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Abstract
We consider a question of T. Jech and K. Prikry that asks if the

existence of a precipitous filter implies the existence of a normal pre-
cipitous filter. The aim of this paper is to improve a result of [3] and
to show that measurable cardinals of a higher order rather than just
measurable cardinals are necessary in order to have a model with a
precipitous filter but without a normal one.

1 Introduction

The notion of a precipitous filter was first introduced by T. Jech and K.
Prikry in [4]:

Definition 1.1. A filter F is precipitous if for every generic G ⊆ F+, the
ultrapower Ult(V, G) is well-founded.

They asked whether the existence of a precipitous filter over κ implies the
existence of a normal precipitous filter over κ.
H-D.Donder and J-P.Levinski [1] introduced the following notion:

Definition 1.2. A cardinal κ is called ∞-semi-precipitous iff there exists a
forcing notion P such that the following is forced by the weakest condition:
there exists an elementary embedding j : V → M with critical point κ and
M transitive.

Clearly, if there is a precipitous filter over κ, then κ is ∞-semi-precipitous -
just take P to be the forcing with the positive sets.
E. Schimmerling and B. Velickovic [8] proved that there is no precipitous
ideals on ℵ1 in L[E] models up to at least a Woodin limit of Woodins. On
the other hand ℵ1 is always ∞-semi-precipitous in presence of a Woodin
cardinal. So ∞-semi-precipitousness need not imply precipitousness at least
in presence of large enough cardinals.
In the opposite direction the following was shown in [2](Thm. 3.11):

∗The first author was partly by ISF Grant 234/08
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Theorem 1.3. Assume that:

(1) ℵ1 is ∞-semi-precipitous.

(2) 2ℵ1 = ℵ2.

(3) There is no inner model satisfying (∃α o(α) = α++).

(4) ℵ3 is not a limit of measurable cardinals in the core model.

Then there exists a normal precipitous filter on ℵ1.

There is a huge gap between a Woodin cardinal and infinitely many measur-
able cardinals. The purpose of this paper is to improve Theorem 1.3 and to
narrow the gap. Some methods developed here likely to be useful for other
purposes as well.

2 Preliminaries

We denote κ := ℵV
1 . We shall always denote κ+ := ℵV

2 , even if we refer to
this ordinal in the context of other models. The same for κ++ := ℵV

3 . Our
aim is to prove the following theorem:

Theorem 2.1. Assume that:

(1) κ is ∞-semi-precipitous.

(2) 2ℵ0 = κ and 2κ = κ+.

(3) There is no inner model with a strong cardinal.

(4) In the core model, the set {α < κ++ | o(α) ≥ α+} is bounded in κ++.

Then there exists a normal precipitous filter.

The rest of this paper is dedicated to the proof theorem 2.1. From now on,
we shall assume that (1)-(4) in theorem 2.1 indeed hold.
Under assumption (3) of theorem 2.1, the core model K exists and is of the
form L[U ] where U = {Uγ | γ ∈ On} is a coherent sequence of extenders (see
[5] and [6] for a definition and thorough discussion of the core model). Under
assumption (4), there exists an ordinal λ such that:

(1) κ+ < λ < κ++

(2) λ > sup{α < κ++ | o(α) ≥ α+}
(3) λ is not a measurable cardinal in K

We fix this λ for the remainder of this paper. For γ ∈ [λ, κ++), Uγ is just
a measure, not an extender. For such γ’s, we denote αγ := crit(Uγ) if Uγ is
not trivial, and αγ := 0 otherwise. We also denote βγ := o(Uγ). In the other
direction, for α ∈ [λ, κ++) and β < o(α), we denote U(α, β) := Uγ for the
unique γ such that α = αγ and β = βγ.
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3 Precipitousness up to λ

The following result of [3] will be our starting point:

Theorem 3.1. Assume that:

(1) U is a precipitous filter over κ.

(2) 2κ = κ+.

(3) κ °U+ i(κ) > κ+, where i is defined as follows: Let G ⊆ U+ be generic,
let f be such that κ = [f ]G, and let Gnormal := {f [X] | X ∈ G}. Then
i : V → Ult(V,Gnormal) is the ultrapower embedding.

Then for every τ < κ++, there exists a normal filter that is precipitous up to
the image of τ .

It was pointed out in [2] that actually the proof of 3.1 still works fine once
the first item of 3.1 is replaced by κ being ∞-semi-precipitous.
In this section, we will use theorem 3.1 to show that there exists a filter F
over κ which is precipitous up to the image of λ. The next sections will be
dedicated to showing that F is precipitous up to κ++, and is therefore fully
precipitous. The proof of this section closely follows the proof of theorem
1.3 in [3] - the main difference is that in theorem 1.3, it was assumed that
there is no inner model satisfying (∃α o(α) = α++), and here we only have
the weaker assumption that there is no inner model with a strong cardinal.
To prove the existence of F , we wish to use theorem 3.1, but we first need to
prove that the assumptions in that theorem hold. Assumptions (1) and (2)
in that theorem are already included in the assumptions of theorem 2.1, so
we only need to show assumption (3).
The following result seems to be well known. A proof below was suggested
by the referee and it is much shorter than those used originally.

Theorem 3.2. Suppose that κ is ∞-semi-precipitous cardinal. Then κ+ =
(κ+)K.

Proof. By the assumption, in a generic extension V [G] of V there is an
elementary embedding j : V → M with crit(j) = κ. Then j ¹ K is an iterated
ultrapower of K by its extenders. Denote that iteration by I = 〈Ki | i ≤ θ〉,
i.e, K0 = K, Kθ = KM , and for every i < θ, Ki+1 = Ult(Ki, Ei) for some
Ki-extender Ei. W.l.o.g, we can assume that this iteration is normal, i.e,
extenders with lower Mitchell order are used before extenders with higher
Mitchell order. For α ≤ β ≤ θ, we denote jαβ : Kα → Kβ as the iteration
embedding. In particular, j ¹ K = j0θ.
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We show that E0 ∈ KM , which is impossible, since E0 is the first extender
used in the iteration from K to Kθ = KM . As in Zeman [9], view E0 as a
function on P (κ)K. An old argument of Kunen shows that E0 ∈ M ; this is
because if F := 〈xξ | ξ < κ〉 ∈ V enumerates P (κ) ∩ K, then E0 is definable
from F ′ := j(F ) ¹ κ by: E0(xξ) = {η | η ∈ F ′(ξ)}. To see that E0 is on the
KM sequence , by Lemma 8.3.4 of [9] it suffices to show that

M |= “ult(KM , E0) is wellfounded ”.

M itself is wellfounded, hence it is enough to check that

V [G] |= “ult(KM , E0) is wellfounded ”.

Now K := KV = KV [G]. Work inside V [G]. We have

(1) K is a universal weasel,

(2) E0 is on the K sequence and is thus K–correct,

(3) the iteration from K to KM = Kθ uses only extenders with indexes ≥
the index of E0.

Thus the hypotheses of Lemma 7.3.1 of [9] hold, and ult(Kθ, E0) is well-
founded (page 274 of [9] points out that Lemma 7.3.1 goes through for pre-
mice in the absence of 0-pistol).

Theorem 3.2 implies that assumption (3) in theorem 3.1 holds - i is an iterated
ultrapower of K, so i(κ) > (κ+)K = κ+. Now, as in the proof of theorem 1.3
(the proof is detailed in [3]), we can apply theorem 3.1 and construct some
filter F which is precipitous up to the image of λ. We have the following
result from that proof:

Lemma 3.3. 1 Let G ⊆ F+ be generic, and let V ⊇ 〈fn | n < ω〉 ∈ V [G],
such that for every n < ω there is some hn ∈ K and some gn ∈ κλ ∩ V such
that fn = hn ◦gn. Then there are some n < m < ω such that [fn] ≤ [fm].

In [3], this result was enough to imply the full precipitousness of F , since
the assumption that there are no measurables in [λ, κ++) implies a strong
covering property between V and K, and that strong covering property was
used to prove full precipitousness. In this paper, we only assume that there

1In [3] it was proved under the assumption that there is no inner model of o(κ) = κ++,
but the proof still goes through when there is no inner model with a strong cardinal.
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are no measurables α ∈ [λ, κ++) such that o(α) ≥ α+. Therefore, the result
above does not imply precipitousness as directly as it did in [3].
We continue the proof of theorem 2.1.
Let G ⊆ F+ be generic. Throughout this paper, we shall always use the
same G, so we shall just write [f ] instead of [f ]G. Also, whenever we write
“for almost all ν” or ∀∗ν, we will mean that there exists some set A ∈ G
such that the statement holds for all ν ∈ A.
We wish to prove that F is precipitous. It is enough to prove that for every
sequence V ⊇ 〈fn | n < ω〉 ∈ V [G] of ordinal functions on κ, there are some
n < m < ω such that [fn] ≤ [fm]. We fix, for the remainder of this paper, a
sequence V ⊇ 〈fn | n < ω〉 ∈ V [G] of ordinal functions on κ. Our aim is to
show that there are some n < m < ω such that [fn] ≤ [fm].
Note that we may assume that for every n < ω, fn : κ → [λ, κ++). The
reason for that is simple: if F is precipitous up to an image of κ++, then it
is in fact precipitous. Therefore, we can assume that fn : κ → κ++. Now let
S := {n < ω | ∀∗ν fn(ν) < λ}. If S is infinite, then since F is precipitous up
to the image of λ, there must be some n < m in S such that [fn] ≤ [fm] and
we are done. So, we can assume that S is finite, and by ignoring some finite
prefix we can assume that for all n < ω and for almost all ν, fn(ν) > λ. In
other words, we can assume that fn : κ → [λ, κ++) for every n < ω.

4 Coverings

We wish to apply the covering lemma, in V , in order to cover ran(fn). We
state some the basic properties of the covering lemma (for a full statement
and proof, see [6] and [7]).
Let x ∈ V , |x| = κ, x ⊆ [λ, κ++). The covering lemma provides us with a
function h, an ordinal ρ, and a system of indiscernibles C with the following
properties:

(1) h ∈ K and h : ρ× [κ++]<ω → K. For a set y ⊆ κ++, we denote:

h[y] := {h(δ, z) | δ < ρ and z ∈ [y]<ω}
(2) There is some model N ≺ H(χ) (for some χ large enough) such that

x ⊆ N , ωN ⊆ N , |N | ≤ κ, and N ∩ K ⊆ h[C]. It is here that we apply
our assumption that 2ℵ0 = κ (otherwise we couldn’t have ωN ⊆ N).

(3) ρ is a cardinal in K, and ρ < sup(N ∩On).

(4) C =
⋃{Cγ | γ ∈ dom(C)}, C ⊆ [λ, κ++), and |C| ≤ κ. For every

γ ∈ dom(C), Cγ ⊆ αγ. We shall often use the equivalent notation
C(α, β) instead of Cγ (where α = αγ and β = βγ).
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(5) For every ordinal ξ ∈ N , ξ ∈ h[C ∩ ξ] iff ξ 6∈ C.

(6) If c ∈ Cγ, y ⊆ αγ, and y ∈ h[C ∩ c], then c ∈ y iff y ∈ Uγ.

(7) C is h-coherent, i.e:

(a) For every c ∈ C there is a unique γ ∈ h[C ∩ c] such that c ∈ Cγ.
We denote this γ by γC(c). When C is clear from the context, we
shall just write γ(c). We shall also use the notation α(c) and β(c)
for αγ(c) and βγ(c).

(b) Let c ∈ C, γ := γ(c), α := α(c), and assume there is some γ′ 6= γ
such that also c ∈ Cγ′ . Let α′ := αγ′ . Then α′ < α, and there is
some γ′′ < γ such that αγ′′ = α and α′ ∈ Cγ′′ .

(c) We denote by Cohγ′,γ the least function t (in the ordering of K)
such that γ′ = [t]Uγ . Let γ′ < γ such that αγ′ = αγ, and assume
there is some c ∈ Cγ such that γ′ ∈ h[C ∩ c]. Let γ′′ := Cohγ′,γ(c),
and c′ := min{ξ | γ′ ∈ h[C ∩ ξ]}. Then Cγ′′ = Cγ′ ∩ (c− c′).

(8) Some additional properties of h and C are:

(a) If ~c ⊆ C, c ∈ Cγ, y ∈ Uγ, y ∈ h[~c], and c 6∈ y, then ~c ∩ [c, αγ) 6= 0.

(b) α(c) = min(h[C ∩ c]\ c) (we slightly abuse notation here by taking
the minimum over all ordinals in h[C ∩ c] above c).

We shall call a triplet h, C, ρ as above a covering.

5 Choosing a Good Covering

In this subsection, we will use the notation common in [7]: given an ele-
mentary sub-model N ≺ H(χ), there is a function hN ∈ K, an hN -coherent
system of indiscernibles CN , and an ordinal ρN < sup(N ∩ On), such that
N ∩ K = hN [CN ]. Mitchell [6], Remark 4.22, notes that if every measurable
limit point of N is a member of N , then ρN can be picked to be min(On\N).
In our situation it does not seem to be a case. Still the game below allows
at least keep such ρN constant for many different models N .
Given a sequence V ⊇ 〈gn | n < ω〉 ∈ V [G] of ordinal functions on κ, we wish
to apply the covering lemma (in V ) to cover ran(gn). We wish our coverings
to have several convenient properties.
Let G be a game (in V ) with the following rules:

(R1) In step 2n, player I chooses some function gn : κ → [λ, κ++).

(R2) In step 2n + 1, Player II chooses a model Xn and an hXn-coherent
system of indiscernibles Cn ⊆ CXn , such that ran(gn) ⊆ hXn [Cn].

(R3) For every n < m < ω, Cn ⊆ Cm, and for every c ∈ Cn, αXn(c) = αXm(c).
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(R4) In step 1, player II also chooses some ordinal η < κ++. For every n < ω,
ρXn ≤ η.

Player II wins if the game continues infinitely many steps. Otherwise (i.e,
a step was reached in which player II cannot make a step such that rules
(R2)-(R4) hold) player I wins.

Lemma 5.1. Player II has a winning strategy.

Proof. Note that the game is open, and so determined. Suppose that player
I has a winning strategy. Let σ be some strategy for player I. We will show
that σ is not a winning strategy. Let M ′ ≺ H(κ+3) be such that |M ′| = κ
and σ ∈ M ′. Denote M := M ′ ∩H(κ++). Let η := min(M \ ρM).
We shall prove the following claim.

Claim: There are {gn | n < ω}, {Xn, Cn | n < ω}, such that if player I
plays gn at step 2n and player II plays Xn, Cn at step 2n + 1 (and player II
chooses η at step 1), then:

(1) All plays are legal in game G, and player I plays according to strategy
σ. In particular, the game continues for ω steps, and player II wins.

(2) For every n < ω:

(a) gn, Xn, and Cn are in M ′.

(b) ρXn ≤ η.

(c) Cn ⊆ CM , and for every c ∈ Cn, αXn(c) = αM(c).

Proof: Let m < ω, and assume {gn | n < m} and {Xn, Cn | n < m} are
already defined such that (1), (2) and (3) hold.
Let gm be the next move of player I using strategy σ, i.e:

gm := σ(g0, 〈η,X0, C0〉, g1, 〈X1, C1〉, . . . , gm−1, 〈Xm−1, Cm−1〉)

By (2), gm ∈ M ′. Let N be a covering model such that:

ran(gm) ∪
( ⋃

n<m

Xn

)
⊆ N and |N | = κ

By elementarity, we can assume that N ∈ M ′. Since |M ′| = κ, κ ∈ M ′, and it
follows that N ⊆ M ′, and in fact N ⊆ M . Then CN \CM is finite (see lemma
1.2 in [7]). Let ~c := CN \CM . Similarly, for every n < m, Cn\CN is finite. Let
~d ⊆ CM be finite such that ~c ∈ h[~d], hN ∈ h[~d], and

(⋃
n<m Cn \ CN

) ⊆ ~d. We

may assume w.l.o.g that ~d is a support, i.e, for every d ∈ ~d, αM(d) ∈ hM [~d∩d]
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(this can be achieved by adding finitely many indiscernibles from CM to ~d).
Define:

~α := {αN(c) | ∃c ∈ CN ∩ CM αN(c) 6= αM(c)}∪
{αM(c) | ∃c ∈ CN ∩ CM αN(c) 6= αM(c)}∪
~d ∪ {αM(d) | d ∈ ~d}

By theorem 1.2 in [7], this set is finite. Let {α0, . . . , αr−1} be an increasing
enumeration of ~α. Let ~si ⊆ CM be minimal (in reverse lexicographical order)

such that αi ∈ hM [~si]. Note that we can assume that ~si ⊆ ~d for every i < r.
Let θ(X) be the conjunction of the following statements:

(a) N ∈ X ≺ H(χ)

(b) ~d ⊆ CX , and ~d is a support

(c) CN \ CX = ~c ∈ hX [~d]

(d) hN ∈ hX [~d]

(e) ∀d ∈ ~d αX(d) = αM(d)
(f) ∀i < r ~si is minimal in CX such that αi ∈ hX [~si]
(g) ∀c ∈ CX ∩ CN αX(c) 6= αN(c) −→ ∃i < r αX(c) = αi

(h) ρX ≤ η

Note that in every conjunct, we only use finitely many parameters from M .
Clearly, H(κ+3) |= θ(M). Then by elementarity there is some X ∈ M ′ such
that M ′ |= θ(X). Define:

C :=
(CN \ ~c

) ∪ ~d

We wish to prove that (1) and (2) from the statement of the lemma hold, if
we set Xm := X and Cm := C.
(2a) is immediate, and (2b) follows from conjunct (h).
We show (2c). Clearly, C ⊆ CM . Let c ∈ C. We need to show that αX(c) =

αM(c). Assume otherwise. If c ∈ ~d, then by conjunct (e), αX(c) = αM(c)
and we are done. Then we can assume that c ∈ CN \ ~c. There are several
cases.
Case 1: αX(c) ∈ ~α and αM(c) ∈ ~α
Then there is some i < r such that αX(c) = αi and some j < r such that
αM(c) = αj. Conjunct (f) implies that ~si ⊆ c. Now, αj = min(hM [CM∩c]\c),
and c < αi ∈ hM [~si]. This implies that αj ≤ αi. In the other direction,
αi = min(hX [CX ∩ c] \ c), and αj ∈ hX [~sj] by conjunct (f). Then also
αi ≤ αj, and αi = αj - contradiction.
Case 2: αX(c) ∈ ~α and αM(c) 6∈ ~α
Let i < r be such that αX(c) = αi. Since αM(c) 6∈ ~α, it follows that αM(c) =
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αN(c). Denote α := αM(c) = αN(c). Note that αi = min(hX [CX ∩ c] \ c). By
conjunct (f), ~si ⊆ c, and:

α = min(hM [CM ∩ c] \ c) ≤ min(hM [~si] \ c) ≤ αi

The last inequality follows the fact that αi ∈ hM [~si] (by definition of ~si).
Then α ≤ αi, and since α = αM(c) 6= αX(c) = αi, α < αi.

Let ~a ⊆ CN∩c be finite such that α ∈ hN [~a]. Let~b ⊆ CX∩c be finite such that

~a ∈ hX [~b]. So, by conjunct (d), α ∈ hX [~b∪ ~d], and in fact α ∈ hX [(~b∪ ~d)∩(α+

1)]. But c < α < αi = αX(c). This implies that (~b∪ ~d)∩ (α+1)∩ [c, αi) 6= 0.

Since ~b is below c, it follows that ~d ∩ (α + 1) ∩ [c, αi) 6= 0. Define:

d0 := min(~d ∩ [c, α])

If d0 = c, then αM(c) = αM(d0) = αX(d0) = αX(c) (by conjunct (e)), which
contradicts our assumption on c. Then d0 > c. If d0 = α, then α ∈ ~α,
which is again impossible by our assumption on α. Then d0 < α. Now,
α ∈ hM [CM ∩ d0] \ d0, which implies that αM(d0) ≤ α. Again, αM(d0) = α
implies that α ∈ ~α which is impossible, so αM(d0) < α.

Recall that αM(d0) ∈ hM [~d ∩ d0]. As before, c < αM(d0) < α implies that

(~d∩ d0)∩ [c, α] 6= 0. Let d1 := max(~d∩ d0). Then d1 ∈ ~d∩ [c, α] and d1 < d0,
which contradicts the minimality of d0.
Case 3: αX(c) 6∈ ~α and αM(c) ∈ ~α
This case is symmetric to case 2, and its proof is the same.
Case 4: αX(c) 6∈ ~α and αM(c) 6∈ ~α
Then αX(c) = αN(c) = αM(c) - contradiction.
This completes the proof of (2c).
We now show (1). We need to verify that the 4 rules of game G are kept.
Rule (R1) is trivial, and rule (R4) follows directly from (2b).
We prove that rule (R2) is kept. Clearly, C ⊆ CX , and:

ran(gm) ⊆ N ∩ K = hN [CN ] ⊆ hX [(CN \ ~c) ∪ ~d] = hX [C]

It remains to show that C is hX-coherent. Let c ∈ C. We need to prove that
αX(c) ∈ hX [C ∩ c]. If c ∈ ~d, then by conjunct (b), αX(c) ∈ hX [~d∩ c]. If c 6∈ ~d,
then c ∈ CN . If αX(c) ∈ ~α, then there is some i < r such that αX(c) ∈ hX [~si],

and ~si ⊆ ~d∩ c. Therefore, we can assume that αX(c) 6∈ ~α, which implies that
αX(c) = αN(c). Let ~e ⊆ CN ∩ c such that αN(c) ∈ hN [~e]. Then:

αX(c) = αN(c) ∈ hN [~e] ⊆ hX [((~e \ ~c) ∪ ~d) ∩ αX(c)]

By the same argument as in case 2 above, we can show that all the indis-
cernibles in ((~e \ ~c) ∪ ~d) ∩ αX(c) are below c.
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Finally, we show rule (R3). If m = 0, there is nothing to prove. Assume that
m > 0, and let n < m. By induction, Cn ⊆ CM , so:

Cn ⊆ (CN ∩ CM) ∪ (Cn \ CN) ⊆ (CN \ ~c) ∪ ~d = C

Let c ∈ Cn ∩ C. Then by (3):

αXn(c) = αM(c) = αX(c)

And we are done. Claim

The claim proves that σ is not a winning strategy for player I. Since σ was
arbitrary, there is no winning strategy for player I. But the game G is an
open game for player I, so one of the players has a winning strategy. Then
there must be a winning strategy for player II.

We now go back to our fixed set of functions 〈fn | n < ω〉. This lemma
provides us with a very convenient covering of the ranges of these functions:

Corollary 5.2. For every n < ω there is a model Xn, and an hXn-coherent
system of indiscernibles Cn such that:

(1) ran(fn) ⊆ hXn [Cn]

(2) For every n < m, Cn ⊆ Cm.

(3) For every n < m and every c ∈ Cn, αXn(c) = αXm(c) and βXn(c) =
βXm(c) (or, equivalently, γXn(c) = γXm(c)).

(4) For every n < m, ρXn ≤ λ.

Proof. Let σ be a winning strategy of player II in the game G. For the
first move, let player I play the constant function 0, and let η,X−1, C−1 be
the response of player II using strategy σ. Next, let player I play f0, and
let X0, C0 be the response of player II by strategy σ. Continue in a similar
fashion. In general, for n < ω:

〈Xn, Cm〉 := σ(0, 〈η,X−1, C−1〉, f0, 〈X0, C0〉, . . . , fn−1, 〈Xn−1, Cm−1〉)

Thus we have defined Xn and Cn for every n < ω. Note that (1), (2), and
the first part of (3) follow directly from the rules of the game G. The second
part of (3) is proved in the following claim:

Claim: For all c ∈ Cn, βXn(c) = βXm(c).

10



Proof: Let α ∈ [λ, κ++) be measurable in K. By assumption (4) in theorem
2.1, o(α) < α+. Then there is a sequence of disjoint sets 〈Z(α, β) | β <
o(α)〉 ∈ K, such that for every β < o(α), Z(α, β) ∈ U(α, β). Consider

the sequence ~Z := 〈Z(α, β) | α < κ++ is measurable and β < o(α)〉. By

elementarity, ~Z ∈ Xn. Since ~Z is definable in K without parameters, ~Z ∈
hXn [0].
Let c ∈ Cn. Let βn := βXn(c) and βm := βXm(c), and assume that βn 6= βm.
By the rules of the game G, there is some α such that α = αXn(c) = αXm(c).
Since (α, βn) ∈ hXn [Cn ∩ c], also Z(α, βn) ∈ hXn [Cn ∩ c]. This implies that
c ∈ Z(α, βn). By the same argument, also c ∈ Z(α, βm). Then:

c ∈ Z(α, βn) ∩ Z(α, βm) = 0

Contradiction. Claim

What remains is to prove (4). Note that the choice of η did not depend
on the filter F or on the specific choice of the sequence 〈fn | n < ω〉. So,
w.l.o.g, we can assume that F is precipitous up to the image of max{λ, η}.
To simplify the proof, we can assume that λ ≥ η (recall that at the end of
section 2, λ was just some ordinal picked arbitrarily below κ++ and above
some bounded subset of κ++, so requiring that λ ≥ η is justified).
This completes the proof of the corollary.

For the remainder of this paper, we fix Xn and Cn as in corollary 5.2. We
denote hn := hXn .

6 The Ultrafilter W~h,~δ

Throughout this section, we work in K.
For every function h ∈ K, we define a function h̄ as follows. If h(x) ∈ κ++,
then h̄(x) is the minimal γ ≥ h(x) such that Uγ is a full measure over a
measurable cardinal αγ ≥ λ. Otherwise, we just set h̄(x) to be the minimal
γ such that αγ ≥ λ.
Note that Uh̄(x) is always a full measure over a measurable αh̄(x) ∈ [λ, κ++),

and h(x) = h̄(x) iff Uh(x) is a full measure and αh(x) ∈ [λ, κ++) (we are using
our assumption that κ++ is a limit of measurable cardinals in K, otherwise
the result follows by [3]).

Denote Sr := rκ++. For a set X ⊆ Sr and a sequence ~ξ ∈ Sr−1, we define:

p(X, ~ξ) := {µ | ~ξ_〈µ〉 ∈ X}

11



Let ~δ ∈ [λ]<ω, and ~h = 〈h0, . . . , hr−1〉 be a sequence of functions in K. We
define the ultrafilter W~h,~δ over Sr by induction on r.
If r = 0, then Sr = {0}, and W~h,~δ := {{0}}.
Otherwise, let ~h′ := 〈h0, . . . , hr−2〉. W~h,~δ is defined to be the set of X ⊆ Sr

for which there is a set Y ∈ W~h′,~δ such that the following holds: for every
~ξ ∈ Y , if γ := h̄r−1(~δ, ~ξ), then p(X, ~ξ)∩αγ ∈ Uγ. Recall that by the definition
of h̄r−1, Uγ is a full measure over αγ, which is a measurable cardinal ≥ λ.
We denote that set Y by Y (X).

Lemma 6.1. W~h,~δ is an ultrafilter over Sr, which is |λ|+-complete.

Proof. The proof is by induction on r.
If r = 0, there is nothing to prove.
Otherwise, let ~h′ be as before. Let X ⊆ Sr. Assume that X 6∈ W~h,~δ, and

denote X := Sr \X. We need to prove that X ∈ W~h,~δ.

Let Y := {~ξ ¹ (r − 1) | ~ξ ∈ X}, and Y := Sr−1 \ Y .
If Y 6∈ W~h′,~δ, then, by the induction hypothesis, Y ∈ W~h′,~δ, and:

W~h,~δ 3 {~ξ_〈µ〉 | ~ξ ∈ Y ∧ µ < κ++} ⊆ X

Which implies that X ∈ W~h,~δ.

Assume that Y ∈ W~h′,~δ. For every ~ξ ∈ Sr−1, denote γ(~ξ) := h̄r−1(~δ, ~ξ),

α(~ξ) := αγ(~ξ), and U(~ξ) := Uγ(~ξ). Recall that α(~ξ) ≥ λ. Let:

Y ′ := {~ξ ∈ Y | p(X, ~ξ) ∩ α(~ξ) 6∈ U(~ξ)}
If Y ′ 6∈ W~h′,~δ, then Y \ Y ′ ∈ W~h′,~δ, and by definition X ∈ W~h,~δ which

contradicts our initial assumption. Then Y ′ ∈ W~h′,~δ. Let ~ξ ∈ Y ′. Since U(~ξ)

is an ultrafilter, p(X, ~ξ) ∩ α(~ξ) 6∈ U(~ξ) implies that:

α(~ξ) \ p(X, ~ξ) ∈ U(~ξ)

In other words, p(X, ~ξ) ∩ α(~ξ) ∈ U(~ξ). This holds for every ~ξ ∈ Y ′, and
Y ′ ∈ W~h′,~δ. Then by definition, X ∈ W~h,~δ.
We turn to the proof of the |λ|+-completeness. Let {Xη | η < λ} ⊆ W~h,~δ. Let
X :=

⋂
η<λ Xη, Yη := Y (Xη) ∈ W~h′,~δ, and Y :=

⋂
η<λ Yη. By the induction

hypothesis, Y ∈ W~h′,~δ. Let ~ξ ∈ Y . Then for every η < λ, ~ξ ∈ Yη and

p(Xη, ~ξ) ∩ α(~ξ) ∈ U(~ξ). Since α(~ξ) > λ, U(~ξ) is |λ|+-complete, and:

p(X, ~ξ) ∩ α(~ξ) =
⋂

η<λ

p(Xη, ~ξ) ∩ α(~ξ) ∈ U(~ξ)

And X ∈ W~h,~δ.
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We shall prove an important characterization of the ultrapower of K by W~h,~δ

as an iterated ultrapower of K by its measures.
Let K0 := K, and ψ0 : K → K0 be the identity.
Let i < r, and assume we already defined γ0, . . . , γi−1, α0, . . . , αi−1, Ki and
ψi. We define γi, αi, Ki+1 and ψi+1. Define γi := ψi(h̄i)(~δ, 〈α0, . . . , αi−1〉).
Let αi and Ui be such that:

Ki |= Ui = Uγi
and αi = αγi

And let j : Ki → Ki+1
∼= Ult(Ki, Ui) be the ultrapower embedding. Define

ψi+1 := j ◦ ψi : K → Ki+1.
Thus, we described a process that terminates after r steps. The process
defines a finite iterated ultrapower of K, ending with the model Kr, where
ψr : K → Kr is the iterated ultrapower embedding, U0, . . . , Ur−1 are the
measures, and α0, . . . , αr−1 are the critical points.

Lemma 6.2. Let ψ : K → M ∼= Ult(K,W~h,~δ) be the ultrapower embedding.
Then M = Kr, and ψ = ψr

Proof. Denote W := W~h,~δ. The proof is by induction on r.
If r = 0, there is nothing to prove, since in that case M = K = Kr.
Assume that r > 0. Define τ : M → Kr by τ([t]W ) := ψr(t)(α0, . . . , αr−1).
We want to show that τ is well-defined, i.e, it does not depend on the choice
of representative from the equivalence class [t]W .
Let t1, t2 : Sr → K, such that [t1]W = [t2]W . Then there is a set X ∈ W such
that:

∀~ξ ∈ X t1(~ξ) = t2(~ξ)

Let Y := Y (X). For every ~ξ ∈ Sr−1, denote γ(~ξ) := h̄r−1(~δ, ~ξ) and U(~ξ) :=
Uγ(~ξ). Then:

∀~ξ ∈ Y ∃Z ∈ U(~ξ)∀µ ∈ Z t1(~ξ
_µ) = t2(~ξ

_µ)

Let t′1 : Sr−1 → K be such that t′1(~ξ)(µ) := t1(~ξ
_µ). Define t′2 similarly.

Then:
∀~ξ ∈ Y [t′1(~ξ)]U(~ξ) = [t′2(~ξ)]U(~ξ)

Define t∗1(~ξ) := [t′1(~ξ)]U(~ξ) and t∗2(~ξ) := [t′2(~ξ)]U(~ξ). Then for every ~ξ ∈ Y ,

t∗1(~ξ) = t∗2(~ξ). Using the induction hypothesis, we have:

ψr−1(t
∗
1)(α0, . . . , αr−2) = ψr−1(t

∗
2)(α0, . . . , αr−2) =⇒

[ψr−1(t
′
1)(α0, . . . , αr−2)]Ur−1 = [ψr−1(t

′
2)(α0, . . . , αr−2)]Ur−1 =⇒

ψr(t
′
1)(α0, . . . , αr−2)(αr−1) = ψr(t

′
2)(α0, . . . , αr−2)(αr−1) =⇒

ψr(t1)(α0, . . . , αr−1) = ψr(t2)(α0, . . . , αr−1)

13



This completes the proof that τ is well defined.
Clearly, ran(τ) = Kr. But τ is an elementary embedding - the proof for
atomic formulas is identical to the proof that τ is well-defined (just replace
= by ∈), and the induction step for non-atomic formulas is trivial. Then τ
must be the identity, and M = Kr. In addition, for every x ∈ K:

ψr(x) = ψr(Constx)(α0, . . . , αr−1) = τ([Constx]W ) = τ(ψ(x)) = ψ(x)

Where Constx is the constant function with value x. Then ψr = ψ and we
are done.

7 Indiscernibles and Large Sets

Pick some n < ω. We shall prove some results regarding fn and its covering
hn, Cn, ρn, in relation to the ultrafilters we defined in the previous section.
Since in this section, we shall always deal with the same n, we shall remove
the subscript n and simply have f := fn, h := hn, C := Cn etc.

Lemma 7.1. There exists a set A ∈ G, functions g : κ → [λ]<ω and ~c : κ →
[C]<ω in V , a sequence of functions ~h = 〈h0, . . . , hr−1〉 ∈ K and a function
h′ ∈ K, such that:

(1) For every ν ∈ A, ~c(ν) is an increasing sequence of indiscernibles of
length r, and we denote ~c(ν) = 〈c0(ν), . . . , cr−1(ν)〉 ⊆ C. For every
i < r, we denote γi(ν) := hi(g(ν),~c(ν) ∩ ci(ν)), and ci(ν) ∈ Cγi(ν).

(2) For every ν ∈ A, f(ν) = h′(g(ν),~c(ν)).

(3) For every distinct ν1, ν2 ∈ A, ~c(ν1) ∩ ~c(ν2) = 0.

(4) For every i < r, supν∈A ci(ν) = minB∈G supν∈B ci(ν).

(5) For every i < r, the function ν 7→ α(c(ν)) is either constant or strictly
increasing on A, and:

(a) If it is strictly increasing on A, then γi(ν) = γ(ci(ν)).

(b) If it is constant on A, with constant value α, let c∗ := supν∈A ci(ν).

(i) If c∗ = α, then γi(ν) = γ(ci(ν)).

(ii) If c∗ < α, then c∗ ∈ Cγ∗ for some γ∗ such that αγ∗ = α. In
this case, γi(ν) = Cohγ∗,γ(c(ν))(c∗).

In particular, supν∈A ci(ν) = αγi(ν)

Proof. For every ν < κ, let ~d(ν) be some support for f(ν) - i.e, for every

d ∈ ~d(ν), γ(d) ∈ h[~d(ν)∩ d], and f(ν) ∈ h[~d(ν)]. For every d ∈ ~d(ν), there is
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some δ < ρ and some ~d′ ⊆ ~d(ν) ∩ d such that γ(d) = h(δ, ~d′). By corollary

5.2, ρ ≤ λ, so δ < λ. Similarly, there is some δ < λ and some ~d′ ⊆ ~d(ν) such

that f(ν) = h(δ, ~d′). Let g(ν) ∈ [κ]<ω be the collection of all those δ’s.

Since G is normal, there is some A ∈ G such that {~d(ν) | ν ∈ A} is a ∆-
system with kernel ~e. We may shrink A and assume that for every ν ∈ A,
|~d(ν)| = r′ and |g(ν)| = k.

Define ~c(ν) := ~d(ν) \ ~e. Clearly, (3) holds.
Again, we can shrink A such that |~c(ν)| = r for every ν ∈ A. Denote
~c(ν) = 〈c0(ν), . . . , cr−1(ν)〉 and g(ν) = 〈g0(ν), . . . , gk−1(ν)〉.
Let i < r. We wish to define the function hi. First, we define a function h′i ∈
K, such that γ(ci(ν)) = h′i(g(ν),~c(ν)∩ci(ν)) for every ν ∈ A. We can assume,
by shrinking A, that there is some ~e′ ⊆ ~e, some `0 < · · · < `p−1 < i, and some
j < k such that for every ν ∈ A, γ(ci(ν)) = h(gj(ν), c`0(ν), . . . , c`p−1(ν), ~e′).
Define:

h′i(〈δ0, . . . , δk−1〉, 〈ξ0, . . . , ξi−1〉) := h(δj, ξ`0 , . . . , ξ`p−1 , ~e
′)

And indeed γ(ci(ν)) = h′i(g(ν),~c(ν) ∩ ci(ν)).
We now define the function hi. We first shrink A such that both sequences
〈ci(ν) | ν ∈ A〉 and 〈α(ci(ν)) | ν ∈ A〉 are either constant or strictly increas-
ing, and such that (4) holds, i.e:

sup
ν∈A

ci(ν) = min
B∈G

sup
ν∈B

ci(ν)

Note that 〈ci(ν) | ν ∈ A〉 must be strictly increasing, since ~c(ν1) ∩ ~c(ν2) = 0
for every ν1, ν2 ∈ A. If 〈α(ci(ν)) | ν ∈ A〉 is strictly increasing, define
hi := h′i. Otherwise, there is some α such that α(ci(ν)) = α for every ν ∈ A.
Let c∗ := supν∈A ci(ν). If c∗ = α, define hi := h′i as before. Otherwise,
c∗ ∈ Cγ∗ for some γ∗ such that α = αγ∗ . In this case, we define:

hi(x) := Cohγ∗,h′i(x)(c∗)

Thus, we have defined hi such that (5) holds.
Let γi(ν) := hi(g(ν),~c(ν) ∩ ci(ν)). To prove (1), we need to show that
ci(ν) ∈ Cγi(ν). If hi = h′i, then γi(ν) = γ(ci(ν)) and we are done. Otherwise,
γi(ν) = Cohγ∗,γ(ci(ν))(c∗) - and by the properties of the coherence function,
ci(ν) ∈ Cγi(ν), and c∗ = αγi(ν).
The function h′ is defined similarly to h′i, such that f(ν) = h′(g(ν),~c(ν)),
and (2) holds.

We now prove a very useful property of the covering, that given a sequence
of large sets, the appropriate indiscernibles are almost always contained in
these sets.
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Lemma 7.2. Let ~X = 〈X~δ | ~δ ∈ [λ]<ω〉 ∈ K be a sequence of sets such

that for every ~δ ∈ [λ]<ω, X~δ ∈ W~h,~δ (where ~h,A,~c, g are the objects from
conclusion of Lemma 7.1). Then for almost all ν ∈ A, ~c(ν) ∈ Xg(ν).

Proof. The proof is by induction on r (the length of ~c(ν)).
If r = 0, then ~c(ν) = 0, Xg(ν) = {0} for every ν ∈ A, and the result trivially
holds.
Assume that r > 0. Let c(ν) := max(~c(ν)) and ~d(ν) := ~c(ν) \ {c(ν)}. By

induction, we can assume that for every set ~X as in the lemma, ~d(ν) ∈
Y (Xg(ν)) for almost all ν ∈ A. Recall from the previous lemma that the
sequence 〈c(ν) | ν ∈ A〉 is strictly increasing. Assume towards a contradiction

that there is some B ∈ G∩P(A) and some ~X as in the lemma such that for

every ν ∈ B, ~c(ν) 6∈ Xg(ν). By elementarity, we can assume that ~X ∈ h[C].

Let ~e ⊆ C be finite such that ~X ∈ h[~e]. We can assume w.l.o.g that the kernel

of the ∆-system from lemma 7.1 (used in the definition of ~h) is contained in
~e.
For every ν ∈ B, let γ(ν) := hr−1(g(ν), ~d(ν)), α(ν) := αγ(ν), and U(ν) :=
Uγ(ν). By definition of the ultrafilter W~h,g(νn):

Z(ν) := p(Xg(ν), ~d(ν)) ∩ α(ν) ∈ U(ν)

Note that Z(ν) ∈ h[~e ∪ ~d(ν)], Z(ν) ∈ U(ν), but c(ν) 6∈ Z(ν). This implies

that there is some e(ν) ∈ (~e ∪ ~d(ν)) ∩ [c(ν), α(ν)). If there is some ν ∈ B
for which e(ν) ∈ d(ν), then c(ν) > max(d(ν)) ≥ e(ν), contradictory to the
choice of e(ν). Then for every ν ∈ B, e(ν) ∈ ~e. Since ~e is finite, we can
shrink B such that there is some e ∈ ~e such that e(ν) = e for every ν ∈ B.
By lemma 7.1, the function α(ν) is either strictly increasing or constant on
A (and on B).
Case 1: α(ν) is strictly increasing on B
Recall that in this case, α(ν) = α(c(ν)) = min(h[c(ν)] \ c(ν)). Let ν1 < ν2

be in B. Then c(ν1) < c(ν2) < e < α(ν1) < α(ν2). This is a contradiction,
since:

α(ν1) ≥ min(h[c(ν2)] \ c(ν2)) = α(ν2)

Case 2: α(ν) is constant on B
Let α be that constant value. By lemma 7.1, supν∈B c(ν) = α. But:

sup{c(ν) | ν ∈ B} ≤ e < α

Contradiction.
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8 Embeddings

Denote ψ~h,~δ : K → K~h,~δ = Ult(K,W~h,~δ) to be the ultrapower embedding.
Let ϕ : K → K′ be the complete iteration of K, using all the measures and
extenders (and their images) in K with critical points below κ++. By lemma
6.2, K~h,~δ is just a finite iteration of K by its measures, so there is some
elementary embedding ϕ~h,~δ : K~h,~δ → K′ such that ϕ = ϕ~h,~δ ◦ ψ~h,~δ.
For every n < ω, we consider the covering hn, Cn, ρn of ran(fn). Let An,
~hn, gn, ~cn be defined for this covering as in lemma 7.1. We write ~hn =
〈hn,0, . . . , hn,rn−1〉
Lemma 8.1. We can assume that for every n < m and for almost all ν,
~cn(ν) ⊆ ~cm(ν).

Proof. Let m < ω. Recall the proof of lemma 7.1 (by which ~cm(ν) was

defined) - we started from some support ~dm(ν) for fm(ν), and then applied
a ∆-system argument. Since we can choose any support we want, and since
Cn ⊆ Cm for every n < m (by lemma 5.2), we can choose ~dm(ν) to be

some support for fm(ν) such that
⋃

n<m ~cn(ν) ⊆ ~dm(ν). We can now apply
the ∆-system argument from lemma 7.1 to define cm(ν). Note that still
cn(ν) ⊆ cm(ν), since by induction, the elements of cn(ν) are not part of the
∆-system.

The next lemma proves a crucial property, related to the comparison of two
different coverings.

Lemma 8.2. Fix some n < m < ω. Let A ∈ G ∩ P(An ∩ Am) and I ⊆ ω
be finite such that for all ν ∈ A, ~cm(ν) ¹ I = ~cn(ν). Let ν ∈ A. Denote
Wi := W~hi,gi(ν), Ki := Ult(K,Wi), ψi := ψ~hi,gi(ν), and ϕi := ϕ~hi,gi(ν) for

i ∈ {n,m}. Then we can assume (by shrinking A if necessary), that there is
an elementary embedding Γ such that the following diagram commutes:

K

ψn

Kn

ψm

Km

ϕ
n

ϕm K′

Γ

M
oreover,

for
every

fu
n
ction

t
:
S

r
n →

K
,

t∈
K

,
if

u
:
S

r
m
→
K

is
defi

n
ed

as
u
( ~ξ)

:=
t( ~ξ¹

I
),

then
Γ
([t]W

n )
=

[u
]W

m
.
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Proof. To prove the lemma, it is enough to find some iterated ultrapower
embedding (i.u.e) Γ : Kn → Km. Then the commutativity of the diagram
above follows from uniqueness of iterations (the Dodd-Jensen Lemma, see
Corollary 4.3.11 of [9]): for example, both ϕn and ϕm ◦ Γ are i.u.e’s of Kn to
K′, so ϕn = ϕm ◦ Γ.
We shall prove the existence of such an i.u.e by induction on rn := |~cn(ν)|
and rm := |~cm(ν)|. If rm = 0 or rn = 0, then there is nothing to prove.
Therefore, we can assume that 0 < rn ≤ rm. For i ∈ {n,m}, denote ~c∗i (ν) :=
~ci(ν) ¹ (ri − 1), and let K∗i , ψ∗i be the corresponding model and embedding.
Let ~α∗i be the critical points of the iteration of K to K∗i , and W ∗

i be the
corresponding ultrafilter. Let ji : K∗i → Ki be the ultrapower embedding,
using the ultrafilter Ui with critical point αi. Let γi be such that Ui = (Uγi

)K
∗
i .

We also denote ci(ν) := max(~ci(ν)) and ti(x) := hi,ri−1(gi(ν), x).
If rm − 1 6∈ I, then we can apply the induction hypothesis to ~cn and ~c∗m, and
get some i.u.e Γ∗ : Kn → K∗m. Then we can simply define Γ := jm ◦ Γ∗.
We can therefore assume that rm − 1 ∈ I, i.e, cn(ν) = cm(ν).

Claim: tn(c∗n(ν)) = tm(c∗m(ν))

Proof: For i ∈ {n,m}, set γi(ν) := ti(c
∗
i (ν)). Denote α(ν) := αCn(cn(ν)) =

αCm(cm(ν)). By lemma 7.1, there are 2 cases. If α(ν) is strictly increasing on
A, then γn(ν) = γCn(cn(ν)) = γCm(cm(ν)) = γm(ν). Otherwise, let α be the
constant value of α(ν), and set c∗ := supν∈A cn(ν) = supν∈A cm(ν). If c∗ = α
then it is the same case. Otherwise, let γ∗ be such that c∗ ∈ Cγ∗ and α = αγ∗ .
Then:

γn(ν) = Cohγ∗,γ(cn(ν))(c∗) = Cohγ∗,γ(cm(ν))(c∗) = γm(ν)

In any case, γn(ν) = γm(ν). Claim

Let I∗ := I \ {rm− 1}. We apply the induction hypothesis to ~c∗n and ~c∗m, and
get an i.u.e Γ∗ : K∗n → K∗m. By the claim, we have:

tm(~c∗m(ν)) = tn(~c∗n(ν)) = tn(~c∗m(ν) ¹ I∗)

Define X := {~ξ ∈ Srm−1 | tm(~ξ) = tn(~ξ ¹ I∗)}. By lemma 7.2, we can shrink
A and have that ~c∗m(ν) ∈ X ∈ W ∗

m. Then:

ψ∗m(tm)(~α∗m) = ψ∗m(tn)(~α∗m ¹ I∗) = Γ∗(ψ∗n(tn)(α∗n))

The equality above can be written as γm = Γ∗(γn), which implies that Um =
Γ∗(Un) and αm = Γ∗(αn).
We can now define the embedding Γ : Kn → Km:

Γ([t]Un) := [Γ∗(t)]Um
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First we show that Γ is well defined. Assume that [t]Un = [u]Un . Then:

K∗n |= {ξ < αn | t(ξ) = u(ξ)} ∈ Un

Applying Γ∗ to the above gives us:

K∗m |= {ξ < αm | Γ∗(t)(ξ) = Γ∗(u)(ξ)} ∈ Um

Which implies that [Γ∗(t)]Um = [Γ∗(u)]Um , and Γ is well defined. The proof
that Γ is an elementary embedding is similar (just replace = by ∈). It remains
to show that Γ is an i.u.e. By definition, Γ ◦ jn = jm ◦ Γ∗. Then, by the
minimality of an i.u.e, and since jm ◦ Γ∗ is an i.u.e, also Γ ◦ jn is an i.u.e. In
particular, Γ is an i.u.e.

9 The Main Proof

In this section, we shall prove theorem 2.1. We wish to prove that there are
some n < m such that [fn] ≤ [fm].

• Let Xn, hn, Cn be a covering of ran(fn) as defined after corollary 5.2.

• Let An,~hn, h
′
n, gn,~cn, rn be as in lemma 7.1. All the properties from

lemmas 7.1, 7.2, 8.1 and 8.2 hold.

• We define a function hn,~δ : Srn → κ++ as hn,~δ(
~ξ) := h′n(~δ, ~ξ). Then

hn,gn(ν)(~cn(ν)) = fn(ν) for all ν ∈ An.

Let n < m < ω. By lemma 8.1, there is some An,m ∈ G such that for every
ν ∈ An,m, ~cn(ν) ⊆ ~cm(ν). We can assume that An,m ⊆ An ∩ Am.
By shrinking An,m further if necessary, we can assume there is some I(n,m) ⊆
rm such that for every ν ∈ An,m, ~cm(ν) ¹ I(n,m) = ~cn(ν).
Define a function hn,m,~δ : Srm → κ++ as:

hn,m,~δ(
~ξ) := hn,~δ(

~ξ ¹ I(n,m))

Then, for every ν ∈ An,m:

fn(ν) = hn,gn(ν)(~cn(ν)) = hn,gn(ν)(~cm(ν) ¹ I(n,m)) = hn,m,gn(ν)(~cm(ν))

We are now ready to prove the main result of this paper.
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Proof of theorem 2.1. We need to show that there is some n < m such that
[fn] ≤ [fm].

To simplify notations, denote for every n < ω and ~δ ∈ [λ]<ω:

W n
~δ

:= W~hn,~δ [hn,~δ] := [hn,~δ]W n
~δKn

~δ
:= K~hn,~δ ψn

~δ
:= ψ~hn,~δ ϕn

~δ
:= ϕ~hn,~δ

Recall that ϕ = ϕn
~δ
◦ ψn

~δ
, where ϕ : K → K′ is the complete iteration of K

using all the measures and extenders in K with critical points below κ++.
All these embeddings are definable in K.
For every n < ω, and ν < κ, let:

f ′n(ν) := ϕn
gn(ν)([hn,gn(ν)])

By lemma 3.3, there must be some n < m < ω such that [f ′n] ≤ [f ′m]. We
fix such n < m for the remainder of the proof. We will eventually show that
also [fn] ≤ [fm].

We work in K and construct sets 〈X~δn,~δm
| ~δn, ~δm ∈ [λ]<ω〉 as follows.

Let ~δn, ~δm ∈ [λ]<ω. Consider the following assumptions:

(A1) ϕn
~δn

([hn,~δn
]) ≤ ϕm

~δm
([hm,~δm

])

(A2) There is an elementary embedding Γ : Kn
~δn
→ Km

~δm
such that the fol-

lowing diagram commutes:
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]
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and the fourth follows from the third by assumption (A3). Then there is
some set X~δn,~δm

∈ Wm
~δm

such that:

(∗) ∀~ξ ∈ X~δn,~δm
hn,m,~δn

(~ξ) ≤ hm,~δm
(~ξ)

By lemma 6.1, Wm
~δm

is complete enough so we can define:

X~δm
:=

⋂

~δn∈[λ]<ω

X~δn,~δm
∈ Wm

~δm

This completes the construction. All the construction was performed in K,
so 〈X~δ | ~δ ∈ [λ]<ω〉 ∈ K.
Now, let A ∈ G be such that A ⊆ An,m, and for every ν ∈ A:

(1) f ′n(ν) ≤ f ′m(ν)

(2) ~cn(ν) ⊆ ~cm(ν)

(3) ~cm(ν) ∈ Xgm(ν)

(1) holds for almost all ν since [f ′n] ≤ [f ′m], (2) holds since A ⊆ An,m, and (3)
holds for almost all ν by lemma 7.2. Let ν ∈ A. It is enough to show that
fn(ν) ≤ fm(ν).

Denote ~δn := gn(ν) and ~δm := gm(ν). Note that (1) implies assumption (A1),
and lemma 8.2 implies assumptions (A2) and (A3). Then (∗) holds, and for

every ~ξ ∈ X~δn,~δm
:

hn,m,~δn
(~ξ) ≤ hm,~δm

(~ξ)

In particular, since ~cm(ν) ∈ X~δm
⊆ X~δn,~δm

:

fn(ν) = hn,m,~δn
(~cm(ν)) ≤ hm,~δm

(~cm(ν)) = fm(ν)

And we are done.

This completes the proof of theorem 2.1.

10 Concluding remarks

The situation for cardinals larger than ℵ1 is less clear. For successor cardinals,
we can generalize theorem 2.1 if we allow some additional assumptions. In
[3], 1.3 generalizes to arbitrary successors cardinals as follows:

Theorem (2.7 of [3]). Let κ be a successor cardinal, and let κ− be the pre-
decessor of κ. Assume that:
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(1) F is a precipitous filter over κ, and {ν < κ | cf(ν) = κ−} ∈ Fnormal

(where Fnormal is the projection of F to a normal filter).

(2) 2κ = κ+ and (κ−)<κ− = κ−.

(3) κ °F+ i(κ) > κ+ (where i is defined as in theorem 3.1)

Then for every τ < κ++, there exists a normal filter that is precipitous up to
the image of τ .

Now, let κ be some successor cardinal for which the assumptions in the the-
orem above holds. We can repeat the proof in this paper for that successor
cardinal κ, using the theorem above instead of theorem 3.1. Note that in this
paper, we never actually used the assumption that κ = ℵ1 (only that κ is un-
countable), so the proof still applies, and we have the following generalization
of theorem 2.1:

Theorem 10.1. Let κ be a successor cardinal, and let κ− be the predecessor
of κ. Assume that:

(1) F is a precipitous filter over κ, and {ν < κ | cf(ν) = κ−} ∈ Fnormal.

(2) κℵ0 = κ, 2κ = κ+, and (κ−)<κ− = κ−.

(3) There is no inner model with a strong cardinal.

(4) In the core model, the set {α < κ++ | o(α) ≥ α+} is bounded in κ++.

Then there exists a normal precipitous filter.

It is possible to replace the existence of a precipitous filter in the assumptions
of this theorem by ∞-semi-precipitous.
Probably a more exciting task is to try to push the consistency strength
of ”no normal precipitous filter on ℵ1“ further up. It seems likely that the
assumption {α < ℵ3 | o(α) ≥ α+} is bounded in ℵ3 can be weaken to
{α < ℵ3 | α is a weak repeat point } is bounded in ℵ3. But going further
will require to deal with βM(c)’s which may depend on covering models M
more and more. Probably at certain point this may give a hint for a forcing
construction of a model with a precipitous filter but without a normal one.
An other direction is to try to remove GCH type assumptions that we made
here.
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