A model with a precipitous ideal, but no normal precipitous ideal.

Moti Gitik *[†]

December 4, 2012

Abstract

Starting with a measurable cardinal κ of the Mitchell order κ^{++} we construct a model with a precipitous ideal on \aleph_1 but without normal precipitous ideals. This answers a question by T. Jech and K. Prikry. In the constructed model there are no Q-point precipitous filters on \aleph_1 , i.e. those isomorphic to extensions of Cub_{\aleph_1} .

1 Introduction and Basic ideas

Precipitous ideals were introduced by T. Jech and K. Prikry [10]. A κ -complete ideal I on κ is *precipitous* if the generic ultrapower $V \cap {}^{\kappa}V/G$ is well-founded for every generic ultrafilter $G \subseteq I^+$. Precipitousness can be viewed as a weakening of measurability which is compatible with small cardinals.

Given a κ -complete ultrafilter U over a measurable κ there always exists a normal ultrafilter U^* over κ as well. Just take a function $f : \kappa \to \kappa$ which represents κ in the ultrapower by U, i.e. $[f]_U = \kappa$, and project U using f, which yields the normal ultrafilter $U^* := \{X \mid f^{-1''}X \in U\}$ over κ . There are two obstacles that prevent implementation of the same approach to a precipitous filter F. The first is that there does not necessary exist a *single* function that represents κ in a generic ultrapower (the choice of such function may depend on particular condition, i.e. a set in F^+ . In [5] an example of a precipitous filter without a normal filter below it in the Rudin-Keisler order was given. It is easy to fix this by simply restricting F to its positive set that decides a function f which represents κ in the ultrapower. The second much more serious obstacle is that the projection of F (or a

^{*}This work was partially supported by ISF Grant 234/08.

[†]We are grateful to the referee of the paper for his suggestions as well as for a long and comprehensive list of corrections.

restriction that decides f) by f need not in general be precipitous. The first example of this type was given by R. Laver [11] using a supercompact cardinal. Later in [5] we gave an example using only a measurable cardinal.

Let us briefly explain the idea used in this construction since it will be relevant for the present one. We started with a GCH model with a measurable κ and a normal ultrafilter U over it. Using the Backward Easton iteration (in order to preserve the measurability of κ) κ^+ -many Cohen functions $\langle f_\beta \mid \beta < \kappa^+ \rangle$ from κ to κ were added. A precipitous filter F was defined over κ^2 and its generic embedding extended i_{02} the second iterated ultrapower of U, i.e. $i_{01}: V \to M_1 \simeq {}^{\kappa}V/U, \kappa_1 = i_{01}(\kappa), i_{12}: M_1 \to M_2 \simeq {}^{\kappa_1}M_1/i_{01}(U)$, and $i_{02} = i_{12} \circ i_{01}: V \to M_2$. The projection F^* of F to a normal filter was not precipitous because for no one of the Cohen functions f_β could it be forced that $[f_\beta]$ is minimal in the generic ultrapower among the set $\{[f_\beta] \mid \beta < \kappa^+\}$. In the proof of these, it was critical that all of the functions were candidates to represent κ_1 . It is not by chance that this f_β 's were candidates for the function that represents κ_1 . Further results starting with Section 4 of [5], then 2.4 of [6] and [7] suggest that the only ordinals which have a chance to produce an ill-foundness must be of the form κ_{α} (i.e. critical points of iterated ultrapowers).

On the other hand, if the number of critical points is too small (i.e. the length of the iteration is too short), say at most κ^+ , then results of [6], [7] imply (at least under GCH-type assumptions and in absence of too large cardinals) that there will be always normal precipitous filters.

So it is natural to try the following:

Start with a normal ultrafilter U over κ and iterate it κ^{++} -many times. This will create critical points $\langle \kappa_{\alpha} \mid \alpha < \kappa^{++} \rangle$. Next add κ^{++} many blocks, each consisting of κ^{+} -many Cohen function from κ to κ . Arrange this (say by adding clubs) so that the functions of α -th block are the candidates to represent κ_{α} . Note that by J.-P. Levinski [12] no assumptions beyond measurability are needed in order to blow up the power and to preserve precipitousness. A problematic point is that his arguments and their extensions in [4] produce large (size κ^{++}) antichains which allow using the method of [6] to construct normal precipitous ideals.

A way around this obstacle will be to collapse in advance a measurable κ to \aleph_1 and to relay on $Col(\omega, < \kappa^{++})$ (which satisfies κ^{++} -c.c.) in order to generically extend the relevant embeddings (namely $i_{0\kappa^{++}}$).

An additional problem with this approach is that the models of the iteration (iterated ultrapowers) $M_{\alpha}, \alpha \leq \kappa^{++}$ are very unclosed. Thus already starting with M_{ω} we lose closure even under ω -sequences. For example $\langle \kappa_n \mid n < \omega \rangle \notin M_{\alpha}$ for every $\alpha, \omega \leq \alpha \leq \kappa^{++}$. This turns out to be bad once we try to change values of Cohen functions in order to insure the right representations. Remember that α -th block should provide potential candidates for functions representing κ_{α} . Which makes values changing a crucial issue.

The way to gain the missing closure will be to switch from dealing with a single normal ultrafilter and its iterated ultrapowers to κ^{++} -many ultrafilters. We will use as an initial model the model from [3] which has a Rudin-Keisler increasing sequence of ultrafilters of length κ^{++} .

The actual construction will be as follows. We start with a model of [3] (assuming that there is a measurable κ of Mitchell order κ^{++}). Collapse κ to \aleph_1 and add κ^{++} many blocks of Cohen functions. Organize suitable generics using $Col(\omega, < \kappa^{++})$ and use them to define an ∞ -semi precipitous filter over \aleph_1 . Add clubs in order to turn it into Cub_{\aleph_1} restricted to a certain set. Next argue that there are no normal precipitous filters on \aleph_1 (and, hence, if the construction was started with the core model for $o(\kappa) = \kappa^{++}$, no normal precipitous filters at all). Finally a precipitous filter on \aleph_1 will be constructed using methods of [6].

2 Construction of the model

Start with GCH model W and assume that for some κ there exists a coherent sequence of ultrafilters \vec{U} with $o^{\vec{U}}(\kappa) = \kappa^{++}$ and $o^{\vec{U}}(\alpha) < \alpha^{++}$, for every $\alpha < \kappa$. We assume further for the purpose of the main result that W is the minimal model $L[\vec{U}]$ having a cardinal κ such that $o(\kappa) = \kappa^{++}$; however this assumption will not be used in most of the arguments below. The conclusion of such general setting will be only that there are no precipitous filters which extend $Cub_{\aleph_1} + \{\nu < \kappa \mid o^{\vec{U}}(\nu) = 0\}$.¹

By a coherent sequence \vec{U} of ultrafilters in W we mean a function with domain of the form

$$\{(\alpha, \beta) \mid \alpha < \ell^{\vec{U}} \text{ and } \beta < o^{\vec{U}}(\alpha)\}.$$

For each pair $(\alpha, \beta) \in \operatorname{dom}(\vec{U}),$

- 1. $U(\alpha, \beta)$ is a normal ultrafilter on α , and
- 2. if $j^{\alpha}_{\beta}: W \to N^{\alpha}_{\beta} \simeq W^{\alpha}/U(\alpha, \beta)$ is the canonical embedding, then

$$j^{\alpha}_{\beta}(\vec{U}) \upharpoonright \alpha + 1 = \vec{U} \upharpoonright (\alpha, \beta).$$

¹If F is a filter on a set X and A is F-positive set then F + A denotes the extension of F generated by A, i.e. $F + A = \{B \subseteq X \mid \exists S \in F \mid B \supseteq A \cap S\}.$

We assume that $\ell^{\vec{U}} = \kappa + 1, o^{\vec{U}}(\kappa) = \kappa^{++}$ and for every $\alpha < \kappa, o^{\vec{U}}(\alpha) < \alpha^{++}$.

Force with the forcing of [3] and turn the sequence $\langle U(\kappa,\beta) \mid \beta < \kappa^{++} \rangle$ into a Rudin -Keisler increasing commutative sequence of Q-point ultrafilters $\langle U_{\beta} \mid \beta < \kappa^{++} \rangle$ over κ in a GCH cardinal preserving generic extension V of W.

Which means the following:

- 1. U_{β} is a κ -complete ultrafilter over κ in V,
- 2. U_0 is a normal ultrafilter over κ in V,
- 3. $U_{\beta} \supseteq U(\kappa, \beta)$,
- 4. $U_{\beta} \supseteq Cub_{\kappa}$ (this means that U_{β} is a Q-point),
- 5. if $\beta < \alpha < \kappa^{++}$, then there is a projection function $\pi_{\alpha\beta} : \kappa \to \kappa$, $U_{\beta} = \{\pi_{\alpha\beta} "X \mid X \in U_{\alpha}\}$ (this means that U_{β} is below U_{α} in the Rudin - Keisler order).

Denote by $M_{\kappa^{++}}$ the direct limit of the ultrapowers of $U_{\beta}, \beta < \kappa^{++}$. Let $i_{0\kappa^{++}} : V \to M_{\kappa^{++}}$ be the corresponding elementary embedding.

We have by [3], ${}^{\kappa}M_{\kappa^{++}} \subseteq M_{\kappa^{++}}$.

By elementarity, $M_{\kappa^{++}}$ is a generic extension of a model $\tilde{M}_{\kappa^{++}}$ such that $i_{0\kappa^{++}} \upharpoonright W : W \to \tilde{M}_{\kappa^{++}}$. The model $\tilde{M}_{\kappa^{++}}$ is the complete iterated ultrapower of W by measures from $\vec{U}^{,2}$

Denote by $\langle \kappa_{\alpha} \mid \alpha < \kappa^{++} \rangle$ the sequence of all critical points of such iteration. It is a closed unbounded subset of κ^{++} . For every $\alpha < \kappa^{++}$ define an ultrafilter $U'_{\alpha} = \{X \subseteq \kappa \mid \kappa_{\alpha} \in i_{0\kappa^{++}}(X)\}$.

For every $\alpha < \kappa^{++}$ let $M_{\alpha+1}$ be the transitive collapse of V^{κ}/U'_{α} and $i_{0\alpha+1}$ the corresponding elementary embedding. Set $M_0 = V$, $i_{00} = id$.

For a limit $\alpha \leq \kappa^{++}$ let M_{α} be the direct limit of $\langle M_{\gamma} | \gamma < \alpha \rangle$ and $\langle i_{\gamma\alpha} | \gamma < \alpha \rangle$ the corresponding elementary embeddings, i.e. $i_{\gamma\alpha} : M_{\gamma} \to M_{\alpha}$.

We have by [3], ${}^{\kappa}M_{\kappa^{++}} \subseteq M_{\kappa^{++}}$.

For every $\alpha \leq \kappa^{++}$, by elementarity, M_{α} is a generic extension of a model \tilde{M}_{α} such that $i_{0\alpha} \upharpoonright W : W \to \tilde{M}_{\alpha}$. Models \tilde{M}_{α} are iterated ultrapowers of W by measures from \vec{U} . If $W = \mathcal{K}$, then \tilde{M}_{α} is the core model of M_{α} . Let us denote further $(o^{i_{0\alpha}(\vec{U})}(\delta))^{\tilde{M}_{\alpha}}$ simply by $(o(\delta))^{\tilde{M}_{\alpha}}$, for any ordinal δ and $\alpha \leq \kappa^{++}$.

²This means that we start with $U(\kappa, 0)$ then apply its image and so one ω -many times. At the next stage (i.e. at the stage ω the image of $U(\kappa, 1)$ is applied. Then again the image of $U(\kappa, 0)$ for ω -many steps and at the stage $\omega + \omega$ the image of $U(\kappa, 1)$ is used again and so on. The image of $U(\kappa, 2)$ is applied only after $U(\kappa, 1)$ was used ω -many times etc.

Collapse κ to \aleph_1 by $Col(\omega, < \kappa)$. Then let us add κ^{++} blocks of functions from κ to κ as follows: in $V^{Col(\omega, < \kappa)}$ set

 $Cohen(\kappa, \kappa^{++} \times \kappa^{+}) = \{ f \mid |f| < \kappa, f \text{ is a partial function from } \kappa \times (\kappa^{++} \times \kappa^{+}) \text{ to } \kappa \}.$

Let $G_1 \subseteq Col(\omega, < \kappa)$ be generic over V and $G_2 \subseteq Cohen(\kappa, \kappa^{++} \times \kappa^{+})$ be a generic over $V[G_1]$. Set $\bar{G}_2 = \bigcup G_2$ and for every $\alpha < \kappa^{++}, \beta < \kappa^{+}, \nu < \kappa$ let $f_{\alpha\beta}(\nu) = \bar{G}_2(\nu, \alpha, \beta)$. Denote by

$$F_{\alpha} = \{ f_{\alpha\beta} \mid \beta < \kappa^+ \}.$$

This will be our α -th block of functions.

2.1 Constructing generics

Let show that the elementary embedding $i_{0\kappa^{++}} : V \to M_{\kappa^{++}}$ extends (generically). It is possible to use [4], but the construction there collapses κ^{++} which is bad for our purposes here. We will need to extend the embedding in a different fashion. One of the issues will be to generate an $M_{\kappa^{++}}^{Col(\omega,<\kappa^{++})}$ -generic subset of $i_{0\kappa^{++}}(Cohen(\kappa,\kappa^{++}\times\kappa^{+}))$ using $Col(\omega,<\kappa^{++})$.

For each $\alpha < \kappa^{++}$ let us add only $(o(\kappa_{\alpha}))^{\tilde{M}_{\kappa^{++}}} < \kappa^{++}$ blocks of Cohen functions over $M_{\alpha+1}^{Col(\omega,< i_{0\alpha+1}(\kappa))}$. More generally $M_{\alpha+1}^{Col(\omega,< i_{0\alpha+1}(\kappa))}$ -generic subsets of iterations of length $(o(\kappa_{\alpha}))^{\tilde{M}_{\kappa^{++}}}$ need to be constructed, since we will add also certain clubs further. Dealing with them is very similar, so let us concentrate on blocks of Cohen functions.

Let $P = i'_{0\kappa^{++}}(Cohen(\kappa, \kappa^{++} \times \kappa^{+}))$ or the image of a κ -support iteration of forcings of cardinality κ with closure properties, where $i'_{0\kappa^{++}} : V^{Col(\omega, <\kappa)} \to M^{Col(\omega, <(\kappa^{++})^V)}_{\kappa^{++}}$ is the obvious extension of $i_{0\kappa^{++}}$. Note that in $V^{Col(\omega, <\kappa)}$ we have $\kappa = \aleph_1$ and $\kappa^{++} = \aleph_3$. In order to simplify the notation, let us use $i_{0\kappa^{++}}$ to denote also $i'_{0\kappa^{++}}$ and by κ^{++} we will mean $(\kappa^{++})^V$.

We would like to construct an $M_{\kappa^{++}}^{Col(\omega,<\kappa^{++})}$ -generic subset of $i_{0\kappa^{++}}(Cohen(\kappa,\kappa^{++}\times\kappa^{+}))$ in $V^{Col(\omega,<\kappa)*Cohen(\kappa,\kappa^{++}\times\kappa^{+})*Col(\omega,[\kappa,\kappa^{++}))}$.

Let us first do some warm ups.

2.1.1 A single Cohen function.

Let us deal with a single Cohen function. Namely we would like to construct $f : \kappa^{++} \to \kappa^{++}$ which is a Cohen generic over $M_{\kappa^{++}}^{Col(\omega, <\kappa^{++})}$.

The construction will proceed by recursion, building $M_{\alpha}^{Col(\omega, <\kappa_{\alpha})}$ -generic Cohen function $f^{\alpha}: \kappa_{\alpha} \to \kappa_{\alpha}$, for every $\alpha \leq \kappa^{++}$.

Set $f^0 = f_{00}$. Let $\alpha \leq \kappa^{++}$. Assume that $\langle f^{\gamma} | \gamma < \alpha \rangle$ is defined and for every $\gamma' < \gamma < \alpha$ we have $f^{\gamma} \upharpoonright \kappa_{\gamma'} = f^{\gamma}$. Define f^{α} .

Case 1. α is a limit ordinal.

Set then $f^{\alpha} = \bigcup_{\gamma < \alpha} f^{\gamma}$. Let us argue that such defined f^{α} is $M_{\alpha}^{Col(\omega, <\kappa_{\alpha})}$ -generic Cohen function. Let D be a dense set. Recall that M_{α} is a direct limit of $\langle M_{\gamma} | \gamma < \alpha \rangle$, since α is a limit ordinal. Then, for some $\gamma < \alpha$ and a dense subset D_{γ} of the Cohen forcing for κ_{γ} in $M_{\gamma}^{Col(\omega, <\kappa_{\gamma})}$, $i_{\gamma\alpha}(D_{\gamma}) = D$. But $D_{\gamma} \subseteq (H(\kappa_{\gamma}))^{M_{\gamma}^{Col(\omega, <\kappa_{\gamma})}}$ and κ_{γ} is the critical point of $i_{\gamma\alpha}$, hence $D_{\gamma} = D \cap (H(\kappa_{\gamma}))^{M_{\gamma}^{Col(\omega, <\kappa_{\gamma})}}$. The function f^{γ} is Cohen generic, so it extends an element of D_{γ} . Then also f^{α} extends it and we are done.

We can assume using induction that f^{α} is definable from the sequence $\langle \kappa_{\gamma} | \gamma < \alpha \rangle$. This sequence belongs to $M_{\alpha+1}$.³ Hence $f^{\alpha} \in M_{\alpha+1}^{Col(\omega, <\kappa_{\alpha})}$.

Case 2. α is a successor ordinal.

Use $Col(\omega, ((\kappa_{\alpha})^{+})^{M_{\alpha}} + \kappa^{+}))$ to find $M_{\alpha}^{Col(\omega, <\kappa_{\alpha})}$ -generic Cohen function $f'^{\alpha} : \kappa_{\alpha} \to \kappa_{\alpha}$ in some canonical way. Then replace in it $f'^{\alpha} \upharpoonright \kappa_{\alpha-1}$ by $f^{\alpha-1}$. Set f^{α} to be the result. Clearly f^{α} will be $M_{\alpha}^{Col(\omega, <\kappa_{\alpha})}$ -generic Cohen function, since $f^{\alpha-1} \in M_{\alpha+1}^{Col(\omega, <\kappa_{\alpha})}$, and so it is a condition in the Cohen forcing.

2.1.2 The first block of Cohen functions.

Let us deal with the κ^+ -Cohen function of the first block $F_0 = \{f_{0\beta} \mid \beta < \kappa^+\}$. Namely we would like to construct $f_{\beta} : \kappa^{++} \to \kappa^{++}, \beta < i_{0\kappa^{++}}(\kappa^+)$ which is a Cohen generic for $i_{0\kappa^{++}}(Cohen(\kappa,\kappa^+) \text{ over } M^{Col(\omega,<\kappa^{++})}_{\kappa^{++}})$. We would like also to have $f_{i_{0\kappa^{++}}}(\beta) \upharpoonright \kappa = f_{0\beta}$, for every $\beta < \kappa^+$, in order to be able to lift the embedding. Also we would like to spread generating parts of collapses a bit.

The construction will proceed by recursion, building $M_{\alpha}^{Col(\omega, <\kappa_{\alpha})}$ -generic Cohen functions $f_{\beta}^{\alpha}: \kappa_{\alpha} \to \kappa_{\alpha}$ for the forcing $i_{0\alpha}(Cohen(\kappa, \kappa^{+}))$, for every $\alpha \leq \kappa^{++}, \alpha \neq 1$ and $\beta < \kappa^{+}$.

Case 1. $\alpha = 0$.

Set $f^0_{\beta} = f_{0\beta}$, for every $\beta < \kappa^+$.

Case 2. $\alpha = 2$.

Define $f_{\beta}^2 : \kappa_2 \to \kappa_2$, for every $\beta < i_{02}(\kappa^+)$.

Clearly, $i_{02}(Cohen(\kappa,\kappa^+)) = (Cohen(\kappa_2,\kappa_2^+))^{M_2^{Col(\omega,<\kappa_2)}}$. It is a κ_2^+ -c.c. forcing of size κ_2^+ in $M_2^{Col(\omega,<\kappa_2)}$. Use $Col(\omega,(\kappa_2^+)^{M_2})$ to build an $M_2^{Col(\omega,<\kappa_2)}$ -generic subset G'_2 . Denote the Cohen functions produced by G'_2 by $\langle f'_\beta \mid \beta < (\kappa_2^+)^{M_2} \rangle$.

Now we define f_{β}^2 to be $f_{\beta}'^2$ unless $\beta = i_{02}(\gamma)$, for some $\gamma < \kappa^+$. If $\beta = i_{02}(\gamma)$, for some

³It is (up to an initial segment) the Magidor-Radin generic sequence for κ_{α} in $M_{\alpha+1}$.

 $\gamma < \kappa^+$, then let us proceed as follows.

First use $Col(\omega, \{(\kappa_1^+)^{M_1} + \kappa^+ + \gamma\})$ to pick genericly an ordinal $\gamma^* \in [\kappa_1, \kappa_2)$. Then set $f_{\beta}^2 = f_{0\gamma} \cup \{(\kappa, \gamma^*)\} \cup f_{\beta}^{\prime 2} \upharpoonright [\kappa + 1, \kappa_2)$. I.e. the value at κ is changed to some rather random value $\geq \kappa_1$.

The intuition behind is that we would like that the values $\langle i_{0\kappa^{++}}(f_{0\gamma})(\kappa) | \gamma < \kappa^+ \rangle$ will be kind of independent. Also note that for every $f : \kappa \to \kappa$ in V, $i_{0\kappa^{++}}(f)(\kappa) < \kappa_1$, so each function from the first block will dominate every old function.

Let G_2 be the resulting transformation of G'_2 .

Note that for every $X \in M_2$ of size at most κ_2 there, we have $|i_{02}''\kappa^+ \cap X| \leq \kappa$. So G_2 is still $(Cohen(\kappa_2, \kappa_2^+))^{M_2^{Col(\omega, <\kappa_2)}}$ -generic.

Case 3. α is a limit ordinal.

Then for every $\beta \in i_{0\alpha}(\kappa^+)$ there is $\gamma < \alpha$ such that $\beta \in i_{\gamma\alpha}''\kappa^+$. Denote the least such γ by γ_{β} and let β^* denotes the pre-image of β under $i_{\gamma_{\beta}\alpha}$.

Now set $f^{\alpha}_{\beta} = \bigcup_{\gamma_{\beta} \leq \gamma < \alpha} f^{\gamma}_{i_{\gamma_{\beta}\gamma}(\beta^*)}$.

It is not hard to check (similar to 2.1.1, Case 1) that $\langle f_{\beta}^{\alpha} | \beta < i_{0\alpha}(\kappa^{+}) \rangle$ is as desired.

Let us emphasize the following which is crucial for further successor stages. Suppose that $X \subseteq i_{0\alpha}(\kappa^+)$ of cardinality at most κ_{α} in M_{α} . Then there is $\gamma < \alpha$ such that $X \in \operatorname{rng}(i_{\gamma\alpha})$. Denote the least such γ by γ_X and let $X^* \subseteq i_{0\gamma_X}(\kappa^+)$ denotes the pre-image of X under $i_{\gamma_X\alpha}$. Clearly, γ_X is a successor ordinal. Also $|X^*|^{M_{\gamma_X}}$ is at most κ_{γ_X} . Consider a function $h_{X^*}: \kappa_{\gamma_X} \to M_{\gamma_X}$ such that $i_{\gamma_X\gamma_X+1}(h_{X^*})(\kappa_{\gamma_X}) = X^*$.

Then $h_X := i_{\gamma_X \alpha}(h_{X^*}) \in M_\alpha$ and $h_X(\kappa_\gamma) = i_{\gamma_X \gamma}(X^*)$, for every $\gamma, \gamma_X < \gamma \leq \alpha$.

Case 4. α is a successor ordinal with $\alpha - 1 > 1$.

Use $Col(\omega, ((\kappa_{\alpha})^{+})^{M_{\alpha}} + \kappa^{+}))$ to find $M_{\alpha}^{Col(\omega, <\kappa_{\alpha})}$ -generic set G'^{α} for $i_{0\alpha}(Cohen(\kappa, \kappa^{+})) = (Cohen(\kappa_{\alpha}, \kappa_{\alpha}^{+}))^{M_{\alpha}^{Col(\omega, <\kappa_{\alpha})}}$ in some canonical way. Let $f_{\beta}'^{\alpha} : \kappa_{\alpha} \to \kappa_{\alpha}, \beta < i_{0\alpha}(\kappa^{+})$ be the Cohen functions defined by G'^{α} .

Now we define f^{α}_{β} to be $f^{\prime \alpha}_{\beta}$ unless $\beta = i_{0\alpha}(\gamma)$, for some $\gamma < \kappa^+$. If $\beta = i_{0\alpha}(\gamma)$, for some $\gamma < \kappa^+$, then let f^{α}_{β} be the function obtained from $f^{\prime \alpha}_{\beta}$ by replacing in it $f^{\prime \alpha}_{\beta} \upharpoonright \kappa_{\alpha-1}$ by $f^{\alpha-1}_{\gamma}$, i.e. $f^{\alpha}_{\beta} = f^{\alpha-1}_{\gamma} \cup f^{\prime \alpha}_{\beta} \upharpoonright [\kappa_{\alpha-1}, \kappa_{\alpha})$.

We need to check that the changed sequence $\langle f^{\alpha}_{\beta} \mid \beta < i_{0\alpha}(\kappa^+) \rangle$ is still $M^{Col(\omega, <\kappa_{\alpha})}_{\alpha}$ -generic for $(Cohen(\kappa_{\alpha}, \kappa^+_{\alpha}))^{M^{Col(\omega, <\kappa_{\alpha})}_{\alpha}}$.

It is enough to show that for every $\xi < (\kappa_{\alpha}^+)^{M_{\alpha}}$, $\langle f_{\beta}^{\alpha} \upharpoonright \kappa_{\alpha-1} \mid \beta < \xi \rangle$ is in $M_{\alpha}^{Col(\omega, <\kappa_{\alpha})}$.

Let $\xi < (\kappa_{\alpha}^{+})^{M_{\alpha}}$. Pick some $\rho < (\kappa_{\alpha-1}^{+})^{M_{\alpha-1}}$ such that $i_{\alpha-1\alpha}(\rho) \ge \xi$. Note that $i_{\alpha-1\alpha}''(\kappa_{\alpha-1}^{+})^{M_{\alpha-1}}$ is unbounded in $(\kappa_{\alpha}^{+})^{M_{\alpha}}$ so it is possible. Set $X = \rho$. Then $X \subseteq (\kappa_{\alpha-1}^{+})^{M_{\alpha-1}}$ of cardinality at most $\kappa_{\alpha-1}$. Let h_X be as in the previous case. The sequence $\langle \kappa_{\delta} | \delta < \alpha \rangle$ is in M_{α} as

well as h_X . Then the sequence $\langle f_{\mu}^{\alpha-1} \mid \mu \in X \rangle$ will be in $M_{\alpha}^{Col(\omega, <\kappa_{\alpha})}$. But also the function $\{(\nu, i_{\alpha-1\alpha}(\nu)) \mid \nu < \rho\}$ is in M_{α} . Hence $\langle f_{\beta}^{\alpha} \upharpoonright \kappa_{\alpha-1} \mid \beta \in i_{\alpha-1\alpha} "\rho \rangle$ is in $M_{\alpha}^{Col(\omega, <\kappa_{\alpha})}$. So, $\langle f_{\beta}^{\alpha} \upharpoonright \kappa_{\alpha-1} \mid \beta < \xi \rangle$ is in $M_{\alpha}^{Col(\omega, <\kappa_{\alpha})}$. Note that $\langle f_{\mu}^{\alpha-1} \mid \mu < (\kappa_{\alpha-1}^+)^{M_{\alpha-1}} \rangle$ is not in $M_{\alpha}^{Col(\omega, <\kappa_{\alpha})}$.

2.1.3 An arbitrary block of Cohen functions.

Let $\eta < \kappa^{++}$. We deal now with η 's block $F_{\eta} = \{f_{\eta\beta} \mid \beta < \kappa^{+}\}$ of Cohen functions. Repeat the construction of 2.1.2, but only start from $\eta + 1$ instead of 2.

2.1.4 Dealing with all blocks of Cohen functions simultaneously.

Now we will deal simultaneously with all κ^{++} blocks.

Namely we would like to construct functions $f_{\alpha\beta}^{\kappa^{++}} : \kappa^{++} \to \kappa^{++}, \alpha < i_{0\kappa^{++}}(\kappa^{++}), \beta < i_{0\kappa^{++}}(\kappa^{+})$ which are a Cohen generic for $i_{0\kappa^{++}}(Cohen(\kappa, \kappa^{++} \times \kappa^{+}))$ over $M_{\kappa^{++}}^{Col(\omega, <\kappa^{++})}$. We would like also to have $f_{i_{0\kappa^{++}}(\alpha)i_{0\kappa^{++}}(\beta)} \upharpoonright \kappa = f_{\alpha\beta}$, for every $\alpha < \kappa^{++}, \beta < \kappa^{+}$, in order to be able to lift the embedding.

Note that $i_{0\kappa^{++}}(\kappa^{++}) = i_{0\kappa^{++}}(o(\kappa)) = \bigcup i_{0\kappa^{++}} "\kappa^{++}.$

The construction will proceed by recursion, building $M_{\eta}^{Col(\omega,<\kappa_{\eta})}$ -generic Cohen functions $f_{\alpha\beta}^{\eta}:\kappa_{\eta} \to \kappa_{\eta}$ for the forcing $Cohen(\kappa_{\eta}, o^{\tilde{M}_{\kappa^{++}}}(\kappa_{\eta}) \times i_{0\eta}(\kappa^{+}))$, for every successor $\eta \leq \kappa^{++}$ and $\beta < \kappa^{+}$. We define some of $f_{\alpha\beta}^{\eta}$ for limit $\eta, 0 < \eta < \kappa^{++}$ as well, but in this case they will not always be $M_{\eta}^{Col(\omega,<\kappa_{\eta})}$ -Cohen generic for the forcing $Cohen(\kappa_{\eta}, o^{\tilde{M}_{\kappa^{++}}}(\kappa_{\eta}) \times i_{0\eta}(\kappa^{+}))$.

Let $\eta, 0 < \eta < \kappa^{++}$. We deal at this stage with the forcing $Cohen(\kappa_{\eta}, o^{\tilde{M}_{\kappa^{++}}}(\kappa_{\eta}) \times (\kappa_{\eta}^{+})^{M_{\eta}})$.

Note that $o^{\tilde{M}_{\kappa^{++}}}(\kappa_n) = 0$, for every $n < \omega$ and $o^{\tilde{M}_{\kappa^{++}}}(\kappa_{\omega}) = 1$. So the first non-trivial case will be $\eta = \omega + 1$.

Case 1. $\eta = \omega + 1$.

So we have $Cohen(\kappa, 1 \times \kappa^+)$. It is just a single Cohen function. Proceed as in 2.1.2.

Case 2. η is a limit ordinal.

 Set

$$Z_{\eta} = \{ \alpha < o^{\tilde{M}_{\kappa^{++}}}(\kappa_{\eta}) \mid \exists \xi < \eta \quad \exists \alpha_{\xi} < o^{\tilde{M}_{\kappa^{++}}}(\kappa_{\xi}) \quad i_{\xi\eta}(\alpha_{\xi}) = \alpha \}$$

Note that Z_{η} may be a proper subset of $o^{\tilde{M}_{\kappa}++}(\kappa_{\eta})$, if $\eta < \kappa^{++}$, but for $\eta = \kappa^{++}$ we have the equality.

Claim 1 $Z_{\kappa^{++}} = o^{\tilde{M}_{\kappa^{++}}}(\kappa^{++}).$

Proof. Let $\alpha < o^{\tilde{M}_{\kappa^{++}}}(\kappa^{++})$. Pick some $\xi, \rho' < \xi < \kappa^{++}$ and α_{ξ} such that $i_{\xi\kappa^{++}}(\alpha_{\xi}) = \alpha$. By elementarity, $M_{\xi} \models \alpha_{\xi} < o(\kappa_{\xi})$. Then at some stage δ of the iteration from M_{ξ} to $M_{\kappa^{++}}$ a measure $i_{\xi\delta}(U(\kappa_{\xi}, \alpha_{\xi} + 1))$ should be used, and then $i_{\xi\delta+1}(\alpha_{\xi}) < o^{\tilde{M}_{\delta+1}}(\kappa_{\delta}) = o^{\tilde{M}_{\kappa^{++}}}(\kappa_{\delta})$, or already $\alpha_{\xi} < o^{\tilde{M}_{\xi+1}}(\kappa_{\xi}) = o^{\tilde{M}_{\kappa^{++}}}(\kappa_{\xi})$.

\Box of the claim.

Let $\alpha \in Z_{\eta}$ and $\beta < i_{0\eta}(\kappa^{+})$. Find the least $\xi < \eta$ such that for some $\alpha_{\xi} < o^{M_{\kappa^{++}}}(\kappa_{\xi})$ and β_{ξ} we have $i_{\xi\eta}(\alpha_{\xi}) = \alpha$ and $i_{\xi\eta}(\beta_{\xi}) = \beta$. Denote the least such ξ by $\xi_{\alpha\beta}$. Set

$$f_{\alpha\beta}^{\eta} = \bigcup \{ f_{\alpha_{\xi}\beta_{\xi}}^{\xi} \mid \xi_{\alpha\beta} \leq \xi < \eta \text{ and } \alpha_{\xi} < o^{\tilde{M}_{\kappa^{++}}}(\kappa_{\xi}) \}.$$

Case 3. η is a successor ordinal > 1.

Note that $o^{\tilde{M}_{\kappa^{++}}}(\kappa_{\eta}) = o^{\tilde{M}_{\eta+1}}(\kappa_{\eta}) < (\kappa_{\eta}^{++})^{M_{\eta+1}} = (\kappa_{\eta}^{++})^{M_{\kappa^{++}}}.$

So, $Cohen(\kappa_{\eta}, o^{\tilde{M}_{\kappa^{++}}}(\kappa_{\eta}) \times (\kappa_{\eta}^{+})^{M_{\eta}})$ is a κ_{η}^{+} -c.c. forcing of cardinality κ_{η}^{+} in $M_{\eta+1}$. Use $Col(\omega, (\kappa_{\eta}^{+})^{M_{\kappa_{\eta}}} + \kappa^{+})$ to find M_{η} -generic subset G'_{η} of it in some canonical way. Denote by $\langle f_{\alpha\beta}^{\prime \eta} \mid \alpha < o^{\tilde{M}_{\kappa^{++}}}(\kappa_{\eta}), \beta < (\kappa_{\eta}^{+})^{M_{\eta}} \rangle$ the Cohen functions generated by G'_{η} . Next let us change some of this functions restricted to $\kappa_{\eta-1}$.

If there is no $\xi \leq \eta - 1$ such that for some $\alpha_{\xi} < o^{\tilde{M}_{\kappa}++}(\kappa_{\xi})$ and β_{ξ} we have $i_{\xi\eta}(\alpha_{\xi}) = \alpha$ and $i_{\xi\eta}(\beta_{\xi}) = \beta$, then set $f_{\alpha\beta}^{\eta} = f_{\alpha\beta}^{\prime\eta}$.

Otherwise let $\check{\eta}$ be the maximal $\xi \leq \eta - 1$ such that for some $\alpha_{\xi} < o^{\tilde{M}_{\kappa}++}(\kappa_{\xi})$ and β_{ξ} we have $i_{\xi\eta}(\alpha_{\xi}) = \alpha$ and $i_{\xi\eta}(\beta_{\xi}) = \beta$.

Set $f^{\eta}_{\alpha\beta} = f^{\prime\eta}_{\alpha\beta} \upharpoonright [\kappa_{\check{\eta}}, \kappa_{\eta}) \cup f^{\check{\eta}}_{\alpha_{\check{\eta}}\beta_{\check{\eta}}}.$

Let G_{η} be the corresponding changed G'_{η} . Let us argue that such changes do not effect genericity, i.e. G_{η} remains generic.

Suppose that $Y \subseteq o^{\tilde{M}_{\kappa^{++}}}(\kappa_{\eta}) \times (\kappa_{\eta}^{+})^{M_{\eta}}$ of cardinality at most κ_{η} in M_{η} . Consider

$$X = \{ (\alpha, \beta) \in (\kappa_{\eta-1}^{++})^{M_{\eta-1}} \times (\kappa_{\eta-1}^{+})^{M_{\eta-1}} \mid i_{\eta-1\eta}((\alpha, \beta)) \in Y \}.$$

Then $|X|^{M_{\eta-1}} \leq \kappa_{\eta-1}$.

If $\eta - 1$ is a successor ordinal then we can use the induction and argue that

 $\langle f_{i_{\eta-1\eta}(\alpha)i_{\eta-1\eta}(\beta)}^{\eta} \upharpoonright \kappa_{\eta-1} \mid (\alpha,\beta) \in X \rangle$ is in $M_{\eta-1}$. Now this set will be also in M_{η} , due to the size of X. So $G_{\eta} \upharpoonright Y$ will be generic since in is obtained from G'_{η} by basically changing a single condition.

Suppose now that $\eta - 1$ is a limit ordinal. Then there is $\gamma < \eta - 1$ such that $X \in \operatorname{rng}(i_{\gamma\eta-1})$. Denote the least such γ by γ_X and let X^* be the pre-image of X under $i_{\gamma_X\eta-1}$. Clearly, γ_X is a successor ordinal. Also $|X^*|^{M_{\gamma_X}}$ is at most κ_{γ_X} . Consider a function $h_{X^*} : \kappa_{\gamma_X} \to M_{\gamma_X}$ such that $i_{\gamma_X\gamma_X+1}(h_{X^*})(\kappa_{\gamma_X}) = X^*$. Then $h_X := i_{\gamma_X \eta - 1}(h_{X^*}) \in M_{\eta - 1}$ and $h_X(\kappa_\gamma) = i_{\gamma_X \gamma}(X^*)$, for every $\gamma, \gamma_X < \gamma \leq \eta - 1$. Now using h_X and $\langle \kappa_\gamma \mid \gamma_X < \gamma \leq \eta - 1 \rangle$ which are both in M_η it is possible to define there $\langle f_{i_{\eta - 1\eta}(\alpha)i_{\eta - 1\eta}(\beta)}^{\eta} \upharpoonright \kappa_{\eta - 1} \mid (\alpha, \beta) \in X \rangle$. So again $G_\eta \upharpoonright Y$ will be generic since in is obtained from G'_η by basically changing a single condition.

This completes the construction.

Let us argue that the final $G_{\kappa^{++}}$ is generic over $M_{\kappa^{++}}^{Col(\omega,<\kappa^{++})}$.

Claim 2 $G_{\kappa^{++}}$ is a generic subset of $i_{0\kappa^{++}}(Cohen(\kappa, \kappa^{++} \times \kappa^{+}))$ over $M_{\kappa^{++}}^{Col(\omega, <\kappa^{++})}$.

Proof. It is enough to show that for every $X \subseteq \kappa^{++} \times i_{0\kappa^{++}}(\kappa^{+}), X \in M_{\kappa^{++}}$ of cardinality at most κ^{++} in $M_{\kappa^{++}}$ the restriction $G_{\kappa^{++}} \upharpoonright X$ is $Cohen(\kappa^{++}, X)$ -generic over $M_{\kappa^{++}}^{Col(\omega, <\kappa^{++})}$.

Fix such X. Then there is $\gamma < \kappa^{++}$ such that $X \in \operatorname{rng}(i_{\gamma\kappa^{++}})$. Denote the least such γ by γ_X and let X^* be the pre-image of X under $i_{\gamma_X\kappa^{++}}$. Clearly, γ_X is a successor ordinal. Also $|X^*|^{M_{\gamma_X}}$ is at most κ_{γ_X} . Then there are arbitrary large successor ordinals $\delta, \gamma_X \leq \delta < \kappa^{++}$ such that every coordinate of $i_{\xi_X\delta}(X^*)$ appears in G_{δ} , i.e. for every $(\alpha, \beta) \in i_{\xi_X\delta}(X^*)$ we have $o^{\tilde{M}_{\kappa^{++}}}(\kappa_{\delta}) > \alpha$.

Suppose now that in $M_{\kappa^{++}}^{Col(\omega,<\kappa^{++})}$ we have a dense open subset D of $Cohen(\kappa^{++},X)$. Define γ_D and D^* as before. Pick δ as above with $\gamma_D < \delta$. Then $i_{\gamma_D\delta}(D^*)$ will be a dense open subset of $Cohen(\kappa_{\delta}, i_{\gamma_X\delta}(X^*))$ in M_{δ} . So $(G_{\delta} \upharpoonright i_{\gamma_X\delta}(X^*)) \cap i_{\gamma_D\delta}(D^*) \neq \emptyset$. Then, by the construction, also $G_{\kappa^{++}} \cap D \neq \emptyset$.

 \Box of the claim.

2.1.5 Dealing with all blocks of Cohen functions simultaneously revised.

In previous settings only values of Cohen functions on κ were addressed with a special care (see 2.1.2). Here we would like revise a previous construction (2.1.4) and to deal with all κ_{α} 's.

We construct functions $f_{\alpha\beta}^{\kappa^{++}} : \kappa^{++} \to \kappa^{++}, \alpha < i_{0\kappa^{++}}(\kappa^{++}), \beta < i_{0\kappa^{++}}(\kappa^{+})$ which are a Cohen generic for $i_{0\kappa^{++}}(Cohen(\kappa, \kappa^{++} \times \kappa^{+}))$ over $M_{\kappa^{++}}^{Col(\omega, <\kappa^{++})}$. Still we would like to have $f_{i_{0\kappa^{++}}(\alpha)i_{0\kappa^{++}}(\beta)} \upharpoonright \kappa = f_{\alpha\beta}$, for every $\alpha < \kappa^{++}, \beta < \kappa^{+}$, in order to be able to lift the embedding.

The construction will proceed by recursion, building $M_{\eta}^{Col(\omega,<\kappa_{\eta})}$ -generic Cohen functions $f_{\alpha\beta}^{\eta}:\kappa_{\eta}\to\kappa_{\eta}$ for the forcing $Cohen(\kappa_{\eta}, o^{\tilde{M}_{\kappa^{++}}}(\kappa_{\eta})\times i_{0\eta}(\kappa^{+}))$, for every successor $\eta<\kappa^{++}$ and $\beta<\kappa^{+}$. We define some of $f_{\alpha\beta}^{\eta}$ for limit $\eta, 0<\eta<\kappa^{++}$ as well, but in this case they will not form always $M_{\eta}^{Col(\omega,<\kappa_{\eta})}$ -Cohen generic for the forcing $Cohen(\kappa_{\eta}, o^{\tilde{M}_{\kappa^{++}}}(\kappa_{\eta})\times i_{0\eta}(\kappa^{+}))$.

Let $\eta, 0 < \eta < \kappa^{++}$. We deal at this stage with the forcing $Cohen(\kappa_{\eta}, o^{\tilde{M}_{\kappa^{++}}}(\kappa_{\eta}) \times (\kappa_{\eta}^{+})^{M_{\eta}})$.

The first non-trivial case is $\eta = \omega + 1$.

Case 1. $\eta = \omega + 1$.

So we have $Cohen(\kappa, 1 \times \kappa^+)$.

Define $f_{0\beta}^{\omega+1}: \kappa_{\omega+1} \to \kappa_{\omega+1}$, for every $\beta < i_{0\omega+1}(\kappa^+)$.

Clearly, $i_{0\omega+1}(Cohen(\kappa,\kappa^+)) = (Cohen(\kappa_{\omega+1},\kappa_{\omega+1}^+))^{M_{\omega+1}^{Col(\omega,<\kappa_{\omega+1})}}$. It is a $\kappa_{\omega+1}^+$ -c.c. forcing of size $\kappa_{\omega+1}^+$ in $M_{\omega+1}^{Col(\omega,<\kappa_{\omega+1})}$. Use $Col(\omega,(\kappa_{\omega+1}^+)^{M_{\omega+1}})$ to build an $M_{\omega+1}^{Col(\omega,<\kappa_{\omega+1})}$ -generic subset $G'_{\omega+1}$. Denote the Cohen functions produced by $G'_{\omega+1}$ by $\langle f_{\beta}^{'\omega+1} \mid \beta < (\kappa_{\omega+1}^+)^{M_{\omega+1}} \rangle$.

Now we define $f_{0\beta}^{\omega+1}$ to be $f_{\beta}^{'\omega+1}$ unless $\beta = i_{0\omega+1}(\gamma)$, for some $\gamma < \kappa^+$. If $\beta = i_{0\omega+1}(\gamma)$, for some $\gamma < \kappa^+$, then let us proceed as follows.

First use $Col(\omega, \{(\kappa_{\omega}^{+})^{M_{\omega}} + \kappa^{+} + \gamma\})$ to pick genericly an ordinal $\gamma^{*} \in [\kappa_{\omega}, \kappa_{\omega+1})$. Then set $f_{0\beta}^{2} = f_{0\gamma} \cup \{(\kappa, \gamma^{*})\} \cup f_{\beta}^{\prime 2} \upharpoonright [\kappa + 1, \kappa_{\omega+1})$. I.e. the value at κ is changed to some rather random value $\geq \kappa_{\omega}$. It is possible to change the values at each of κ_{n} 's but let us make changes in values only at places where the relevant forcing appears.

The next stage for the forcing $Cohen(\kappa, 1 \times \kappa^+)$ will be $\eta = \omega + \omega + 1$. At this stage the value given to κ will be preserved and the value at κ_{ω} will be changed to some ordinal in $[\kappa_{\omega+\omega}, \kappa_{\omega+\omega+1})$.

The first place when the second block of Cohen functions will come into the play will be at stage $\omega \cdot \omega + 1$, since $o^{\tilde{M}_{\kappa^{++}}}(\kappa_{\alpha}) < 2$, for every $\alpha < \omega \cdot \omega + 1$, and $o^{\tilde{M}_{\kappa^{++}}}(\kappa_{\omega \cdot \omega}) = 2$. At the stage $\omega \cdot \omega$ we will have $\langle f_{0\beta}^{\omega \cdot \omega} | \beta < i_{0\omega \cdot \omega}(\kappa^{+}) \rangle$. Let us describe the construction at the next stage.

Case 2. $\eta = \omega \cdot \omega + 1$.

Define $f_{\alpha\beta}^{\omega\cdot\omega+1}:\kappa_{\omega+1}\to\kappa_{\omega+1}$, for every $\alpha<2,\beta< i_{0\omega+1}(\kappa^+)$. Clearly, $i_{0\omega\cdot\omega+1}(Cohen(\kappa,2\times\kappa^+)) = (Cohen(\kappa_{\omega\cdot\omega+1},2\times\kappa^+_{\omega\cdot\omega+1}))^{M^{Col(\omega,<\kappa_{\omega\cdot\omega+1})}_{\omega\cdot\omega+1}}$. It is a $\kappa^+_{\omega\cdot\omega+1}$ c.c. forcing of size $\kappa^+_{\omega\cdot\omega+1}$ in $M^{Col(\omega,<\kappa_{\omega\cdot\omega+1})}_{\omega\cdot\omega+1}$. Use $Col(\omega,(\kappa^+_{\omega\cdot\omega+1})^{M_{\omega\cdot\omega+1}})$ to build an $M^{Col(\omega,<\kappa_{\omega\cdot\omega+1})}_{\omega\cdot\omega+1}$ generic subset $G'_{\omega\cdot\omega+1}$. Denote the Cohen functions produced by $G'_{\omega\cdot\omega+1}$ by $\langle f'_{\alpha\beta}^{\omega\cdot\omega+1} \mid \alpha<2,\beta<(\kappa^+_{\omega\cdot\omega+1})^{M_{\omega\cdot\omega+1}}\rangle$.

Define $f_{\alpha\beta}^{\omega\cdot\omega+1}$ to be $f_{\alpha\beta}^{'\omega\cdot\omega+1}$, $\alpha < 2$, unless $\beta = i_{\omega\cdot\omega\omega\cdot\omega+1}(\gamma)$, for some $\gamma < i_{0\omega\cdot\omega}(\kappa^+)$. If $\beta = i_{\omega\cdot\omega\omega\cdot\omega+1}(\gamma)$, for some $\gamma < i_{0\omega\cdot\omega+1}(\kappa^+)$, then set $f_{0\beta}^{\omega\cdot\omega+1} = f_{0\gamma}^{\omega\cdot\omega} \cup f_{\beta}^{'\omega\cdot\omega+1} \upharpoonright [\kappa_{\omega\cdot\omega}, \kappa_{\omega\cdot\omega+1})$.

Set $f_{1\beta}^{\omega\cdot\omega+1}$ to be $f_{1\beta}^{\prime\omega\cdot\omega+1}$, unless $\beta = i_{0\omega\cdot\omega+1}(\delta)$, for some $\delta < \kappa^+$. If $\beta = i_{0\omega\cdot\omega+1}(\delta)$, for some $\delta < \kappa^+$, then let us proceed as follows.

First use $Col(\omega, \{(\kappa_{\omega\cdot\omega}^+)^{M_{\omega\cdot\omega}} + \kappa^+ \cdot 2 + \delta\})$ to pick genericly an ordinal $\delta_1^* \in [\kappa_{\omega\cdot\omega}, \kappa_{\omega\cdot\omega+1})$. Then set $f_{1\beta}^{\omega\cdot\omega+1} = (f_{1\beta}''^{\omega\cdot\omega+1} \setminus \{(\kappa, f_{1\beta}''^{\omega\cdot\omega+1}(\kappa))\}) \cup \{(\kappa, \delta_1^*)\}.$ I.e. the value at κ is changed to some rather random value $\geq \kappa_{\omega \cdot \omega}$.

Note that the value $f_{0\beta}^{\omega\cdot\omega+1}(\kappa_{\omega\cdot\omega})$ stays unchanged here. It will be changed further at the first relevant stage, i.e. at $\omega\cdot\omega+\omega+1$.

Let us deal with a general situation now.

Case 3. $\eta > 0$ is a limit ordinal.

We proceed exactly as in the corresponding case of 2.1.4.

Case 4. η is a successor ordinal.

Assume that $\eta > \omega + 1$.

Note that $o^{\tilde{M}_{\kappa^{++}}}(\kappa_{\eta}) = o^{\tilde{M}_{\eta+1}}(\kappa_{\eta}) < (\kappa_{\eta}^{++})^{M_{\eta+1}} = (\kappa_{\eta}^{++})^{M_{\kappa^{++}}}.$

So, $Cohen(\kappa_{\eta}, o^{\tilde{M}_{\kappa^{++}}}(\kappa_{\eta}) \times (\kappa_{\eta}^{+})^{M_{\eta}})$ is a κ_{η}^{+} -c.c. forcing of cardinality κ_{η}^{+} in $M_{\eta+1}$. Use $Col(\omega, (\kappa_{\eta}^{+})^{M_{\kappa_{\eta}}} + \kappa^{+})$ to find M_{η} -generic subset G'_{η} of it in some canonical way. Denote by $\langle f'_{\alpha\beta} \mid \alpha < o^{\tilde{M}_{\kappa^{++}}}(\kappa_{\eta}), \beta < (\kappa_{\eta}^{+})^{M_{\eta}} \rangle$ the Cohen functions generated by G'_{η} .

Next let us change some of this functions restricted to $\kappa_{\eta-1}$.

Set $A = \{ \alpha < o^{\tilde{M}_{\kappa^{++}}}(\kappa_{\eta}) \mid \exists \alpha' < \kappa^{++} \quad i_{0\eta}(\alpha') = \alpha \}.$

If $\alpha \in o^{\tilde{M}_{\kappa^{++}}}(\kappa_{\eta}) \setminus A$, then no change is made and we set $f_{\alpha\beta}^{\eta} = f_{\alpha\beta}^{'\eta}$, for every $\beta < (\kappa_{\eta}^{+})^{M_{\eta}}$. Suppose now that $\alpha \in A$. Let $\beta < (\kappa_{\eta}^{+})^{M_{\eta}}$. If there is no β' such that $i_{\eta-1\eta}(\beta') = \beta$, then again set $f_{\alpha\beta}^{\eta} = f_{\alpha\beta}^{'\eta}$.

Suppose that $i_{\eta-1\eta}(\delta) = \beta$, for some δ .

If there is no $\xi \leq \eta - 1$ such that for some $\alpha_{\xi} < o^{\tilde{M}_{\kappa^{++}}}(\kappa_{\xi})$ we have $i_{\xi\eta}(\alpha_{\xi}) = \alpha$. Then use $Col(\omega, \{(\kappa_{\eta-1}^+)^{M_{\eta-1}} + \kappa^+ \cdot \alpha + \delta\})$ to pick genericly an ordinal $\delta^*_{\alpha} \in [\kappa_{\eta-1}, \kappa_{\eta})$. Set $f^{\eta}_{\alpha\beta} = (f''_{\alpha\beta} \setminus \{(\kappa, f''_{\alpha\beta}(\kappa))\}) \cup \{(\kappa, \delta^*_{\alpha})\}.$

Otherwise let $\check{\eta}$ be the maximal $\xi \leq \eta - 1$ such that for some $\alpha_{\xi} < o^{\tilde{M}_{\kappa}++}(\kappa_{\xi})$ we have $i_{\xi\eta}(\alpha_{\xi}) = \alpha$.

Set
$$f_{\alpha\beta}^{''\eta} = f_{\alpha\beta}^{'\eta} \upharpoonright [\kappa_{\check{\eta}}, \kappa_{\eta}) \cup f_{\alpha_{\check{\eta}}\beta_{\check{\eta}}}^{\check{\eta}}$$
.
If $\check{\eta} = \eta - 1$, then set $f_{\alpha\beta}^{\eta} = f_{\alpha\beta}^{''\eta}$.

Suppose that $\check{\eta} < \eta - 1$. Then use $Col(\omega, \{(\kappa_{\eta-1}^+)^{M_{\eta-1}} + \kappa^+ \cdot \alpha + \delta\})$ to pick genericly an ordinal $\delta^*_{\alpha} \in [\kappa_{\eta-1}, \kappa_{\eta})$.

Set $f_{\alpha\beta}^{\eta} = (f_{\alpha\beta}^{\prime\prime\eta} \setminus \{(\kappa_{\check{\eta}}, f_{\alpha\beta}^{\prime\prime\eta}(\kappa_{\check{\eta}}))\}) \cup \{(\kappa_{\check{\eta}}, \delta_{\alpha}^*)\}.$

Let G_{η} be the corresponding changed G'_{η} . The argument that G_{η} remains generic is similar to those of 2.1.4.

This completes the construction.

Finally, the following holds exactly as in 2.1.4.

Claim 3 $G_{\kappa^{++}}$ is a generic subset of $i_{0\kappa^{++}}(Cohen(\kappa, \kappa^{++} \times \kappa^{+}))$ over $M_{\kappa^{++}}^{Col(\omega, <\kappa^{++})}$.

2.2 ∞ -semi precipitous filter

Recall that $G_1 \subseteq Col(\omega, < \kappa)$ is generic over V and $G_2 \subseteq Cohen(\kappa, \kappa^{++} \times \kappa^{+})$ is generic over $V[G_1]$. For every $\alpha < \kappa^{++}$ we denote the α -th block of Cohen functions by $F_{\alpha} = \{f_{\alpha\beta} \mid \beta < \kappa^{+}\}$.

Next we would like to arrange that the functions in F_{α} are those that have a chance to represent κ_{α} in a generic ultrapower. For this purpose let us add clubs by forcing over $V[G_1, G_2]$.

Force with $< \kappa$ -support iteration a club into

$$\{\nu < \kappa \mid f_{\alpha\beta}(\nu) < f_{\alpha'\beta'}(\nu)\},\$$

for every $\alpha < \alpha' < \kappa^{++}$ and $\beta, \beta' < \kappa^{+}$. In addition for each $f \in {}^{\kappa}\kappa \cap V$ and $\beta < \kappa^{+}$ force a club into

$$\{\nu < \kappa \mid f(\nu) < f_{0\beta}(\nu)\}.$$

Also, for each $n < \omega, f \in {}^{[\kappa]^n} \kappa \cap V, \alpha_1 < ... < \alpha_n < \alpha < \kappa^{++}, \beta_1, ..., \beta_n, \beta < \kappa^+$ we force a club into

$$\{\nu < \kappa \mid f(f_{\alpha_1\beta_1}(\nu), ..., f_{\alpha_n\beta_n}(\nu)) < f_{\alpha\beta}(\nu)\}$$

This insures that in any normal filter the block F_{α} of functions will be strictly above each of the blocks $F_{\alpha'}$ with $\alpha' < \alpha$.

Note that each ordinal in the interval $[\kappa_{\alpha}, \kappa_{\alpha+1})$ is of a form $i_{0,\alpha+1}(f)(\kappa_{\alpha_1}, ..., \kappa_{\alpha_n})$ for some $f \in {}^{[\kappa]^n} \kappa \cap V$ and $\alpha_1 < ... < \alpha_n \leq \alpha$.

Let G_3 be a corresponding generic object. Note that it is easy to reorganize the forcing to add both of the blocks of Cohen functions and the clubs in a single iteration of length κ^{++} .

Let us define a filter F over κ in $V[G_1, G_2, G_3]$ as follows:

$$F = \{ X \subseteq \kappa \mid 0_{Col(\omega, \langle i_{0\kappa^{++}}(\kappa) \rangle)/G_1 * G_2 * G_3} \Vdash \kappa \in i_{0\kappa^{++}}(X) \}.$$

Then

 $F^+ = \{ X \subseteq \kappa \mid \exists p \in Col(\omega, \langle i_{0\kappa^{++}}(\kappa) \rangle) / G_1 * G_2 * G_3 \quad p \Vdash \kappa \in i_{0\kappa^{++}}(\underline{X}) \}.$

The next lemma is immediate.

Lemma 2.1 F is ∞ -semi precipitous⁴ filter with a witnessing forcing $Col(\omega, < \kappa^{++})/G_1 * G_2 * G_3$ and with a generic embedding which extends $i_{0\kappa^{++}}$.

⁴We refer to [1] and [2] for this notion. The meaning is that after forcing with $Col(\omega, <\kappa^{++})/G_1 * G_2 * G_3$ it is possible to extend $i_{0\kappa^{++}}$ to an elementary embedding of $V[G, G_2, G_3]$ into a transitive model.

2.3 Adding clubs

Next we would like to add clubs to sets in F, and then to extensions of F as it was done in Jech-Magidor-Mitchell-Prikry [9], but picking generics over $M_{\kappa^{++}}$ using the procedure above. It should be done a bit more carefully in order to keep a resulting generic embedding to extend $i_{0\kappa^{++}}$. Just note that the set $\{\kappa_{\alpha} \mid \alpha < \kappa^{++}\}$ is a club, so we cannot force a club for example into the set $\{\nu < \kappa \mid o^{\vec{U}}(\nu) = 0\} \in F$ and still to extend $i_{0\kappa^{++}}$, since for every $\alpha, 0 < \alpha < \kappa^{++}, o^{\vec{M}_{\kappa^{++}}}(\kappa_{\alpha}) = \alpha > 0$.

So let us add clubs only to subsets X of κ in F such that for a final segment of α 's below κ^{++} ,

$$0_{Col(\omega,$$

Then, in particular, the set $\{\nu < \kappa \mid \nu \text{ is an accessible ordinal in } V\}$ will be nonstationary.

We would like to arrange a situation where each filter which extends Cub_{\aleph_1} concentrates on the set $\{\nu < \kappa \mid o^{\vec{U}}(\nu) = 0\}$. The simplest way to guarantee this is to shoot a club into $\{\nu < \kappa \mid o^{\vec{U}}(\nu) = 0\}$. But doing it will destroy $i_{0\kappa^{++}}$ completely, since $\{\kappa_{\alpha} \mid 0 < \alpha < \kappa^{++}\}$ is a club in κ^{++} and it is disjoint to the image of a club in $\{\nu < \kappa \mid o^{\vec{U}}(\nu) = 0\}$. So adding such a club will change the cofinality of κ^{++} to ω and eventually will produce a normal precipitous filter. An other way is to shoot clubs disjoint from $\{\nu < \kappa \mid o^{\vec{U}}(\nu) = 1\}$, $\{\nu < \kappa \mid o^{\vec{U}}(\nu) = 2\}$ etc., and this way prevent the ground model ultrafilters U_2, U_3 , etc. to have a normal extensions. This works nicely, but unfortunately not for all ground model ultrafilters. Remember that we have a sequence of κ^{++} -many of them. So up-repeat points must be on the sequence, i.e. for some $\alpha < \kappa^{++}$, for every $X \in U_{\alpha}$ there will be $\beta > \alpha$ (even κ^{++} many of them) with $X \in U_{\beta}$. Shooting clubs for them will not work.

The actual approach will be as follows. We add together with blocks F_{α} 's of Cohen functions an additional sequence $\langle g_{\alpha} \mid \alpha < \kappa^{++} \rangle$ of Cohen functions from κ to κ (it is possible just to to use the first function of each block instead). Require that for each $\nu < \kappa$ with $o(\nu) > 0$, $g_{\alpha}(\nu) < \nu^{++}$.

Now, as in 2.1, by changing values of generics, we insure that

- 1. $\langle i_{0\kappa^{++}}(g_{\alpha})(\kappa) \mid \alpha < \kappa^{++} \rangle$ is an increasing sequence,
- 2. for every $\alpha < \kappa^{++}$, $\langle i_{0\kappa^{++}}(g_{\gamma})(\kappa_{\alpha}) | \gamma < o^{\tilde{M}_{\kappa^{++}}}(\kappa_{\alpha}) \rangle$ is an increasing sequence of ordinals below $o^{\tilde{M}_{\kappa^{++}}}(\kappa_{\alpha})$.

Now, for every $\gamma < \alpha < \kappa^{++}$, we force clubs into the set

$$\{\nu < \kappa \mid g_{\gamma}(\nu) < g_{\alpha}(\nu)\}$$

and into the complement of the set

$$\{\nu < \kappa \mid o^{\vec{U}}(\nu) > 0 \land o^{\vec{U}}(\nu) \le g_{\alpha}(\nu)\}.$$

Note κ is in the image of each of these sets under $i_{0\kappa^{++}}$, as is κ_{ξ} for sufficiently large $\xi < \kappa^{++}$. We will show further in Lemma 3.1 that this does the job.

Clubs will be added to any set of the form $A \cup \{\nu < \kappa \mid o^{\vec{U}}(\nu) > 0\}$ with $A \in U_0$.

Denote by \tilde{F} the extension of F obtained by adding all the clubs.

Let V be a generic extension obtained by this forcing.

Note that a bit nicer (but less intuitive) way to organize the iteration used here will be an inductive definition of an iteration of the length κ^{++} . Thus suppose that at a stage $\alpha < \kappa^{++}$ we have a forcing $P_{<\alpha}$ defined with a generic subset $G_{<\alpha}$. Force the α -th block of Cohen functions F_{α} . Now over $V[G_1, G_{<\alpha}, F_{\alpha}]$ we add clubs relevant for the blocks of Cohen functions $\langle F_{\gamma} | \gamma \leq \alpha \rangle$. This will be Q_{α} . Its length is below κ^{++} . Set $P_{<\alpha+1} = P_{<\alpha} * Q_{\alpha}$.

Let us point out the following basic property:

Lemma 2.2 Let $\langle \alpha_n \mid n < \omega \rangle, \langle \beta_n \mid n < \omega \rangle$ be ω -sequences which consist of different elements of κ^{++} and of κ^+ respectively. Then the following set contains a club

$$\bigcup_{n<\omega} \{\nu < \kappa \mid f_{\alpha_n\beta_n}(\nu) > f_{\alpha_n\beta_n+1}(\nu)\}.$$

Proof. By the construction of $f_{i_{0\kappa}++}(\alpha_n)i_{0\kappa}++(\beta_n)(\kappa)$'s in 2.1.5 and genericity of the collapse there always will be p in a generic object such that for some $n < \omega$

$$p \Vdash f_{i_{0\kappa}^{++}(\alpha_n)i_{0\kappa}^{++}(\beta_n)}(\kappa) > f_{i_{0\kappa}^{++}(\alpha_n)i_{0\kappa}^{++}(\beta_n+1)}(\kappa).$$

In general, suppose that we have a sequence $\langle A_{\eta} \mid \eta < \kappa^{++} \rangle$ of \tilde{F} -positive sets. Let $\langle p_{\eta} \mid \eta < \kappa^{++} \rangle$ be a sequence of conditions in $Col(\omega, < \kappa)$ such that for every $\eta < \kappa^{++}$, $p_{\eta} \Vdash \kappa \in i(A_{\eta})$. Shrink if necessary the sequence $\langle p_{\eta} \mid \eta < \kappa^{++} \rangle$ in order to form a Δ -system. If the kernel of it is empty, then for any sequence $\langle \eta_n \mid n < \omega \rangle$ of different ordinals below κ^{++} the set $\bigcup_{n < \omega} A_{\eta_n}$ contains a club.

Similarly, if p is a kernel and for some $A \subseteq \kappa$ we have $p = \|\kappa \in i(A)\|^{Col(\omega, <\kappa^{++})}$, then the set $(\kappa \setminus A) \cup \bigcup_{n < \omega} A_{\eta_n}$ contains a club.

3 No normal precipitous ideals

We will prove a slightly more general statement– in \tilde{V} there is no precipitous filter on \aleph_1 which contains Cub_{\aleph_1} , i.e. which is a Q-point filter. If the initial ground model had no large cardinals above κ (say $o(\kappa) = \kappa^{++}$ but nothing more), then there will be no normal precipitous filters at all.

Suppose otherwise. Let H be a precipitous filter over $\kappa = \aleph_1^{\tilde{V}}$ which includes Cub_{\aleph_1} .

Lemma 3.1 Assume that there is no inner model with a strong cardinal. Then $H \supseteq U_0$.

Remark. Here is actually the only place where the core model is used in an essential way. If we restrict ourself initially to filters which extend $Cub_{\aleph_1} + \{\nu < \kappa \mid o^{\vec{U}}(\nu) = 0\}$, then no \mathcal{K} is needed.

Proof. Let $G \subseteq H^+$ be a generic ultrafilter and $j : \tilde{V} \to N$ be the corresponding generic elementary embedding. Now $j \upharpoonright \mathcal{K}$ is an iterated ultrapower of \mathcal{K} . Let E_{α} be the extender (actually a measure) used to move κ in this iteration. If $\alpha = 0$, then we are done. Suppose otherwise. Consider $\delta = (o(\kappa))^{\mathcal{K}^N}$. Then $\delta = (o(\kappa))^{\mathcal{K}_{\alpha}} = \alpha$, where $\mathcal{K}_{\alpha} = Ult(\mathcal{K}, E_{\alpha})$. Now $\alpha < (\kappa^{++})^{\mathcal{K}_{\alpha}} < (\kappa^{++})^{\mathcal{K}} = (\kappa^{++})^{\tilde{V}}$, since a club was forced into $\{\nu < \kappa \mid o(\nu) < (\nu^{++})^{\mathcal{K}}\}$. Consider now the sequence $\langle j(g_{\xi})(\kappa) \mid \xi < (\kappa^{++})^{\tilde{V}} \rangle$. It is an increasing sequence of ordinals of order type $(\kappa^{++})^{\tilde{V}}$. But $\delta < (\kappa^{++})^{\tilde{V}}$, hence there is $\eta < (\kappa^{++})^{\tilde{V}}$ with $\delta \leq j(g_{\eta})(\kappa)$. By elementarity, then $\{\nu < \kappa \mid o(\nu) > 0 \land o(\nu) \leq g_{\eta}(\nu)\} \in H^+$. This is impossible since we added a club into its compliment and $H \supseteq Cub_{\aleph_1}$.

Note that if δ (the Mitchell order of κ as computed in the ground model of N) is less than $(\kappa^{++})^{\tilde{V}}$, then the argument above still provides the desired conclusion.

By the lemma we have in particular that $\{\nu < \kappa \mid o^{\vec{U}}(\nu) = 0\}$ is in H. Hence $H \supseteq Cub_{\aleph_1} + \{\nu < \kappa \mid o^{\vec{U}}(\nu) = 0\}$, since $\tilde{F} + \{\nu < \kappa \mid o^{\vec{U}}(\nu) = 0\}$ is $Cub_{\aleph_1} + \{\nu < \kappa \mid o^{\vec{U}}(\nu) = 0\}$. Let us further assume that every $A \in H^+$ under consideration is automatically a subset of $\{\nu < \kappa \mid o^{\vec{U}}(\nu) = 0\}$.

For each $\alpha < \kappa^{++}$, pick a set $A_{\alpha} \in H^+$ and an ordinal $\beta_{\alpha} < \kappa^+$ such that A_{α} forces that $f_{\alpha\beta_{\alpha}}$ represents in the generic ultrapower, the smallest ordinal among the functions in F_{α} , i.e.

$$A_{\alpha} \Vdash_{H^+} \forall \beta < (\kappa^+)^V \quad [f_{\alpha\beta_{\alpha}}]_{\mathcal{G}(H^+)} \le [f_{\alpha\beta}]_{\mathcal{G}(H^+)}.$$

It is tempting to assume that $f_{\alpha\beta\alpha}$ represents κ_{α} , but this need not be true, since functions from lower blocks may represent κ_{α} . Thus $f_{\alpha\beta\alpha}$ will represent κ_{γ} for some $\gamma \geq \alpha$. Note that at most finitely many of the sets A_{α} 's are in H, since otherwise, by the countable completeness of H, we will have in \tilde{V} a countable sequence $\langle \alpha_n | n < \omega \rangle$ with $f_{\alpha_n \beta_{\alpha_n}}$ being the least function of the block F_{α_n} . By countable completeness of H then the set

$$\{\nu < \kappa \mid \forall n < \omega \quad f_{\alpha_n \beta_{\alpha_n}}(\nu) \le f_{\alpha_n \beta_{\alpha_n}+1}(\nu)\}$$

is in H. But its complement contains a club, by Lemma 2.2. Contradiction.

We can assume that for every $\alpha < \kappa^{++}$ the set A_{α} is not in H. Actually the argument below will not be effected even if some of A_{α} 's are in H.

We will use now the fact that the iteration $P_{<\kappa^{++}}$ over $V[G_1]$ (adding blocks of Cohen functions and clubs) satisfies κ^+ -c.c. So each of A_{α} 's depends only on at most κ -many Cohen functions and clubs.

Let $\alpha < \kappa^{++}$. Consider the characteristic function $\chi_{\alpha} : \kappa \to 2$ of A_{α} .

There are Cohen functions $\{f_{\eta,\xi} \mid \langle \eta, \xi \rangle \in a_{\alpha}\}$, clubs $\{c_{\eta} \mid \eta \in \operatorname{dom}(a_{\alpha})\}^{5}$ and a continuous function $t_{\alpha} \in V[G_{1}]$, such that $|a_{\alpha}| \leq \kappa$ and $\chi_{\alpha} = t_{\alpha}(\langle f_{\eta,\xi} \mid \langle \eta, \xi \rangle \in a_{\alpha}\rangle, \langle \{c_{\eta} \mid \eta \in \operatorname{dom}(a_{\alpha})\}\rangle)$.

We can assume, by shrinking if necessary, that for some t each $t_{\alpha} = t$, and that $\langle \operatorname{dom}(a_{\alpha}) | \alpha < \kappa^{++} \rangle$ forms a Δ -system.

Now, for every $\alpha < \kappa^{++}$, pick some $\beta_{\alpha}^* \in (\kappa^+)^V \setminus \operatorname{rng}(a_{\alpha}) \cup \{\beta_{\alpha}\}$. Consider the set

$$B_{\alpha} = \{ \nu < \kappa \mid o^{\vec{U}}(\nu) > 0 \text{ or } (o^{\vec{U}}(\nu) = 0 \text{ and } f_{\alpha\beta^*_{\alpha}}(\nu) < f_{\alpha\beta_{\alpha}}(\nu)) \}.$$

Then B_{α} and even $A_{\alpha} \cap B_{\alpha}$ are \tilde{F} -positive, by the choice of β_{α}^* . Recall that we have

$$H \supseteq \tilde{F} + \{\nu < \kappa \mid o^{\vec{U}}(\nu) = 0\} = Cub_{\aleph_1} + \{\nu < \kappa \mid o^{\vec{U}}(\nu) = 0\}.$$

So each of A_{α} 's is $\tilde{F} + \{\nu < \kappa \mid o^{\vec{U}}(\nu) = 0\}$ -positive.

On the other hand the set $A_{\alpha} \cap B_{\alpha}$ is in the ideal dual to H, since A_{α} forces in the forcing with H^+) that $f_{\alpha\beta}$ is the least function of the block F_{α} .

Case 1. The kernel of the Δ -system is empty.

For each $\alpha < \kappa^{++}$ pick a condition p_{α} in the collapse $Col(\omega, < \kappa^{++})$ of the smallest size which forces " $\kappa \in i_{0\kappa^{++}}(\underline{A}_{\alpha} \cap \underline{B}_{\alpha})$ " which means more explicitly:

$$i_{0\kappa^{++}}(t)(\langle \underline{i}(f_{\eta,\xi}) \mid \langle \eta, \xi \rangle \in a_{\alpha} \rangle, \langle \underline{i}(c_{\eta}) \mid \eta \in \operatorname{dom}(a_{\alpha}) \rangle)(\kappa) = 1 \text{ and } \underline{i}(f_{\alpha\beta_{\alpha}^{*}})(\kappa) < \underline{i}(f_{\alpha\beta_{\alpha}})(\kappa))$$

The value of $i_{0\kappa^{++}}(t)(\langle \underline{i}(f_{\eta,\xi}) \mid \langle \eta, \xi \rangle \in a_{\alpha} \rangle, \langle \underline{i}(c_{\eta}) \mid \eta \in \operatorname{dom}(a_{\alpha}) \rangle)$ on κ depends only on an initial segment of $\langle \underline{i}(f_{\eta,\xi}) \mid \langle \eta, \xi \rangle \in a_{\alpha} \rangle, \langle \underline{i}(c_{\eta}) \mid \eta \in \operatorname{dom}(a_{\alpha}) \rangle$. Assume that p_{α}

 $^{{}^{5}}a_{\alpha}$ is a binary relation, dom (a_{α}) refers to the set of its first coordinates and rng (a_{α}) refers to the set of its second coordinates.

already decides it, i.e. there is $\xi_{\alpha} < \kappa^{++}$ such that p_{α} forces " $i_{0\kappa^{++}}(t)(\langle i_{\alpha}(f_{\eta,\xi}) \upharpoonright \xi_{\alpha} \mid \langle \eta, \xi \rangle \in a_{\alpha} \rangle, \langle i_{\alpha}(c_{\eta}) \upharpoonright \xi_{\alpha} \mid \eta \in \text{dom}(a_{\alpha}) \rangle)(\kappa) = 1$ ". Let $S \subseteq \kappa^{++}$ such that whenever $\alpha < \alpha'$ are in S we have $\xi_{\alpha} < \alpha'$.

Now, if $\alpha < \alpha'$ are in S, then $\min(\operatorname{dom}(p_{\alpha'}))$ is above $\max(\operatorname{dom}(p_{\alpha}))$. This follows from the way of constructing generics from the collapse in 2.1 and Δ -system.

Let $\langle \alpha_n | n < \omega \rangle$ be an increasing sequence of elements of S (in V). Then one of $\langle p_{\alpha_n} | n < \omega \rangle$ always will in any generic subset of the collapse. But this means that $\bigcup_{n < \omega} A_{\alpha_n} \cap B_{\alpha_n} \in \tilde{F} + \{\nu < \kappa \mid o^{\vec{U}}(\nu) = 0\} = Cub_{\aleph_1} + \{\nu < \kappa \mid o^{\vec{U}}(\nu) = 0\} = H$. But remember that $A_{\alpha} \cap B_{\alpha}$ is in the dual to H ideal, for every $\alpha < \kappa^{++}$. This contradicts the σ -completeness of H.

Case 2. The kernel of the Δ -system is not empty.

We may assume that all $\operatorname{rng}(a_{\alpha})$, $\alpha < \kappa^{++}$ are the same, since there are only κ^{+} many possibilities for them. Pick $\eta < \kappa^{+}$ to be an ordinal which includes all the ranges. Assume for simplicity that they are η . Also assume that all β_{α}^{*} are the same and are equal to η .

Let *a* be the kernel of $\langle \operatorname{dom}(a_{\alpha}) \mid \alpha < \kappa^{++} \rangle$. Then $|a| \leq \kappa$. Suppose that $|a| = \kappa$. The case $|a| < \kappa$ is similar. Let $a = \{\rho_{\tau} \mid \tau < \kappa\}$ be its enumeration in \tilde{V} . Denote $\{\rho_{\tau} \mid \tau < \nu\}$ by $a \upharpoonright \nu$, for every $\nu < \kappa$.

Now we have

$$A_{\alpha} = \{ \nu < \kappa \mid t(\langle f_{\alpha\beta} \mid \alpha \in a, \beta < \eta \rangle, \langle c_{\alpha\beta} \mid \alpha \in a, \beta < \eta \rangle, \langle f_{\alpha\beta} \mid \alpha \in \operatorname{dom}(a_{\alpha}) \setminus a, \beta < \eta \rangle, \\ \langle c_{\alpha\beta} \mid \alpha \in \operatorname{dom}(a_{\alpha}) \setminus a, \beta < \eta \rangle)(\nu) = 1 \wedge o^{\vec{U}}(\nu) = 0 \}.$$

Consider also the following set

 $Z = \{\nu < \kappa \mid o^{\vec{U}}(\nu) > 0 \text{ or } o^{\vec{U}}(\nu) = 0 \text{ and there is no Cohens * Clubs generic } \vec{f}, \vec{c} \text{ such that}$

$$t(\langle f_{\alpha\beta} \mid \alpha \in a, \beta < \eta \rangle, \langle c_{\alpha\beta} \mid \alpha \in a, \beta < \eta \rangle, f, \vec{c})(\nu) = 1\}.$$

Clearly $A_{\alpha} \cap Z = \emptyset$, for every $\alpha < \kappa^{++}$.

Let B_{α} 's be as above (even we take β_{α}^* always to be η). The choice of η insures that $A_{\alpha} \cap B_{\alpha} \in F^+$, but clearly not in H^+ , since on ν 's in $A_{\alpha} \cap B_{\alpha}$ we have $f_{\alpha\eta}(\nu) < f_{\alpha\beta_{\alpha}}(\nu)$. Using κ^{++} -c.c. of $Col(\omega, < \kappa^{++})$ find $\xi_{\alpha} < \kappa^{++}$ such that the weakest condition forces that

$$\kappa \in i_{0\kappa^{++}}(Z) \text{ or } i_{0\kappa^{++}}(t)(\langle i_{0\kappa^{++}}(f_{\alpha\beta}) \upharpoonright \xi_{\alpha} \mid \alpha \in a, \beta < \eta \rangle, \langle i_{0\kappa^{++}}(c_{\alpha\beta}) \upharpoonright \xi_{\alpha} \mid \alpha \in a, \beta < \eta \rangle,$$

 $\langle i_{0\kappa^{++}}(f_{\alpha\beta}) \upharpoonright \xi_{\alpha} \mid \alpha \in \operatorname{dom}(a_{\alpha}) \setminus a, \beta < \eta \rangle, \langle i_{0\kappa^{++}}(c_{\alpha\beta}) \upharpoonright \xi_{\alpha} \mid \alpha \in \operatorname{dom}(a_{\alpha}) \setminus a, \beta < \eta \rangle))(\kappa) = 1.$

Find $S \subseteq \kappa^{++}$ such that for every $\alpha < \alpha'$ in S we have $\xi_{\alpha} < \alpha'$. Let $\langle \alpha_n | n < \omega \rangle$ be an increasing sequence of elements of S (in \tilde{V}). The construction of generics for blocks of Cohen

functions in 2.1.5 implies then, as in Lemma 2.2, that the set $Z \cup (\bigcup_{n < \omega} (A_{\alpha_n} \cap B_{\alpha_n}))$ contains a club. This is impossible, since A_{α} 's are *H*-positive, disjoint to *Z*, each $A_{\alpha_n} \cap B_{\alpha_n}$ is in the ideal dual to *H* and *H* is countably complete.

4 A construction of a precipitous ideal.

Let show now how to construct a precipitous filter in V.

The basic idea will be to use κ^{++} as an additional generator. We continue the iteration from $M_{\kappa^{++}}$ using $i_{0\kappa^{++}}(\langle U_{\beta} | \beta < \kappa^{++} \rangle)$. Let $M^2_{\kappa^{++}}$ denotes the final model and $i^2_{0\kappa^{++}}: V \to M^2_{\kappa^{++}}$ the corresponding embedding.

Deal now with a two dimensional analog F_2 of F:

$$F_2 = \{ X \subseteq \kappa^2 \mid 0_{Col(\omega, \langle i_{0\kappa^{++}}^2(\kappa))/G_1 * G_2 * G_3} \Vdash \langle \kappa, \kappa^{++} \rangle \in \underset{0\kappa^{++}}{\overset{2}{\sim}} (X) \}$$

The crucial difference between F and F_2 is that F_2 has anti-chains of size κ^{++} . Thus we have here $Col(\omega, \{\kappa^{++}\})$. Let \underline{H} be an F_2^+ name of a generic function from ω onto κ^{++} . Fix a maximal antichain of elements $\langle A_{\xi} | \xi < \kappa^{++} \rangle$ of F_2^+ which decide $\underline{H}(0)$.

Now we turn to a recursive process of extending F_2 similar to those used in [6] and [2]. Let $\langle X_{\alpha} \mid \alpha < \kappa^{++} \rangle$ be an enumeration of all F_2 -positive subsets of κ^2 (in $V[G_0, G_1]$). Start with n = 0. Define a sequence of ordinals $\langle \xi_{\langle \alpha \rangle} \mid \alpha < \kappa^{++} \rangle$ and filters $\langle F_{\langle \alpha \rangle} \mid \alpha < \kappa^{++} \rangle$ by recursion as follows. Let $\alpha < \kappa^{++}$.

If there is $\xi < \kappa^{++}$ such that $\xi \neq \xi_{\langle \beta \rangle}$, for each $\beta < \alpha$ and $X_{\alpha} \cap A_{\xi} \in F_2^+$, then let $\xi_{\langle \alpha \rangle}$ be the least such ξ . Extend F_2 to $F_2 + X_{\alpha} \cap A_{\xi_{\langle \alpha \rangle}}$. Then pick β_{α}^0 to be the least $\beta < \kappa^+$ such that for each $k < \omega, \gamma_1, ..., \gamma_k \in \kappa^+ \setminus \{\beta\}$ and $t \in \kappa^k \kappa \cap V$ the set

$$\{\langle \nu_0, \nu_1 \rangle \mid f_{\xi_{\langle \alpha \rangle}\beta}(\nu_0) < t(f_{\xi_{\langle \alpha \rangle}\gamma_1}(\nu_0), ..., f_{\xi_{\langle \alpha \rangle}\gamma_k}(\nu_0))\} \in (F_2 + X_\alpha \cap A_{\xi_{\langle \alpha \rangle}})^+.$$

Pick β_{α}^{1} to be the least $\beta < \kappa^{+}$ such that for each $k < \omega, \gamma_{1}, ..., \gamma_{k} \in \kappa^{+} \setminus \{\beta\}$ and $t \in \kappa^{k} \kappa \cap V$ the set

$$\{\langle \nu_0, \nu_1 \rangle \mid f_{\xi_{\langle \alpha \rangle}\beta}(\nu_1) < t(f_{\xi_{\langle \alpha \rangle}\gamma_1}(\nu_1), ..., f_{\xi_{\langle \alpha \rangle}\gamma_k}(\nu_1))\} \in (F_2 + X_\alpha \cap A_{\xi_{\langle \alpha \rangle}})^+.$$

Note that always there are such β_{α}^{0} , β_{α}^{1} , since a single condition in

$$\begin{split} &Col(\omega, < i_{0\kappa^{++}}^2(\kappa))/G_1 * G_2 * G_3 \text{ decides which of the functions of the } \xi_{\langle \alpha \rangle} - \text{th block of Cohen} \\ &\text{functions } \langle f_{\xi_{\langle \alpha \rangle}\beta} \mid \beta < \kappa^+ \rangle \text{ is the least. Now let } F_{\langle \alpha \rangle} \text{ be the } \aleph_1 \text{-complete filter generated by} \\ &F_2 + X_\alpha \cap A_{\xi_{\langle \alpha \rangle}} \text{ together with all the sets } \{ \langle \nu_0, \nu_1 \rangle \mid f_{\xi_{\langle \alpha \rangle} \beta_\alpha^0}(\nu_0) < t(f_{\xi_{\langle \alpha \rangle} \gamma_1}(\nu_0), ..., f_{\xi_{\langle \alpha \rangle} \gamma_k}(\nu_0)) \}, \\ &\{ \langle \nu_0, \nu_1 \rangle \mid f_{\xi_{\langle \alpha \rangle} \beta_\alpha^1}(\nu_1) < t(f_{\xi_{\langle \alpha \rangle} \gamma_1}(\nu_1), ..., f_{\xi_{\langle \alpha \rangle} \gamma_k}(\nu_1)) \} \end{split}$$

Intuitively, $f_{\xi_{\langle \alpha \rangle}\beta_{\alpha}^{0}}$ is the function corresponding to $\kappa_{\xi_{\langle \alpha \rangle}}$ below $F_{\langle \alpha \rangle}$.⁶ If there is no ξ as above then we leave $\xi_{\langle \alpha \rangle}$ and $F_{\langle \alpha \rangle}$ undefined.

Note that it is impossible to have some $f_{\xi_{\langle \alpha \rangle}\beta}$ that will correspond to κ^{++} . Suppose for a moment that $f_{\alpha^*\beta^*}$ is such a function, for some $\alpha^* < \kappa^{++}$ and $\beta^* < \kappa^+$. Then for κ^{++} many α 's and $\beta < \kappa^+$ we will have the set $\{\langle \nu_0, \nu_1 \rangle \in \kappa^2 \mid f_{0\beta}(\nu_1) \ge f_{\alpha 0}(\nu_0)\}$ in F_2^+ , but now $\{\langle \nu_0, \nu_1 \rangle \in \kappa^2 \mid f_{0\beta}(\nu_1) \ge f_{\alpha 0}(\nu_0)\} = \{\langle \nu_0, \nu_1 \rangle \in \kappa^2 \mid f_{0\beta}(f_{\alpha^*\beta^*}(\nu_0)) \ge f_{\alpha 0}(\nu_0)\}$ and the complement of the projection of the last set to the first coordinate contains a club for any $\alpha \ge \alpha^* + 1$.

Note also that for each $\mu < \kappa^{++}$, A_{μ} appears in the list $\langle X_{\alpha} | \alpha < \kappa^{++} \rangle$. Hence, $\{\xi_{\langle \alpha \rangle} | \alpha < \kappa^{++}, \xi_{\langle \alpha \rangle} \text{ is defined } \} = \kappa^{++}$. In particular each $\kappa_{\mu}(\mu > 1)$ has a chance to get a corresponding function.

Set $F(0) = \bigcap \{ F_{\langle \alpha \rangle} \mid F_{\langle \alpha \rangle} \text{ is defined } \}$. Denote the corresponding dual ideals by $I_{\langle \alpha \rangle}$ and I(0).

The following lemma follows from the construction (or see [6]):

Lemma 4.1 For each $X \in F_2^+$, either $X \in F_{\langle \alpha \rangle}$, for some $\alpha < \kappa^{++}$, or the set

$$\{\xi < \kappa^{++} \mid X \cap A_{\xi} \in F_2^+\}$$

has cardinality at most κ^+ .

Next we deal with n = 1.

Let $\alpha < \kappa^{++}$ and $F_{\langle \alpha \rangle}$ be defined. We split $(\text{mod}(F_{\langle \alpha \rangle}) X_{\alpha} \cap A_{\xi_{\alpha}} \text{ into } \kappa^{++}\text{-many sets which decide } H(n_{\alpha})$, where n_{α} is the least possible that allows $\kappa^{++}\text{-many possible values}$. Note that such n_{α} exists since otherwise $F_{\langle \alpha \rangle}^+$ will force that H is bounded in κ^{++} , but the filter $F_{\langle \alpha \rangle}$ is obtained from F_2 basically by deciding the function which corresponds to $\kappa_{\xi_{\langle \alpha \rangle}}$. Let $\langle A = | u < \kappa^{++} \rangle$ be a maximal antichain below $X \cap A_{\xi_{\alpha}}$ in F^+ consisting of sets which

Let $\langle A_{\alpha\mu} \mid \mu < \kappa^{++} \rangle$ be a maximal antichain below $X_{\alpha} \cap A_{\xi_{\alpha}}$ in $F^+_{\langle \alpha \rangle}$ consisting of sets which decide $H(n_{\alpha})$.

Repeat the procedure above and define $\xi_{\langle \alpha \gamma \rangle}, F_{\langle \alpha \gamma \rangle}$, for $\gamma < \kappa^{++}$.

Thus, if there is $\xi < \kappa^{++}$ such that $\xi \neq \xi_{\langle \alpha\beta \rangle}$, for each $\beta < \gamma$ and $X_{\gamma} \cap A_{\alpha\xi} \in F_{\langle \alpha \rangle}^+$, then let $\xi_{\langle \alpha\gamma \rangle}$ be the least such ξ . Extend $F_{\langle \alpha \rangle}$ to $F_{\langle \alpha \rangle} + X_{\alpha} \cap A_{\alpha\xi_{\langle \alpha\gamma \rangle}}$. Then pick $\beta_{\langle \alpha\gamma \rangle}^0$ to be the least $\beta < \kappa^+$ such that for each $k < \omega, \delta_1, ..., \delta_k \in \kappa^+ \setminus \{\beta\}$ and $t \in \kappa^k \kappa \cap V$ the set

$$\{\langle \nu_0, \nu_1 \rangle \mid f_{\xi_{\langle \alpha\gamma \rangle}\beta}(\nu_0) < t(f_{\xi_{\langle \alpha\gamma \rangle}\delta_1}(\nu_0), ..., f_{\xi_{\langle \alpha\gamma \rangle}\delta_k}(\nu_0))\} \in (F_{\langle \alpha \rangle} + X_\alpha \cap A_{\alpha\xi_{\langle \alpha\gamma \rangle}})^+.$$

⁶Actually, it corresponds to some $\kappa_{\gamma} \geq \kappa_{\xi_{\langle \alpha \rangle}}$, by the construction 2.1.5, since we jumped over κ_{τ} 's with $o^{\tilde{M}_{\kappa^{++}}}(\kappa_{\tau}) = 0$. Note that such κ_{τ} 's will be still represented. Thus, for example, if $f_{0\beta}$ represents κ_{ω} , then the function $\nu \mapsto$ the *n*-th element of the Prikry sequence of $f_{0\beta}(\nu)$ will represent κ_n , for every $n < \omega$.

Pick $\beta_{\langle \alpha \gamma \rangle}^1$ to be the least $\beta < \kappa^+$ such that for each $k < \omega, \delta_1, ..., \delta_k \in \kappa^+ \setminus \{\beta\}$ and $t \in \kappa^k \kappa \cap V$ the set

 $\{\langle \nu_0, \nu_1 \rangle \mid f_{\xi_{\langle \alpha \gamma \rangle} \beta}(\nu_1) < t(f_{\xi_{\langle \alpha \gamma \rangle} \delta_1}(\nu_1), ..., f_{\xi_{\langle \alpha \gamma \rangle} \delta_k}(\nu_1))\} \in (F_{\langle \alpha \rangle} + X_\alpha \cap A_{\alpha \xi_{\langle \alpha \gamma \rangle}})^+.$

Now let $F_{\langle \alpha \gamma \rangle}$ be the \aleph_1 -complete filter generated by $F_{\langle \alpha \rangle} + X_{\alpha} \cap A_{\alpha \xi_{\langle \alpha \gamma \rangle}}$ together with all the sets $\{\langle \nu_0, \nu_1 \rangle \mid f_{\xi_{\langle \alpha \gamma \rangle} \beta^0_{\langle \alpha \gamma \rangle}}(\nu_0) < t(f_{\xi_{\langle \alpha \gamma \rangle} \delta_1}(\nu_0), ..., f_{\xi_{\langle \alpha \gamma \rangle} \delta_k}(\nu_0))\}, \{\langle \nu_0, \nu_1 \rangle \mid f_{\xi_{\langle \alpha \gamma \rangle} \beta^1_{\langle \alpha \gamma \rangle}}(\nu_1) < t(f_{\xi_{\langle \alpha \gamma \rangle} \delta_1}(\nu_1), ..., f_{\xi_{\langle \alpha \gamma \rangle} \delta_k}(\nu_1))\}.$

If there is no ξ as above then we leave $\xi_{\langle\alpha\gamma\rangle}$ and $F_{\langle\alpha\gamma\rangle}$ undefined.

Note that for each $\mu < \kappa^{++}$, $A_{\alpha\mu}$ appears in the list $\langle X_{\tau} | \tau < \kappa^{++} \rangle$. Hence, $\{\xi_{\langle \alpha \gamma \rangle} | \gamma < \kappa^{++}, \xi_{\langle \alpha \gamma \rangle}$ is defined $\} = \kappa^{++}$. In particular each $\kappa_{\mu}(\mu > 1)$ has a chance to get a corresponding function.

Set $F(1) = \bigcap \{ F_{\langle \alpha \gamma \rangle} \mid F_{\langle \alpha \gamma \rangle} \text{ is defined } \}$. Let I(1) be the dual ideal.

The following analog of 4.1 follows from the construction:

Lemma 4.2 Let $\alpha < \kappa^{++}$ and $F_{\langle \alpha \rangle}$ be defined. For each $X \in F^+_{\langle \alpha \rangle}$, either $X \in F_{\langle \alpha \gamma \rangle}$, for some $\gamma < \kappa^{++}$, or the set

$$\{\xi < \kappa^{++} \mid X \cap A_{\alpha\xi} \in F^+_{\langle \alpha \rangle}\}$$

has cardinality at most κ^+ .

Continue further and define in a similar fashion $F_{\sigma}, I_{\sigma}, F(n), I(n), \sigma \in {}^{\omega >}\kappa^{++}, \langle A_{\sigma \frown \xi} | \xi < \kappa^{++} \rangle, n < \omega.$

We will have the following:

Lemma 4.3 Let $\sigma \in {}^{\omega >}\kappa^{++}$ and F_{σ} be defined. For each $X \in F_{\sigma}^+$, either $X \in F_{\sigma^{\frown}\gamma}$, for some $\gamma < \kappa^{++}$, or the set

$$\{\xi < \kappa^{++} \mid X \cap A_{\sigma \frown \xi} \in F_{\sigma}^+\}$$

has cardinality at most κ^+ .

Lemma 4.4 Let $\sigma \in {}^{\omega >}\kappa^{++}$ and F_{σ} be defined. Then $F_{\sigma} \subseteq F(n)^{+}$, for every $n < \omega$.

Proof. The lemma is trivial for every $n \leq |\sigma|$ and follows by the construction of F(n)'s for $n > |\sigma|$ (see [6] for similar arguments).

Finally set

$$F(\omega) =$$
 the closure under ω intersections of $\bigcup_{n < \omega} F_n$

and

$$I(\omega) =$$
 the closure under ω unions of $\bigcup_{n < \omega} I_n$.

The next two lemmas follow easily from the definitions.

Lemma 4.5 $F_2 \subseteq F(0) \subseteq ... \subseteq F(n) \subseteq ... \subseteq F(\omega)$ and $I_2 \subseteq I(0) \subseteq ... \subseteq I(n) \subseteq ... \subseteq I(\omega)$.

Lemma 4.6

$$F(\omega) = \{ X \subseteq \kappa^2 \mid \exists \langle X_n \mid n < \omega \rangle \forall n < \omega \quad X_n \in F(n) \text{ and } X = \bigcap_{n < \omega} X_n \}$$

and

$$I(\omega) = \{ X \subseteq \kappa^2 \mid \exists \langle X_n \mid n < \omega \rangle \forall n < \omega \quad X_n \in I(n) \text{ and } X = \bigcup_{n < \omega} X_n \}.$$

Lemma 4.7 $I(\omega)$ is a proper κ -complete ideal over κ^2 .

Proof. Let $\langle X_n \mid n < \omega \rangle$ be a sequence such that $X_n \in I(n)$, for every $n < \omega$ and $X = \bigcup_{n < \omega} X_n$. Assume that each X_n is F_2 -positive. Consider for every $n < \omega$ the set

$$Z_n = \{\xi < \kappa^{++} \mid X_n \cap A_{\xi} \in F_2^+ \}.$$

Then, by Lemmas 4.1,4.4 $|Z_n| \leq \kappa^+$. Hence $|\bigcup_{n < \omega} Z_n| \leq \kappa^+$. Note that

$$Z := \{\xi < \kappa^{++} \mid X \cap A_{\xi} \in F_2^+\} = \bigcup_{n < \omega} Z_n$$

and so Z has cardinality at most κ^+ as well.

Pick now any $\xi \in \kappa^{++} \setminus Z$. Then $X \cap A_{\xi} \notin F_2^+$ which implies that $I(\omega)$ is a proper ideal, since, in particular, X never can be κ^2 .

Lemma 4.8 $X \in F(\omega)^+$ iff there is $\sigma \in {}^{\omega >}\kappa^{++}$ such that $X \in F_{\sigma}$.

Proof. (\Rightarrow) Let $X \in F(\omega)^+$. Suppose that $X \notin F_{\sigma}$, for any $\sigma \in {}^{\omega >}\kappa^{++}$. Set

$$Z_0 = \{\xi < \kappa^{++} \mid X \cap A_{\xi} \in F_2^+\}.$$

By Lemmas 4.1,4.4, $|Z_0| \leq \kappa^+$. Then for every $\xi \in Z_0$, set

$$Z_{1\xi} = \{ \rho < \kappa^{++} \mid X \cap A_{\xi} \cap A_{\xi\rho} \in F^+_{\langle \xi \rangle} \}$$

and

$$Z_1 = \bigcup_{\xi \in Z_0} Z_{1\xi}.$$

Then $|Z_1| \leq \kappa^+$, by Lemmas 4.2,4.4.

Similarly define Z_n , for each $n < \omega$.

There is $\eta_0 < \kappa^{++}$ such that

$$X \Vdash_{F_2^+} \underbrace{H}_{\sim}(0) < \eta_0,$$

since $|Z_0| \leq \kappa^+$. Similar for each $n < \omega$ there will be $\eta_n < \kappa^{++}$ such that

$$X \Vdash_{F_2^+} \underbrace{H}_{\sim}(n) < \eta_n.$$

But then

 $X \Vdash_{F_2^+} \operatorname{rng}(\underline{H})$ is bounded in κ^{++} .

Which is impossible by the choice of H. Contradiction.

(\Leftarrow) The argument repeats those of Lemma 4.7 with F_2 replaced by F_{σ} .

Let
$$X \in F_{\sigma}$$
, for some $\sigma \in {}^{\omega >}\kappa^{++}$.

Suppose that $X \in I(\omega)$. Let $\langle X_n | n < \omega \rangle$ be a sequence such that $X_n \in I(n)$, for every $n < \omega$ and $X \subseteq \bigcup_{n < \omega} X_n$. Assume that each X_n is F_{σ} -positive. Consider for every $n < \omega$ the set

$$Z_n = \{\xi < \kappa^{++} \mid X_n \cap A_{\sigma \frown \xi} \in F_{\sigma}^+\}.$$

Then, by Lemmas 4.3,4.4, $|Z_n| \leq \kappa^+$. Hence $|\bigcup_{n \leq \omega} Z_n| \leq \kappa^+$. Note that

$$Z := \{\xi < \kappa^{++} \mid X \cap A_{\sigma \frown \xi} \in F_{\sigma}^+\} = \bigcup_{n < \omega} Z_n$$

and so Z has cardinality at most κ^+ as well.

Pick now any $\xi \in \kappa^{++} \setminus Z$. Then $X \cap A_{\sigma \frown \xi} \notin F_{\sigma}^+$, but this is impossible since $X \in F_{\sigma}$ and $A_{\sigma \frown \xi} \in F_{\sigma}^+$. Contradiction.

Lemma 4.9 $F(\omega)$ is a precipitous filter over κ^2 .

Proof. It is enough to show that for each $X \in F(\omega)^+$ and $\eta < \kappa^{++}$ there is $Y \subseteq X, Y \in F(\omega)^+$ deciding which function from $\{f_{\eta\beta} \mid \beta < \kappa^+\}$ will be least one (i.e. basically correspond to κ_{η}). By Lemma 4.8 there is $\sigma \in {}^{\omega >} \kappa^{++}$ such that $X \in F_{\sigma}$. Find $\gamma < \kappa^{++}$ such that $\xi_{\sigma \cap \gamma} = \eta$. Set $Y = X \cap A_{\sigma\xi_{\sigma \cap \gamma}}$. It will be as desired.

5 Open problems

In conclusion let us state some problems on the subject that remain open.

Question 1. Is the assumption $o(\kappa) = \kappa^{++}$ needed for a model with a precipitous ideal on \aleph_1 but without a normal one?

We think that it is likely to be possible to show that if \aleph_1 is ∞ -semi precipitous with a witnessed forcing satisfying \aleph_3 -c.c. and with image of \aleph_1 under the corresponding generic embedding is at least \aleph_3 , then $o(\kappa) = \kappa^{++}$ in an inner model. But probably there is no need to go via a construction of such ∞ -semi precipitous.

Question 2. Is it possible to have a GCH model with a precipitous ideal on \aleph_1 but without a normal one?

By [7] large cardinals not far from $o(\kappa) = \kappa^{++}$ are needed for such a model.

Question 3. Is it possible to generalize the present result to cardinals bigger than \aleph_1 ? Simplest case: Is there a model with a precipitous ideal on \aleph_2 but without a normal one?

The next question is well known with partial answers given by Schimmerling, Velickovic [13], Woodin [14](8.1 Condensation Principles) and recently by Wu.

Question 4. Is it consistent that there is a supercompact cardinal and \aleph_1 does not carry a precipitous ideal?

The construction above can be carried out below a supercompact cardinal and so it provides a model with a supercompact and no precipitous filters on \aleph_1 which extend Cub_{\aleph_1} restricted to a stationary set. It is natural so ask the following question:

Question 5. Is it consistent that there is a supercompact cardinal and \aleph_1 does not carry precipitous filters that are Q-points, i.e. isomorphic to filters which extend Cub_{\aleph_1} ?

References

- H.-D. Donder, J.-P. Levinski, Weakly precipitous filters, Israel Journal of Math.,67, 1989, 225-242.
- [2] A. Ferber, M.Gitik, On almost precipitous ideals, Archive Math.Logic, 49, 2010, 301-328.
- [3] M. Gitik, The negation of the singular cardinal hypothesis from $o(\kappa) = \kappa^{++}$, Ann. Pure and App. Logic 43, 1989, 209-234.
- [4] M. Gitik, On generic elementary embeddings, JSL 54,1989, 700-707.

- [5] M. Gitik, Some pathological examples of precipitous ideals, JSL 73, 2008, 492-511.
- [6] M. Gitik, On normal precipitous ideals, Israel Journal of Math., 175,2010,191-219.
- [7] M. Gitik and L. Tal, On a strength of no normal precipitous filter, to appear in Archive Math.Logic
- [8] T. Jech, Set Theory, The Third Millennium Edition, Springer 2002.
- [9] T. Jech, M. Magidor, W. Mitchell, K. Prikry, Precipitous ideals, JSL 45,1980, 1-8.
- [10] T. Jech, K. Prikry, On ideals of sets and the power set operation, Bull.Amer. Math. Soc., 82, 1976, no.4, 593-595.
- [11] R. Laver, Precipitousness in forcing extensions, Israel Journal of Math., 48, 1984, 97-108.
- [12] J.-P. Levinski, These du Troisieme Cycle, University Paris VII, 1980.
- [13] E. Schimmerling, B. Velickovic, Collapsing functions, Math. Logic Quart. 50, 2004, 3-8.
- [14] H. Woodin, The Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal, de Gruyter Series in Logic and Its Applications 1, de Gruyter 1999.