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Abstract

Starting with a measurable cardinal κ of the Mitchell order κ++ we construct a
model with a precipitous ideal on ℵ1 but without normal precipitous ideals. This
answers a question by T. Jech and K. Prikry. In the constructed model there are no
Q–point precipitous filters on ℵ1, i.e. those isomorphic to extensions of Cubℵ1 .

1 Introduction and Basic ideas

Precipitous ideals were introduced by T. Jech and K. Prikry [10]. A κ–complete ideal I on κ

is precipitous if the generic ultrapower V ∩ κV/G is well-founded for every generic ultrafilter

G ⊆ I+. Precipitousness can be viewed as a weakening of measurability which is compatible

with small cardinals.

Given a κ–complete ultrafilter U over a measurable κ there always exists a normal ul-

trafilter U∗ over κ as well. Just take a function f : κ → κ which represents κ in the

ultrapower by U , i.e. [f ]U = κ, and project U using f , which yields the normal ultrafilter

U∗ := {X | f−1′′X ∈ U} over κ. There are two obstacles that prevent implementation of

the same approach to a precipitous filter F . The first is that there does not necessary exist

a single function that represents κ in a generic ultrapower (the choice of such function may

depend on particular condition, i.e. a set in F+. In [5] an example of a precipitous filter

without a normal filter below it in the Rudin-Keisler order was given. It is easy to fix this

by simply restricting F to its positive set that decides a function f which represents κ in

the ultrapower. The second much more serious obstacle is that the projection of F (or a
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restriction that decides f) by f need not in general be precipitous. The first example of

this type was given by R. Laver [11] using a supercompact cardinal. Later in [5] we gave an

example using only a measurable cardinal.

Let us briefly explain the idea used in this construction since it will be relevant for the

present one. We started with a GCH model with a measurable κ and a normal ultrafilter

U over it. Using the Backward Easton iteration (in order to preserve the measurability of

κ) κ+–many Cohen functions ⟨fβ | β < κ+⟩ from κ to κ were added. A precipitous filter

F was defined over κ2 and its generic embedding extended i02 the second iterated ultra-

power of U , i.e. i01 : V → M1 ≃ κV/U, κ1 = i01(κ), i12 : M1 → M2 ≃ κ1M1/i01(U), and

i02 = i12 ◦ i01 : V → M2. The projection F ∗ of F to a normal filter was not precipitous

because for no one of the Cohen functions fβ could it be forced that [fβ] is minimal in the

generic ultrapower among the set {[fβ] | β < κ+}. In the proof of these, it was critical that

all of the functions were candidates to represent κ1. It is not by chance that this fβ’s were

candidates for the function that represents κ1. Further results starting with Section 4 of

[5], then 2.4 of [6] and [7] suggest that the only ordinals which have a chance to produce an

ill-foundness must be of the form κα (i.e. critical points of iterated ultrapowers).

On the other hand, if the number of critical points is too small (i.e. the length of the iter-

ation is too short), say at most κ+, then results of [6], [7] imply (at least under GCH-type

assumptions and in absence of too large cardinals) that there will be always normal precip-

itous filters.

So it is natural to try the following:

Start with a normal ultrafilter U over κ and iterate it κ++–many times. This will create crit-

ical points ⟨κα | α < κ++⟩. Next add κ++ many blocks, each consisting of κ+–many Cohen

function from κ to κ. Arrange this (say by adding clubs) so that the functions of α-th block

are the candidates to represent κα. Note that by J.-P. Levinski [12] no assumptions beyond

measurability are needed in order to blow up the power and to preserve precipitousness. A

problematic point is that his arguments and their extensions in [4] produce large (size κ++)

antichains which allow using the method of [6] to construct normal precipitous ideals.

A way around this obstacle will be to collapse in advance a measurable κ to ℵ1 and to relay

on Col(ω,< κ++) (which satisfies κ++–c.c.) in order to generically extend the relevant em-

beddings (namely i0κ++).

An additional problem with this approach is that the models of the iteration (iterated ul-

trapowers) Mα, α ≤ κ++ are very unclosed. Thus already starting with Mω we lose closure

even under ω–sequences. For example ⟨κn | n < ω⟩ ̸∈ Mα for every α, ω ≤ α ≤ κ++. This
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turns out to be bad once we try to change values of Cohen functions in order to insure the

right representations. Remember that α–th block should provide potential candidates for

functions representing κα. Which makes values changing a crucial issue.

The way to gain the missing closure will be to switch from dealing with a single normal

ultrafilter and its iterated ultrapowers to κ++–many ultrafilters. We will use as an initial

model the model from [3] which has a Rudin-Keisler increasing sequence of ultrafilters of

length κ++.

The actual construction will be as follows. We start with a model of [3] (assuming that

there is a measurable κ of Mitchell order κ++). Collapse κ to ℵ1 and add κ++ many blocks

of Cohen functions. Organize suitable generics using Col(ω,< κ++) and use them to define

an ∞–semi precipitous filter over ℵ1. Add clubs in order to turn it into Cubℵ1 restricted to a

certain set. Next argue that there are no normal precipitous filters on ℵ1 (and, hence, if the

construction was started with the core model for o(κ) = κ++, no normal precipitous filters

at all). Finally a precipitous filter on ℵ1 will be constructed using methods of [6].

2 Construction of the model

Start with GCH model W and assume that for some κ there exists a coherent sequence of

ultrafilters U⃗ with oU⃗(κ) = κ++ and oU⃗(α) < α++, for every α < κ. We assume further for

the purpose of the main result that W is the minimal model L[U⃗ ] having a cardinal κ such

that o(κ) = κ++; however this assumption will not be used in most of the arguments below.

The conclusion of such general setting will be only that there are no precipitous filters which

extend Cubℵ1 + {ν < κ | oU⃗(ν) = 0}. 1

By a coherent sequence U⃗ of ultrafilters in W we mean a function with domain of the form

{(α, β) | α < ℓU⃗ and β < oU⃗(α)}.

For each pair (α, β) ∈ dom(U⃗),

1. U(α, β) is a normal ultrafilter on α, and

2. if jαβ : W → Nα
β ≃ Wα/U(α, β) is the canonical embedding, then

jαβ (U⃗) � α + 1 = U⃗ � (α, β).
1If F is a filter on a set X and A is F–positive set then F + A denotes the extension of F generated by

A, i.e. F +A = {B ⊆ X | ∃S ∈ F B ⊇ A ∩ S}.
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We assume that ℓU⃗ = κ+ 1, oU⃗(κ) = κ++ and for every α < κ, oU⃗(α) < α++.

Force with the forcing of [3] and turn the sequence ⟨U(κ, β) | β < κ++⟩ into a Rudin -

Keisler increasing commutative sequence of Q–point ultrafilters ⟨Uβ | β < κ++⟩ over κ in a

GCH cardinal preserving generic extension V of W .

Which means the following:

1. Uβ is a κ–complete ultrafilter over κ in V ,

2. U0 is a normal ultrafilter over κ in V ,

3. Uβ ⊇ U(κ, β),

4. Uβ ⊇ Cubκ (this means that Uβ is a Q–point),

5. if β < α < κ++, then there is a projection function παβ : κ → κ,

Uβ = {παβ
′′X | X ∈ Uα} (this means that Uβ is below Uα in the Rudin - Keisler order).

Denote byMκ++ the direct limit of the ultrapowers of Uβ, β < κ++. Let i0κ++ : V → Mκ++

be the corresponding elementary embedding.

We have by [3], κMκ++ ⊆ Mκ++ .

By elementarity, Mκ++ is a generic extension of a model M̃κ++ such that i0κ++ � W : W →
M̃κ++ . The model M̃κ++ is the complete iterated ultrapower of W by measures from U⃗ .2

Denote by ⟨κα | α < κ++⟩ the sequence of all critical points of such iteration. It is a

closed unbounded subset of κ++. For every α < κ++ define an ultrafilter U ′
α = {X ⊆ κ |

κα ∈ i0κ++(X)}.
For every α < κ++ let Mα+1 be the transitive collapse of V κ/U ′

α and i0α+1 the corre-

sponding elementary embedding. Set M0 = V , i00 = id.

For a limit α ≤ κ++ let Mα be the direct limit of ⟨Mγ | γ < α⟩ and ⟨iγα | γ < α⟩ the

corresponding elementary embeddings, i.e. iγα : Mγ → Mα.

We have by [3], κMκ++ ⊆ Mκ++ .

For every α ≤ κ++, by elementarity, Mα is a generic extension of a model M̃α such that

i0α � W : W → M̃α. Models M̃α are iterated ultrapowers of W by measures from U⃗ . If

W = K, then M̃α is the core model of Mα. Let us denote further (oi0α(U⃗)(δ))M̃α simply by

(o(δ))M̃α , for any ordinal δ and α ≤ κ++.

2This means that we start with U(κ, 0) then apply its image and so one ω–many times. At the next stage
(i.e. at the stage ω the image of U(κ, 1) is applied. Then again the image of U(κ, 0) for ω–many steps and
at the stage ω + ω the image of U(κ, 1) is used again and so on. The image of U(κ, 2) is applied only after
U(κ, 1) was used ω–many times etc.
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Collapse κ to ℵ1 by Col(ω,< κ). Then let us add κ++ blocks of functions from κ to κ as

follows: in V Col(ω,<κ) set

Cohen(κ, κ++ × κ+) = {f | |f | < κ, f is a partial function from κ× (κ++ × κ+) to κ}.

Let G1 ⊆ Col(ω,< κ) be generic over V and G2 ⊆ Cohen(κ, κ++ × κ+) be a generic over

V [G1]. Set Ḡ2 =
∪

G2 and for every α < κ++, β < κ+, ν < κ let fαβ(ν) = Ḡ2(ν, α, β).

Denote by

Fα = {fαβ | β < κ+}.

This will be our α-th block of functions.

2.1 Constructing generics

Let show that the elementary embedding i0κ++ : V → Mκ++ extends (generically). It is

possible to use [4], but the construction there collapses κ++ which is bad for our purposes

here. We will need to extend the embedding in a different fashion. One of the issues will be to

generate an M
Col(ω,<κ++)

κ++ -generic subset of i0κ++(Cohen(κ, κ++ × κ+)) using Col(ω,< κ++).

For each α < κ++ let us add only (o(κα))
M̃κ++ < κ++ blocks of Cohen functions over

M
Col(ω,<i0α+1(κ))
α+1 . More generally M

Col(ω,<i0α+1(κ))
α+1 –generic subsets of iterations of length

(o(κα))
M̃κ++ need to be constructed, since we will add also certain clubs further. Dealing

with them is very similar, so let us concentrate on blocks of Cohen functions.

Let P = i′0κ++(Cohen(κ, κ++ × κ+)) or the image of a κ–support iteration of forcings

of cardinality κ with closure properties, where i′0κ++ : V Col(ω,<κ) → M
Col(ω,<(κ++)V )

κ++ is the

obvious extension of i0κ++ . Note that in V Col(ω,<κ) we have κ = ℵ1 and κ++ = ℵ3. In order

to simplify the notation, let us use i0κ++ to denote also i′0κ++ and by κ++ we will mean

(κ++)V .

We would like to construct an M
Col(ω,<κ++)

κ++ -generic subset of i0κ++(Cohen(κ, κ++ × κ+))

in V Col(ω,<κ)∗Cohen(κ,κ++×κ+)∗Col(ω,[κ,κ++)).

Let us first do some warm ups.

2.1.1 A single Cohen function.

Let us deal with a single Cohen function. Namely we would like to construct f : κ++ → κ++

which is a Cohen generic over M
Col(ω,<κ++)

κ++ .

The construction will proceed by recursion, building M
Col(ω,<κα)
α –generic Cohen function

fα : κα → κα, for every α ≤ κ++.
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Set f 0 = f00. Let α ≤ κ++. Assume that ⟨fγ | γ < α⟩ is defined and for every γ′ < γ < α

we have fγ � κγ′ = fγ. Define fα.

Case 1. α is a limit ordinal.

Set then fα =
∪

γ<α f
γ. Let us argue that such defined fα is M

Col(ω,<κα)
α –generic Cohen

function. Let D be a dense set. Recall that Mα is a direct limit of ⟨Mγ | γ < α⟩, since α

is a limit ordinal. Then, for some γ < α and a dense subset Dγ of the Cohen forcing for κγ

in M
Col(ω,<κγ)
γ , iγα(Dγ) = D. But Dγ ⊆ (H(κγ))

M
Col(ω,<κγ )
γ and κγ is the critical point of

iγα, hence Dγ = D ∩ (H(κγ))
M

Col(ω,<κγ )
γ . The function fγ is Cohen generic, so it extends an

element of Dγ. Then also fα extends it and we are done.

We can assume using induction that fα is definable from the sequence ⟨κγ | γ < α⟩. This

sequence belongs to Mα+1.
3 Hence fα ∈ M

Col(ω,<κα)
α+1 .

Case 2. α is a successor ordinal.

Use Col(ω, ((κα)
+)Mα + κ+)) to find M

Col(ω,<κα)
α –generic Cohen function f

′α : κα → κα

in some canonical way. Then replace in it f
′α � κα−1 by fα−1. Set fα to be the result.

Clearly fα will be M
Col(ω,<κα)
α –generic Cohen function, since fα−1 ∈ M

Col(ω,<κα)
α+1 , and so it

is a condition in the Cohen forcing.

2.1.2 The first block of Cohen functions.

Let us deal with the κ+–Cohen function of the first block F0 = {f0β | β < κ+}. Namely

we would like to construct fβ : κ++ → κ++, β < i0κ++(κ+) which is a Cohen generic for

i0κ++(Cohen(κ, κ+) over M
Col(ω,<κ++)

κ++ . We would like also to have fi0κ++ (β) � κ = f0β, for

every β < κ+, in order to be able to lift the embedding. Also we would like to spread

generating parts of collapses a bit.

The construction will proceed by recursion, building M
Col(ω,<κα)
α –generic Cohen functions

fα
β : κα → κα for the forcing i0α(Cohen(κ, κ+), for every α ≤ κ++, α ̸= 1 and β < κ+.

Case 1. α = 0.

Set f 0
β = f0β, for every β < κ+.

Case 2. α = 2.

Define f 2
β : κ2 → κ2, for every β < i02(κ

+).

Clearly, i02(Cohen(κ, κ+)) = (Cohen(κ2, κ
+
2 ))

M
Col(ω,<κ2)
2 . It is a κ+

2 –c.c. forcing of size κ+
2

in M
Col(ω,<κ2)
2 . Use Col(ω, (κ+

2 )
M2) to build an M

Col(ω,<κ2)
2 –generic subset G′

2. Denote the

Cohen functions produced by G′
2 by ⟨f ′2

β | β < (κ+
2 )

M2⟩.
Now we define f 2

β to be f
′2
β unless β = i02(γ), for some γ < κ+. If β = i02(γ), for some

3It is (up to an initial segment) the Magidor-Radin generic sequence for κα in Mα+1.
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γ < κ+, then let us proceed as follows.

First use Col(ω, {(κ+
1 )

M1 + κ+ + γ}) to pick genericly an ordinal γ∗ ∈ [κ1, κ2). Then set

f 2
β = f0γ ∪ {(κ, γ∗)} ∪ f

′2
β � [κ+ 1, κ2). I.e. the value at κ is changed to some rather random

value ≥ κ1.

The intuition behind is that we would like that the values ⟨i0κ++(f0γ)(κ) | γ < κ+⟩ will be
kind of independent. Also note that for every f : κ → κ in V , i0κ++(f)(κ) < κ1, so each

function from the first block will dominate every old function.

Let G2 be the resulting transformation of G′
2.

Note that for every X ∈ M2 of size at most κ2 there, we have |i02′′κ+ ∩ X| ≤ κ. So G2 is

still (Cohen(κ2, κ
+
2 ))

M
Col(ω,<κ2)
2 –generic.

Case 3. α is a limit ordinal.

Then for every β ∈ i0α(κ
+) there is γ < α such that β ∈ iγα

′′κ+. Denote the least such γ by

γβ and let β∗ denotes the pre-image of β under iγβα.

Now set fα
β =

∪
γβ≤γ<α f

γ
iγβγ(β∗).

It is not hard to check (similar to 2.1.1, Case 1) that ⟨fα
β | β < i0α(κ

+)⟩ is as desired.
Let us emphasize the following which is crucial for further successor stages. Suppose that

X ⊆ i0α(κ
+) of cardinality at most κα in Mα. Then there is γ < α such that X ∈ rng(iγα).

Denote the least such γ by γX and let X∗ ⊆ i0γX (κ
+) denotes the pre-image of X under

iγXα. Clearly, γX is a successor ordinal. Also |X∗|MγX is at most κγX . Consider a function

hX∗ : κγX → MγX such that iγXγX+1(hX∗)(κγX ) = X∗.

Then hX := iγXα(hX∗) ∈ Mα and hX(κγ) = iγXγ(X
∗), for every γ, γX < γ ≤ α.

Case 4. α is a successor ordinal with α− 1 > 1.

Use Col(ω, ((κα)
+)Mα + κ+)) to find M

Col(ω,<κα)
α –generic set G

′α for i0α(Cohen(κ, κ+)) =

(Cohen(κα, κ
+
α ))

M
Col(ω,<κα)
α in some canonical way. Let f

′α
β : κα → κα, β < i0α(κ

+) be the

Cohen functions defined by G
′α.

Now we define fα
β to be f

′α
β unless β = i0α(γ), for some γ < κ+. If β = i0α(γ), for some

γ < κ+, then let fα
β be the function obtained from f

′α
β by replacing in it f

′α
β � κα−1 by fα−1

γ ,

i.e. fα
β = fα−1

γ ∪ f
′α
β � [κα−1, κα).

We need to check that the changed sequence ⟨fα
β | β < i0α(κ

+)⟩ is still MCol(ω,<κα)
α –generic

for (Cohen(κα, κ
+
α ))

M
Col(ω,<κα)
α .

It is enough to show that for every ξ < (κ+
α )

Mα , ⟨fα
β � κα−1 | β < ξ⟩ is in M

Col(ω,<κα)
α .

Let ξ < (κ+
α )

Mα . Pick some ρ < (κ+
α−1)

Mα−1 such that iα−1α(ρ) ≥ ξ. Note that iα−1α
′′(κ+

α−1)
Mα−1

is unbounded in (κ+
α )

Mα so it is possible. Set X = ρ. Then X ⊆ (κ+
α−1)

Mα−1 of cardinality

at most κα−1. Let hX be as in the previous case. The sequence ⟨κδ | δ < α⟩ is in Mα as
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well as hX . Then the sequence ⟨fα−1
µ | µ ∈ X⟩ will be in M

Col(ω,<κα)
α . But also the function

{(ν, iα−1α(ν)) | ν < ρ} is in Mα. Hence ⟨fα
β � κα−1 | β ∈ iα−1α

′′ρ⟩ is in M
Col(ω,<κα)
α . So,

⟨fα
β � κα−1 | β < ξ⟩ is in M

Col(ω,<κα)
α .

Note that ⟨fα−1
µ | µ < (κ+

α−1)
Mα−1⟩ is not in M

Col(ω,<κα)
α .

2.1.3 An arbitrary block of Cohen functions.

Let η < κ++. We deal now with η’s block Fη = {fηβ | β < κ+} of Cohen functions. Repeat

the construction of 2.1.2, but only start from η + 1 instead of 2.

2.1.4 Dealing with all blocks of Cohen functions simultaneously.

Now we will deal simultaneously with all κ++ blocks.

Namely we would like to construct functions fκ++

αβ : κ++ → κ++, α < i0κ++(κ++), β <

i0κ++(κ+) which are a Cohen generic for i0κ++(Cohen(κ, κ++ × κ+)) over M
Col(ω,<κ++)

κ++ . We

would like also to have fκ++

i0κ++ (α)i0κ++ (β) � κ = fαβ, for every α < κ++, β < κ+, in order to be

able to lift the embedding.

Note that i0κ++(κ++) = i0κ++(o(κ)) =
∪
i0κ++

′′κ++.

The construction will proceed by recursion, building M
Col(ω,<κη)
η –generic Cohen functions

f η
αβ : κη → κη for the forcing Cohen(κη, o

M̃κ++ (κη) × i0η(κ
+)), for every successor η ≤ κ++

and β < κ+. We define some of f η
αβ for limit η, 0 < η < κ++ as well, but in this case they will

not always be M
Col(ω,<κη)
η –Cohen generic for the forcing Cohen(κη, o

M̃κ++ (κη)× i0η(κ
+)).

Let η, 0 < η < κ++. We deal at this stage with the forcing Cohen(κη, o
M̃κ++ (κη) ×

(κ+
η )

Mη).

Note that oM̃κ++ (κn) = 0, for every n < ω and oM̃κ++ (κω) = 1. So the first non-trivial

case will be η = ω + 1.

Case 1. η = ω + 1.

So we have Cohen(κ, 1× κ+). It is just a single Cohen function. Proceed as in 2.1.2.

Case 2. η is a limit ordinal.

Set

Zη = {α < oM̃κ++ (κη) | ∃ξ < η ∃αξ < oM̃κ++ (κξ) iξη(αξ) = α}.

Note that Zη may be a proper subset of oM̃κ++ (κη), if η < κ++, but for η = κ++ we have

the equality.

Claim 1 Zκ++ = oM̃κ++ (κ++).
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Proof. Let α < oM̃κ++ (κ++). Pick some ξ, ρ′ < ξ < κ++ and αξ such that iξκ++(αξ) = α. By

elementarity, Mξ |= αξ < o(κξ). Then at some stage δ of the iteration from Mξ to Mκ++ a

measure iξδ(U(κξ, αξ + 1)) should be used, and then iξδ+1(αξ) < oM̃δ+1(κδ) = oM̃κ++ (κδ), or

already αξ < oM̃ξ+1(κξ) = oM̃κ++ (κξ).

� of the claim.

Let α ∈ Zη and β < i0η(κ
+). Find the least ξ < η such that for some αξ < oM̃κ++ (κξ)

and βξ we have iξη(αξ) = α and iξη(βξ) = β. Denote the least such ξ by ξαβ. Set

f η
αβ =

∪
{f ξ

αξβξ
| ξαβ ≤ ξ < η and αξ < oM̃κ++ (κξ)}.

Case 3. η is a successor ordinal > 1.

Note that oM̃κ++ (κη) = oM̃η+1(κη) < (κ++
η )Mη+1 = (κ++

η )Mκ++ .

So, Cohen(κη, o
M̃κ++ (κη) × (κ+

η )
Mη) is a κ+

η -c.c. forcing of cardinality κ+
η in Mη+1. Use

Col(ω, (κ+
η )

Mκη + κ+) to find Mη–generic subset G′
η of it in some canonical way. Denote by

⟨f
′η
αβ | α < oM̃κ++ (κη), β < (κ+

η )
Mη⟩ the Cohen functions generated by G′

η.

Next let us change some of this functions restricted to κη−1.

If there is no ξ ≤ η − 1 such that for some αξ < oM̃κ++ (κξ) and βξ we have iξη(αξ) = α

and iξη(βξ) = β, then set fη
αβ = f

′η
αβ.

Otherwise let η̌ be the maximal ξ ≤ η − 1 such that for some αξ < oM̃κ++ (κξ) and βξ we

have iξη(αξ) = α and iξη(βξ) = β.

Set f η
αβ = f

′η
αβ � [κη̌, κη) ∪ f η̌

αη̌βη̌
.

Let Gη be the corresponding changed G′
η. Let us argue that such changes do not effect

genericity, i.e. Gη remains generic.

Suppose that Y ⊆ oM̃κ++ (κη)× (κ+
η )

Mη of cardinality at most κη in Mη. Consider

X = {(α, β) ∈ (κ++
η−1)

Mη−1 × (κ+
η−1)

Mη−1 | iη−1η((α, β)) ∈ Y }.

Then |X|Mη−1 ≤ κη−1.

If η − 1 is a successor ordinal then we can use the induction and argue that

⟨f η
iη−1η(α)iη−1η(β)

� κη−1 | (α, β) ∈ X⟩ is in Mη−1. Now this set will be also in Mη, due to the

size of X. So Gη � Y will be generic since in is obtained from G′
η by basically changing a

single condition.

Suppose now that η− 1 is a limit ordinal. Then there is γ < η− 1 such that X ∈ rng(iγη−1).

Denote the least such γ by γX and let X∗ be the pre-image of X under iγXη−1. Clearly, γX

is a successor ordinal. Also |X∗|MγX is at most κγX . Consider a function hX∗ : κγX → MγX

such that iγXγX+1(hX∗)(κγX ) = X∗.
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Then hX := iγXη−1(hX∗) ∈ Mη−1 and hX(κγ) = iγXγ(X
∗), for every γ, γX < γ ≤ η − 1. Now

using hX and ⟨κγ | γX < γ ≤ η − 1⟩ which are both in Mη it is possible to define there

⟨f η
iη−1η(α)iη−1η(β)

� κη−1 | (α, β) ∈ X⟩. So again Gη � Y will be generic since in is obtained

from G′
η by basically changing a single condition.

This completes the construction.

Let us argue that the final Gκ++ is generic over M
Col(ω,<κ++)

κ++ .

Claim 2 Gκ++ is a generic subset of i0κ++(Cohen(κ, κ++ × κ+)) over M
Col(ω,<κ++)

κ++ .

Proof. It is enough to show that for every X ⊆ κ++ × i0κ++(κ+), X ∈ Mκ++ of cardinality at

most κ++ in Mκ++ the restriction Gκ++ � X is Cohen(κ++, X)–generic over M
Col(ω,<κ++)

κ++ .

Fix such X. Then there is γ < κ++ such that X ∈ rng(iγκ++). Denote the least such γ by

γX and let X∗ be the pre-image of X under iγXκ++ . Clearly, γX is a successor ordinal. Also

|X∗|MγX is at most κγX . Then there are arbitrary large successor ordinals δ, γX ≤ δ < κ++

such that every coordinate of iξXδ(X
∗) appears in Gδ, i.e. for every (α, β) ∈ iξXδ(X

∗) we

have oM̃κ++ (κδ) > α.

Supose now that in M
Col(ω,<κ++)

κ++ we have a dense open subset D of Cohen(κ++, X). Define

γD and D∗ as before. Pick δ as above with γD < δ. Then iγDδ(D
∗) will be a dense open

subset of Cohen(κδ, iγXδ(X
∗)) in Mδ. So (Gδ � iγXδ(X

∗)) ∩ iγDδ(D
∗) ̸= ∅. Then, by the

construction, also Gκ++ ∩D ̸= ∅.
� of the claim.

2.1.5 Dealing with all blocks of Cohen functions simultaneously revised.

In previous settings only values of Cohen functions on κ were addressed with a special care

(see 2.1.2). Here we would like revise a previous construction (2.1.4) and to deal with all

κα’s.

We construct functions fκ++

αβ : κ++ → κ++, α < i0κ++(κ++), β < i0κ++(κ+) which are

a Cohen generic for i0κ++(Cohen(κ, κ++ × κ+)) over M
Col(ω,<κ++)

κ++ . Still we would like to

have fκ++

i0κ++ (α)i0κ++ (β) � κ = fαβ, for every α < κ++, β < κ+, in order to be able to lift the

embedding.

The construction will proceed by recursion, building M
Col(ω,<κη)
η –generic Cohen functions

f η
αβ : κη → κη for the forcing Cohen(κη, o

M̃κ++ (κη) × i0η(κ
+)), for every successor η < κ++

and β < κ+. We define some of f η
αβ for limit η, 0 < η < κ++ as well, but in this case they will

not form always M
Col(ω,<κη)
η –Cohen generic for the forcing Cohen(κη, o

M̃κ++ (κη)× i0η(κ
+)).

10



Let η, 0 < η < κ++. We deal at this stage with the forcing Cohen(κη, o
M̃κ++ (κη) ×

(κ+
η )

Mη).

The first non-trivial case is η = ω + 1.

Case 1. η = ω + 1.

So we have Cohen(κ, 1× κ+).

Define fω+1
0β : κω+1 → κω+1, for every β < i0ω+1(κ

+).

Clearly, i0ω+1(Cohen(κ, κ+)) = (Cohen(κω+1, κ
+
ω+1))

M
Col(ω,<κω+1)

ω+1 . It is a κ+
ω+1–c.c. forcing of

size κ+
ω+1 in M

Col(ω,<κω+1)
ω+1 . Use Col(ω, (κ+

ω+1)
Mω+1) to build an M

Col(ω,<κω+1)
ω+1 –generic subset

G′
ω+1. Denote the Cohen functions produced by G′

ω+1 by ⟨f ′ω+1
β | β < (κ+

ω+1)
Mω+1⟩.

Now we define fω+1
0β to be f

′ω+1
β unless β = i0ω+1(γ), for some γ < κ+. If β = i0ω+1(γ), for

some γ < κ+, then let us proceed as follows.

First use Col(ω, {(κ+
ω )

Mω + κ+ + γ}) to pick genericly an ordinal γ∗ ∈ [κω, κω+1). Then set

f 2
0β = f0γ ∪ {(κ, γ∗)} ∪ f

′2
β � [κ + 1, κω+1). I.e. the value at κ is changed to some rather

random value ≥ κω. It is possible to change the values at each of κn’s but let us make

changes in values only at places where the relevant forcing appears.

The next stage for the forcing Cohen(κ, 1 × κ+) will be η = ω + ω + 1. At this stage the

value given to κ will be preserved and the value at κω will be changed to some ordinal in

[κω+ω, κω+ω+1).

The first place when the second block of Cohen functions will come into the play will be

at stage ω · ω + 1, since oM̃κ++ (κα) < 2, for every α < ω · ω + 1, and oM̃κ++ (κω·ω) = 2.

At the stage ω · ω we will have ⟨fω·ω
0β | β < i0ω·ω(κ

+)⟩. Let us describe the construction at

the next stage.

Case 2. η = ω · ω + 1.

Define fω·ω+1
αβ : κω+1 → κω+1, for every α < 2, β < i0ω+1(κ

+).

Clearly, i0ω·ω+1(Cohen(κ, 2×κ+)) = (Cohen(κω·ω+1, 2×κ+
ω·ω+1))

M
Col(ω,<κω·ω+1))

ω·ω+1 . It is a κ+
ω·ω+1–

c.c. forcing of size κ+
ω·ω+1 inM

Col(ω,<κω·ω+1)
ω·ω+1 . Use Col(ω, (κ+

ω·ω+1)
Mω·ω+1) to build anM

Col(ω,<κω·ω+1)
ω·ω+1 –

generic subset G′
ω·ω+1. Denote the Cohen functions produced by G′

ω·ω+1 by ⟨f ′ω·ω+1
αβ | α <

2, β < (κ+
ω·ω+1)

Mω·ω+1⟩.
Define fω·ω+1

αβ to be f
′ω·ω+1
αβ , α < 2, unless β = iω·ωω·ω+1(γ), for some γ < i0ω·ω(κ

+). If

β = iω·ωω·ω+1(γ), for some γ < i0ω·ω+1(κ
+), then set fω·ω+1

0β = fω·ω
0γ ∪ f

′ω·ω+1
β � [κω·ω, κω·ω+1).

Set fω·ω+1
1β to be f ′ω·ω+1

1β , unless β = i0ω·ω+1(δ), for some δ < κ+. If β = i0ω·ω+1(δ), for

some δ < κ+, then let us proceed as follows.

First use Col(ω, {(κ+
ω·ω)

Mω·ω + κ+ · 2 + δ}) to pick genericly an ordinal δ∗1 ∈ [κω·ω, κω·ω+1).

Then set fω·ω+1
1β = (f ′′ω·ω+1

1β \ {(κ, f ′′ω·ω+1
1β (κ))}) ∪ {(κ, δ∗1)}.
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I.e. the value at κ is changed to some rather random value ≥ κω·ω.

Note that the value fω·ω+1
0β (κω·ω) stays unchanged here. It will be changed further at the first

relevant stage, i.e. at ω · ω + ω + 1.

Let us deal with a general situation now.

Case 3. η > 0 is a limit ordinal.

We proceed exactly as in the corresponding case of 2.1.4.

Case 4. η is a successor ordinal.

Assume that η > ω + 1.

Note that oM̃κ++ (κη) = oM̃η+1(κη) < (κ++
η )Mη+1 = (κ++

η )Mκ++ .

So, Cohen(κη, o
M̃κ++ (κη) × (κ+

η )
Mη) is a κ+

η -c.c. forcing of cardinality κ+
η in Mη+1. Use

Col(ω, (κ+
η )

Mκη + κ+) to find Mη–generic subset G′
η of it in some canonical way. Denote by

⟨f
′η
αβ | α < oM̃κ++ (κη), β < (κ+

η )
Mη⟩ the Cohen functions generated by G′

η.

Next let us change some of this functions restricted to κη−1.

Set A = {α < oM̃κ++ (κη) | ∃α′ < κ++ i0η(α
′) = α}.

If α ∈ oM̃κ++ (κη) \ A, then no change is made and we set fη
αβ = f

′η
αβ, for every β < (κ+

η )
Mη .

Suppose now that α ∈ A. Let β < (κ+
η )

Mη . If there is no β′ such that iη−1η(β
′) = β, then

again set f η
αβ = f

′η
αβ.

Suppose that iη−1η(δ) = β, for some δ.

If there is no ξ ≤ η − 1 such that for some αξ < oM̃κ++ (κξ) we have iξη(αξ) = α. Then use

Col(ω, {(κ+
η−1)

Mη−1 + κ+ · α + δ}) to pick genericly an ordinal δ∗α ∈ [κη−1, κη).

Set f η
αβ = (f ′′η

αβ \ {(κ, f
′′η
αβ(κ))}) ∪ {(κ, δ∗α)}.

Otherwise let η̌ be the maximal ξ ≤ η − 1 such that for some αξ < oM̃κ++ (κξ) we have

iξη(αξ) = α.

Set f
′′η
αβ = f

′η
αβ � [κη̌, κη) ∪ f η̌

αη̌βη̌
.

If η̌ = η − 1, then set f η
αβ = f

′′η
αβ .

Suppose that η̌ < η − 1. Then use Col(ω, {(κ+
η−1)

Mη−1 + κ+ · α + δ}) to pick genericly an

ordinal δ∗α ∈ [κη−1, κη).

Set f η
αβ = (f ′′η

αβ \ {(κη̌, f
′′η
αβ(κη̌))}) ∪ {(κη̌, δ

∗
α)}.

Let Gη be the corresponding changed G′
η. The argument that Gη remains generic is

similar to those of 2.1.4.

This completes the construction.

Finally, the following holds exactly as in 2.1.4.

Claim 3 Gκ++ is a generic subset of i0κ++(Cohen(κ, κ++ × κ+)) over M
Col(ω,<κ++)

κ++ .
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2.2 ∞–semi precipitous filter

Recall that G1 ⊆ Col(ω,< κ) is generic over V and G2 ⊆ Cohen(κ, κ++ × κ+) is generic

over V [G1]. For every α < κ++ we denote the α-th block of Cohen functions by Fα = {fαβ |
β < κ+}.

Next we would like to arrange that the functions in Fα are those that have a chance

to represent κα in a generic ultrapower. For this purpose let us add clubs by forcing over

V [G1, G2].

Force with < κ–support iteration a club into

{ν < κ | fαβ(ν) < fα′β′(ν)},

for every α < α′ < κ++ and β, β′ < κ+.

In addition for each f ∈ κκ ∩ V and β < κ+ force a club into

{ν < κ | f(ν) < f0β(ν)}.

Also, for each n < ω, f ∈ [κ]nκ ∩ V, α1 < ... < αn < α < κ++, β1, ..., βn, β < κ+ we force a

club into

{ν < κ | f(fα1β1(ν), ..., fαnβn(ν)) < fαβ(ν)}.

This insures that in any normal filter the block Fα of functions will be strictly above each

of the blocks Fα′ with α′ < α.

Note that each ordinal in the interval [κα, κα+1) is of a form i0,α+1(f)(κα1 , ..., καn) for some

f ∈ [κ]nκ ∩ V and α1 < ... < αn ≤ α.

Let G3 be a corresponding generic object. Note that it is easy to reorganize the forcing to

add both of the blocks of Cohen functions and the clubs in a single iteration of length κ++.

Let us define a filter F over κ in V [G1, G2, G3] as follows:

F = {X ⊆ κ | 0Col(ω,<i0κ++ (κ))/G1∗G2∗G3  κ ∈ i0κ++(X∼)}.

Then

F+ = {X ⊆ κ | ∃p ∈ Col(ω,< i0κ++(κ))/G1 ∗G2 ∗G3 p  κ ∈ i0κ++(X∼)}.

The next lemma is immediate.

Lemma 2.1 F is ∞–semi precipitous4 filter with a witnessing forcing

Col(ω,< κ++)/G1 ∗G2 ∗G3 and with a generic embedding which extends i0κ++.

4We refer to [1] and [2] for this notion. The meaning is that after forcing with Col(ω,< κ++)/G1∗G2∗G3

it is possible to extend i0κ++ to an elementary embedding of V [G,G2, G3] into a transitive model.
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2.3 Adding clubs

Next we would like to add clubs to sets in F , and then to extensions of F as it was done

in Jech-Magidor-Mitchell-Prikry [9], but picking generics over Mκ++ using the procedure

above. It should be done a bit more carefully in order to keep a resulting generic embedding

to extend i0κ++ . Just note that the set {κα | α < κ++} is a club, so we cannot force a club

for example into the set {ν < κ | oU⃗(ν) = 0} ∈ F and still to extend i0κ++ , since for every

α, 0 < α < κ++, oM̃κ++ (κα) = α > 0.

So let us add clubs only to subsets X of κ in F such that for a final segment of α’s below

κ++,

0Col(ω,<i0κ++ (κ))/G1∗G2∗G3  κα ∈ i0κ++(X∼).

Then, in particular, the set {ν < κ | ν is an accessible ordinal in V } will be nonstation-

ary.

We would like to arrange a situation where each filter which extends Cubℵ1 concentrates

on the set {ν < κ | oU⃗(ν) = 0}. The simplest way to guarantee this is to shoot a club into

{ν < κ | oU⃗(ν) = 0}. But doing it will destroy i0κ++ completely, since {κα | 0 < α < κ++}
is a club in κ++ and it is disjoint to the image of a club in {ν < κ | oU⃗(ν) = 0}. So

adding such a club will change the cofinality of κ++ to ω and eventually will produce a

normal precipitous filter. An other way is to shoot clubs disjoint from {ν < κ | oU⃗(ν) = 1},
{ν < κ | oU⃗(ν) = 2} etc., and this way prevent the ground model ultrafilters U2, U3, etc.

to have a normal extensions. This works nicely, but unfortunately not for all ground model

ultrafilters. Remember that we have a sequence of κ++–many of them. So up–repeat points

must be on the sequence, i.e. for some α < κ++, for every X ∈ Uα there will be β > α (even

κ++ many of them) with X ∈ Uβ. Shooting clubs for them will not work.

The actual approach will be as follows. We add together with blocks Fα’s of Cohen functions

an additional sequence ⟨gα | α < κ++⟩ of Cohen functions from κ to κ (it is possible just to

to use the first function of each block instead). Require that for each ν < κ with o(ν) > 0,

gα(ν) < ν++.

Now, as in 2.1, by changing values of generics, we insure that

1. ⟨i0κ++(gα)(κ) | α < κ++⟩ is an increasing sequence,

2. for every α < κ++, ⟨i0κ++(gγ)(κα) | γ < oM̃κ++ (κα)⟩ is an increasing sequence of

ordinals below oM̃κ++ (κα).
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Now, for every γ < α < κ++, we force clubs into the set

{ν < κ | gγ(ν) < gα(ν)}

and into the complement of the set

{ν < κ | oU⃗(ν) > 0 ∧ oU⃗(ν) ≤ gα(ν)}.

Note κ is in the image of each of these sets under i0κ++ , as is κξ for sufficiently large ξ < κ++.

We will show further in Lemma 3.1 that this does the job.

Clubs will be added to any set of the form A ∪ {ν < κ | oU⃗(ν) > 0} with A ∈ U0.

Denote by F̃ the extension of F obtained by adding all the clubs.

Let Ṽ be a generic extension obtained by this forcing.

Note that a bit nicer (but less intuitive) way to organize the iteration used here will be

an inductive definition of an iteration of the length κ++. Thus suppose that at a stage

α < κ++ we have a forcing P<α defined with a generic subset G<α. Force the α–th block of

Cohen functions Fα. Now over V [G1, G<α, Fα] we add clubs relevant for the blocks of Cohen

functions ⟨Fγ | γ ≤ α⟩. This will be Qα. Its length is below κ++. Set P<α+1 = P<α ∗Qα.

Let us point out the following basic property:

Lemma 2.2 Let ⟨αn | n < ω⟩, ⟨βn | n < ω⟩ be ω-sequences which consist of different

elements of κ++ and of κ+ respectively. Then the following set contains a club∪
n<ω

{ν < κ | fαnβn(ν) > fαnβn+1(ν)}.

Proof. By the construction of fi0κ++ (αn)i0κ++ (βn)(κ)’s in 2.1.5 and genericity of the collapse

there always will be p in a generic object such that for some n < ω

p  fi0κ++ (αn)i0κ++ (βn)(κ) > fi0κ++ (αn)i0κ++ (βn+1)(κ).

�
In general, suppose that we have a sequence ⟨Aη | η < κ++⟩ of F̃ -positive sets. Let

⟨pη | η < κ++⟩ be a sequence of conditions in Col(ω,< κ) such that for every η < κ++,

pη  κ ∈ i∼(Aη∼
). Shrink if necessary the sequence ⟨pη | η < κ++⟩ in order to form a ∆-

system. If the kernel of it is empty, then for any sequence ⟨ηn | n < ω⟩ of different ordinals
below κ++ the set

∪
n<ω Aηn contains a club.

Similarly, if p is a kernel and for some A ⊆ κ we have p = ∥κ ∈ i∼(A∼)∥Col(ω,<κ++), then the

set (κ \ A) ∪
∪

n<ω Aηn contains a club.

15



3 No normal precipitous ideals

We will prove a slightly more general statement– in Ṽ there is no precipitous filter on ℵ1

which contains Cubℵ1 , i.e. which is a Q–point filter. If the initial ground model had no

large cardinals above κ (say o(κ) = κ++ but nothing more), then there will be no normal

precipitous filters at all.

Suppose otherwise. Let H be a precipitous filter over κ = ℵṼ
1 which includes Cubℵ1 .

Lemma 3.1 Assume that there is no inner model with a strong cardinal. Then H ⊇ U0.

Remark. Here is actually the only place where the core model is used in an essential way.

If we restrict ourself initially to filters which extend Cubℵ1 + {ν < κ | oU⃗(ν) = 0}, then no

K is needed.

Proof. Let G ⊆ H+ be a generic ultrafilter and j : Ṽ → N be the corresponding generic

elementary embedding. Now j � K is an iterated ultrapower of K. Let Eα be the extender

(actually a measure) used to move κ in this iteration. If α = 0, then we are done. Suppose

otherwise. Consider δ = (o(κ))K
N
. Then δ = (o(κ))Kα = α, where Kα = Ult(K, Eα). Now

α < (κ++)Kα < (κ++)K = (κ++)Ṽ , since a club was forced into {ν < κ | o(ν) < (ν++)K}.
Consider now the sequence ⟨j(gξ)(κ) | ξ < (κ++)Ṽ ⟩. It is an increasing sequence of ordinals

of order type (κ++)Ṽ . But δ < (κ++)Ṽ , hence there is η < (κ++)Ṽ with δ ≤ j(gη)(κ). By

elementarity, then {ν < κ | o(ν) > 0 ∧ o(ν) ≤ gη(ν)} ∈ H+. This is impossible since we

added a club into its compliment and H ⊇ Cubℵ1 .

�
Note that if δ (the Mitchell order of κ as computed in the ground model of N) is less than

(κ++)Ṽ , then the argument above still provides the desired conclusion.

By the lemma we have in particular that {ν < κ | oU⃗(ν) = 0} is in H. Hence H ⊇
Cubℵ1 + {ν < κ | oU⃗(ν) = 0}, since F̃ + {ν < κ | oU⃗(ν) = 0} is Cubℵ1 + {ν < κ | oU⃗(ν) = 0}.
Let us further assume that every A ∈ H+ under consideration is automatically a subset of

{ν < κ | oU⃗(ν) = 0}.
For each α < κ++, pick a set Aα ∈ H+ and an ordinal βα < κ+ such that Aα forces that

fαβα represents in the generic ultrapower, the smallest ordinal among the functions in Fα,

i.e.

Aα H+ ∀β < (κ+)V [fαβα ]G∼(H+) ≤ [fαβ]G∼(H+).

It is tempting to assume that fαβα represents κα, but this need not be true, since functions

from lower blocks may represent κα. Thus fαβα will represent κγ for some γ ≥ α.
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Note that at most finitely many of the sets Aα’s are inH, since otherwise, by the countable

completeness of H, we will have in Ṽ a countable sequence ⟨αn | n < ω⟩ with fαnβαn
being

the least function of the block Fαn . By countable completeness of H then the set

{ν < κ | ∀n < ω fαnβαn
(ν) ≤ fαnβαn+1(ν)}

is in H. But its complement contains a club, by Lemma 2.2. Contradiction.

We can assume that for every α < κ++ the set Aα is not in H. Actually the argument below

will not be effected even if some of Aα’s are in H.

We will use now the fact that the iteration P<κ++ over V [G1] (adding blocks of Cohen

functions and clubs) satisfies κ+–c.c. So each of Aα’s depends only on at most κ–many

Cohen functions and clubs.

Let α < κ++. Consider the characteristic function χα : κ → 2 of Aα.

There are Cohen functions {fη,ξ | ⟨η, ξ⟩ ∈ aα}, clubs {cη | η ∈ dom(aα)} 5 and a continuous

function tα ∈ V [G1], such that |aα| ≤ κ and χα = tα(⟨fη,ξ | ⟨η, ξ⟩ ∈ aα⟩, ⟨{cη | η ∈
dom(aα)}⟩).
We can assume, by shrinking if necessary, that for some t each tα = t, and that ⟨dom(aα) |
α < κ++⟩ forms a ∆-system.

Now, for every α < κ++, pick some β∗
α ∈ (κ+)V \ rng(aα) ∪ {βα}. Consider the set

Bα = {ν < κ | oU⃗(ν) > 0 or (oU⃗(ν) = 0 and fαβ∗
α
(ν) < fαβα(ν))}.

Then Bα and even Aα ∩Bα are F̃–positive, by the choice of β∗
α. Recall that we have

H ⊇ F̃ + {ν < κ | oU⃗(ν) = 0} = Cubℵ1 + {ν < κ | oU⃗(ν) = 0}.

So each of Aα’s is F̃ + {ν < κ | oU⃗(ν) = 0}–positive.
On the other hand the set Aα ∩ Bα is in the ideal dual to H, since Aα forces in the forcing

with H+) that fαβ is the least function of the block Fα.

Case 1. The kernel of the ∆–system is empty.

For each α < κ++ pick a condition pα in the collapse Col(ω,< κ++) of the smallest size

which forces “κ ∈ i0κ++(A∼α ∩B∼α)” which means more explicitly:

i0κ++(t)(⟨ i∼(fη,ξ) | ⟨η, ξ⟩ ∈ aα⟩, ⟨ i∼(cη) | η ∈ dom(aα)⟩)(κ) = 1 and i∼(fαβ∗
α
)(κ) < i∼(fαβα)(κ)).

The value of i0κ++(t)(⟨ i∼(fη,ξ) | ⟨η, ξ⟩ ∈ aα⟩, ⟨ i∼(cη) | η ∈ dom(aα)⟩) on κ depends only

on an initial segment of ⟨ i∼(fη,ξ) | ⟨η, ξ⟩ ∈ aα⟩, ⟨ i∼(cη) | η ∈ dom(aα)⟩. Assume that pα

5aα is a binary relation, dom(aα) refers to the set of its first coordinates and rng(aα) refers to the set of
its second coordinates.
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already decides it, i.e. there is ξα < κ++ such that pα forces “i0κ++(t)(⟨ i∼(fη,ξ) � ξα | ⟨η, ξ⟩ ∈
aα⟩, ⟨ i∼(cη) � ξα | η ∈ dom(aα)⟩)(κ) = 1”. Let S ⊆ κ++ such that whenever α < α′ are in S

we have ξα < α′.

Now, if α < α′ are in S, then min(dom(pα′)) is above max(dom(pα)). This follows from the

way of constructing generics from the collapse in 2.1 and ∆–system.

Let ⟨αn|n < ω⟩ be an increasing sequence of elements of S (in Ṽ ). Then one of ⟨pαn | n <

ω⟩ always will in any generic subset of the collapse. But this means that
∪

n<ω Aαn ∩Bαn ∈
F̃ + {ν < κ | oU⃗(ν) = 0} = Cubℵ1 + {ν < κ | oU⃗(ν) = 0} = H. But remember that Aα ∩ Bα

is in the dual to H ideal, for every α < κ++. This contradicts the σ–completeness of H.

Case 2. The kernel of the ∆–system is not empty.

We may assume that all rng(aα), α < κ++ are the same, since there are only κ+ many

possibilities for them. Pick η < κ+ to be an ordinal which includes all the ranges. Assume

for simplicity that they are η. Also assume that all β∗
α are the same and are equal to η.

Let a be the kernel of ⟨dom(aα) | α < κ++⟩. Then |a| ≤ κ. Suppose that |a| = κ. The case

|a| < κ is similar. Let a = {ρτ | τ < κ} be its enumeration in Ṽ . Denote {ρτ | τ < ν} by

a � ν, for every ν < κ.

Now we have

Aα = {ν < κ | t(⟨fαβ | α ∈ a, β < η⟩, ⟨cαβ | α ∈ a, β < η⟩, ⟨fαβ | α ∈ dom(aα) \ a, β < η⟩,

⟨cαβ | α ∈ dom(aα) \ a, β < η⟩)(ν) = 1 ∧ oU⃗(ν) = 0}.

Consider also the following set

Z = {ν < κ | oU⃗(ν) > 0 or oU⃗(ν) = 0 and there is no Cohens ∗ Clubs generic f⃗ , c⃗ such that

t(⟨fαβ | α ∈ a, β < η⟩, ⟨cαβ | α ∈ a, β < η⟩, f⃗ , c⃗)(ν) = 1}.

Clearly Aα ∩ Z = ∅, for every α < κ++.

Let Bα’s be as above (even we take β∗
α always to be η). The choice of η insures that

Aα ∩Bα ∈ F+, but clearly not in H+, since on ν’s in Aα ∩Bα we have fαη(ν) < fαβα(ν).

Using κ++–c.c. of Col(ω,< κ++) find ξα < κ++ such that the weakest condition forces that

κ ∈ i0κ++(Z) or i0κ++(t)(⟨i0κ++(fαβ) � ξα | α ∈ a, β < η⟩, ⟨i0κ++(cαβ) � ξα | α ∈ a, β < η⟩,

⟨i0κ++(fαβ) � ξα | α ∈ dom(aα)\a, β < η⟩, ⟨i0κ++(cαβ) � ξα | α ∈ dom(aα)\a, β < η⟩))(κ) = 1.

Find S ⊆ κ++ such that for every α < α′ in S we have ξα < α′. Let ⟨αn|n < ω⟩ be an

increasing sequence of elements of S (in Ṽ ). The construction of generics for blocks of Cohen
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functions in 2.1.5 implies then, as in Lemma 2.2, that the set Z∪(
∪

n<ω(Aαn∩Bαn)) contains

a club. This is impossible, since Aα’s are H–positive, disjoint to Z, each Aαn ∩Bαn is in the

ideal dual to H and H is countably complete.

4 A construction of a precipitous ideal.

Let show now how to construct a precipitous filter in Ṽ .

The basic idea will be to use κ++ as an additional generator. We continue the iteration from

Mκ++ using i0κ++(⟨Uβ | β < κ++⟩). Let M2
κ++ denotes the final model and i20κ++ : V → M2

κ++

the corresponding embedding.

Deal now with a two dimensional analog F2 of F :

F2 = {X ⊆ κ2 | 0Col(ω,<i2
0κ++ (κ))/G1∗G2∗G3

 ⟨κ, κ++⟩ ∈ i∼
2
0κ++(X∼)}.

The crucial difference between F and F2 is that F2 has anti-chains of size κ++. Thus we

have here Col(ω, {κ++}). Let H∼ be an F+
2 name of a generic function from ω onto κ++. Fix

a maximal antichain of elements ⟨Aξ | ξ < κ++⟩ of F+
2 which decide H∼(0).

Now we turn to a recursive process of extending F2 similar to those used in [6] and [2] .

Let ⟨Xα | α < κ++⟩ be an enumeration of all F2-positive subsets of κ2 (in V [G0, G1]).

Start with n = 0. Define a sequence of ordinals ⟨ξ⟨α⟩ | α < κ++⟩ and filters ⟨F⟨α⟩ | α < κ++⟩
by recursion as follows. Let α < κ++.

If there is ξ < κ++ such that ξ ̸= ξ⟨β⟩, for each β < α and Xα ∩ Aξ ∈ F+
2 , then let ξ⟨α⟩ be

the least such ξ. Extend F2 to F2 +Xα ∩ Aξ⟨α⟩ . Then pick β0
α to be the least β < κ+ such

that for each k < ω, γ1, ..., γk ∈ κ+ \ {β} and t ∈ κk
κ ∩ V the set

{⟨ν0, ν1⟩ | fξ⟨α⟩β(ν0) < t(fξ⟨α⟩γ1(ν0), ..., fξ⟨α⟩γk(ν0))} ∈ (F2 +Xα ∩ Aξ⟨α⟩)
+.

Pick β1
α to be the least β < κ+ such that for each k < ω, γ1, ..., γk ∈ κ+ \{β} and t ∈ κk

κ∩V

the set

{⟨ν0, ν1⟩ | fξ⟨α⟩β(ν1) < t(fξ⟨α⟩γ1(ν1), ..., fξ⟨α⟩γk(ν1))} ∈ (F2 +Xα ∩ Aξ⟨α⟩)
+.

Note that always there are such β0
α, β

1
α, since a single condition in

Col(ω,< i20κ++(κ))/G1 ∗G2 ∗G3 decides which of the functions of the ξ⟨α⟩–th block of Cohen

functions ⟨fξ⟨α⟩β | β < κ+⟩ is the least. Now let F⟨α⟩ be the ℵ1-complete filter generated by

F2+Xα∩Aξ⟨α⟩ together with all the sets {⟨ν0, ν1⟩ | fξ⟨α⟩β0
α
(ν0) < t(fξ⟨α⟩γ1(ν0), ..., fξ⟨α⟩γk(ν0))},

{⟨ν0, ν1⟩ | fξ⟨α⟩β1
α
(ν1) < t(fξ⟨α⟩γ1(ν1), ..., fξ⟨α⟩γk(ν1))}
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Intuitively, fξ⟨α⟩β0
α
is the function corresponding to κξ⟨α⟩ below F⟨α⟩.

6

If there is no ξ as above then we leave ξ⟨α⟩ and F⟨α⟩ undefined.

Note that it is impossible to have some fξ⟨α⟩β that will correspond to κ++. Suppose for

a moment that fα∗β∗ is such a function, for some α∗ < κ++ and β∗ < κ+. Then for κ++

many α’s and β < κ+ we will have the set {⟨ν0, ν1⟩ ∈ κ2 | f0β(ν1) ≥ fα0(ν0)} in F+
2 , but

now {⟨ν0, ν1⟩ ∈ κ2 | f0β(ν1) ≥ fα0(ν0)} = {⟨ν0, ν1⟩ ∈ κ2 | f0β(fα∗β∗(ν0)) ≥ fα0(ν0)} and the

complement of the projection of the last set to the first coordinate contains a club for any

α ≥ α∗ + 1.

Note also that for each µ < κ++, Aµ appears in the list ⟨Xα | α < κ++⟩. Hence,

{ξ⟨α⟩ | α < κ++, ξ⟨α⟩ is defined } = κ++. In particular each κµ(µ > 1) has a chance to get a

corresponding function.

Set F (0) =
∩
{F⟨α⟩ | F⟨α⟩ is defined }. Denote the corresponding dual ideals by I⟨α⟩ and

I(0).

The following lemma follows from the construction (or see [6]):

Lemma 4.1 For each X ∈ F+
2 , either X ∈ F⟨α⟩, for some α < κ++, or the set

{ξ < κ++ | X ∩ Aξ ∈ F+
2 }

has cardinality at most κ+.

Next we deal with n = 1.

Let α < κ++ and F⟨α⟩ be defined. We split (mod(F⟨α⟩) Xα ∩ Aξα into κ++-many sets which

decide H∼(nα), where nα is the least possible that allows κ++-many possible values. Note

that such nα exists since otherwise F+
⟨α⟩ will force that H∼ is bounded in κ++, but the filter

F⟨α⟩ is obtained from F2 basically by deciding the function which corresponds to κξ⟨α⟩ .

Let ⟨Aαµ | µ < κ++⟩ be a maximal antichain below Xα ∩Aξα in F+
⟨α⟩ consisting of sets which

decide H∼(nα).

Repeat the procedure above and define ξ⟨αγ⟩, F⟨αγ⟩, for γ < κ++.

Thus, if there is ξ < κ++ such that ξ ̸= ξ⟨αβ⟩, for each β < γ and Xγ ∩ Aαξ ∈ F+
⟨α⟩, then let

ξ⟨αγ⟩ be the least such ξ. Extend F⟨α⟩ to F⟨α⟩ +Xα ∩Aαξ⟨αγ⟩ . Then pick β0
⟨αγ⟩ to be the least

β < κ+ such that for each k < ω, δ1, ..., δk ∈ κ+ \ {β} and t ∈ κk
κ ∩ V the set

{⟨ν0, ν1⟩ | fξ⟨αγ⟩β(ν0) < t(fξ⟨αγ⟩δ1(ν0), ..., fξ⟨αγ⟩δk(ν0))} ∈ (F⟨α⟩ +Xα ∩ Aαξ⟨αγ⟩)
+.

6Actually, it corresponds to some κγ ≥ κξ⟨α⟩ , by the construction 2.1.5, since we jumped over κτ ’s with

oM̃κ++ (κτ ) = 0. Note that such κτ ’s will be still represented. Thus, for example, if f0β represents κω, then
the function ν 7→ the n-th element of the Prikry sequence of f0β(ν) will represent κn, for every n < ω.
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Pick β1
⟨αγ⟩ to be the least β < κ+ such that for each k < ω, δ1, ..., δk ∈ κ+\{β} and t ∈ κk

κ∩V
the set

{⟨ν0, ν1⟩ | fξ⟨αγ⟩β(ν1) < t(fξ⟨αγ⟩δ1(ν1), ..., fξ⟨αγ⟩δk(ν1))} ∈ (F⟨α⟩ +Xα ∩ Aαξ⟨αγ⟩)
+.

Now let F⟨αγ⟩ be the ℵ1-complete filter generated by F⟨α⟩ + Xα ∩ Aαξ⟨αγ⟩ together with all

the sets {⟨ν0, ν1⟩ | fξ⟨αγ⟩β
0
⟨αγ⟩

(ν0) < t(fξ⟨αγ⟩δ1(ν0), ..., fξ⟨αγ⟩δk(ν0))}, {⟨ν0, ν1⟩ | fξ⟨αγ⟩β
1
⟨αγ⟩

(ν1) <

t(fξ⟨αγ⟩δ1(ν1), ..., fξ⟨αγ⟩δk(ν1))}.
If there is no ξ as above then we leave ξ⟨αγ⟩ and F⟨αγ⟩ undefined.

Note that for each µ < κ++, Aαµ appears in the list ⟨Xτ | τ < κ++⟩. Hence, {ξ⟨αγ⟩ |
γ < κ++, ξ⟨αγ⟩ is defined } = κ++. In particular each κµ(µ > 1) has a chance to get a

corresponding function.

Set F (1) =
∩
{F⟨αγ⟩ | F⟨αγ⟩ is defined }. Let I(1) be the dual ideal.

The following analog of 4.1 follows from the construction:

Lemma 4.2 Let α < κ++ and F⟨α⟩ be defined. For each X ∈ F+
⟨α⟩, either X ∈ F⟨αγ⟩, for

some γ < κ++, or the set

{ξ < κ++ | X ∩ Aαξ ∈ F+
⟨α⟩}

has cardinality at most κ+.

Continue further and define in a similar fashion Fσ, Iσ, F (n), I(n), σ ∈ ω>κ++, ⟨Aσ⌢ξ |
ξ < κ++⟩, n < ω.

We will have the following:

Lemma 4.3 Let σ ∈ ω>κ++ and Fσ be defined. For each X ∈ F+
σ , either X ∈ Fσ⌢γ, for

some γ < κ++, or the set

{ξ < κ++ | X ∩ Aσ⌢ξ ∈ F+
σ }

has cardinality at most κ+.

Lemma 4.4 Let σ ∈ ω>κ++ and Fσ be defined. Then Fσ ⊆ F (n)+, for every n < ω.

Proof. The lemma is trivial for every n ≤ |σ| and follows by the construction of F (n)’s for

n > |σ| (see [6] for similar arguments).

�
Finally set

F (ω) = the closure under ω intersections of
∪
n<ω

Fn
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and

I(ω) = the closure under ω unions of
∪
n<ω

In.

The next two lemmas follow easily from the definitions.

Lemma 4.5 F2 ⊆ F (0) ⊆ ... ⊆ F (n) ⊆ ... ⊆ F (ω) and I2 ⊆ I(0) ⊆ ... ⊆ I(n) ⊆ ... ⊆ I(ω).

Lemma 4.6

F (ω) = {X ⊆ κ2 | ∃⟨Xn | n < ω⟩∀n < ω Xn ∈ F (n) and X =
∩
n<ω

Xn}

and

I(ω) = {X ⊆ κ2 | ∃⟨Xn | n < ω⟩∀n < ω Xn ∈ I(n) and X =
∪
n<ω

Xn}.

Lemma 4.7 I(ω) is a proper κ-complete ideal over κ2.

Proof. Let ⟨Xn | n < ω⟩ be a sequence such that Xn ∈ I(n), for every n < ω and X =∪
n<ω Xn. Assume that each Xn is F2-positive. Consider for every n < ω the set

Zn = {ξ < κ++ | Xn ∩ Aξ ∈ F+
2 }.

Then, by Lemmas 4.1,4.4 |Zn| ≤ κ+. Hence |
∪

n<ω Zn| ≤ κ+. Note that

Z := {ξ < κ++ | X ∩ Aξ ∈ F+
2 } =

∪
n<ω

Zn

and so Z has cardinality at most κ+ as well.

Pick now any ξ ∈ κ++ \ Z. Then X ∩ Aξ ̸∈ F+
2 which implies that I(ω) is a proper ideal,

since, in particular, X never can be κ2.

�

Lemma 4.8 X ∈ F (ω)+ iff there is σ ∈ ω>κ++ such that X ∈ Fσ.

Proof. (⇒) Let X ∈ F (ω)+. Suppose that X ̸∈ Fσ, for any σ ∈ ω>κ++. Set

Z0 = {ξ < κ++ | X ∩ Aξ ∈ F+
2 }.

By Lemmas 4.1,4.4, |Z0| ≤ κ+. Then for every ξ ∈ Z0, set

Z1ξ = {ρ < κ++ | X ∩ Aξ ∩ Aξρ ∈ F+
⟨ξ⟩}
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and

Z1 =
∪
ξ∈Z0

Z1ξ.

Then |Z1| ≤ κ+, by Lemmas 4.2,4.4.

Similarly define Zn, for each n < ω.

There is η0 < κ++ such that

X F+
2
H∼(0) < η0,

since |Z0| ≤ κ+. Similar for each n < ω there will be ηn < κ++ such that

X F+
2
H∼(n) < ηn.

But then

X F+
2
rng(H∼) is bounded in κ++.

Which is impossible by the choice of H∼. Contradiction.

(⇐) The argument repeats those of Lemma 4.7 with F2 replaced by Fσ.

Let X ∈ Fσ, for some σ ∈ ω>κ++.

Suppose that X ∈ I(ω). Let ⟨Xn | n < ω⟩ be a sequence such that Xn ∈ I(n), for every

n < ω and X ⊆
∪

n<ω Xn. Assume that each Xn is Fσ-positive. Consider for every n < ω

the set

Zn = {ξ < κ++ | Xn ∩ Aσ⌢ξ ∈ F+
σ }.

Then, by Lemmas 4.3,4.4, |Zn| ≤ κ+. Hence |
∪

n<ω Zn| ≤ κ+. Note that

Z := {ξ < κ++ | X ∩ Aσ⌢ξ ∈ F+
σ } =

∪
n<ω

Zn

and so Z has cardinality at most κ+ as well.

Pick now any ξ ∈ κ++ \ Z. Then X ∩ Aσ⌢ξ ̸∈ F+
σ , but this is impossible since X ∈ Fσ and

Aσ⌢ξ ∈ F+
σ . Contradiction.

�

Lemma 4.9 F (ω) is a precipitous filter over κ2.

Proof. It is enough to show that for eachX ∈ F (ω)+ and η < κ++ there is Y ⊆ X, Y ∈ F (ω)+

deciding which function from {fηβ | β < κ+} will be least one (i.e. basically correspond to

κη). By Lemma 4.8 there is σ ∈ ω>κ++ such that X ∈ Fσ. Find γ < κ++ such that ξσaγ = η.

Set Y = X ∩ Aσξ
σaγ

. It will be as desired.

�
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5 Open problems

In conclusion let us state some problems on the subject that remain open.

Question 1. Is the assumption o(κ) = κ++ needed for a model with a precipitous ideal

on ℵ1 but without a normal one?

We think that it is likely to be possible to show that if ℵ1 is ∞–semi precipitous with a

witnessed forcing satisfying ℵ3–c.c. and with image of ℵ1 under the corresponding generic

embedding is at least ℵ3, then o(κ) = κ++ in an inner model. But probably there is no need

to go via a construction of such ∞–semi precipitous.

Question 2. Is it possible to have a GCH model with a precipitous ideal on ℵ1 but

without a normal one?

By [7] large cardinals not far from o(κ) = κ++ are needed for such a model.

Question 3. Is it possible to generalize the present result to cardinals bigger than ℵ1?

Simplest case: Is there a model with a precipitous ideal on ℵ2 but without a normal one?

The next question is well known with partial answers given by Schimmerling, Velickovic

[13], Woodin [14](8.1 Condensation Principles) and recently by Wu.

Question 4. Is it consistent that there is a supercompact cardinal and ℵ1 does not carry

a precipitous ideal?

The construction above can be carried out below a supercompact cardinal and so it

provides a model with a supercompact and no precipitous filters on ℵ1 which extend Cubℵ1

restricted to a stationary set. It is natural so ask the following question:

Question 5. Is it consistent that there is a supercompact cardinal and ℵ1 does not carry

precipitous filters that are Q–points, i.e. isomorphic to filters which extend Cubℵ1?
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