ∈ T , SucT (t) ∈ U and there is an

increasing sequence 〈mn | n < ω〉 of natural numbers such that for every n < ω and

t ∈ T, |t| = mn + 1, 〈t, Tt〉|| δ∼n, where Tt = {s ∈ T | s ≥T t}.
Suppose for simplicity that mn = n, for all n < ω.

Define a function f0 : λ→ δ which prescribes values of δ∼0.

Namely, we set f0(ν) = ξ, if 〈ν〉 ∈ Lev1(T ) and 〈ν, T〈ν〉〉  ξ̌ = δ∼0.

Now, by the elementarity, jU(f0)([id]U) < jU(δ), but sup(jU
′′δ) = jU(δ), hence there will be

α0 < δ such that rng(f0) ⊆ α0 (mod(U)).
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Shrink T if necessary, and deal with the second level. Let ν1 ∈ Lev1(T ). Consider SucT (ν1).

Define fν11 : SucT (ν1)→ δ which prescribes values of δ∼1.

Namely, we set fν11(ν) = ξ, if 〈ν〉 ∈ SucT (ν1) and 〈ν1, ν, T〈ν1,ν〉〉  ξ̌ = δ∼1.

As above, there will be αν11 < δ such that rng(fν11) ⊆ αν11 (mod(U)).

Consider now the function ν1 7→ αν11. By the same argument there is α1 < δ which contains

its range (mod(U)).

But this means that α1 will bound all the decision of δ∼1 made by any choice of t ∈ T, |t| = 2.

Proceed further in the similar fashion by induction on n < ω and define such αn < δ for δ∼n.

Finally set α :=
⋃
n<ω αn. It will be below δ and will bound all δ∼n’s, which is impossible.

Contradiction. So, δ must be a discontinuity point of jU , and we are done.

Finally, let us deal with the last item (4).

So, suppose that δ, κ < δ ≤ λ is a successor cardinal of V which change a cofinality in V [G].

Then the cofinality of δ must be ω in V [G], and in particular it is not a cardinal. Let µ = |δ|
(in V [G]). Clearly, µ ≥ κ, since κ remains a cardinal.

Suppose for a moment that cofV [G](µ) 6= ω.

By S. Shelah [16], (Lemma 4.9, p.304), then (δ+)V is collapsed as well. Now, if δ = λ, then

we are done since PU satisfies λ+−c.c.

Suppose that δ < λ. Consider η = (µ+)V . Then η ≤ δ and η is collapsed, and so, changes

its cofinality. Then, by Item 2, cof(η) = ω in V [G] and by Item 3, η is a discontinuity point

of jU .

Consider the projection Uη of U to η:

Uη = {X ⊆ η | sup(jU
′′η) ∈ jU(X)}.

Then Uη is a uniform at least κ−complete weakly normal ultrafilter over η.

The Prikry forcing PUη with Uη is a subforcing of PU . Apply the argument to PUη . So both

η = (µ+)V and µ should have cofinality ω in V PUη , but the last model is contained in V [G]

and it is assumed that cofV [G](µ) 6= ω.

Contradiction.

Finally, let us argue that cofV (µ) ≥ κ. Suppose otherwise. Then cofV (µ) = ω, since no

cardinal below κ changes its cofinality.

Consider, as above, η = (µ+)V . Then η ≤ δ and η is collapsed, and so, changes its cofinality.

Hence, η is a discontinuity point of jU . Then, by Ketonen [11], 1.7, a final segment of regular

cardinals below µ consists of discontinuity points of jU , since η = (µ+)V . So, all of them

change cofinality, and hence µ is not a cardinal in V [G].11 Contradiction.

11Basically, in MU , cof(sup(j′′Uη)) < jU (µ) =
⋃
n<ω jU (µn), where 〈µn | n < ω〉 ∈ V is a cofinal in µ
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9 Moving ordinals by σ−complete uniform ultrafilters.

Answering a question of D. Fremlin, it was shown in [7] that:

if U0, U1 are κ−complete ultrafilters over a measurable cardinal κ, then |jU0(τ)| = |jU1(τ)|,
for every ordinal τ .

Let us note that this may break down for uniform ultrafilters with the same degree of

completeness and over the same cardinal.

Suppose that µ < λ < κ are measurable cardinals. Pick a µ−complete ultrafilterW over

µ, a λ−complete ultrafilter V over λ and a κ−complete ultrafilter U over κ.

Consider U ′0 =W ×V × U and U ′1 =W ×U .

Then U ′0 is a uniform µ−complete ultrafilter over µ×λ×κ and U ′1 is a uniform µ−complete

ultrafilter over µ× κ.

Let U0 be an equivalent to U ′0 ultrafilter over κ and U1 be an equivalent to U ′1

ultrafilter over κ.

Then jU1(λ) = λ, but jU1(λ) > λ+.
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