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Abstract

Our aim is to define a version of a simpler short extenders forcing preserving strong

cardinals.

The Main Preparation Forcing

In this section we will redefine the preparation forcing of [6] in order to allow eventually to

preserve strong cardinals. The definition will follow those of [6] with certain additions.

Fix two cardinals x and 6 such that x < 6 and @ is regular.

Definition 1.1 The set P’ consists of all sequences of triples.

(A7 AT CTY | T € 5)

such that

1. sis a closed set of cardinals from the interval [xT, 0) satisfying the following:

b
(c

(d) if p € s is singular, then s is unbounded in p and p* € s.

(a) |sNd |< § for each inaccessible 6 € [k, 0)
(b) kT

if p* € sand p > k™, then p € s

)
)
)
)



. For every T € s, A’ is a subset of H(6) closed under certain basic operations specified

below.

(a) |[A”| =7 and A" D 71
(b) CfT>AOT g AOT

CIf 7,7 € s and 7 < 7’ then A’ C A%
. If 7 is a limit point of s, then A" = U{AY” | pe sn7}.

. For every 7 € s, A is a set of at most 7 many elementary submodels of A" such that

(a) A’ € A and each element of A7\{A"} belongs to A"

(b) if B € A7, then 7 C B

(c) if B€ A7 then 7 € B
)

(d) if A,Be€ A and BC A, then B€ A

In particular, the above condition (d) imply that (A", C ) is well founded.
Let A € A'". We define otp,(A) to be sup{otp(C) | C C P(A) N A" and C is a chain

under the inclusion relation}.

Further, we shall list more properties of A'7. Let us now turn to C”.
. For every 7 € 5, C7 : A" — P(A!") is a function such that

(a) (Closure and maximality condition) for each A € A7, C"(A) is a closed chain
(under inclusion) of elements of P(A) N A'™ of the length otp,(A) and there is no
chain in P(A) N A" that properly includes C™(A).

In particular, this means that there are chains of the maximal length (i.e. otp,(A)
which was defined as a supremum is really maximum) and C7(A) is one of them.

(b) (Coherency condition) if B € C7(A) then C™(B) is the initial segment of C7(A)
which starts with B.

(¢) (Unboundedness condition) If otp,(A) — 1 is a limit ordinal (note that A itself is
always the last member of C7(A), hence otp,(A) is always a successor ordinal)
then C7(A)\{A} is unbounded in A, i.e. U(CT(A)\{4}) = A.

We call A in such a case a limit model and otherwise a successor one. Note
that if B € A", B & A then B € A and hence B is included in a member of
CT(AN\{A}.



(d) if A € A7 is a successor model, then ¢/(W>A C A

7. If A, B € A" then otp(A) = otp(B) iff otp,(A) = otp,(B).
Let us introduce one basic notion - A - system type.
Let Fy, F, F € A" for some € s. We say then that F,, F}, F are of a A-system
type iff
(a) F'is a successor model

(b) Fpy, Fy are its immediate predecessors (under the inclusion relation) and otp, Fy =
otp,F1 (in particular, the conclusion of (27) above holds and in particular Fp, Fy

are isomorphic over Fy N Fy)

(c) F e Cr(A™)

(d) one of Fy, Fy is in C*(F)

(e) there are Gy, G§, G1, G5, G* € CT(A"),
for 7 = min(s\p + 1) such that

(i) Go € Fy

(i) Gy € Fy

(iil) FyNFy = FyNGo=F NG,

(iv) Fy € G§, Fy € G}, F € G* and G}, G;,G* are the least under the inclusion
elements of A7 including Fy, Fy, I respectively

(v) Goe [ eGye G, e F, €Gi € F e G~

Note that 7 = p* unless it is an inaccessible.

We will say that Fy, Fy, F' are of a A-system type according to a chain X if the
conditions (a) - (e) above are satisfied, only in (e) we have CT(A°") replaced by X.

Let us call a triple Fy, I, F € A a suitable for switching iff

(a) Fy, Iy, F are of a A-system type
(b) for each 7 € sNpu, F € A’ and if A € C7(A") is the first with F' € A, then its

immediate predecessor A~ in C7(A"") is in F. Moreover, if there are Ag, A; € A"
such that the triple Ag, Ay, A is a is of a A- system type, then sup(Ag) < sup(A4;),
implies Ag € F' € A;.



Note that in the last case, i.e. if there are Ay, A; € A7 such that the triple
Ap, Ay, A'is of a A- system type and sup(Ag) < sup(A;), then it will be impossible
to have A; € F' € Aby 1.1(11). Also, by 1.1(29), we will must to have Iy, [} € A;

as well.

Let us say that Fjy, F, F' are suitable for switching according to a chain X if

the above conditions are satisfied, with C* replaced by X.
Let us state some preliminary definitions.
Definition 1.2 Suppose now that a triple Fy, Fi, F' is a suitable for switching, F' €

CH(A™), Fy € C*(F'). Define
(C(AY)p|v € 5),

the switch of
<C”(A0”)|y € s),

by F as follows:
CI/(AOZ/)F — CZI(AOV)’

for each v € s\ + 1,
CH(AM)p = (CM(AY)\C"(Fy))~C*(F),

CY(A™)p = (C"(A™)\C"(A))"C"(nr,r [A]),
for each v € s N p, where A € C”(A") is the maximal element of C*(A%) contained
in F().

Note that for v € s N pu, C*(A")p is still continuous. It is also increasing due to the

choice of Fy, Fi, F' as a suitable for switching pair and further condition 1.1(29).

Definition 1.3 Let us call
L{c"(A™)|v € s}
the central line.

Suppose now that a triple By, By, B is a suitable for switching, B € C*(A%), B, €
CH(B). Define the line 1 generated by B to be

(e (A™)plv € s}



Continue, let a triple Bj, Bf, B be a suitable for switching according to the line 1, i.e.
according to increasing parts of C'(A%") . for some p! € s, B! € CL (A%"), B} €
C“I(Bl). Define the line 2 generated by B, B!.
It will be

e (A™)pmv € s},
where

CV(AOV)BBl — CV(AOV)B,

for each v € s\p' + 1,
CM (A% g, = (C* (A™)p\C"' (B}))~C" (BY),

CY(A™)ppr = (C"(A™)B\C"(A))"C" ([ A]),
for each v € sNu!, where A € C(A%")p is the maximal element of C*(A%)p contained
in B}

Continue by induction and define line n for each n < w.

Definition 1.4 (General distance)

Let A € AY for some v € s. Define gd(A) the general distance from the central
line tobe 0if A € C7(AY). If A & C"(A%) then let gd(A) be the least n < w such that
there exist B, B%, ..., B" with C"(A")p

----------

Note that by further generation condition 1.1(17) and 1.1(31), gd(A) will always be
defined.

Let us formulate a similar to the A - system type ( but a bit weaker) notion. The only
difference will be that we replace in the clause (e) of the definition of a A - system

type CT(A") by the k -line version for some k < w.

Let Fy, Fi,F € A" for some p € s. We say then that Fy, Fy, F' are of a weak A-
system type iff [y, F, F' are of a A-system type

or the following holds:

(a) F is a successor model

(b) Fy, Fy are its immediate predecessors and otp,Fy = otp,Fy (in particular, the

conclusion of (28) above holds)



(¢c) Fo, Fy are isomorphic over Fy N Fy
(d) gd(F) is defined and equal to some k,0 < k < w.
(e) there is a sequence of models B!, ..., B¥ witnessing gd(F) = k such that
() FeCnA™)
(ii) one of Fy, F} in C*(F)
(iii) there are Go, G§, Gy, G5, G* all in CT(A)p, . B,,
for 7 = min(s\p + 1) such that
(a) Gy € Fy
(8) Gie Iy
(v) FoNFy=FNGy=FiNGy
(0) Fo € G§, Fy € G, F € G* and G, G7, G* are the least under the inclusion

elements of A7 including Fy, Fy, I respectively
(€) Goe e Gie G e FL € Gf € F e G".

Note that 7 = p* unless it is an inaccessible.

Further we shall require that a small adjustment turns a weak A-system type into a

A-system type.

Let us call F' for which there are Fy, Fy with Fy, F1, F' of a A-system type or of a weak
A-system type— a splitting point.

The next condition guarantees the uniqueness for triples as above.

. (Immediate predecessors condition)

Let F be in A for some u € s. Suppose that there are Iy, [} € A" such that Fy, [}, F’
are of a weak A-system type with F' being the largest model, then Fj, F} are unique.

Let us state now a condition that deals with extensions of a A-system type models.

. (Bigger models condition)
Let I be in C*(A%) for some u € s. Suppose that there are Fy, Fy € A% such that
Fy, F1, F are of a A-system type with F' being the largest model. Let 7 = min(s\p+1).

If F' is one of Fy, F1, F and G’ is the smallest element of C7(A"") including F” then
the following hold



10.

11.

(a) if G' is not the first element of C7(G"), then the immediate predecessor G of G’
in C7(G") belongs to F' as well as C7(G'). In particular, 7 € F'

(b) if H € C7(A%) and H D F’, for some p € s\p + 1, then H O G'.

(c) if H € CT(A%) , H D F’, for some p € s\pu+ 1 and H is the first like this in
CT(A%), then then the immediate predecessor of H in C7(A%) (if exists) is in F”

The following condition says that once we have models of a A-system type then it is

impossible to have models of smaller cardinalities in between.

(No small models condition) Let Fy, Fi, F' be as in (8) and Fy € C*(F). If for some
£ € sNpuwe have A € C*(A%) with A C F, then A € F,.

Further it will be shown that the above is true for A" replacing C* and A'¢ replacing
Ct.

(No splittings between a model and its immediate predecessor of maximal supremum)
Let Fy, Fi, F € A™ be of a weak A-system type. Suppose that sup(Fp) < sup(Fy).
Then there is no splitting points between F} and F', i.e. there is no p € s and a splitting
point B € A' with F} € B € F. But there may (and actually will be many) splitting
points B with F'~ € B € Fj.

Let I € A" be a successor model. We denote by F~ its immediate predecessor in
CH(F). Let us define now the set Pred(F).

Suppose first that there are no Fy, F} € A% N F such that Fy, [}, F are of a weak
A-system type. Assume that gd(F) is defined (actually, the generation condition (
17) will guarantee that this is always the case). Let gd(F) = k. Fix the smallest (or
simplest) sequence of models B!, ..., B¥ witnessing this. Then F, F~ € C*(A%)z

..... Bk-
Set then
Predy(F) = {F~},
Pred,1(F) = U Pred, 1,:(F),
<w
where
Pred,10(F) = Pred,(F)
and

PT’edn+17i+1 (F) = PTCdn_H,i(F) U {77'3031 [GHG S P’I“6dn,i(F), Bo, Bl, BeFnN Alp



are of a weak A — system type for some p € s\p+ 1 and G C By(G € (A™)5),
the general distance of B relatively to F' is at most ¢ with a witnessing sequence inside F

(i.e. relatively to C*(A%) g1 pgr , or in other words k — i < gd(B) < k +1)},

77777

for each n < w.

Suppose now that there are Fyy, F} € A¥NF such that Fyy, F}, F are of a weak A-system
type. Assume that sup(F)) > sup(Fyp), otherwise just switch between them.

Assume that gd(F}) is defined (actually, the generation condition ( 17) will guarantee
that this is always the case). Let gd(F}) = k. Fix the smallest (or simplest) sequence

of models B!, ..., B¥ witnessing this.

Set
P?“edo(F> = {Fo, Fl}
Pred,1(F) = | ] Predpi(F),
<w
where
Pred,10(F) = Pred,(F)
and

P’I“Gdn_H,H_l(F) = Predn+17,-(F) U {7TBOB1 [G”G - Predm(F), Bo, Bl, B e Fl N Alp

are of a weak A — system type for some p € s\p+ 1 and G C By(G € (A'*)P0),

the general distance of B relatively to Fj is at most ¢ with a witnessing sequence inside F}

(i.e. relatively to C*(A")g1 gk , or in other words k —i < gd(B) <k +1i)},

.....

for each n < w.

We required in (11) that in this case there is no splittings between F} and F, i.e. there
is no splitting point B with F; € B € F. But there may (and actually will be many)
splitting points B with Fy € B € Fy. Also we require in (15) that F'~ is in Pred,(F)

for some n < w.

Consider now an additional possibility that was not allowed in [6].

For some inaccessible o € s\p + 1 we have
(a) V, e F

(b) there is unique immediate predecessor F’ of F inside V,, F' € V,

8



12.

(c) either

e there is X € A"\V, which is an immediate predecessor of F' under the
inclusion and X is isomorphic over X NV, to an element of C*(F"), but not
to F' itself

or

e there is a directed (under inclusion) sequence F of the length less than p of
elements of A'\V, with limit not in A and with F being the least under
the inclusion including all of its members, such that every element of the
sequence is isomorphic over its intersection with V,, to an element of A" (F").

Moreover, C*(F") passes via an element of F intersected with V.

Let Predy(F) be the set consisting of F~ and X or the sequence F, as above. Set then
Pred, (F) = Predy(F),

for each n < w.

Intuitively this means that moving via isomorphisms not allowed in such situation.
Further we shall refer to the above case as a special models case and will call the
models involved special models. Note that here in contrast to [6] we allow A’s in A
with p & A. Specially, our interest will be in models obtained by applying elementary
embeddings j : V — M with critical point p. Thus, if B € A, u € B, then we may
need A = j”B to be in A" It is crucial to allow such models in order to preserve

strong cardinals.

Let us define in all three cases

Pred(F) = U Pred,(F).

Note also that in a special models case models in Pred(F') are not isomorphic any more.

This cases a small complication in the argument used in the Intersection Lemma of [6].

The next condition requires a kind of a weak homogeneity.

(The weak homogeneity) Let B € C?(A%) be a splitting point as witnessed by By, By,
for some p € s and let u € sNp . Suppose that for some successor model F' € C*(A%)
the triple By, By, B is as in the definition of Pred(F'). Then for each n € sNpu+ 1 we
have X € A" NP(By) iff mp,5,[X] € AN P(By).



13.

14.

15.

16.

Intuitively, this means that everything of cardinality at most p is copied by the iso-
morphism 7p, 5, from By- side to B; - side and vise verse. This condition is crucial for

preserving GCH.

The next condition describes the structure of bigger models inside a splitting.
(Bigger models over splitting points) Let Fy be as in (11) with F' € C*(A%) and p €
s\p+ 1. Suppose that B is the least element of C?(A) including F. Then B is a suc-

cessor point, moreover B~ is a successor point as well, Pred(B) = {B~}, Pred(B~) =
{(B7) "} and F € B, F, € B~. In addition, if p € F} then

(B")" e FeB €FeB.

If p € F\F) then
F,e B  €FeB.

(No splittings at limits) If p € s is a limit point of s, then no model in A can be a

splitting model.

Let F € C*(A%) be a successor model and F~ be its immediate predecessor in
CH(A%), for some p € s. Then F~ € Pred(F).

Note that this condition is relevant only when F splits, otherwise F'~ € Predy(F) by
the definition.

(No small models condition 2)

Let F be a successor point in C*(A%) and A € A% N F, for some £ € s N p. Then
there is G € Pred(F') with A € G.

Let us define the sets A;*(A) , for A€ A% and 1 <k < w.

AF(A) = U Cr (A), where
n<w

Cho(A) = C*(A)

Cron(A) = {E | IF € Cjy,, 1 (A)  E € CH(F)}

Clopii(A) ={E € A" |3F € Cl},,(A) E € Pred(F)\C*(F)

and the generalized distance of E from C*(F) is at most k}.
We define Ay*(A) similar only with

Clopiri(A)={E € AW |3F € Cf, (A) E € Pred(F)\C"(F)

10



and E, F, the immediate predecessor F'~ of F'in C*(F) are of a A- system type}.

In particular, Ag”(A) is defined using only models of cardinality .
Set AM(A) = Uy, A (A). Tt is possible to define A¥(A) also as follows:

Ar(A) = | Cl(A) . where
n<w

Co(A) = C*(A)
Ct(A)={E|3FeCt (A EcC'F)}
Ol (A)={E € A" |3F € CL(A) E € Pred(F)\C*(F)}.

The next condition describes the way in which elements of A are generated.

17. (Generation condition)
Let u € s. Then A" = AW (A%).
Set also A" = A (A%) and C}' = CY'(A%) for each k < w.

This condition implies that we can reconstruct everything just from the top models
(i.e. A%’s), C¢(A%)’s and the splitting points over C*(A%)’s.

The next condition provides a weak form of elementarity.

18. If for some 7, € s we have A € C7(A') and B € C%(A¥) N A, then C*(B) € A,
A% (B) € A as well. Also for each E € C7(A), if there is an element of C¢(B) including
E, then the first such element is in A.

19. Let A be a set in CT(A"") and F' € C*(A%) be a member of C*(A%) including A, for
some T, jt € 8,7 < y. Then for each £ € s, 7 < £ < p implies that there is G € C¢(A%)
such that

ACGCF.

20. Let p < 7 be in s and A € CP(A”) be a successor model. Suppose B € CT(A")
is the least with A C B. Then B is a successor model. Suppose that B is not the
least element of C™(A°T). Let B~ be the immediate predecessor of B in CT(A"). If
7 € A then B~ € A. Moreover, if A is the least in C?(A%) with B~ inside then
CPANA} S B

11



21.

22.

23.

24.

25.

26.

Let p < 7 bein s and A € C?(A%) be a limit model. Suppose B € C7(A"7) is the least
with A C B. Then B is a limit model. In addition, if 7 € A, then AN (C™(B)\{B})

is cofinal in B.

Intuitively the last two conditions mean that the sequences C7(A%") and C?(A%) mix
together nicely. Note that CP(A%) is closed. Hence always, if F'N C?(A%) is not
empty, then there is a maximal A € C?(A%) which is a subset of F.

(Least model including a successor one must be a successor model) Let p < 7 be in s,
A € C?P(A%) be a successor model and B € CT(A"") be the least with A C B. Then

B must be a successor model and A € B.

(Local maximal models) Let p < 7 be in s, A € C?(A%) be a successor model, T € A
and B € C™(A") be the least with A C B. Suppose that B is not the least element
of CT(A"). Let B~ be the immediate predecessor of B in CT(A%). Then for every
X € AN A" we have X € A" (B™).

This means that B~ is a local (relatively to A) version of A"7.
The next three conditions provide a kind of linearity over the central line.
Let p < p <7 bein s and A € CP(A%). Suppose that F,G are the least elements of

CH(A%) and CT(A") respectively including A. Then G includes F and it is the least
such element of C™(A"7).

Let p<pu<thbeins, FeCT(A"), F; € C*(A%) be the maximal element of C*(A%)
contained in F (if exists) and Fy be the maximal element of C?(A%) contained in Fy,

if exists. Then, if F}, Fy exist, then F, is the maximal element of C?(A%) contained in
F.

(Continuity at limit points) Suppose that p is a limit point of s. Let (F,, | v < §) be
an increasing enumeration of C?(A%). For each o < 6 and £ € s p let Fy, be the

largest element of C¢(A%) included in F,

o, if it exists.

Then for each o < ¢ the following hold

(a) Fg, exists for all but boundedly many £ € pN's

(b) the sequence
(Fea | € € pN s, F, exists)

is increasing continuous with limit F),,

12



27.

28.

29.

(Isomorphism condition) If A, B,C are of a A-system type for some A € C™(C),C €
CT(A") then the structures

(A, <,€,C, K, 7,C7(A), AT (A), fa, (AN A|pes\T),(CP T AY N A|pes\T))
and

(B,<,€,C k,7,C7(B), A" (B), fz, (A"NB|p € s\7), (C°1A*NB|pes\7))
are isomorphic over ANB, where f4 : 7 < A, fg : 7 <> B are some fixed in advance

enumerations (for example, least such is the well-ordering <).

Let m4p denotes the unique isomorphism. Note that, in particular, AN7t = BNt

since both are ordinals and, so m4p is the isomorphism between them.

Let us state a similar condition. The main difference will be that (C? | AN A |p €
s\7) will not be mentioned. The reason is that the switching, which will be defined
later, may change C”’s which are in one of the models without effecting an other model

at all (unless 77 = 0, for example in Gap 4 case). For 7 with 77 = 6 (27) suffice.

(General Isomorphism Condition ) If A, B € A'™ and otp,(A) = otp,(B) (equivalently,
by (7) otp(A) = otp(B)) then the structures

(A, <,€,C K, 7,C7(A), A (A), fa, (AN A|pes\t),C" | AN A)
and
(B,<,€,C k,7,C7(B),A"(B), fg, (A*NB|p € s\1),C" A NB|)
are isomorphic where f, : 7 < A, fg : 7 <+ B are some fixed in advance enumerations

(for example, least such is the well-ordering <).

The next condition is weak version of elementarity.

(Weak elementarity condition)

Let 7,u € s, A€ A'™ and B € A", If B € A, then A"(B) and C*(B) are in A. In
addition, if x € A and for some C' € C*(B) we have € C, then the first member of
C*(B) with this property is in A. Also require that if B € A, then the function fp as
in (27) isin A. If B’ € A and otp(B) = otp(B’) then the isomorphism 7wpp is in A as

well.

13



30.

31.

Let define now one more basic notion and then use it to state the requirement on a

weak A-system type.

Let By, By, B with B € C?(A%), By € C?(B) be a suitable for switching triple, for
some p € s. We define the switch by B or sw(B) of the functions C™,7 € sNp+ 1
as follows: C%(B) = C?(B;) U{B} and for each E € C?(A%)\C?(B) let C%(E) =
(COENCP(B)) U CH(B).

Let now 7 € s N p. Pick the first element A of C'"(A%") with B € A. Its immediate
predecessor A~ in C™(A") is in B, by our assumption. Then A~ C By. Leave C7(A™)
unchanged as well all its initial segments. Set CL(A%(q)) = (CT(A")\C™(A7)) U
TBys, [CT(A7)]. In order to obtain the full function C} we just move the defined
already portions via isomorphisms of the models in A!".

Remember that B € A, hence mp,p,[A~] remains inside Pred(A).

Note that the above definition extends the definition 1.2, where we dealt only with
CT(AOT)‘

We define now sw(BY, ..., B") by induction to be the result of the application of B™ to
sw(B°, ..., B" ).

Note that the application of a same B twice leaves the functions C™ unchanged, i.e
CLp=0C".

Let us require the following:

Suppose that Fy, Fy, F € A" are of a weak A -system type with sup(Fy) > sup(Fp),
for some ;1 € s. Then there are BY, ..., B" with each B’ either in I} or F' € B, such
that sw(B°, ..., B") turns Fy, F, F € A" into a A -system type triple with all the

relevant conditions above satisfied according to the new C"’s, i.e. CLo  pa's.

-----

O of the definition.

14



Lemma 1.5 For each i € s and A € A" which is not a special model there is C € C*(A%)
with otp(A) = otp(C).

Proof. We prove the statement by induction. Let n be the least with A € C¥. If n = 0 then
take C' = A.

If n > 0 is even, then there is B € C!_| with A € C*(B). By induction, then there
is D € CH(A%) of the order type equal to otp(B). Now use 1.1(7) for B and D. Let
A’ = mpp[A]. Then A’ € C*(D) which is an initial segment of C*(A%). So we are done.

If n is odd then there is F' € C¥_, with A € Pred(F)\C*(F). Now, if F is not a splitting
a point, then otp(F~) = otp(A), where F'~ is the immediate predecessor of F'in C*(F'). Now
we apply the induction to F' and use 1.1(28).

If F is a splitting point, then let Fy € C*(F'), F; be witnessing this. Again, otp(A) =
otp(Fp) and we can apply the induction to F' and use 1.1(28).

O

This lemma together with 1.1(28) allow to transfer the conditions of 1.1 stated for ele-
ments of C*(A%) to those of A™. Thus for example the following general version of 1.1(23)
holds:

Lemma 1.6 Let p < 7 be in s, A € A be a successor model. Suppose that AN AT # ()
Then there is E € AN A7 such that for every X € AN A7 we have X € A (E).

Proof. Using 1.5 find A’ € C?(A%) of the same order type as those of A. By 1.1(23), there
is the maximal element E’ of A’ N A'7. Then we can use 1.1(28) to move it to A, i.e. set
E = maa[F.

UJ

Notation 1 Denote further the maximal model of AN A'" by (A°)4.

Lemma 1.7 Let A be as in the lemma 1.6. Suppose that A (A)N(A)A £ 0, then for each
7' € 5N [p, 7] N A the maximal model (A" )4 exists.

Proof. It follows by 1.5 and 1.1(19).
0

Lemma 1.8 Let p < 7 be in s, A € A be a successor model. Suppose that

AN U{A1T|T € s\p} £ 0.
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Then there are n < w , T, > ... > 19 in AN (s\p) and the mazimal models (A°™)4 € ... €
(A%)A such that for each T € s\p we have (A)A C (A" )4 (if defined), for some k < n.

Proof. By 1.5 and 1.1(28), it is enough to deal with A € C*(A%). Now it follows by 1.1(4,
25).
0

The next lemma follows easily from the definition of Pred.

Lemma 1.9 Let p € s,A € AY be a successor model. Then AY(A) = |J{AY(X)|X €
Pred(A)}.

Lemma 1.10 Let p < 7 be in s, A € A be a successor model. Then there are n < w,
Tw > ... > 1 in AN (s\p) and the mazimal models (A%™)4 € ... € (A°0)A such that for each
B € AY(A\{A} we have B € (A")A for some k < n.

Proof. Let B be in A”(A). Then by 1.9 there is X € Pred(A) with B € A¥(X). Let n < w
, Tn > ... > 19 in AN (s\p) and the maximal models (A°)4 € ... € (A°)4 be as in 1.8.
Now, by the definition of Pred and 1.8, B € (A°™*)4 for some k < n.

0

The following is a consequence of 1.1(7), (8) and the previous lemma.

Lemma 1.11 Let F be in A™ for some u € s. Suppose that there are Fy, F; € A™ such
that Fy, F1, F are of a A-system type with F' being the largest model, then Fy, Fy are unique.

The following lemmas follow easily from the definition of A (A).

Lemma 1.12 Let u € s, F € A"¥ be a successor model with unique immediate predecessor
F~ in CY(F). Then A}'(F) = AJ'(F~) U {F}
and

A(F) = J{A¥(X)|X € Pred(F)}.

Lemma 1.13 Let pu € s, F € A" be a successor model which is a splitting point in A (F)
i.e. there are Fy, Fy € A" such that Fy, Fy, F are of a A-system type with F' being the largest
model. Then A™(F) = AY(Fy) U A" (Fy) U {F}.

Lemma 1.14 Let pu € s, F € A% be a limit model. Then A" (F) = |J{A™(D)|D € C*(F)}.

Lemma 1.15 (Identity on the common part) Suppose i € s, A, B € A(l)“ and otp(A) =
otp(B). Then map is the identity on AN B.
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Proof. Suppose that A # B. Consider the walks from A% to A and to B. Let G be the last
common model of the walks. Then it must be a splitting point. Let G, G; be its immediate
predecessors witnessing this with Gy € C*(G). So, Gy, G1, G are of a weak A-system type.
In particular mg,q, is the identity on Gy N G;. Suppose that A € A¥(Gy) and B € A" (G)).
Set By = 7g,6,[B]. If x € AN B, then x € Gy NGy and so in By. By is simpler then B
so we can apply induction to A, By. Hence, m4p, is the identity on AN By. In particular,
TaB, () = x. But x € Gy N Gy. So 7mg,q,(x) = x. Then 7p,p(x) = x, since mg,q, extends
mByB. Now

Tap(x) = Tp,5(TaB, (¥)) = Tp,B(7) = .

O

Remark 1.16 (1) Note that in the gap 4 case we have A" = A" for u = k*+. Hence, any
two elements of A of the same order type are isomorphic over their common intersection.
This breaks down for ;1 = k™ even in the gap 4 case.

(2) The argument of the lemma can be used in more general situations. Once having a
splitting point G we can replace B by mg,¢,[B]. The crucial is that 7g, ¢, is the identity on
Gy N G and this is true always for splitting points.

Definition 1.17 (The general walk between models ) Let v € s. Define a function gwk on
elements A of A" . We will call gwk(A) a general walk from A% to A . The definition is
by induction on the general distance of A from the central line, i.e. on gd(A) simultaneously
on each v € s and A € A,

(a) if gd(A) = 0 then set gwk(A) = (A)

(b) if gd(A) = n > 0, then, by 1.1(31) there are models B, ..., B" such that A €
CV(AOV)BO

gn. We pick simplest in the general walk sense models B!, ..., B® such

.....

pn Consider the triple B, B}, B" (forming a A - system type

.....

as in 1.3). Set Ay = mprpp[A]. Note that A C BY, since otherwise there will be now
need in B".  Set

gwk(A) = gwk(Ao) " gwk(B")" By~ B} " A.

Let us make now one technical definition which relates to intersections of models.
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Definition 1.18 Let ,( € s,A € A'¢ and B € A*. We say that A satisfies the inter-
section property with respect to B or shortly ip(A, B) iff either

(1) £>¢

or

(2) ¢<Cand ACB

or

3) ¢=Cand BC A

or

(4) € < (¢ AEZ B,B¢Z A and then there are A’ € AU {A} and D, € (A4 ..., D, €
(Alrm)A for some py, ..., pp € s\E + 1 such that

(a) A" = A unless £ = ¢ and otpe(A) > otpe(B).
If this is the case (i.e. otps(A) > otpe(B)), then otp(A’) = otp(B) and (4’ € (A*)4
or A’ is an image of an element of (A%)# under isomorphisms 7¢,q, for models
Go,G1 € A).

(b) ANB=ANnAND NDyN..ND,.

(c) A’ € A%
or
A" = w1 [A"NH,...0Hy), for some A” € A¥(A), H, € (A'™)A, . H, € (A")A I, J €
(A4 for some 1,11, ..., mx € s\& + 1.

Let ipb(A, B) denotes that both ip(A, B) and ip(B, A) hold.

Lemma 1.19 (General Intersection Lemma) Let £, € s,A € A% and B € A, Then
ipb(A, B).

Proof. At least one of A and B is not on the central line. Without loss of generality we can
assume that one of A, B is on the central line. Otherwise make finitely many switches that
lead to this situation. We put the model of the least cardinality between A and B on the
central line. Let A be such a model. We like to show ip(A, B).

Consider the walk from A% to B. Let Z be the last model in C¢(A%) of this walk. Then

Z must be a successor model. Let Z~ be the immediate predecessor of Z in C¢(A%) and
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Zy € Pred(Z) be the next point in the walk leading to B. If Z~, Z; are isomorphic over
Z~NZ, then we would like to use 7z, z- to move B to a simpler (according to the generalized
distance gd) model By and from ip(A, By) deduce ip(A, B). Also in general case we would
like to replace B by a simpler model. Proceed as follows. If Z—, Z;, Z are of a weak A -
system type, then denote Z; by G and let 4 be the smallest model in C¢(A%) including
A. If Z=, 7,7 are not of a weak A - system type, then let Gz € A be the last model used
to generate Z; in Pred(Z) with some p € s\(. Let F4 be the smallest model in C¢(A%)
including A.

Compare now G and Fjy.

Case 1. Fy & A'(Gp) and Gp & A'P(Fy).

Consider the last common point of the walks to Gz and to F4 from A%. Let E denotes
this point. Then it must be a successor point.

Subcase 1.1. F does not have immediate predecessors of a weak A - system type or it
does but at least one of F4, Gz is not in A of them.

Suppose that Fj is such. Then there are n € s\p + 1 and a model Hy € A with
immediate predecessors H 49, Ha1 of a weak A - system type such that F4 is on the H x4
- side. Pick the smallest model Kp in the moved (according the way of moving to (or
generating) Gg) C"(A") with G inside (A')Es.

Now again we compare H,4 and Kp according to the walks from A%. Note that the
models under the consideration are simpler than F4, G since they are more close to the
central (beginning) line, i.e. gd decreases. So we can reduce the situation (either induction or
finitely many applications of the process used above) to the negation of the present subcase.

Subcase 1.2. FE has immediate predecessors Ey, 'y of a weak A - system type with
Fa € AY(Ey) and G € AV (Ey) .

By the definition of a A - system type, there will be Dy, € EyN A, D1y € E; N A such
that

EyNEy, = FEyN Dy = E1N Dy

and FEy, F; are isomorphic over Ey N E;. Let Ey be the one in C*(E).
Now we move G and B to Fy side. Set G} = 7, g, [Gp] and B® = g, g,[B]. Then

ANB=ANFsNBNGg=ANFsNE,NE,NGgNB=

ANFy,NEyN Dy NGYENBY = AN BN Dy,.

Induction can be applied to A, B®, Dy, since at least B® and Dy; are simpler than B again

according to the distance from the basic central line, i.e. gd.
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Case 2. Fy € A (Gp) or Gp € AY(Fy).
Let Gp € A% (Fy).
Subcase 2.1. G € A.

Denote by G% the model used at the last step together with G5 to move (construct) B.
Then there is G € A such that G%, G, G are of a weak A - system type. Here we have
GY% € CP(G) and G € AP(Fy).

Subsubcase 2.1.1 p € A.

By minimality of Fy4, then also G € A (F"), for some F' € ANC?(F). We use here 1.1(20)
or (21). If F4 is a successor model, then F; exists, it is in A and is equal to (A%)#. Consider
the walk from F”’ to G. We assume that no models of bigger than p cardinalities are involved
here (otherwise we are back in the situation considered in Case 1) and so the walk is entirely
in A(l)p . Let F' be the last point of this walk in A and E the very next point of this walk.
Then F must be a limit point. Let

F=| {X|X e AnCP(F)\{F}}.

Suppose first that F is a splitting point with two immediate predecessors Ey, E; of a A
- system type, Fy € C?(E),G € A¥(E;). We would like to move to Fy side simplifying the
situation. By the definition of a A - system type, there will be Dy, € EyNA'S, Dy € E;NAS
such that
EoyNE,=EyN Dy = E;N Dy

and Ey, F; are isomorphic over Ey N Ey. Set G% = 7g, 5, [Gp] and B = 7y, g,[B]. Then
ANB=ANF;,NBNGg=ANFAsNENE.NB=ANFNENE NB=

ANFNE,NB=ANE,NE,NB=ANF NE,NE,NGgNB =
ANF' NDyNGYNBY=ANF N BN Dy,.

Induction can be applied to A, B°, Dy, since at least B® and Dy, are simpler than B again
according to the distance from the basic central line.

In contrast to [6], we need to consider here one more case - F is a special model. Suppose
that this is the case. Then there should be unboundedly many such models below F' in
CP(F). Just otherwise, using the weak elementarity condition (1.1(29)) we will be able to
go down further than F. Assume that we have the same o witnessing the speciality of this

models and o € A. Otherwise we deal in a similar fashion with the least a* € A above such
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Let. again
F=|J{xXIx e AnC/(F)\{F}}.

Consider now also

(HNVy|H e CP(F)\{F}).

It is clearly also increasing continuous sequence unbounded in F' NV,. For each H €
CP(F)\{F} let H" will be the first special model in C?(F) above H. Let Z € V, N H’
be the witness of speciality of H'. Then Z D H N'V,, by the definition of a special model.

Now we proceed similar to above. Let E' € V,, E witness the speciality of E. Assume that
the continuation of the walk to B goes via £’ and B sits higher enough not allowing replace
it by an isomorphic over the intersection with V, model in E. Assume first that B € C?(E").
Recall that C?(E’) goes via an element of E intersected with V,,, by the definition of a special

model. So, B contains the intersection of this element with V,,. Then
ANB=ANENB=ANFNENB=ANFNENB=

ANFNV,NENB=ANnFNV,=ANnFNV,.

Now, if B ¢ CP(E’), then we continue the walk to B and pick the last point of this
walk H € CP(E’). Assume for simplicity that H is a splitting point with two immediate
predecessors Hy € CP(H),H; of a A-system type and the walk to B goes via H;. Set
By = 7, 1, [B]. Then

ANB=ANHNB=ANnFNnV,NB=ANHNH NB =

ANFNV,NHyNH NB=ANFNDy,u N By.

It is crucial here that intersections with V,, of models on C” between £~ and F is contained
in models from C*(E").

Subsubcase 2.1.2. p ¢ A.

Let 6 = min(A N (s\p)). Let F3 be the least element of C°(A%) including A. Then by
1.1(24), F4 C F§. The walk from A% to G goes via Fy. Assume again that no models of
cardinalities above p are involved in this walk. Let F be the last model of the walk inside
CP(A%). Now, E C Fy, since the walk passes Fiy. Moreover, E € Fy, since F is the least
member of C”(A%) including A and A is on the central line as well. Let H be the least
element of C°(A%) including E. Then H C F§. By minimality of F, then also H € C°(F"),
for some I’ € AN C%(F3). We use here 1.1(20) or (21). If F¢ is a successor model, then
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(F3)~ exists, it is in A and is equal to (A%)4. Pick the smallest F € AN C°(F') with
H C F. Note that in the present case F' need not be a limit point. Thus it may be equal
to H and since ¢ is a limit point of s, H will be an increasing continuous union of models

smaller cardinalities in s. We set
F=|J{xIxeAnC"(A")nF,vesnd}.

Let E be a splitting point with two immediate predecessors FEy, F; of a A - system type,
Ey € CP(E),G € A'(E;). The case of a special model is treated similar following the lines
of 2.1.1. We would like to move to Ej side simplifying the situation. By the definition of a
A - system type, there will be Dy, € Ey N A, Dy € E; N A such that

E()ﬂEl:EoﬂD(n:ElﬂDlo

and Ey, E) are isomorphic over Fy N Ey. Set G% = 7p, g, [Gp| and B® = 7, g,[B]. Then,
using 1.1(26), we obtain

ANB=ANF,NBNGg=ANF,NENE,NB=ANFNENE, NB=

ANFNE,NB=ANE,NE,NB=ANFNE,NE,NGgNB =
ANF' NDyNGYNBY=ANF N BN Dy,.

Induction can be applied to A, B°, Dy, since at least B® and Dy, are simpler than B again
according to the distance from the basic central line.

Subcase 2.2. Gg € A.

Let G%, G be as in the previous case. Then they also are in A. Now we deal with G%
and Gp exactly as in the appropriate case of the third intersection lemma (or see below).
This allows to replace Gz (and so B) by a simpler (closer to the central line) model G% (and
B by By = mg,eo[B]).  Let us reproduce the argument of the third intersection lemma.
Denote for simplicity Gg by G and G} by Go. Let By = 7,6, B)-

Recall that Gy = fg,[p] and Gy = fg,[p], where fg, and fq, are the fixed functions from
p one to one onto Gy and G respectively. Also, they are respected by isomorphism 7g,q,
of the structures and are in A by the elementarity condition 1.1(29). Set Tj = fG_O1 [By| and
Ty = fg,|B]. Then 7gic:i[To] = T, but Ty, Ty € p and 7g,q, | p = id, since p C G{ N Gy,
Hence Ty = Ti. Note that AN B = fg,[ANT, since « € AN B iff f;!'() € A and
fal(e) e Ty iff f5l(a) € ANTY, also ANGy = fg,[AN p]. Similar, AN By = fa,[ANTy).

Now

ANB = fa,[ANTY] = mgoa, (fa,[ANTo]) =
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TGoG1 [A N Bo],

since o € fo,[ANT iff « € fg,[Th] and o € fg,[A N p] iff 7g,6,() € fe,[T0] and
Taiao(@) € fao[AN pl. iff T 6,() € fa,[To N Al = AN By.

Note only that mg,6,(a) € A iff @« € AN Gy, since g6, € A. It is crucial that
TGiGo | p = id and that Go, G1 € A implies fg,[ANp] = AN G, fe:[ANp] = AN Go.
0

The proof of the next lemma is similar to those of 1.19.

Lemma 1.20 Let A, B be sets in A" for some T € s and B C A. Then B € A'™(A).

Proof. Suppose otherwise. Without loss of generality we can assume that one of the models
A, B is on the central line. Let then E be the last common model of the walks from A°" to
A and to B (or just the last model of the walk to B in C7(A%7), if A is in the central line,
i.e. Ae C7(A")) . Then E must be a successor model. Suppose that E is a splitting point.
The non splitting case is treated similar. Let Ey, F; be the immediate predecessors of E such
that the triple Fy, E1, E is of a weak A - system type. If A € A (E,) and B € A" (E)) (or
A€ A (FE;) and B € A'(Ey)), then B C EqN E; and so mg, g, does not move B, since the
triple Ey, F1, E is of a weak A - system type. It is impossible to have now Ey € C7(E), since
then the common walk can be continued further to Ey. Let us replace A by A" = wgy g, (A4).
Then A’ D B. Applying induction, we will have B € A'"(A’). Now, moving back, B (which
does not move) will be in A7(A).

Suppose now that at least one of A, B is not in A7(E;) for i € 2. Let sup(E;) >
sup(Ep). Then there is X € Pred(E)\Predy(E) with A or B inside A (X). Consider
models Hy, H,, H € E; N A” of a weak A - system type generating X as in the definition
of Pred. If H € A, then mg,p,[B] C A. Induction applies then to A and 7y, g,[B]. Hence,
T, | B) € A(A). Then also B € A7(A).

Note that it is impossible to have in the present situation the following:
A= El,B = THyH; [E(]]

Since then Ey C A = E;. Which implies that Fy = Fj.
Suppose now that H ¢ A. Assume that B € A7 (X). The case A € A'(X) is similar. Let
F4 be the smallest model in the moved (according the way of moving to A from the central
line) CP(A%) with A inside (A'")%4. Compare Fy with H.

Case 1. Fy ¢ A (H) and H ¢ A'(Fy).
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Consider the last common point K of the walks to F)4 and to H. Proceeding as in 1.19,
we can assume that K has immediate predecessors Ky, K; of a weak A - system type with
Fy € AY(K,) and H € A”(K;). By the definition of a A - system type, there will be
Dy € KoN AC, Dyy € K; N A such that

KoﬂKlzKoﬂD()l:KlﬂDlg

and Ky, K are isomorphic over Ky N K;. Let Ky be the one in C?(K).

Now we move H and B to Ky side. Set H° = mg, r,[H] and B = 7k, ,[B]. But
B C KgN Ky, since BC AC Fy C Ky. Hence By = B. This contradicts the choice of H as
the simplest possible, since we found a simpler replacement H°.

Case 2. Fy € A (H) or H € AP(F).

Let H € A¥(F,). Assume that p € A. The case p ¢ A is similar and repeats Subsubcase
2.1.2 of 1.19. By minimality of Fy4, then also H € A (F’), for some F' € ANCP(F). We
use here 1.1(20) or (21). If Fy is a successor model, then F; exists, it is in A and is equal
to (A%)4. Consider the walk from F’ to H. We assume that no models of bigger than p
cardinalities are involved here (otherwise we are back in the situation considered in Case 1)
and so the walk is entirely in A(l)p . Let F be the last point of this walk in A and Y the very
next point of this walk. Then F' must be a limit point. Let

F=|J{xXIx e AnC/(F)\{F}}.

Y must be a splitting point with two immediate predecessors Yg, Y7 of a A - system type,
Yy € CP(Y),G € A¥(Y;). We would like to move to Yj side simplifying the situation. By
the definition of a A - system type, there will be Dy, € Yy N A, Dy € Y; N A such that

YoNY: =Yy N Dy =Y N Dy
and Yp, Y] are isomorphic over Yy NY;. Then
ANB=ANF;,NBNH=ANF,NYNY I NB=ANF NYNY,NB=
ANEFNY,NB=ANY,NYiNB=ANEFNYy,NYi;NHNDB =
ANFEFNDyNB.

Now, since B C A we must have B C D1q. So, B C Y, and we can move everything to the
Y) - side simplifying the situation.
O

The following two lemmas extend similar statements for A}". Their prove follows the
lines of 1.19.
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Lemma 1.21 Let A be a set in A for some T € s. Then the following holds: for each
p € s\ + 1 there is F € A such that

(1) ACF
(2) gd(F) < gd(A)

(3) if G € A, for some £ € s\p and G D A, then AC F CG.

Proof. Suppose that A € C7(A""), otherwise just move it to the central line by doing finitely
many switches. Pick F' to be the least model in C*(A%) including A. We claim that F is
as desired. Thus let G € A%, for some £ € s\p and G O A. Assume that F 2 G. By
1.19, we have ip(F,G) and by the definition 1.18 of ip(F, G) there will be D € F'N A with
FNDDFNG DA, for some € € s\p+ 1. Let E € C5(A%) be the least model including A.
Then £ D F, by 1.1(24),as £ > p and both models E and F are on the central line. Hence
D C E. But D D A and E was the least model of C*(A%) including A this is impossible by
1.1(20, 21, 6(a)).

0

Lemma 1.22 Let A be a set in A7 for some 7 € s. Then the following holds: if H € A€,
for some £ € s\t + 1, and H 2 A, then for each p € s,7 < p < £ there is F € A" with
ACFCH.

Proof. Pick F € A and E € A satisfying the conclusion of 1.21 with p and with &
respectively. Then, by 1.21(3) (for F'), we obtain

AcCF Cd.

But 1.21(3) for £ implies H O G. So,

and we are done.

O
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We turn now to the definition, of the order on P’.

Let us give a preliminary definition.

Definition 1.23 Let p = ((A°", A", C7) | 7 € s) € P’ and B € C*(A%) for some p € s.
Define the switching of p by B , or shortly- swt(p, B) to be ¢ = ({(A°"(q), A" (q),C"(q) |
7 € 5(q)) so that ¢ = p unless the following condition is satisfied:

(*) B is a successor point having two immediate predecessors By € C?(B) and B; such
that the triple By, By, B is suitable for switching (see 1.2) i.e.

for each 7 € sNp, B € A and if A € C7(A%) is the first with B € A, then its
immediate predecessor A~ in C7(A"") is in B. Moreover, if A is a splitting point as
witnessed by Ag, A; and sup(Ap) < sup(4;), then Ay € B € A;.

Note that in the last case, i.e. if A is a splitting point as witnessed by Ay, A; and
sup(Ap) < sup(A;), then it is impossible to have A; € B € A by 1.1(11). Also, by
1.1(29), we must have By, By € A; as well. It is not hard to construct B’s that fail
to satisfy the second part of (b). What is needed is a chain of models of the length
> 7 which splits more than 7 many times and two successive models A=, A = A" with
A~ € C7(A), and the chain inside both A~ and A. Now any splitting point of this
chain B € A which is above sup(A~ N p) will do the job.

If (*) holds then ¢ will be obtained from p by switching By and By. Thus s(q) = s,
A" (q) = A% A (q) = A' for each T € s, C'7(q) = C'" for every T € s\p+1. Only C"(q)’s
for 7 € sMN p+ 1 may be different.

Let C*(q)(B) = CP(B;) U {B} and for each E € CP(A%)\C?(B) let C*(q)(F) =
(CP(E)\C¥(B)) U C*(q)(B).

Let now 7 € s N p. Pick the first element A of C'" (A7) with B € A. Tts immediate
predecessor A~ in C7(A%7) is in B, by (b). Then A~ C By. Leave CT(A™) unchanged as well
all its initial segments. Set C™(q)(A% (q)) = (CT(A")\C7(A7)) U mp,5,[CT(A7)]. In order
to obtain the full function C7(q) we just move the defined already portions via isomorphisms
of the models in A'”. Remember that B € A, hence 7g,p,[A~] remains inside Pred(A).

It is not hard to see that such defined ¢ is in P’.

Note that in particular, C7(¢)(A~) = C7(A™). Also, if A is a splitting point as witnessed
by Ag, A1 and sup(Ay) < sup(A;), then, as it was pointed above, we have Ay € B € A,
by 1.1(11) and so, by 1.1(29), By, By € A; as well. Now, suppose that Ay € C™(A). Then
Ay = A” and, so C7(Ap) does not change. Then also C™(A;) does not change, since the
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models Ay, A; are isomorphic. Note that in this situation (Ag, C*(q) | AN Ag) = (Ay,C? |
A N Ap) is not isomorphic to (A, C*(q) | A¥ N Ay), since By and B; switched and both

are in Aj.

O of Definition 1.23.

Remark 1.24 (1) It is problematic to deal here only with models for which being of
the same order type implies isomorphism over a common part. The switches that
preserve this condition are not suffice. Thus Strategic Closure and Chain Condition
Lemmas below break down. Let us illustrate this in the gap 4 case. Suppose that
we have p € P’ of the following form: (A% (p), A" (p) = {A%" (p), A},C* (p) =
{A" (p), A}, A% (p), A (p) = {A™ (p), G, Go, G1}, € (p) = {A™" " (p), G, Go}, ...,
with Go, G1, G of a A-system type and Gy, G1, G € A%" (p), A € Gy. Then swt(p,G) €
P'. Let A" = mg,q, [A]. But suppose that we like (in order to show x***-c.c. of P_ ,)
to combine p with a similar condition ¢ but with A% (¢) € Gy and A% (q) Q_‘_Gl.
Let r be such combination. Now if we need to preform the switch of G in order to
show the strategic closure (for example, if we need to replace A by A’) , then there is
a problem. Thus swt(r,G) & P', since 7, [A”" (¢)] will have the same order type
as those of A% (p) but will not be isomorphic to it by the isomorphism which is the

identity on the common part.

(2) Note that Chain Conditions Lemmas require switchings with models satisfying the
condition (x) of 1.23.

Note that swt(swt(p, B), B) = p, where swt of swt(p, B) is defined as above in 1.23.
We define also swt(p, By, ..., B,). Just use an induction on the length of the finite
sequence of models By, ..., B,. Thus, if r = swt(p, By, . .., By,) is defined then set

swt(p, Bo, - - ., B, Bmy1) = swt(r, Byy1) -

Definition 1.25 Let p,r € P’. Then p > r iff there are By,...,B, such that ¢ =
swt(p, By, . .., By) is defined and the following holds:

(1) s(q) 2 s(r)
(2) for every T € s(r)
(a) A'(q) 2 A'(r)
(b) C7(q) [ A (r) = C7(r)
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(c) A”(r) € C™(q)(A" (q))
(e) for each A € A (r) we have A'7(r)(A) = A (q)(A).

This means that no changes can be made inside models that were already chosen.
Remark 1.26 (1) Note that if ¢t = swt(p, By, ..., By), then ¢ > p and
p = swt(swt(p, Bo, ..., Bn), Bn, Bn_1,...,By) = swt(t, By, ..., By) > t.

Hence the switching produces equivalent conditions.

(2) We need to allow swt(p, B) for the A-system argument. Since in this argument two
conditions are combined into one and so C° should pick one of them only.

(3) The use of finite sequences By, . .., B, is needed in order to insure transitivity of the
order < on P'.
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Let us start with a lemma that provides a simple way to extend conditions.

Lemma 1.27 (Eztension Lemma)
Let p = ((A%, AY . C") | v € s) € P'. Suppose that (B(v) | v € s) is an increasing

continuous sequence such that
(a) [B(v)|=v
(b) B(v) 2v
(c) /"> B(v) € B(v)
(d) B(v) < H(6)
(e) p € B(k")

Then the extension p~(B(v) | v € s), defined in the obvious fashion, is in P’ and is
stronger than p, where for v € s we just replace A% by B(v), add B(v) to AY and extend
C” by adding B(v).

Proof. All the conditions of 1.1 hold easily here. Also 1.25 is trivially satisfied.
O

The next lemma is needed (or is nontrivial) only if there are more than k™ cardinals
between x and 6 or even if there are inaccessible cardinals between x and 6. If the number of
the cardinals between k and 6 is less than ™", then then the support of conditions can be
fixed. Thus we can use always s to be the set of all regular cardinals of the interval [k, 0]

and require that each model of a condition includes s.

Lemma 1.28 Let p= ((A", A C7) | 7 € s) be in P’ and p € [x,0] be a reqular cardinal.
Then there is ¢ = ((B°", BI7, D) | T € t) extending p and with p € t.

Proof. Clearly, we can assume that p € s. Let p* = min(s\p + 1). Recall that 6 is always
in support of any condition. So, p* < 6. By 1.1(1), p* should be an inaccessible. Let
P =max(sNp). If pis itself an inaccessible or if p = (p/)* , then set t = sU{p}. Otherwise
we are forced to add together with p some additional cardinals. If there are no inaccessibles
in the interval (p/, p], then set t = sU{¢ € (¢, p] | £ is a cardinal }. If there are inaccessibles
inside the interval (p/, p), but p is not an inaccessible, then let p” = sup{¢ < p | £ is an
inaccessible }. Now, if p” itself is an inaccessible (i.e. if there is maximal inaccessible below

p) then set t = sU{& € [p”,p] | & 1If p” is singular then pick a cofinal closed sequence
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(pi | 1@ < cfp”) in p” such that for each i, p; € (p/,p") and p;;1 is an inaccessible. Set then
t=sU{pilefp; > kTTU{E € [p”, p]|€ is a cardinal }.

Turn now to the definition of ¢. We concentrate on the central line. The full condition
will be obtained by mapping it using isomorphisms over splitting points. So the issue will be
to satisfy 1.1(19). Thus for each A € C7(A%), with 7 € sNp*, F € P (A%") and € € t\s
we need to add a model G such that A C G C F with |G| = £. It is enough to deal only
with A € C*'(A%'), F € C*"(A%") such that F is the least element of C*"(A%") including
A and A on the other hand is the maximal element of C*'(A%') included in F. Denote by S
the set of all such pairs (A, F'). Clearly the cardinality of S is at most p'.

By induction let us pick for each (A, F') the smallest possible increasing continuous chain
(Bulp € t\s) of elementary submodels of (F,p N F) such that

(0) A€ By

(1) Bul = s and B, 2 g

(2) “/**B, € B,

(3) if p is nonlimit then (B, | 1/ < p) € B,

(4) B+ includes models added (if any) for each pair (A', F') € § with A" € A, as well
as A’ F").

Let ¢ = ((B", BT, D7) | 7 € t) be the set obtained from p by adding the sequences
defined above to the central line and then mapping the result by isomorphisms over splitting

points.
0
Now we turn to splittings of P’.

Definition 1.29 Let 7 € (k, 6] be a cardinal. Set
Pl = {{(A%, A CP) | p € s\1) | F(AY, A, C") | v € snir) ((A%, AW, C") | p € s) € P}
Let G(PL,) be generic. Define

PL, ={{{A%, A, C") | v € s7) | ((A®, AY,CP) | p € s\7) € G(PL,)
(A%, A% 0M) | p e s) € P}
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Note that it is not immediate here that P’ splits into P+ P'__.

Let 7 be a regular cardinal. If p € P’, then p\7- the part of p above 7, is defined as

follows:
P\t = ((A%(p), A¥(p),C4(p)) | € € s(p)\7)

Similarly, define p | 7 to be the part of p consisting of its elements below 7, i.e.

p 7= {(A%(p), A%(p),C%(p)) | £ € s(p)N7)

Note that P’ is not PL, X P>, where P, = {p | 7 | p € P'}. The complication here is due
to the way of interconnections between models. So, instead of product let us deal with the
iteration. Thus in VZPT' we define P__ to be the set of all p [ 7 for p € P’ such that p\7 is in
the generic set G(P%,) € P%,. The next lemma shows that the map p + p\7 is a projection
map and so P%, is a nice suborder of P’

For p € P" and ¢ € P, let ¢"p denotes the set obtained by combining p and ¢ in
the obvious fashion. Note that such a set need not be in general a condition in P’, but in

reasonable cases it will.

Lemma 1.30 (The Splitting Lemma) Let p € P', T be a regular cardinal in (k,0] N s(p) and
q€PL.. If g=>p._p\7, then ¢"p € P' and extends p.

Proof. Let p = ((A% A% C¢) | € € s). Note that ¢"p need not be a condition since 1.1 may
break badly. Thus for example, switching inside P%, may move models in a way that when
adding back A%’s (for £ < 7) C%’s cannot be moved. In order to deal with such situations,
we first replace ¢ by an equivalent condition (switching it into such condition) satisfying 1.25
(1,2) with p\7 and only then add the full p. Once A% (p) € C*(q)(A%(q)) and C*(q) extends
C%(p) for ¢ € s\ the problem above disappears.
The rest easily follows from 1.1.
O

Let us show now a strategic closure of the forcing.

Lemma 1.31 (Strategic Closure Lemma) Let p € (k, 0] be a regular cardinal. Then (P% ,, <)

is pt — strategically closed.

Proof. We define a winning strategy for the player playing at even stages. Thus suppose
(pj | j <) is a play according to this strategy up to an even stage i. Define p;.
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Let for each j <1
p; = <<A§]T7A31T7CJT> | T E Sj) :

Case 1 7 is a successor ordinal.
Pick a sequence (B(7) | T € s,_1) satisfying the conditions (a) — (d) of 1.27 with p replaced
by pi_1. Let p; be the extension of p;_1 by (B(7) | 7 € s;_1).

Case 2 i is a limit ordinal.
Replacing each p; (j < i) by a switched condition if necessary, we can assume p;’s satisfy
the conditions of (1),(2) of 1.25, i.e. one extends another in the natural sense. Define
first p = ((A", A, C7) | 7 € s) as follows: set s = (J,_; 55, A7 = Uj<cires, AV AT =
Uj<ires, A7TU{A} and C7 = Uj<ires, €7 U {(A7,U{CT(AJ7) | j is even and T € s;)}, for
T ES.

Such defined p is not necessarily a condition. Thus, for example, 1.1(2(b)) may fail. We
fix this by defining p; from p as follows. Set B(p) = A% and for each 7 € (p, 6] N s we chose

B(7) to be a model such that

(i) A" € B(r)

(i) [B(r)[ =7, B(r) 27

(iii) </ B(r) C B(r)

(iv) if 7 < 7/ then B(7) C B(7')

(v) if 7 is a limit point of s then B(7) = U{B(7') | 7' € sN T}

(vi) (pj | 7 <i),p, B(p) € B(r) for every 7 € (p,6] N's.

Let p; be obtained from p by adding the sequence (B(7) | T € [p,0) N's). We define

CT(pi)(B(7)) = CTU{(B(r) , C"(A")"B(r))} .

Such defined p; is a condition. The proof as those of 1.27 follows easily. Note that here we
have {p; | j < i} C A for each 7 € s.
O

Let us turn now to the chain conditions.

Lemma 1.32 (Chain Condition Lemma) Let T be a regular cardinal in [k*,0]. Then, in

VP2 the forcing P, satisfies 7+ -chain condition.
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Proof. Suppose otherwise. Let us assume that
¢]b/27(ga - <<f12§’éf’gi>‘€ € s )Mo < 7F) is an antichain in P..) .

Define by induction, using the strategy of 1.4 for P{_, an increasing sequence of condi-
tions (galor < 7%), ¢o = ((A05, AL, C5)I€ € o) and a sequence (po | a < 7),p, =
((A% AlS C4)[E € s,) so that for every a < 77

Gall,, (A%, ASCE €€ 5 ) =a -

For a limit o < 77 let
Go = (4% 4,50 | €€ )

be the condition produced by the strategy and ¢, be its extension deciding p,. We form
a A-system now stabilizing as many parts of the conditions as possible. Note that s, C 7
and |s,| < 7 since 7 is regular, for each a < 71. Hence we can assume that all s,’s are the
same and equal to some s. Let o < 8 < 7", c¢fao = ¢f3 = 7 be in the system. We like to
show then the compatibility of ¢;p, and gzps or since gz > g, the compatibility of g5pa
and q3pg.

Let 7 = max(7 N s), which exists and is regular since 7 is regular by the definition of a
support. First pick B7(0) < A, of cardinality 7 with gs, ps,ps € B7(0) and > B7(0) C
B7(0). Then we define by induction on & € s sets B® such that

(1) |B§| =, cf&>BE C B¢

(2) B*(0) € B

(3) B < AF,

(4) (BY | ¢ esné) e B
Define now a common extension

p=((B*,B",D%) | £ € sUtp)
as follows. For each £ € s let
B% =B B = AfUAF U{B},

if € £ % and
B = AT UAJ U{B(0), BT},
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Df = CSUCH U {(B5, (C5(AY)"BY)}
(if ¢ = 7, then we add also B7(0)).
For every & € t3 let

BOE — AO§

1 B = AU (A%} and DS = C5U {(A%,,}. (C5(4%)"A%,,)}.

We need to check that such defined p is in P’.

Note that B7(0) will be the immediate successor of A", A} and the triple A, A%, B7(0)
will be of a A-system type over C7(A%,). Also, B7(0) € B* for each £ € s Utz. Hence the
requirements of 1.1 related to splittings of models are satisfied here, as well as the requirement
(b) on switching of 1.23. The rest of the conditions hold trivially in the present context.

OJ
The next lemma shows GCH in V%', The forcing P’ was designed specially to make this

true.

Lemma 1.33 (GCH Lemma) Let T be a regular cardinal in [x",0]. Then in VP we have

2T =717,

Proof. Let N < H((2")") for A large enough such that P’ € N, |[N| = 7% and "N C N.
Using 71" -strategic closure of P,_, we find pY . € PL_, which is N-generic for P, _,. Let
G(PL, ;) be a generic subset of 75’>TJr with pz; e G( _’>T+). Then, N[ps.+] < V) [G_( L))
By Lemma 1.8, P, satisfies ce in V[G(P;T+)]._In particular, P_, satisfies ..
Let G(P.,) be a generic subset of P_, over V[b( L .+)]. Denote N[p>,+] by Ni. Then
Ni[Ni N G(PL,)] =< VIG(PL_4)|[G(PL,)], since each antichain for P’L_ has cardinality at
most 7. Hence, if it belong; to Nj then it is also contained in Ni. Denote N;[N; NG (P )]
by Ni. We now consider PL_ N N,. Clearly this is a forcing of cardinality 7. We claim
that it is equivalent to PL_. Thus, by Lemma 1.8, PL_ satisfies 7F-c.c., so PL_ N N, is a
nice suborder of PL_. Let G C P._ be generic over V[G(PL _.)|[G(PL,)] and H = G N N.
Then H is PN N, generic over V[G(PL_1)][G(PL.)]. Thu_s, if AC PL_NN,is a maximal

!/

antichain, then A is antichain also in PL_,

since Ny is an elementary submodel. Hence
|A| < 7. But then A € N,, and so Ny F (A is a maximal antichain in P__). By elementary,
A is a maximal antichain in PL_. So there is p € GNA. Finally, A C N, implies that p € N,
and hence p € H.

We claim that each subset of 7 is already in N5[G]. It is enough since |[No[G]| = |[N| = 7T,

Let a be a name of a function from 7 to 2. Work in V. Define by induction (using the strategic
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closure of the forcings and 7+-c.c. of PL_) sequences of ordinals

(0818 < 1), (7(a, B)|B < T, < O)

and sequences of conditions

(ps(a)|or < dg)(B < 7), (p(B)|B < T)
such that
(1) for each § <7, 95 < 7"

(2) for each B < 7, (pg(a)>-|a < d) is increasing sequence of elements of P4 and p(f) is

its upper bound obtained as in the Strategic Closure Lemma
(3) po(0)sr+ > pY
(4) the sequence (p(f)|5 < T) is increasing
(5) for each § < 7 and a < d, pg(a) forces "a(B) = v(a, 5)”

~

(6) if some p € P’ is stronger than p(3)>, where top models of cardinalities below 7 are
viewed as empty or trivial, then there is @ < § such that the conditions p, ps(«) are

compatible. (Le. {ps(a)<r|a < ds} is a pre-dense set as forced by p(3)s,).

Set p(7) to be the upper bound of (p(3)|F < 7) as in the Strategic Closure Lemma. Let
L denotes the top model of cardinality 7 of p(7)>,, i.e. A7(p(7)>,). Pick K € N realizing
the same type as those of L in H(A\)[G>,+]. Let

{a(B)I6 < 1), {gs(a)|a < 0p)(6 < 7)

be the sequences corresponding to

(pa(a)|a < dg)(B < 7),(p(B)|B < T).
Define a name 2 of a subset of 7 to be
{< gs(a),7(e,B) > |a < 05,5 < T}

Clearly, b is in N. Combine now K, L into one condition making them a splitting point. Let

M be a model of cardinality 7 such that K, L € M as well as the sequences

(psla)a < 0p)(8 < 7), (p(B)|B < 7)
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and
{< (@), v(e, B) > |a < bg, 8 <7}

Let (A(£)|€ € s) be an increasing continuous sequence of models with |A%| = £ and
K, L, M, {ps(@)la < 83)(8 < ), (p(B)I8 < 7) and {< gs(a),(c, B) > | < 63,8 < 7} €
A(kT). Put this sequence to be the top sequence of such combined condition which we denote

by r.
Claim 1.33.1 r|}—a = b.

Proof. Let G be a generic subset of P’ with r € G. Then also p(7)>,,q(7)>, € G. Now,
for each § < 7 there is o < dg with pg(a) € G (just otherwise there will be a condition ¢ in
G forcing that for some [ there is no a < dg with pg(a) € G. Extend it to ¢’ deciding the
value a(f3). By (6) there is a such that t', pg(a) are compatible). Let ' € G be a common
extension of r and pg(a). Now M will be a splitting point witnessed by L, K in 7’ and the
isomorphism 77 moves pg(«) to gz(«). Hence gz(«) < 7’. But then ¢z(a) € G.

O of the claim.

0

2  Preserving Large Cardinals

We will need to make some minor changes in the previous setting. Thus, first it will be
convenient to increase a bit a set of conditions by allowing to remove some maximal models
(i.e. A%) from elements of P’. This way the original P’ will be dense in the new one, so from
the forcing point of view nothing changes. Second, we like to deal with elementarity. In 1.1,
we had H(#) and considered its elementary submodels. But once embeddings j : V' — M
are around, j(H(0)) = (H(j(#)))™ may differ from H(0) even if € is not moved. So being
elementary in sense of M will differ from being elementary in sense of V. We suggest
below two ways to overcome this difficulty. The first one will be to assume that 6 is a

29_supercompact cardinal. Consider the following set
S = {a < O|a is a superstrong cardinal with target 6

(i.e. thereisi:V — M, crit(i) = a, i(a) = 0 and M D Vjp)}.

It is stationary (actually of measure one for a normal measure over 6), see for example
[Kan, 26.11].

Now, V,, < Vj for every a € S. Hence, V,, < Vj for every a < 3, a, 3 € S. Also the
following holds:
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Lemma 2.1 Let « € S and i : V. — N is an ultrapower by an (a,v)-extender for some
v < 0. which is a part of superstrong (o, 0)-extender with target 0. Then Vi < (Vi)™ for
every €5, a< <.

Proof. Let j : V. — M be the ultrapower by a superstrong («, #)-extender with target 6

extending the used (o, v)-extender. Then the following diagram is commutative

AM
v
V Tk
N

N

where £ is defined in the obvious fashion.

Now, k((Vie))™) = Vj@) = Vo. Also k(8) = 8 and Vz < Vj. Hence, Vg < (Vi))".
O

Note also that by elementarity (Vi)Y < (Vi)™ = (Vo)".

The second way will be to deal with just subsets (closed enough) and ¥; elementarity.
Using this approach there will be no need in supercompacts cardinals- thus strongs alone

suffice.

Lemma 2.2 Suppose that V5 <x, Vy, a is d-strong and j : 'V — M be an elementary
embedding such that

e M DOV
o j(6)=0.
Then Vs <s, (Vo).

Proof. Just note that
Vs € (Vp)" C V.

Models Vj, (Vg)M agree about Yy formulas. So each ¥; formula with parameters from (%)M
true in (V)M is also true in Vy. But V5 <y, Vp, hence Vs <y, (Vo)M.
O
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The crucial observation will be that P’ breaks at each a € S (or just for each a < 6 which
is Mahlo and has §’s as in 2.2) into forcing P’(«) which deals with elementary submodels
(or just closed enough subsets) of V, and PL,, which breaks in turn into PL,, * Py, * Qa-

Define P’(«) the same way as P’ but only with V,, replacing Vj. Thus in this notation
P’ is actually P'(0).

Lemma 2.3 Suppose that a is a Mahlo cardinal. Then P'(«) satisfies a -c.c.

Proof. Let (pg|8 < a) be a sequence of conditions in P'(«), psg = ((A" (pg), A7 (ps), C"(p))|T €

s(pp)), B < a.
Consider their supports sequence (s(pg)|3 < ). Recall that supports are of the Easton form.

Hence we can find a stationary X C a and s such that (s(pg)|3 € X) forms a A-system with

support s. Moreover,

e cach § € X is inaccessible

o s(pgp)NB=s
e if v < 3 is also in X then for each 7 € s(p,), then A (p,) C Vj.

This implies that
AC Vg C B,
whenever v < 3 in X, A € A", 7 € s(p,) and B € A p € s(pg)\s.

Shrinking X more, if necessary we can insure that for each v, 5 € X the following two

structures
(AOmax(3)(pg), <, €, C, iy AP (pg) M pg)
and

<A0max(s) (p’y)7 <7 67 g K/, AOmax(Q(p,Y) ﬂpw>

are isomorphic over A9max(s)(pz)NA0max(s)(p ),

Note that A" (ps)’s may have elements above 3.

Now we claim that such pg and p, are compatible, say v < 3. The proof repeats 1.7. Note
that models of cardinalities in s.\s should be added between models of pg of cardinalities
in s and those including them of cardinalities in s(pg)\s. In order to this, we work over
the center line of ps add models which include p, as a member and then such setting via

isomorphisms.

O
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Lemma 2.4 Suppose that « is a Mahlo cardinal and V,, < Vy. Then P’ > P'(«).

Proof. Consider P’ N'V,. By the definition of conditions 1.1 we must have P'(a) = P' N V.
The cardinal « is an inaccessible. Hence **V,, C V. In particular, each antichain of P’(«)
is in V,,, by the previous lemma. Hence , if H C P’(«) is P’'(«)-generic over V,, then H will
be full P’'(«)-generic.

Note that P’(«) is definable in V,, and using the same formula that defines P’ in Vj.

Let A C P'(«) be a maximal antichain. Then |A| < « and, so A € V,,. In addition,

V., E A is a maximal antichain in P’.

Then, by elementarity,

Vyp E A is a maximal antichain in P’

So, GN A # (), for any generic G C P'. Also, V,[G NV,] < V4[G].
OJ

By the lemma above P’ projects to P’(«). We prefer to deal with an explicit projection
rather then with the projection defined via the corresponding Boolean algebras. In order to

define an explicit projection we consider the following dense subset of P’:
D = {{{A%7 A7) AT CTY T € sna) (A%, A" C) v € s\a) € P’ |

a€s&Vresna A% €V, and the structure
<A00max(sﬂa)’ <, €, g, K, AOOmax(sﬂa) N <<A00T7A01T>’A1T,CT>‘T csn a>> is iSOHlOI'phiC to
<A01 max(sﬁoc)7 <, €e,C, K, AOl max(sﬂa)m«AOOT’ A017>, AlT, Cr'r>|7_ c sﬂa>> over VaﬂA()l max(sﬂa)}.

Here is the point where we prefer to allow two top models (A7, A°'" 7 € sNa) instead
of a single one. Using V,, <5, Vj it is easy to extend any standard (i.e. with single top model
in each cardinality) condition in P’ to one in D. We need just to intersect its part consisting
of models of cardinality below a with V,, and then using elementarity of V,, to find inside V,
something isomorphic over this intersection.

Now, once we have p = ((A%7 A7) A CT)|r € sna)” ((A% Al C")|v € s\a) € D,
then define o(p) to P’(«) to be

(A% AT A P(AYT), O [ P(AY)) T € sna)" (A%, AV O v € s\a).

Let us check that such defined o is indeed a projection map.
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Lemma 2.5 The map o is a projection map from D to P'(«).

Proof. Let p € D be as above and ¢ € P’(a) be an extension of o(p). Pick increasing

continuous sequence (B, |T € s) such that for each 7 € s the following holds:
1. B, <V
2. |B/| =71
3. p,q € By~
Now let 7 = ((A%(r), A (r),C"(r))|7 € s) be defined as follows:
o A(r) = B,
o A7(r) = A" U{B,},if T € s\aand A (r) = A" U{B,}UAY(q),if T€sNa

e C"(r)=C"U(B,,C""B7),ifr € s\aand C"(r) = CT"UC"(q) U(B,,C7(q)"B7), if
TESNa.

Then r is an element of P’ stronger than both p and ¢. Note that the situation as here
was specially allowed in 1.1 in contrast with the parallel definition of [6]. It remains to

extend r to some 1’ € D and then to take o(r") which will be above q.
0

Lemma 2.6 Suppose that o is a Mahlo cardinal and V, < Vy. Let v < « be a regular
cardinal. Then PL. > P'(a)>.

The proof repeats those of Lemma 2.4.

Note that P.,, does not add new sets of cardinalities > o and P" = P% , * PL,,.

Lemma 2.7 Let Vo, < Vp, a be a Mahlo and 0 < « be a reqular. Then P = PLs*(P'(a))<s.

Proof. Pick M < Vg, 67 € M and |M| = 6*. By 2.4, we have PLs > (P'(a))>s. Note
that M NP = M N P'(«a), since M < V,. Pick p € V, N PL,, to be (PLs,, M)-generic.
Then p € (P'(a))ss+ and it is ((P'(«))ss+, M )-generic. Pick now G+ C P;H generic with
p € Gss+ and G_s C PL generic over V[Gss+]. Recall that P satisfies §++-c.c. Hence each
antichain of P’ ; which belongs to M|[p] will be contained in M|p]. So, G_s N M|[p] will be
(PLs, M[p])- generic. But (G>5+G=;)NV, is PL; -generic over V,,, by 2.4. So G_sN M [p] will
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be (P_s, M[p])-generic. Denote G_sNM|[p] by Gps. Then Mp, Gp] < Vo|Gss+ xG_sNV,] <
VolGss+, G=s].

Let us turn now to PL,. By l.last, PL; in Vy[G>s, G=s| is equivalent to P_s N M[p, Gl
But Mp, Gy < Vo[Gss+ *G=sNV,]. Hence, PLsNM|p, Gy is just the same as (P'(a)) 5N
M]p, G ). But this is last forcing is equivalent to (P’(«))<s. So we are done.

0

Lemma 2.8 Let V,, < Vp, a be a Mahlo and § < « be a reqular. Then P' = P'(a)ss * (Q X
(P'(@))<s)-

Proof. By Lemma 2.6, PL; > P'(a)>s. So let PLy = P'(a)ss * Q, for some Q. Now,
P'(a) = P'(a)ss * P'(a)<s. By Lemma 2.7 we have P’ = PL; * (P'(«))<s5. Hence

P =P(a)ss *xQ * (P'(a))<s.
But ) does not add new bounded subsets to . So this can be written as follows:

P =P ()5 * (Q x (P'(@))<s).

Recall that P, * (PL,)>p is (B-strategically closed, P’(a)<s satisfies f*-c.c. and is

actually isomorphic to a forcing of cardinality 8T, by ?7.

Lemma 2.9 Leta € S, 6 <6, (SNd)\a+1#0 and

M 2 Vi = Ve
J
/!
\%4 ]/{:
N\
N

be a commutative diagram with N being the ultrapower by an («, )-extender. Then i extends

to
% : VPI — Ni(P/)

Alternatively, using only strongs we can show that the following analog of this lemma
holds:
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Lemma 2.10 Suppose that
1. p <6 is a Mahlo cardinal
2. V, <x, Vo
3. « is p-strong, as witnessed by j:V — M D'V,
4. 0,0 < 6 < pis a reqular cardinal
5. there is p, a0 < p < 6 such that 'V, <V,.

Let

be a commutative diagram with N being the ultrapower by an («, § )-extender derived from j,
such that p = k(&), for some . Then i extends to

i VP — NP,

The proofs of both lemmas are very similar. We concentrate on the proof of 2.9 and state

the minor changes needed for those of 2.10

Proof. Note that by the definition of forcings P’(§) we have P’ = P’'(6). Also, i(f) = 0, since
6 is an inaccessible. In N, hence i(P") = (P'(i(9)))N = (P'(0))N. We split first (P'(6))N
into (P'(i()) X ((P'(0)sit) * (P'(0) <o) 50)) ™.

Let us deal first with (P’'(i(«)))”. Note that Vs C N. We split in N the forcing P’(i(c))
into P’'(i(a))ss * P'(i(c))<s. The part P'(i(«))>s is 0" -strategically closed. The extender
used to form N has no generators above ¢, so standard methods apply. Thus, we can find an
N*-generic set for (P’ (in+(a))ss)Y move it then to N and in this way obtain an N-generic set
for (P'(i(a))ss)", where N* is the ultrapower by the measure U = {X C o? | (o, 6) € i(X)}.
For 2.10, we include also &, i.e. U ={X Ca?| (a,6,£) €i(X)}.

Denote the corresponding embedding by ¢* and those of N* into N by £*. Then we obtain

the following commutative diagram:
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M 2 Vja =Vs (orjust M DV,in 2.10 )

i
/Lf

Vv -4 N
N Tks
N* ~Ve/U

Let 0* be the preimage of  under k* (and £* the preimage of ). Use a"-strategic closure
of P'(i*(0))>(s+)+ to build an N*-generic subset of (P'(i*(r))»s«)Y . Then move it by k* to
obtain an N-generic subset of (P'(i*(a))ss)".

We deal now with (P'(i(a))<s)”. Let A* € N* be an elementary submodel of (V)"
(or of (Ve)V" in 2.10) of cardinality ((6*)*)"" closed under §*-sequences. Let A € N be
k*(A*). Then it is an elementary submodel of (V)" of cardinality (67)" closed under
d-sequences. Let k(A) = B. Then, B will be an elementary submodel of (Vj))" = Vj(a)
(or of (V)™ =V, correspondently) of cardinality §*. Recall that k& | (67) =id, [(67)] =
§,cf((07)N) =at and k((67)N) = 6.

Pick in N* a condition r; € P'(i*(a))>(s+)+ which is A*-generic. Let G* be an N*-generic

*

subset of (P'(i*(a))ss<)N" with r; € G*, built using the o™ strategic closure of the forcing.

Moving to N we set ¢; = k*(r1). Then ¢; € P'(i(«))>s+ will be A-generic. Set p; = k(q1).
Then, by elementarity, p; will be B-generic for the real P’'(j(a))>s+.

Let r, be G*NA*[r1] and g, be generated by k*"ry. Then go will be (A, P'(i(a))(5y)-generic
set (remember that P’(i(c))(s) is 0*-strategically closed).

Consider k”¢,. It contains an increasing cofinal subset of size a* - the image of ry under
ko k*. Now, k" A € B, since °B C B, by elementarity. Let ps € P'(j(a)){s; be the union of
conditions in k”qo. It exists, due to this cofinal subset of size a*.

Chose a generic over M (or,the same V') with (p1, p2) inside. Let ps be a (B[p1], P’ (j())sy)-
generic over M with py € ps. Then k£ | A extends to an elementary embedding

k: Alg1,q2) — Blp1,pa] -

By 1.9, P'(j(«))<s is equivalent to P’(j(«))<s N B[p1, 2] and the same is true in N replacing
Blp1,p2] by Alq1,q2]. Also, by 1.7, P'(j(«))<s satisfies 67-c.c. Hence k will move maximal
antichains to maximal antichains. This allows us to obtain (P'(i(«)))%s -generic set from
P’(j(a))<s -generic one, just intersect the last one with &”A[gy, Go] and pull back the result

to N using kL.
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Putting together now the parts above and below d we will obtain an N generic subset
Gi(a) of (P'(i()))".

Let us turn now to the forcing (P’(#))" and also deal with the master condition part.

Let p € (SNd)\(a+1) (or in 2.10, let p we as in (5), i.e. V, < V,). We pick in V an
elementary submodel A < V,, < Vj (or V,) of cardinality a® and closed under a-sequences of
its elements. Let p be P . -generic over A. It exists since P . is a-strategically closed.
Fix an increasing continuous sequence (A, | v < a™) of eleme}ltary submodels of A each of
cardinality o, (A¢ | £ <v) € A 41 and V,, € Ag. Without loss of generality for each v < ot
we may assume that A,[pN A,] < Alp]. Consider now the forcing P’ . It satisfies a™ -c.c.
Hence each antichain in P’ that belongs to A[p| is contained in A[p]. Now working inside
A it is easy to see for each £ < a™ the set of conditions ¢ in P’ having A, for some v,
§ <v <at, as the maximal model, i.e. A% (q) = A, is dense. Let us use Gjo) NPL,(6*) to
produce P_ -generic over A. Note that the set

T ={v <a' | A, is the maximal model of a condition in this generic set}

is unbounded. Actually, using o™ -strategic closure of P’ it is not hard to see that 7T is
stationry and fat.

Consider in N models

B = Z(A), BZ(V) = Z(Au)a B[Z(p)], Bz(u) [Z(p) N Bz(u)] :

We have U(i"a") = i(a™), hence

B= | Biw and Bli(p)] = | Biwli(p) N Biw)) -

v<at v<at

Now we fix a list (E, | v < at) of dense open subsets of ((P'(6)<i())>s)" in Bli(p)]
which are the images of all dense open subsets coming from the ultrapower by the normal
measure of the extender 7. Note that the forcing under the consideration is 6" -strategically
closed (in N) and the generators of i are below 4, so this can be done.

For each v < a* let E/, be the dense open subset of ((P'(0)<i())>a)” obtained from
E, by adding to each ¢ € E, models of cardinalities in the interval [a, ], i.e. ¢"r € E
iff g € E,, ¢°r € (P'(0)<i(a))>a)” and r consists of models of cardinalities in the interval
[, 8]. We may assume that £, (and hence also E}) is in By,)[i(p) N Bi)], just removing
some of B,’s if necessary.

Recall that Gy(a) is an N -generic subset of (P'(i(«)))" constructed above. Our next tusk

will be to consider the projection of (P'(#))Y, over Gj(q) and to claim that certain elements

are in (P'(6))%,/Gi(a)-
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Claim 2.9.1  For each v € T of cofinality a we have i"A, € (P'(0))%,/Gi(a)-

Remark Note that (Gia))>a N A, is a condition in P’ (or just in (P'(i(a)))"), due to
1.1(287). Our interest is in ((Gi))>a N Ay)"A,. By putting in i"A, we actually add all of
i"(((Gi(a))>a N A,)"Ay). The claim basically deals with it rather then only with i"A,.

Proof. Consider C*(A,) | A,. It is a closed unbounded sequence in A, and since cof(v) = a,
it has a cofinal subsequence (A4, 3|6 < a). Apply i. Then i((A, 3|0 < a)) will be a cofinal
subsequence of C'¥(B,) = i(C%(A,)). Denote i({A, 3|3 < a)) by (B, petal 3 < 1()). Clearly,
i"A, C By 4.

It is enough to show that i”A, is compatible with every element of G;). Note that
models of cardinalities > o are mapped to generic set over N for (P’())>i(a), just this set is
generated by such images. Hence there is no problems with the images (i.e. i(X)) of elements
of Ay N (Gj(a))>a- We need only to take care of "X for X € (A, N (Gi))=a) U {A}.

Pick any element ¢ of (P'(i(«))™ with A, inside. Assume also that A, is on the central
line of q. Consider i(q). It will consists of models of cardinalities below a and those of
cardinalities at least i(«) (remember that each condition has Easton support). Also B,
appears in i(q) on the central line. We would like to find a common extension of ¢ and i(q)
which includes i”A,. Proceed as follows. Pick first some §*, a < §* < i(«a), such that Bg- is
a unique immediate predecessor of Bg-;; and there is no models of cardinalities above i(«)
(and so, no models at all) in between. Using elementarity and density argument it is possible
to find such #*. Now inside B, g« we pick an increasing continuous sequence (X, |7 € s(q)) of
models (elementary or Xj-elementary in B, g«) such that ¢,i"A,,i(q) N B, g«~41 € X,+. Then
¢~ A, (X T € s(q))i(g) will be as desired.

O of the claim.

Let 1y be the first element of T' of cofinality . Consider A,,7"A,,. By Claim 2.9.1,
Ay, "i" Ay € (P'(0))Y/Gi(a). Now inside B,, we extend A,,i"A,, to a condition gy in Ej
with the projection to (P'(i()))%, inside Gi)-

Claim 2.9.2 ¢y B, € (P'(9))"/Gi(a).

Proof. Again we need to show that gy~ B,, is compatible with every element of Gj(,).

Vo
Let t € Gy There is a common extension ¢ of gy and ¢ with projection in Gj,), since

9 € (P'(8))" /Gi(a). By elementarity, we can find such ¢ inside B,,. Thus

(P'(i(a))N C (Vi)™ C By,



and, hence

By, [Gi()] = BlGia)] < (Va[Gio])™ -
Also, B,,[Giw)] N (P'(0)) = B, N (P'(6))".

Consider ¢~ B,,. It is almost a condition in (P’(#))" only with maximal models missing
for lot of cardinalities. Extend it to some r € (P'(6))" for which the projection to (P'(6))™
is defined. Then r > ¢ implies that the projection " of r is above the one of ¢q. But then
r" >t in (P'(i(a)))V. This means in particular that o™ B,, is compatible with .

U of the claim.

We proceed similar at each successor stage. Thus, if for £ < at, ¢, B,, are defined

¢¢ € By, and ¢:"B,, € (P'(0))N/Gi), then we pick vepq to be the least élement of T
above v¢ such that cof(vey1) = a and A,, € C*(A
¢ = Au,, "By, € (P'(0)"/Giga)-

Now inside B, ,
inside G'y(). Then, as in Claim 2.9.2, we will have ge4 1" B, € (P'(0)")Gita)-

Let us turn to limit stages of the construction. Assume that £ is a limit ordinal. Let

verr)- As in Claim 2.9.1, we will have

we extend ¢ to a condition geyy in By, with the projection to (P'(i(c)))%,

Ve = Ur<elr, Vey1 be the first element of T\ + 1 of cofinality @ and ¢ = U{g,|T < £}. This
qe is just the formal union of all ¢;’s constructed at the previous stages. We do not take

unions of the maximal models of g,’s etc. Let ¢ be obtained from ¢ by adding i"A,,, and,

Ve+1
if A, is in a condition in Gj,), then also i"A,,.
Claim 2.9 ¢ projects to an element of Gy(a).

Proof. Let us show that for each ¢; € Gj4) above the projection of ¢. the following holds:
if t € (P'(i())Y, and t > ¢y, then there is ¢ > ¢/ with the projection to (P'(i(a))Y,
stronger than .
Let {1 < ¢ be as above. Then intial seqments of ¢; project below ¢. Just g; projects
to a condition in Gy below ¢; < ¢. Also, the addition of i"A

we can find a common extension r € Bj(

A .
verrr 1 Ay 1s above i(a). So

vesr) Of t and ¢f. Using the elementarity of VZ](\& )
find v’ € (Vi@ N (P'(i(@))s0)" realizing the same type as r over r N Vzé\g) Finally, let ¢ be
obtained from r U’ by adding the maximal models including those of both 7,7’ and this
models via C”(q)’s to those of r’. Then the projection of ¢ to (P'(i(a))¥, is ' >t and we
are done.
OJ of the claim.

Now we extend g to g¢ € E¢ in By, ,) with the projection to (P'(i(a))%,, inside G-

This completes the construction.
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Consider finally the resulting sequence (g, | ¥ < a™). Let (¢} | v < a™) be the sequence
obtained from it by removing from each ¢, models of cardinalities below 6. Then, ¢} € E, for
every v < at. Hence (¢} | v < a™) generates a B[i(p)]-generic subset of ((P'(0)<ia))ss+)".
By the construction, the projections of g;’s to ((P'(i(a)))ss+ )Y are in Gy N (P'(i(a)ss+)".
The same is true (again by the construction) for g,’s, i.e. projections to ((P'(i(c)))sa)” are
in Gia) N (P'(i(a)))>a)™. Then g¢,’s will be in B[i(p)]-generic subset of ((P'(0)<i))sa)™
generated by Gja) N (P'(i(@))se)Y and (g} | v < ™). Moreover, models i”(A,) appear in
q,’s. Each r € P, which is inside some A, will be moved by i to i(r) € (P'(0)<a)” inside
i"A,. But i"A, is a model inside a condition in generic set, so i(r) is such as well. Hence
images of elements from Gy N PL, are in the constructed this way N-generic subset of
(P'(0)<o)N. So we are done.

O of the lemma.
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