A model with a precipitous ideal, but no normal precipitous ideal.

Moti Gitik *i

December 4, 2012

Abstract

Starting with a measurable cardinal κ of the Mitchell order κ^{++}we construct a model with a precipitous ideal on \aleph_{1} but without normal precipitous ideals. This answers a question by T. Jech and K. Prikry. In the constructed model there are no Q-point precipitous filters on \aleph_{1}, i.e. those isomorphic to extensions of $C u b_{\aleph_{1}}$.

1 Introduction and Basic ideas

Precipitous ideals were introduced by T. Jech and K. Prikry [10]. A κ-complete ideal I on κ is precipitous if the generic ultrapower $V \cap^{\kappa} V / G$ is well-founded for every generic ultrafilter $G \subseteq I^{+}$. Precipitousness can be viewed as a weakening of measurability which is compatible with small cardinals.

Given a κ-complete ultrafilter U over a measurable κ there always exists a normal ultrafilter U^{*} over κ as well. Just take a function $f: \kappa \rightarrow \kappa$ which represents κ in the ultrapower by U, i.e. $[f]_{U}=\kappa$, and project U using f, which yields the normal ultrafilter $U^{*}:=\left\{X \mid f^{-1 \prime \prime} X \in U\right\}$ over κ. There are two obstacles that prevent implementation of the same approach to a precipitous filter F. The first is that there does not necessary exist a single function that represents κ in a generic ultrapower (the choice of such function may depend on particular condition, i.e. a set in F^{+}. In [5] an example of a precipitous filter without a normal filter below it in the Rudin-Keisler order was given. It is easy to fix this by simply restricting F to its positive set that decides a function f which represents κ in the ultrapower. The second much more serious obstacle is that the projection of F (or a

[^0]restriction that decides f) by f need not in general be precipitous. The first example of this type was given by R. Laver [11] using a supercompact cardinal. Later in [5] we gave an example using only a measurable cardinal.
Let us briefly explain the idea used in this construction since it will be relevant for the present one. We started with a GCH model with a measurable κ and a normal ultrafilter U over it. Using the Backward Easton iteration (in order to preserve the measurability of $\kappa) \kappa^{+}$-many Cohen functions $\left\langle f_{\beta} \mid \beta<\kappa^{+}\right\rangle$from κ to κ were added. A precipitous filter F was defined over κ^{2} and its generic embedding extended i_{02} the second iterated ultrapower of U, i.e. $\quad i_{01}: V \rightarrow M_{1} \simeq{ }^{\kappa} V / U, \kappa_{1}=i_{01}(\kappa), i_{12}: M_{1} \rightarrow M_{2} \simeq{ }^{\kappa_{1}} M_{1} / i_{01}(U)$, and $i_{02}=i_{12} \circ i_{01}: V \rightarrow M_{2}$. The projection F^{*} of F to a normal filter was not precipitous because for no one of the Cohen functions f_{β} could it be forced that $\left[f_{\beta}\right]$ is minimal in the generic ultrapower among the set $\left\{\left[f_{\beta}\right] \mid \beta<\kappa^{+}\right\}$. In the proof of these, it was critical that all of the functions were candidates to represent κ_{1}. It is not by chance that this f_{β} 's were candidates for the function that represents κ_{1}. Further results starting with Section 4 of [5], then 2.4 of [6] and [7] suggest that the only ordinals which have a chance to produce an ill-foundness must be of the form κ_{α} (i.e. critical points of iterated ultrapowers).
On the other hand, if the number of critical points is too small (i.e. the length of the iteration is too short), say at most κ^{+}, then results of [6], [7] imply (at least under GCH-type assumptions and in absence of too large cardinals) that there will be always normal precipitous filters.
So it is natural to try the following:
Start with a normal ultrafilter U over κ and iterate it κ^{++}-many times. This will create critical points $\left\langle\kappa_{\alpha} \mid \alpha<\kappa^{++}\right\rangle$. Next add κ^{++}many blocks, each consisting of κ^{+}-many Cohen function from κ to κ. Arrange this (say by adding clubs) so that the functions of α-th block are the candidates to represent κ_{α}. Note that by J.-P. Levinski [12] no assumptions beyond measurability are needed in order to blow up the power and to preserve precipitousness. A problematic point is that his arguments and their extensions in [4] produce large (size κ^{++}) antichains which allow using the method of [6] to construct normal precipitous ideals.
A way around this obstacle will be to collapse in advance a measurable κ to \aleph_{1} and to relay on $\operatorname{Col}\left(\omega,<\kappa^{++}\right)$(which satisfies κ^{++}-c.c.) in order to generically extend the relevant embeddings (namely $i_{0 \kappa^{++}}$).
An additional problem with this approach is that the models of the iteration (iterated ultrapowers) $M_{\alpha}, \alpha \leq \kappa^{++}$are very unclosed. Thus already starting with M_{ω} we lose closure even under ω-sequences. For example $\left\langle\kappa_{n} \mid n<\omega\right\rangle \notin M_{\alpha}$ for every $\alpha, \omega \leq \alpha \leq \kappa^{++}$. This
turns out to be bad once we try to change values of Cohen functions in order to insure the right representations. Remember that α-th block should provide potential candidates for functions representing κ_{α}. Which makes values changing a crucial issue.
The way to gain the missing closure will be to switch from dealing with a single normal ultrafilter and its iterated ultrapowers to κ^{++}-many ultrafilters. We will use as an initial model the model from [3] which has a Rudin-Keisler increasing sequence of ultrafilters of length κ^{++}.

The actual construction will be as follows. We start with a model of [3] (assuming that there is a measurable κ of Mitchell order κ^{++}). Collapse κ to \aleph_{1} and add κ^{++}many blocks of Cohen functions. Organize suitable generics using $\operatorname{Col}\left(\omega,<\kappa^{++}\right)$and use them to define an ∞-semi precipitous filter over \aleph_{1}. Add clubs in order to turn it into $C u b_{\aleph_{1}}$ restricted to a certain set. Next argue that there are no normal precipitous filters on \aleph_{1} (and, hence, if the construction was started with the core model for $o(\kappa)=\kappa^{++}$, no normal precipitous filters at all). Finally a precipitous filter on \aleph_{1} will be constructed using methods of [6].

2 Construction of the model

Start with GCH model W and assume that for some κ there exists a coherent sequence of ultrafilters \vec{U} with $o^{\vec{U}}(\kappa)=\kappa^{++}$and $o^{\vec{U}}(\alpha)<\alpha^{++}$, for every $\alpha<\kappa$. We assume further for the purpose of the main result that W is the minimal model $L[\vec{U}]$ having a cardinal κ such that $o(\kappa)=\kappa^{++}$; however this assumption will not be used in most of the arguments below. The conclusion of such general setting will be only that there are no precipitous filters which extend $C u b_{\aleph_{1}}+\left\{\nu<\kappa \mid o^{\vec{U}}(\nu)=0\right\}$. ${ }^{1}$
By a coherent sequence \vec{U} of ultrafilters in W we mean a function with domain of the form

$$
\left\{(\alpha, \beta) \mid \alpha<\ell^{\vec{U}} \text { and } \beta<o^{\vec{U}}(\alpha)\right\} .
$$

For each pair $(\alpha, \beta) \in \operatorname{dom}(\vec{U})$,

1. $U(\alpha, \beta)$ is a normal ultrafilter on α, and
2. if $j_{\beta}^{\alpha}: W \rightarrow N_{\beta}^{\alpha} \simeq W^{\alpha} / U(\alpha, \beta)$ is the canonical embedding, then

$$
j_{\beta}^{\alpha}(\vec{U}) \upharpoonright \alpha+1=\vec{U} \upharpoonright(\alpha, \beta) .
$$

[^1]We assume that $\ell^{\vec{U}}=\kappa+1, o^{\vec{U}}(\kappa)=\kappa^{++}$and for every $\alpha<\kappa, o^{\vec{U}}(\alpha)<\alpha^{++}$.
Force with the forcing of [3] and turn the sequence $\left\langle U(\kappa, \beta) \mid \beta<\kappa^{++}\right\rangle$into a Rudin Keisler increasing commutative sequence of Q-point ultrafilters $\left\langle U_{\beta} \mid \beta<\kappa^{++}\right\rangle$over κ in a GCH cardinal preserving generic extension V of W.
Which means the following:

1. U_{β} is a κ-complete ultrafilter over κ in V,
2. U_{0} is a normal ultrafilter over κ in V,
3. $U_{\beta} \supseteq U(\kappa, \beta)$,
4. $U_{\beta} \supseteq C u b_{\kappa}$ (this means that U_{β} is a Q-point),
5. if $\beta<\alpha<\kappa^{++}$, then there is a projection function $\pi_{\alpha \beta}: \kappa \rightarrow \kappa$, $U_{\beta}=\left\{\pi_{\alpha \beta}{ }^{\prime \prime} X \mid X \in U_{\alpha}\right\}$ (this means that U_{β} is below U_{α} in the Rudin - Keisler order).

Denote by $M_{\kappa^{++}}$the direct limit of the ultrapowers of $U_{\beta}, \beta<\kappa^{++}$. Let $i_{0 \kappa^{++}}: V \rightarrow M_{\kappa^{++}}$ be the corresponding elementary embedding.
We have by [3], ${ }^{\kappa} M_{\kappa^{++}} \subseteq M_{\kappa^{++}}$.
By elementarity, $M_{\kappa^{++}}$is a generic extension of a model $\tilde{M}_{\kappa^{++}}$such that $i_{0 \kappa^{++}} \upharpoonright W: W \rightarrow$ $\tilde{M}_{\kappa^{++}}$. The model $\tilde{M}_{\kappa^{++}}$is the complete iterated ultrapower of W by measures from $\vec{U} .{ }^{2}$

Denote by $\left\langle\kappa_{\alpha} \mid \alpha<\kappa^{++}\right\rangle$the sequence of all critical points of such iteration. It is a closed unbounded subset of κ^{++}. For every $\alpha<\kappa^{++}$define an ultrafilter $U_{\alpha}^{\prime}=\{X \subseteq \kappa \mid$ $\left.\kappa_{\alpha} \in i_{0 \kappa^{++}}(X)\right\}$.

For every $\alpha<\kappa^{++}$let $M_{\alpha+1}$ be the transitive collapse of $V^{\kappa} / U_{\alpha}^{\prime}$ and $i_{0 \alpha+1}$ the corresponding elementary embedding. Set $M_{0}=V, i_{00}=i d$.
For a limit $\alpha \leq \kappa^{++}$let M_{α} be the direct limit of $\left\langle M_{\gamma} \mid \gamma<\alpha\right\rangle$ and $\left\langle i_{\gamma \alpha} \mid \gamma<\alpha\right\rangle$ the corresponding elementary embeddings, i.e. $i_{\gamma \alpha}: M_{\gamma} \rightarrow M_{\alpha}$.
We have by [3], ${ }^{\kappa} M_{\kappa^{++}} \subseteq M_{\kappa^{++}}$.
For every $\alpha \leq \kappa^{++}$, by elementarity, M_{α} is a generic extension of a model \tilde{M}_{α} such that $i_{0 \alpha} \upharpoonright W: W \rightarrow \tilde{M}_{\alpha}$. Models \tilde{M}_{α} are iterated ultrapowers of W by measures from \vec{U}. If $W=\mathcal{K}$, then \tilde{M}_{α} is the core model of M_{α}. Let us denote further $\left(o^{i_{0}(\vec{U})}(\delta)\right)^{\tilde{M}_{\alpha}}$ simply by $(o(\delta))^{\tilde{M}_{\alpha}}$, for any ordinal δ and $\alpha \leq \kappa^{++}$.

[^2]Collapse κ to \aleph_{1} by $\operatorname{Col}(\omega,<\kappa)$. Then let us add κ^{++}blocks of functions from κ to κ as follows: in $V^{\operatorname{Col}(\omega,<\kappa)}$ set

$$
\operatorname{Cohen}\left(\kappa, \kappa^{++} \times \kappa^{+}\right)=\left\{f| | f \mid<\kappa, f \text { is a partial function from } \kappa \times\left(\kappa^{++} \times \kappa^{+}\right) \text {to } \kappa\right\} .
$$

Let $G_{1} \subseteq \operatorname{Col}(\omega,<\kappa)$ be generic over V and $G_{2} \subseteq \operatorname{Cohen}\left(\kappa, \kappa^{++} \times \kappa^{+}\right)$be a generic over $V\left[G_{1}\right]$. Set $\bar{G}_{2}=\bigcup G_{2}$ and for every $\alpha<\kappa^{++}, \beta<\kappa^{+}, \nu<\kappa$ let $f_{\alpha \beta}(\nu)=\bar{G}_{2}(\nu, \alpha, \beta)$. Denote by

$$
F_{\alpha}=\left\{f_{\alpha \beta} \mid \beta<\kappa^{+}\right\} .
$$

This will be our α-th block of functions.

2.1 Constructing generics

Let show that the elementary embedding $i_{0 \kappa^{++}}: V \rightarrow M_{\kappa^{++}}$extends (generically). It is possible to use [4], but the construction there collapses κ^{++}which is bad for our purposes here. We will need to extend the embedding in a different fashion. One of the issues will be to generate an $M_{\kappa^{+}}^{\operatorname{Col}\left(\omega,<\kappa^{++}\right)}$-generic subset of $i_{0 \kappa^{++}}\left(\operatorname{Cohen}\left(\kappa, \kappa^{++} \times \kappa^{+}\right)\right)$using $\operatorname{Col}\left(\omega,<\kappa^{++}\right)$.

For each $\alpha<\kappa^{++}$let us add only $\left(o\left(\kappa_{\alpha}\right)\right)^{\tilde{M}_{\kappa^{+}}+}<\kappa^{++}$blocks of Cohen functions over $M_{\alpha+1}^{\text {Col }\left(\omega,<i_{0 \alpha+1}(\kappa)\right)}$. More generally $M_{\alpha+1}^{\text {Col }\left(\omega,<i_{0 \alpha+1}(\kappa)\right)}$-generic subsets of iterations of length $\left(o\left(\kappa_{\alpha}\right)\right)^{\tilde{M}_{\kappa}++}$ need to be constructed, since we will add also certain clubs further. Dealing with them is very similar, so let us concentrate on blocks of Cohen functions.

Let $P=i_{0 \kappa^{+}}^{\prime}\left(\operatorname{Cohen}\left(\kappa, \kappa^{++} \times \kappa^{+}\right)\right)$or the image of a κ-support iteration of forcings of cardinality κ with closure properties, where $i_{0 \kappa^{++}}^{\prime}: V^{\operatorname{Col}(\omega,<\kappa)} \rightarrow M_{\kappa^{++}}^{\operatorname{Col}\left(\omega,<\left(\kappa^{++}\right)^{V}\right)}$ is the obvious extension of $i_{0 \kappa^{++}}$. Note that in $V^{\operatorname{Col}(\omega,<\kappa)}$ we have $\kappa=\aleph_{1}$ and $\kappa^{++}=\aleph_{3}$. In order to simplify the notation, let us use $i_{0 \kappa^{++}}$to denote also $i_{0 \kappa^{++}}^{\prime}$ and by κ^{++}we will mean $\left(\kappa^{++}\right)^{V}$.

We would like to construct an $M_{\kappa^{++}}^{\text {Col }\left(\omega,<\kappa^{++}\right)}$-generic subset of $i_{0 \kappa^{++}}\left(\operatorname{Cohen}\left(\kappa, \kappa^{++} \times \kappa^{+}\right)\right)$

Let us first do some warm ups.

2.1.1 A single Cohen function.

Let us deal with a single Cohen function. Namely we would like to construct $f: \kappa^{++} \rightarrow \kappa^{++}$ which is a Cohen generic over $M_{\kappa^{++}}^{\operatorname{Col}\left(\omega,<\kappa^{++}\right)}$.

The construction will proceed by recursion, building $M_{\alpha}^{\text {Col }\left(\omega,<\kappa_{\alpha}\right)}$-generic Cohen function $f^{\alpha}: \kappa_{\alpha} \rightarrow \kappa_{\alpha}$, for every $\alpha \leq \kappa^{++}$.

Set $f^{0}=f_{00}$. Let $\alpha \leq \kappa^{++}$. Assume that $\left\langle f^{\gamma} \mid \gamma<\alpha\right\rangle$ is defined and for every $\gamma^{\prime}<\gamma<\alpha$ we have $f^{\gamma} \upharpoonright \kappa_{\gamma^{\prime}}=f^{\gamma}$. Define f^{α}.

Case 1. α is a limit ordinal.
Set then $f^{\alpha}=\bigcup_{\gamma<\alpha} f^{\gamma}$. Let us argue that such defined f^{α} is $M_{\alpha}^{\operatorname{Col}\left(\omega,<\kappa_{\alpha}\right)}$-generic Cohen function. Let D be a dense set. Recall that M_{α} is a direct limit of $\left\langle M_{\gamma} \mid \gamma<\alpha\right\rangle$, since α is a limit ordinal. Then, for some $\gamma<\alpha$ and a dense subset D_{γ} of the Cohen forcing for κ_{γ} in $M_{\gamma}^{\text {Col }\left(\omega,<\kappa_{\gamma}\right)}, \quad i_{\gamma \alpha}\left(D_{\gamma}\right)=D$. But $D_{\gamma} \subseteq\left(H\left(\kappa_{\gamma}\right)\right)^{M_{\gamma}^{\text {Col }(\omega,<\kappa \gamma)}}$ and κ_{γ} is the critical point of $i_{\gamma \alpha}$, hence $D_{\gamma}=D \cap\left(H\left(\kappa_{\gamma}\right)\right)^{M_{\gamma}^{C o l(\omega,<\kappa \gamma)}}$. The function f^{γ} is Cohen generic, so it extends an element of D_{γ}. Then also f^{α} extends it and we are done.
We can assume using induction that f^{α} is definable from the sequence $\left\langle\kappa_{\gamma} \mid \gamma<\alpha\right\rangle$. This sequence belongs to $M_{\alpha+1} \cdot{ }^{3}$ Hence $f^{\alpha} \in M_{\alpha+1}^{C o l\left(\omega,<\kappa_{\alpha}\right)}$.

Case 2. α is a successor ordinal.
Use $\left.\operatorname{Col}\left(\omega,\left(\left(\kappa_{\alpha}\right)^{+}\right)^{M_{\alpha}}+\kappa^{+}\right)\right)$to find $M_{\alpha}^{\operatorname{Col}\left(\omega,<\kappa_{\alpha}\right)}$-generic Cohen function $f^{\prime \alpha}: \kappa_{\alpha} \rightarrow \kappa_{\alpha}$ in some canonical way. Then replace in it $f^{\prime \alpha} \upharpoonright \kappa_{\alpha-1}$ by $f^{\alpha-1}$. Set f^{α} to be the result. Clearly f^{α} will be $M_{\alpha}^{\operatorname{Col}\left(\omega,<\kappa_{\alpha}\right)}$-generic Cohen function, since $f^{\alpha-1} \in M_{\alpha+1}^{C o l\left(\omega,<\kappa_{\alpha}\right)}$, and so it is a condition in the Cohen forcing.

2.1.2 The first block of Cohen functions.

Let us deal with the κ^{+}-Cohen function of the first block $F_{0}=\left\{f_{0 \beta} \mid \beta<\kappa^{+}\right\}$. Namely we would like to construct $f_{\beta}: \kappa^{++} \rightarrow \kappa^{++}, \beta<i_{0 \kappa^{++}}\left(\kappa^{+}\right)$which is a Cohen generic for $i_{0 \kappa^{++}}\left(\right.$Cohen $\left(\kappa, \kappa^{+}\right)$over $M_{\kappa^{++}}^{\text {Col }\left(\omega,<\kappa^{++}\right)}$. We would like also to have $f_{i_{0 \kappa}++}(\beta) \upharpoonright \kappa=f_{0 \beta}$, for every $\beta<\kappa^{+}$, in order to be able to lift the embedding. Also we would like to spread generating parts of collapses a bit.

The construction will proceed by recursion, building $M_{\alpha}^{\text {Col }\left(\omega,<\kappa_{\alpha}\right)}$-generic Cohen functions $f_{\beta}^{\alpha}: \kappa_{\alpha} \rightarrow \kappa_{\alpha}$ for the forcing $i_{0 \alpha}\left(\operatorname{Cohen}\left(\kappa, \kappa^{+}\right)\right.$, for every $\alpha \leq \kappa^{++}, \alpha \neq 1$ and $\beta<\kappa^{+}$.

Case 1. $\alpha=0$.
Set $f_{\beta}^{0}=f_{0 \beta}$, for every $\beta<\kappa^{+}$.
Case 2. $\alpha=2$.
Define $f_{\beta}^{2}: \kappa_{2} \rightarrow \kappa_{2}$, for every $\beta<i_{02}\left(\kappa^{+}\right)$.
Clearly, $i_{02}\left(\operatorname{Cohen}\left(\kappa, \kappa^{+}\right)\right)=\left(\operatorname{Cohen}\left(\kappa_{2}, \kappa_{2}^{+}\right)\right)^{M_{2}^{\text {Col }\left(\omega,<\kappa_{2}\right)}}$. It is a κ_{2}^{+}-c.c. forcing of size κ_{2}^{+} in $M_{2}^{\operatorname{Col}\left(\omega,<\kappa_{2}\right)}$. Use $\operatorname{Col}\left(\omega,\left(\kappa_{2}^{+}\right)^{M_{2}}\right)$ to build an $M_{2}^{\operatorname{Col}\left(\omega,<\kappa_{2}\right)}$ - generic subset G_{2}^{\prime}. Denote the Cohen functions produced by G_{2}^{\prime} by $\left\langle f_{\beta}^{\prime 2} \mid \beta<\left(\kappa_{2}^{+}\right)^{M_{2}}\right\rangle$.
Now we define f_{β}^{2} to be $f_{\beta}^{\prime 2}$ unless $\beta=i_{02}(\gamma)$, for some $\gamma<\kappa^{+}$. If $\beta=i_{02}(\gamma)$, for some

[^3]$\gamma<\kappa^{+}$, then let us proceed as follows.
First use $\operatorname{Col}\left(\omega,\left\{\left(\kappa_{1}^{+}\right)^{M_{1}}+\kappa^{+}+\gamma\right\}\right)$ to pick genericly an ordinal $\gamma^{*} \in\left[\kappa_{1}, \kappa_{2}\right)$. Then set $f_{\beta}^{2}=f_{0 \gamma} \cup\left\{\left(\kappa, \gamma^{*}\right)\right\} \cup f_{\beta}^{\prime 2} \upharpoonright\left[\kappa+1, \kappa_{2}\right)$. I.e. the value at κ is changed to some rather random value $\geq \kappa_{1}$.
The intuition behind is that we would like that the values $\left\langle i_{0 \kappa^{+}}\left(f_{0 \gamma}\right)(\kappa) \mid \gamma<\kappa^{+}\right\rangle$will be kind of independent. Also note that for every $f: \kappa \rightarrow \kappa$ in $V, i_{0 \kappa^{+}}(f)(\kappa)<\kappa_{1}$, so each function from the first block will dominate every old function.

Let G_{2} be the resulting transformation of G_{2}^{\prime}.
Note that for every $X \in M_{2}$ of size at most κ_{2} there, we have $\left|i_{02}{ }^{\prime \prime} \kappa^{+} \cap X\right| \leq \kappa$. So G_{2} is still $\left(\text { Cohen }\left(\kappa_{2}, \kappa_{2}^{+}\right)\right)^{M_{2}^{C o l\left(\omega,<\kappa_{2}\right)}}$-generic.

Case 3. α is a limit ordinal.
Then for every $\beta \in i_{0 \alpha}\left(\kappa^{+}\right)$there is $\gamma<\alpha$ such that $\beta \in i_{\gamma \alpha}{ }^{\prime \prime} \kappa^{+}$. Denote the least such γ by γ_{β} and let β^{*} denotes the pre-image of β under $i_{\gamma_{\beta} \alpha}$.
Now set $f_{\beta}^{\alpha}=\bigcup_{\gamma_{\beta} \leq \gamma<\alpha} f_{i_{\gamma_{\beta} \gamma}\left(\beta^{*}\right)}^{\gamma}$.
It is not hard to check (similar to 2.1.1, Case 1) that $\left\langle f_{\beta}^{\alpha} \mid \beta<i_{0 \alpha}\left(\kappa^{+}\right)\right\rangle$is as desired.
Let us emphasize the following which is crucial for further successor stages. Suppose that $X \subseteq i_{0 \alpha}\left(\kappa^{+}\right)$of cardinality at most κ_{α} in M_{α}. Then there is $\gamma<\alpha$ such that $X \in \operatorname{rng}\left(i_{\gamma \alpha}\right)$. Denote the least such γ by γ_{X} and let $X^{*} \subseteq i_{0 \gamma_{X}}\left(\kappa^{+}\right)$denotes the pre-image of X under $i_{\gamma_{X} \alpha}$. Clearly, γ_{X} is a successor ordinal. Also $\left|X^{*}\right|^{M_{\gamma_{X}}}$ is at most $\kappa_{\gamma_{X}}$. Consider a function $h_{X^{*}}: \kappa_{\gamma_{X}} \rightarrow M_{\gamma_{X}}$ such that $i_{\gamma_{X} \gamma_{X}+1}\left(h_{X^{*}}\right)\left(\kappa_{\gamma_{X}}\right)=X^{*}$.
Then $h_{X}:=i_{\gamma_{X} \alpha}\left(h_{X^{*}}\right) \in M_{\alpha}$ and $h_{X}\left(\kappa_{\gamma}\right)=i_{\gamma_{X} \gamma}\left(X^{*}\right)$, for every $\gamma, \gamma_{X}<\gamma \leq \alpha$.
Case 4. α is a successor ordinal with $\alpha-1>1$.
Use $\left.\operatorname{Col}\left(\omega,\left(\left(\kappa_{\alpha}\right)^{+}\right)^{M_{\alpha}}+\kappa^{+}\right)\right)$to find $M_{\alpha}^{\operatorname{Col}\left(\omega,<\kappa_{\alpha}\right)}$-generic set $G^{\prime \alpha}$ for $i_{0 \alpha}\left(\operatorname{Cohen}\left(\kappa, \kappa^{+}\right)\right)=$ $\left(\operatorname{Cohen}\left(\kappa_{\alpha}, \kappa_{\alpha}^{+}\right)\right)^{M_{\alpha}^{C o l\left(\omega,<\kappa_{\alpha}\right)}}$ in some canonical way. Let $f_{\beta}^{\prime \alpha}: \kappa_{\alpha} \rightarrow \kappa_{\alpha}, \beta<i_{0 \alpha}\left(\kappa^{+}\right)$be the Cohen functions defined by $G^{\prime \alpha}$.
Now we define f_{β}^{α} to be $f_{\beta}^{\prime \alpha}$ unless $\beta=i_{0 \alpha}(\gamma)$, for some $\gamma<\kappa^{+}$. If $\beta=i_{0 \alpha}(\gamma)$, for some $\gamma<\kappa^{+}$, then let f_{β}^{α} be the function obtained from $f_{\beta}^{\prime \alpha}$ by replacing in it $f_{\beta}^{\prime \alpha} \upharpoonright \kappa_{\alpha-1}$ by $f_{\gamma}^{\alpha-1}$, i.e. $f_{\beta}^{\alpha}=f_{\gamma}^{\alpha-1} \cup f_{\beta}^{\prime \alpha} \upharpoonright\left[\kappa_{\alpha-1}, \kappa_{\alpha}\right)$.

We need to check that the changed sequence $\left\langle f_{\beta}^{\alpha} \mid \beta<i_{0 \alpha}\left(\kappa^{+}\right)\right\rangle$is still $M_{\alpha}^{\text {Col }\left(\omega,<\kappa_{\alpha}\right)}$-generic for $\left(\text { Cohen }\left(\kappa_{\alpha}, \kappa_{\alpha}^{+}\right)\right)^{M_{\alpha}^{\text {Col }\left(\omega,<\kappa_{\alpha}\right)} \text {. }}$
It is enough to show that for every $\xi<\left(\kappa_{\alpha}^{+}\right)^{M_{\alpha}}, \quad\left\langle f_{\beta}^{\alpha}\right| \kappa_{\alpha-1}|\beta<\xi\rangle$ is in $M_{\alpha}^{\operatorname{Col}\left(\omega,<\kappa_{\alpha}\right)}$. Let $\xi<\left(\kappa_{\alpha}^{+}\right)^{M_{\alpha}}$. Pick some $\rho<\left(\kappa_{\alpha-1}^{+}\right)^{M_{\alpha-1}}$ such that $i_{\alpha-1 \alpha}(\rho) \geq \xi$. Note that $i_{\alpha-1 \alpha}{ }^{\prime \prime}\left(\kappa_{\alpha-1}^{+}\right)^{M_{\alpha-1}}$ is unbounded in $\left(\kappa_{\alpha}^{+}\right)^{M_{\alpha}}$ so it is possible. Set $X=\rho$. Then $X \subseteq\left(\kappa_{\alpha-1}^{+}\right)^{M_{\alpha-1}}$ of cardinality at most $\kappa_{\alpha-1}$. Let h_{X} be as in the previous case. The sequence $\left\langle\kappa_{\delta} \mid \delta<\alpha\right\rangle$ is in M_{α} as
well as h_{X}. Then the sequence $\left\langle f_{\mu}^{\alpha-1} \mid \mu \in X\right\rangle$ will be in $M_{\alpha}^{C o l\left(\omega,<\kappa_{\alpha}\right)}$. But also the function $\left\{\left(\nu, i_{\alpha-1 \alpha}(\nu)\right) \mid \nu<\rho\right\}$ is in M_{α}. Hence $\left\langle f_{\beta}^{\alpha} \upharpoonright \kappa_{\alpha-1} \mid \beta \in i_{\alpha-1 \alpha}{ }^{\prime \prime} \rho\right\rangle$ is in $M_{\alpha}^{C o l\left(\omega,<\kappa_{\alpha}\right)}$. So, $\left\langle f_{\beta}^{\alpha} \upharpoonright \kappa_{\alpha-1} \mid \beta<\xi\right\rangle$ is in $M_{\alpha}^{C o l\left(\omega,<\kappa_{\alpha}\right)}$.
Note that $\left\langle f_{\mu}^{\alpha-1} \mid \mu<\left(\kappa_{\alpha-1}^{+}\right)^{M_{\alpha-1}}\right\rangle$ is not in $M_{\alpha}^{\operatorname{Col}\left(\omega,\left\langle\kappa_{\alpha}\right)\right.}$.

2.1.3 An arbitrary block of Cohen functions.

Let $\eta<\kappa^{++}$. We deal now with η 's block $F_{\eta}=\left\{f_{\eta \beta} \mid \beta<\kappa^{+}\right\}$of Cohen functions. Repeat the construction of 2.1.2, but only start from $\eta+1$ instead of 2 .

2.1.4 Dealing with all blocks of Cohen functions simultaneously.

Now we will deal simultaneously with all κ^{++}blocks.
Namely we would like to construct functions $f_{\alpha \beta}^{\kappa^{++}}: \kappa^{++} \rightarrow \kappa^{++}, \alpha<i_{0 \kappa^{++}}\left(\kappa^{++}\right), \beta<$ $i_{0 \kappa^{++}}\left(\kappa^{+}\right)$which are a Cohen generic for $i_{0 \kappa^{++}}\left(\operatorname{Cohen}\left(\kappa, \kappa^{++} \times \kappa^{+}\right)\right)$over $M_{\kappa^{++}}^{\left.\text {Col } \omega,<\kappa^{++}\right)}$. We would like also to have $f_{i_{\kappa^{+}++}(\alpha) i_{0 \kappa}++}^{\kappa^{++}}{ }^{(\beta)} \upharpoonright \kappa=f_{\alpha \beta}$, for every $\alpha<\kappa^{++}, \beta<\kappa^{+}$, in order to be able to lift the embedding.

Note that $i_{0 \kappa^{++}}\left(\kappa^{++}\right)=i_{0 \kappa^{++}}(o(\kappa))=\bigcup i_{0 \kappa^{++}}{ }^{\prime \prime} \kappa^{++}$.
The construction will proceed by recursion, building $M_{\eta}^{C o l\left(\omega,<\kappa_{\eta}\right)}$-generic Cohen functions $f_{\alpha \beta}^{\eta}: \kappa_{\eta} \rightarrow \kappa_{\eta}$ for the forcing $\operatorname{Cohen}\left(\kappa_{\eta}, o^{\tilde{M}_{\kappa}++}\left(\kappa_{\eta}\right) \times i_{0 \eta}\left(\kappa^{+}\right)\right)$, for every successor $\eta \leq \kappa^{++}$ and $\beta<\kappa^{+}$. We define some of $f_{\alpha \beta}^{\eta}$ for limit $\eta, 0<\eta<\kappa^{++}$as well, but in this case they will not always be $M_{\eta}^{\operatorname{Col}\left(\omega,<\kappa_{\eta}\right)}-$ Cohen generic for the forcing $\operatorname{Cohen}\left(\kappa_{\eta}, o^{\tilde{M}_{\kappa++}}\left(\kappa_{\eta}\right) \times i_{0 \eta}\left(\kappa^{+}\right)\right)$.

Let $\eta, 0<\eta<\kappa^{++}$. We deal at this stage with the forcing Cohen $\left(\kappa_{\eta}, o^{\tilde{M}_{\kappa^{++}}}\left(\kappa_{\eta}\right) \times\right.$ $\left.\left(\kappa_{\eta}^{+}\right)^{M_{\eta}}\right)$.

Note that $o^{\tilde{M}_{\kappa^{++}}}\left(\kappa_{n}\right)=0$, for every $n<\omega$ and $o^{\tilde{M}_{\kappa++}}\left(\kappa_{\omega}\right)=1$. So the first non-trivial case will be $\eta=\omega+1$.

Case 1. $\eta=\omega+1$.
So we have Cohen $\left(\kappa, 1 \times \kappa^{+}\right)$. It is just a single Cohen function. Proceed as in 2.1.2.
Case 2. η is a limit ordinal.
Set

$$
Z_{\eta}=\left\{\alpha<o^{\tilde{M}_{\kappa}++}\left(\kappa_{\eta}\right) \mid \exists \xi<\eta \quad \exists \alpha_{\xi}<o^{\tilde{M}_{\kappa}++}\left(\kappa_{\xi}\right) \quad i_{\xi \eta}\left(\alpha_{\xi}\right)=\alpha\right\} .
$$

Note that Z_{η} may be a proper subset of $o^{\tilde{M}_{\kappa++}}\left(\kappa_{\eta}\right)$, if $\eta<\kappa^{++}$, but for $\eta=\kappa^{++}$we have the equality.

Claim $1 Z_{\kappa^{++}}=o^{\tilde{M}_{\kappa^{++}}}\left(\kappa^{++}\right)$.

Proof. Let $\alpha<o^{\tilde{M}_{\kappa^{++}}}\left(\kappa^{++}\right)$. Pick some $\xi, \rho^{\prime}<\xi<\kappa^{++}$and α_{ξ} such that $i_{\xi \kappa^{++}}\left(\alpha_{\xi}\right)=\alpha$. By elementarity, $M_{\xi} \models \alpha_{\xi}<o\left(\kappa_{\xi}\right)$. Then at some stage δ of the iteration from M_{ξ} to $M_{\kappa^{++}}$a measure $i_{\xi \delta}\left(U\left(\kappa_{\xi}, \alpha_{\xi}+1\right)\right.$) should be used, and then $i_{\xi \delta+1}\left(\alpha_{\xi}\right)<o^{\tilde{M}_{\delta+1}}\left(\kappa_{\delta}\right)=o^{\tilde{M}_{\kappa}++}\left(\kappa_{\delta}\right)$, or already $\alpha_{\xi}<o^{\tilde{M}_{\xi+1}}\left(\kappa_{\xi}\right)=o^{\tilde{M}_{\kappa}++}\left(\kappa_{\xi}\right)$.
\square of the claim.
Let $\alpha \in Z_{\eta}$ and $\beta<i_{0 \eta}\left(\kappa^{+}\right)$. Find the least $\xi<\eta$ such that for some $\alpha_{\xi}<o^{\tilde{M}_{\kappa^{++}}}\left(\kappa_{\xi}\right)$ and β_{ξ} we have $i_{\xi \eta}\left(\alpha_{\xi}\right)=\alpha$ and $i_{\xi \eta}\left(\beta_{\xi}\right)=\beta$. Denote the least such ξ by $\xi_{\alpha \beta}$. Set

$$
f_{\alpha \beta}^{\eta}=\bigcup\left\{f_{\alpha_{\xi} \beta_{\xi}}^{\xi} \mid \xi_{\alpha \beta} \leq \xi<\eta \text { and } \alpha_{\xi}<o^{\tilde{M}_{\kappa}++}\left(\kappa_{\xi}\right)\right\} .
$$

Case 3. η is a successor ordinal >1.
Note that $o^{\tilde{M}_{\kappa}++}\left(\kappa_{\eta}\right)=o^{\tilde{M}_{\eta+1}}\left(\kappa_{\eta}\right)<\left(\kappa_{\eta}^{++}\right)^{M_{\eta+1}}=\left(\kappa_{\eta}^{++}\right)^{M_{\kappa}++}$.
So, Cohen $\left(\kappa_{\eta}, o^{\tilde{M}_{\kappa^{+}}}\left(\kappa_{\eta}\right) \times\left(\kappa_{\eta}^{+}\right)^{M_{\eta}}\right.$) is a κ_{η}^{+}-c.c. forcing of cardinality κ_{η}^{+}in $M_{\eta+1}$. Use $\operatorname{Col}\left(\omega,\left(\kappa_{\eta}^{+}\right)^{M_{\kappa}}+\kappa^{+}\right)$to find M_{η}-generic subset G_{η}^{\prime} of it in some canonical way. Denote by $\left\langle f_{\alpha \beta}^{\prime \eta} \mid \alpha<o^{\tilde{M}_{\kappa^{++}}}\left(\kappa_{\eta}\right), \beta<\left(\kappa_{\eta}^{+}\right)^{M_{\eta}}\right\rangle$ the Cohen functions generated by G_{η}^{\prime}.
Next let us change some of this functions restricted to $\kappa_{\eta-1}$.
If there is no $\xi \leq \eta-1$ such that for some $\alpha_{\xi}<o^{\tilde{M}_{\kappa}++}\left(\kappa_{\xi}\right)$ and β_{ξ} we have $i_{\xi \eta}\left(\alpha_{\xi}\right)=\alpha$ and $i_{\xi \eta}\left(\beta_{\xi}\right)=\beta$, then set $f_{\alpha \beta}^{\eta}=f_{\alpha \beta}^{\prime \eta}$.
Otherwise let $\check{\eta}$ be the maximal $\xi \leq \eta-1$ such that for some $\alpha_{\xi}<o^{\tilde{M}_{\kappa}++}\left(\kappa_{\xi}\right)$ and β_{ξ} we have $i_{\xi \eta}\left(\alpha_{\xi}\right)=\alpha$ and $i_{\xi \eta}\left(\beta_{\xi}\right)=\beta$.
Set $f_{\alpha \beta}^{\eta}=f_{\alpha \beta}^{\prime \eta} \upharpoonright\left[\kappa_{\tilde{\eta}}, \kappa_{\eta}\right) \cup f_{\alpha_{\bar{\eta}} \beta_{\bar{\eta}}}^{\check{\eta}}$.
Let G_{η} be the corresponding changed G_{η}^{\prime}. Let us argue that such changes do not effect genericity, i.e. G_{η} remains generic.

Suppose that $Y \subseteq o^{\tilde{M}_{\kappa^{++}}}\left(\kappa_{\eta}\right) \times\left(\kappa_{\eta}^{+}\right)^{M_{\eta}}$ of cardinality at most κ_{η} in M_{η}. Consider

$$
X=\left\{(\alpha, \beta) \in\left(\kappa_{\eta-1}^{++}\right)^{M_{\eta-1}} \times\left(\kappa_{\eta-1}^{+}\right)^{M_{\eta-1}} \mid i_{\eta-1 \eta}((\alpha, \beta)) \in Y\right\} .
$$

Then $|X|^{M_{\eta-1}} \leq \kappa_{\eta-1}$.
If $\eta-1$ is a successor ordinal then we can use the induction and argue that
$\left\langle f_{i_{\eta-1 \eta}(\alpha) i_{\eta-1 \eta}(\beta)}^{\eta} \upharpoonright \kappa_{\eta-1} \mid(\alpha, \beta) \in X\right\rangle$ is in $M_{\eta-1}$. Now this set will be also in M_{η}, due to the size of X. So $G_{\eta} \upharpoonright Y$ will be generic since in is obtained from G_{η}^{\prime} by basically changing a single condition.
Suppose now that $\eta-1$ is a limit ordinal. Then there is $\gamma<\eta-1$ such that $X \in \operatorname{rng}\left(i_{\gamma \eta-1}\right)$. Denote the least such γ by γ_{X} and let X^{*} be the pre-image of X under $i_{\gamma_{X} \eta-1}$. Clearly, γ_{X} is a successor ordinal. Also $\left|X^{*}\right|^{M_{\gamma_{X}}}$ is at most $\kappa_{\gamma_{X}}$. Consider a function $h_{X^{*}}: \kappa_{\gamma_{X}} \rightarrow M_{\gamma_{X}}$ such that $i_{\gamma_{X} \gamma_{X}+1}\left(h_{X^{*}}\right)\left(\kappa_{\gamma_{X}}\right)=X^{*}$.

Then $h_{X}:=i_{\gamma_{X} \eta-1}\left(h_{X^{*}}\right) \in M_{\eta-1}$ and $h_{X}\left(\kappa_{\gamma}\right)=i_{\gamma_{X} \gamma}\left(X^{*}\right)$, for every $\gamma, \gamma_{X}<\gamma \leq \eta-1$. Now using h_{X} and $\left\langle\kappa_{\gamma} \mid \gamma_{X}<\gamma \leq \eta-1\right\rangle$ which are both in M_{η} it is possible to define there $\left\langle f_{i_{\eta-1 \eta}(\alpha) i_{\eta-1 \eta}(\beta)} \upharpoonright \kappa_{\eta-1} \mid(\alpha, \beta) \in X\right\rangle$. So again $G_{\eta} \upharpoonright Y$ will be generic since in is obtained from G_{η}^{\prime} by basically changing a single condition.
This completes the construction.
Let us argue that the final $G_{\kappa^{++}}$is generic over $M_{\kappa^{++}}^{\text {Col }\left(\omega,<\kappa^{++}\right)}$.
Claim $2 G_{\kappa^{++}}$is a generic subset of $i_{0 \kappa^{++}}\left(\operatorname{Cohen}\left(\kappa, \kappa^{++} \times \kappa^{+}\right)\right)$over $M_{\kappa^{++}}^{\text {Col }\left(\omega,<\kappa^{++}\right)}$.
Proof. It is enough to show that for every $X \subseteq \kappa^{++} \times i_{0 \kappa^{++}}\left(\kappa^{+}\right), X \in M_{\kappa^{++}}$of cardinality at most κ^{++}in $M_{\kappa^{++}}$the restriction $G_{\kappa^{++}} \upharpoonright X$ is $\operatorname{Cohen}\left(\kappa^{++}, X\right)$-generic over $M_{\kappa^{++}}^{\text {Col }\left(\omega,<\kappa^{++}\right)}$. Fix such X. Then there is $\gamma<\kappa^{++}$such that $X \in \operatorname{rng}\left(i_{\gamma \kappa^{++}}\right)$. Denote the least such γ by γ_{X} and let X^{*} be the pre-image of X under $i_{\gamma_{X} \kappa^{++}}$. Clearly, γ_{X} is a successor ordinal. Also $\left|X^{*}\right|^{M_{\gamma_{X}}}$ is at most $\kappa_{\gamma_{X}}$. Then there are arbitrary large successor ordinals $\delta, \gamma_{X} \leq \delta<\kappa^{++}$ such that every coordinate of $i_{\xi_{X} \delta}\left(X^{*}\right)$ appears in G_{δ}, i.e. for every $(\alpha, \beta) \in i_{\xi_{X} \delta}\left(X^{*}\right)$ we have $o^{\tilde{M}_{\kappa}++}\left(\kappa_{\delta}\right)>\alpha$.
Supose now that in $M_{\kappa^{++}}^{\text {Col }\left(\omega,<\kappa^{++}\right)}$we have a dense open subset D of $\operatorname{Cohen}\left(\kappa^{++}, X\right)$. Define γ_{D} and D^{*} as before. Pick δ as above with $\gamma_{D}<\delta$. Then $i_{\gamma_{D} \delta}\left(D^{*}\right)$ will be a dense open subset of $\operatorname{Cohen}\left(\kappa_{\delta}, i_{\gamma_{X} \delta}\left(X^{*}\right)\right)$ in M_{δ}. So $\left(G_{\delta} \upharpoonright i_{\gamma_{X} \delta}\left(X^{*}\right)\right) \cap i_{\gamma_{D} \delta}\left(D^{*}\right) \neq \emptyset$. Then, by the construction, also $G_{\kappa^{++}} \cap D \neq \emptyset$.
\square of the claim.

2.1.5 Dealing with all blocks of Cohen functions simultaneously revised.

In previous settings only values of Cohen functions on κ were addressed with a special care (see 2.1.2). Here we would like revise a previous construction (2.1.4) and to deal with all κ_{α} 's.

We construct functions $f_{\alpha \beta}^{\kappa^{++}}: \kappa^{++} \rightarrow \kappa^{++}, \alpha<i_{0 \kappa^{++}}\left(\kappa^{++}\right), \beta<i_{0 \kappa^{++}}\left(\kappa^{+}\right)$which are a Cohen generic for $i_{0 \kappa^{++}}\left(\operatorname{Cohen}\left(\kappa, \kappa^{++} \times \kappa^{+}\right)\right)$over $M_{\kappa^{++}}^{\text {Col }\left(\omega,<\kappa^{++}\right)}$. Still we would like to have $f_{i_{\kappa^{+}++}(\alpha) i_{0_{\kappa}++}(\beta)}^{\kappa^{++}} \upharpoonright \kappa=f_{\alpha \beta}$, for every $\alpha<\kappa^{++}, \beta<\kappa^{+}$, in order to be able to lift the embedding.

The construction will proceed by recursion, building $M_{\eta}^{\operatorname{Col}\left(\omega,<\kappa_{\eta}\right)}$-generic Cohen functions $f_{\alpha \beta}^{\eta}: \kappa_{\eta} \rightarrow \kappa_{\eta}$ for the forcing $\operatorname{Cohen}\left(\kappa_{\eta}, o^{\tilde{M}_{\kappa++}}\left(\kappa_{\eta}\right) \times i_{0 \eta}\left(\kappa^{+}\right)\right.$, for every successor $\eta<\kappa^{++}$ and $\beta<\kappa^{+}$. We define some of $f_{\alpha \beta}^{\eta}$ for limit $\eta, 0<\eta<\kappa^{++}$as well, but in this case they will not form always $M_{\eta}^{\operatorname{Col}\left(\omega,<\kappa_{\eta}\right)}$ - Cohen generic for the forcing $\operatorname{Cohen}\left(\kappa_{\eta}, o^{\tilde{M}_{\kappa}++}\left(\kappa_{\eta}\right) \times i_{0 \eta}\left(\kappa^{+}\right)\right)$.

Let $\eta, 0<\eta<\kappa^{++}$. We deal at this stage with the forcing Cohen $\left(\kappa_{\eta}, o^{\tilde{M}_{\kappa^{++}}}\left(\kappa_{\eta}\right) \times\right.$ $\left(\kappa_{\eta}^{+}\right)^{M_{\eta}}$.
The first non-trivial case is $\eta=\omega+1$.
Case 1. $\eta=\omega+1$.
So we have Cohen $\left(\kappa, 1 \times \kappa^{+}\right)$.
Define $f_{0 \beta}^{\omega+1}: \kappa_{\omega+1} \rightarrow \kappa_{\omega+1}$, for every $\beta<i_{0 \omega+1}\left(\kappa^{+}\right)$.
Clearly, $i_{0 \omega+1}\left(\operatorname{Cohen}\left(\kappa, \kappa^{+}\right)\right)=\left(\operatorname{Cohen}\left(\kappa_{\omega+1}, \kappa_{\omega+1}^{+}\right)\right)^{M_{\omega+1}^{C o l\left(\omega,<\kappa_{\omega+1}\right)}}$. It is a $\kappa_{\omega+1}^{+}$c.c. forcing of size $\kappa_{\omega+1}^{+}$in $M_{\omega+1}^{\operatorname{Col}\left(\omega,<\kappa_{\omega+1}\right)}$. Use $\operatorname{Col}\left(\omega,\left(\kappa_{\omega+1}^{+}\right)^{M_{\omega+1}}\right)$ to build an $M_{\omega+1}^{\operatorname{Col}\left(\omega,<\kappa_{\omega+1}\right)}$-generic subset $G_{\omega+1}^{\prime}$. Denote the Cohen functions produced by $G_{\omega+1}^{\prime}$ by $\left\langle f_{\beta}^{\prime \omega+1} \mid \beta<\left(\kappa_{\omega+1}^{+}\right)^{M_{\omega+1}}\right\rangle$.
Now we define $f_{0 \beta}^{\omega+1}$ to be $f_{\beta}^{\prime} \omega+1$ unless $\beta=i_{0 \omega+1}(\gamma)$, for some $\gamma<\kappa^{+}$. If $\beta=i_{0 \omega+1}(\gamma)$, for some $\gamma<\kappa^{+}$, then let us proceed as follows.
First use $\operatorname{Col}\left(\omega,\left\{\left(\kappa_{\omega}^{+}\right)^{M_{\omega}}+\kappa^{+}+\gamma\right\}\right)$ to pick genericly an ordinal $\gamma^{*} \in\left[\kappa_{\omega}, \kappa_{\omega+1}\right)$. Then set $f_{0 \beta}^{2}=f_{0 \gamma} \cup\left\{\left(\kappa, \gamma^{*}\right)\right\} \cup f_{\beta}^{\prime 2} \upharpoonright\left[\kappa+1, \kappa_{\omega+1}\right)$. I.e. the value at κ is changed to some rather random value $\geq \kappa_{\omega}$. It is possible to change the values at each of κ_{n} 's but let us make changes in values only at places where the relevant forcing appears.
The next stage for the forcing $\operatorname{Cohen}\left(\kappa, 1 \times \kappa^{+}\right)$will be $\eta=\omega+\omega+1$. At this stage the value given to κ will be preserved and the value at κ_{ω} will be changed to some ordinal in $\left[\kappa_{\omega+\omega}, \kappa_{\omega+\omega+1}\right)$.

The first place when the second block of Cohen functions will come into the play will be at stage $\omega \cdot \omega+1$, since $o^{\tilde{M}_{\kappa++}}\left(\kappa_{\alpha}\right)<2$, for every $\alpha<\omega \cdot \omega+1$, and $o^{\tilde{M}_{\kappa}++}\left(\kappa_{\omega \cdot \omega}\right)=2$.
At the stage $\omega \cdot \omega$ we will have $\left\langle f_{0 \beta}^{\omega \cdot \omega} \mid \beta<i_{0 \omega \cdot \omega}\left(\kappa^{+}\right)\right\rangle$. Let us describe the construction at the next stage.

Case 2. $\eta=\omega \cdot \omega+1$.
Define $f_{\alpha \beta}^{\omega \cdot \omega+1}: \kappa_{\omega+1} \rightarrow \kappa_{\omega+1}$, for every $\alpha<2, \beta<i_{0 \omega+1}\left(\kappa^{+}\right)$.
Clearly, $i_{0 \omega \cdot \omega+1}\left(\operatorname{Cohen}\left(\kappa, 2 \times \kappa^{+}\right)\right)=\left(\operatorname{Cohen}\left(\kappa_{\omega \cdot \omega+1}, 2 \times \kappa_{\omega \cdot \omega+1}^{+}\right)\right)^{M_{\omega \cdot \omega+1}^{C o l}\left(\omega,<\kappa_{\omega \cdot \omega+1}\right)}$. It is a $\kappa_{\omega \cdot \omega+1^{-}}^{+}$ c.c. forcing of size $\kappa_{\omega \cdot \omega+1}^{+}$in $M_{\omega \cdot \omega+1}^{\operatorname{Col}\left(\omega,<\kappa_{\omega \cdot \omega+1}\right)}$. Use $\operatorname{Col}\left(\omega,\left(\kappa_{\omega \cdot \omega+1}^{+}\right)^{M_{\omega \cdot \omega+1}}\right)$ to build an $M_{\omega \cdot \omega+1}^{\operatorname{Col}\left(\omega,<\kappa_{\omega \cdot \omega+1}\right)}-$ generic subset $G_{\omega \cdot \omega+1}^{\prime}$. Denote the Cohen functions produced by $G_{\omega \cdot \omega+1}^{\prime}$ by $\left\langle f_{\alpha \beta}^{\prime \omega \cdot \omega+1}\right| \alpha<$ $2, \beta<\left(\kappa_{\omega \cdot \omega+1}^{+}\right)^{\left.M_{\omega \cdot \omega+1}\right\rangle}$.
Define $f_{\alpha \beta}^{\omega \cdot \omega+1}$ to be $f_{\alpha \beta}^{\prime \omega \cdot \omega+1}, \alpha<2$, unless $\beta=i_{\omega \cdot \omega \omega \cdot \omega+1}(\gamma)$, for some $\gamma<i_{0 \omega \cdot \omega}\left(\kappa^{+}\right)$. If $\beta=i_{\omega \cdot \omega \omega \cdot \omega+1}(\gamma)$, for some $\gamma<i_{0 \omega \cdot \omega+1}\left(\kappa^{+}\right)$, then set $f_{0 \beta}^{\omega \cdot \omega+1}=f_{0 \gamma}^{\omega \cdot \omega} \cup f_{\beta}^{\prime \omega \cdot \omega+1} \upharpoonright\left[\kappa_{\omega \cdot \omega}, \kappa_{\omega \cdot \omega+1}\right)$.

Set $f_{1 \beta}^{\omega \cdot \omega+1}$ to be $f_{1 \beta}^{\prime \omega \cdot \omega+1}$, unless $\beta=i_{0 \omega \cdot \omega+1}(\delta)$, for some $\delta<\kappa^{+}$. If $\beta=i_{0 \omega \cdot \omega+1}(\delta)$, for some $\delta<\kappa^{+}$, then let us proceed as follows.
First use $\operatorname{Col}\left(\omega,\left\{\left(\kappa_{\omega \cdot \omega}^{+}\right)^{M_{\omega \cdot \omega}}+\kappa^{+} \cdot 2+\delta\right\}\right)$ to pick genericly an ordinal $\delta_{1}^{*} \in\left[\kappa_{\omega \cdot \omega}, \kappa_{\omega \cdot \omega+1}\right)$. Then set $f_{1 \beta}^{\omega \cdot \omega+1}=\left(f_{1 \beta}^{\prime \prime \prime \cdot \omega+1} \backslash\left\{\left(\kappa, f_{1 \beta}^{\prime \prime \omega \cdot \omega+1}(\kappa)\right)\right\}\right) \cup\left\{\left(\kappa, \delta_{1}^{*}\right)\right\}$.
I.e. the value at κ is changed to some rather random value $\geq \kappa_{\omega \cdot \omega}$.

Note that the value $f_{0 \beta}^{\omega \cdot \omega+1}\left(\kappa_{\omega \cdot \omega}\right)$ stays unchanged here. It will be changed further at the first relevant stage, i.e. at $\omega \cdot \omega+\omega+1$.

Let us deal with a general situation now.
Case 3. $\eta>0$ is a limit ordinal.
We proceed exactly as in the corresponding case of 2.1.4.
Case 4. η is a successor ordinal.
Assume that $\eta>\omega+1$.
Note that $o^{\tilde{M}_{\kappa}++}\left(\kappa_{\eta}\right)=o^{\tilde{M}_{\eta+1}}\left(\kappa_{\eta}\right)<\left(\kappa_{\eta}^{++}\right)^{M_{\eta+1}}=\left(\kappa_{\eta}^{++}\right)^{M_{\kappa}++}$.
So, Cohen $\left(\kappa_{\eta}, o^{\tilde{M}_{\kappa^{+}}+}\left(\kappa_{\eta}\right) \times\left(\kappa_{\eta}^{+}\right)^{M_{\eta}}\right)$ is a κ_{η}^{+}-c.c. forcing of cardinality κ_{η}^{+}in $M_{\eta+1}$. Use $\operatorname{Col}\left(\omega,\left(\kappa_{\eta}^{+}\right)^{M_{\kappa_{\eta}}}+\kappa^{+}\right)$to find M_{η}-generic subset G_{η}^{\prime} of it in some canonical way. Denote by $\left\langle f_{\alpha \beta}^{\prime \eta} \mid \alpha<o^{\tilde{M}_{\kappa^{++}}}\left(\kappa_{\eta}\right), \beta<\left(\kappa_{\eta}^{+}\right)^{M_{\eta}}\right\rangle$ the Cohen functions generated by G_{η}^{\prime}.
Next let us change some of this functions restricted to $\kappa_{\eta-1}$.
Set $A=\left\{\alpha<o^{\tilde{M}_{\kappa}++}\left(\kappa_{\eta}\right) \mid \exists \alpha^{\prime}<\kappa^{++} \quad i_{0 \eta}\left(\alpha^{\prime}\right)=\alpha\right\}$.
If $\alpha \in o^{\tilde{M}_{\kappa^{++}}}\left(\kappa_{\eta}\right) \backslash A$, then no change is made and we set $f_{\alpha \beta}^{\eta}=f_{\alpha \beta}^{\prime \eta}$, for every $\beta<\left(\kappa_{\eta}^{+}\right)^{M_{\eta}}$.
Suppose now that $\alpha \in A$. Let $\beta<\left(\kappa_{\eta}^{+}\right)^{M_{\eta}}$. If there is no β^{\prime} such that $i_{\eta-1 \eta}\left(\beta^{\prime}\right)=\beta$, then again set $f_{\alpha \beta}^{\eta}=f_{\alpha \beta}^{\prime \eta}$.
Suppose that $i_{\eta-1 \eta}(\delta)=\beta$, for some δ.
If there is no $\xi \leq \eta-1$ such that for some $\alpha_{\xi}<o^{\tilde{M}_{\kappa}++}\left(\kappa_{\xi}\right)$ we have $i_{\xi \eta}\left(\alpha_{\xi}\right)=\alpha$. Then use $\operatorname{Col}\left(\omega,\left\{\left(\kappa_{\eta-1}^{+}\right)^{M_{\eta-1}}+\kappa^{+} \cdot \alpha+\delta\right\}\right)$ to pick genericly an ordinal $\delta_{\alpha}^{*} \in\left[\kappa_{\eta-1}, \kappa_{\eta}\right)$.
Set $f_{\alpha \beta}^{\eta}=\left(f_{\alpha \beta}^{\prime \prime \eta} \backslash\left\{\left(\kappa, f_{\alpha \beta}^{\prime \prime \eta}(\kappa)\right)\right\}\right) \cup\left\{\left(\kappa, \delta_{\alpha}^{*}\right)\right\}$.
Otherwise let $\check{\eta}$ be the maximal $\xi \leq \eta-1$ such that for some $\alpha_{\xi}<o^{\tilde{M}_{\kappa}++}\left(\kappa_{\xi}\right)$ we have $i_{\xi \eta}\left(\alpha_{\xi}\right)=\alpha$.
Set $f_{\alpha \beta}^{\prime \prime \eta}=f_{\alpha \beta}^{\prime \eta} \upharpoonright\left[\kappa_{\check{\eta}}, \kappa_{\eta}\right) \cup f_{\alpha_{\bar{\eta}} \beta_{\bar{\eta}}}^{\check{\eta}}$.
If $\check{\eta}=\eta-1$, then set $f_{\alpha \beta}^{\eta}=f_{\alpha \beta}^{\prime \prime \eta}$.
Suppose that $\check{\eta}<\eta-1$. Then use $\operatorname{Col}\left(\omega,\left\{\left(\kappa_{\eta-1}^{+}\right)^{M_{\eta-1}}+\kappa^{+} \cdot \alpha+\delta\right\}\right)$ to pick genericly an ordinal $\delta_{\alpha}^{*} \in\left[\kappa_{\eta-1}, \kappa_{\eta}\right)$.
Set $f_{\alpha \beta}^{\eta}=\left(f_{\alpha \beta}^{\prime \prime \eta} \backslash\left\{\left(\kappa_{\check{\eta}}, f_{\alpha \beta}^{\prime \prime \eta}\left(\kappa_{\check{\eta}}\right)\right)\right\}\right) \cup\left\{\left(\kappa_{\check{\eta}}, \delta_{\alpha}^{*}\right)\right\}$.
Let G_{η} be the corresponding changed G_{η}^{\prime}. The argument that G_{η} remains generic is similar to those of 2.1.4.

This completes the construction.
Finally, the following holds exactly as in 2.1.4.
Claim $3 G_{\kappa^{++}}$is a generic subset of $i_{0 \kappa^{++}}\left(\operatorname{Cohen}\left(\kappa, \kappa^{++} \times \kappa^{+}\right)\right)$over $M_{\kappa^{++}}^{\text {Col }\left(\omega,<\kappa^{++}\right)}$.

$2.2 \quad \infty$-semi precipitous filter

Recall that $G_{1} \subseteq \operatorname{Col}(\omega,<\kappa)$ is generic over V and $G_{2} \subseteq \operatorname{Cohen}\left(\kappa, \kappa^{++} \times \kappa^{+}\right)$is generic over $V\left[G_{1}\right]$. For every $\alpha<\kappa^{++}$we denote the α-th block of Cohen functions by $F_{\alpha}=\left\{f_{\alpha \beta} \mid\right.$ $\left.\beta<\kappa^{+}\right\}$.

Next we would like to arrange that the functions in F_{α} are those that have a chance to represent κ_{α} in a generic ultrapower. For this purpose let us add clubs by forcing over $V\left[G_{1}, G_{2}\right]$.
Force with $<\kappa$-support iteration a club into

$$
\left\{\nu<\kappa \mid f_{\alpha \beta}(\nu)<f_{\alpha^{\prime} \beta^{\prime}}(\nu)\right\},
$$

for every $\alpha<\alpha^{\prime}<\kappa^{++}$and $\beta, \beta^{\prime}<\kappa^{+}$.
In addition for each $f \in{ }^{\kappa} \kappa \cap V$ and $\beta<\kappa^{+}$force a club into

$$
\left\{\nu<\kappa \mid f(\nu)<f_{0 \beta}(\nu)\right\} .
$$

Also, for each $n<\omega, f \in{ }^{[\kappa]^{n}} \kappa \cap V, \alpha_{1}<\ldots<\alpha_{n}<\alpha<\kappa^{++}, \beta_{1}, \ldots, \beta_{n}, \beta<\kappa^{+}$we force a club into

$$
\left\{\nu<\kappa \mid f\left(f_{\alpha_{1} \beta_{1}}(\nu), \ldots, f_{\alpha_{n} \beta_{n}}(\nu)\right)<f_{\alpha \beta}(\nu)\right\} .
$$

This insures that in any normal filter the block F_{α} of functions will be strictly above each of the blocks $F_{\alpha^{\prime}}$ with $\alpha^{\prime}<\alpha$.
Note that each ordinal in the interval $\left[\kappa_{\alpha}, \kappa_{\alpha+1}\right)$ is of a form $i_{0, \alpha+1}(f)\left(\kappa_{\alpha_{1}}, \ldots, \kappa_{\alpha_{n}}\right)$ for some $f \in{ }^{[\kappa]^{n}} \kappa \cap V$ and $\alpha_{1}<\ldots<\alpha_{n} \leq \alpha$.

Let G_{3} be a corresponding generic object. Note that it is easy to reorganize the forcing to add both of the blocks of Cohen functions and the clubs in a single iteration of length κ^{++}.

Let us define a filter F over κ in $V\left[G_{1}, G_{2}, G_{3}\right]$ as follows:

$$
\left.F=\left\{X \subseteq \kappa \mid 0_{\text {Col }\left(\omega,<i_{0 \kappa}++\right.}(\kappa)\right) / G_{1} * G_{2} * G_{3} \Vdash \kappa \in i_{0 \kappa^{+}}(\underset{\sim}{X})\right\} .
$$

Then

$$
F^{+}=\left\{X \subseteq \kappa \mid \exists p \in \operatorname{Col}\left(\omega,<i_{0 \kappa^{++}}(\kappa)\right) / G_{1} * G_{2} * G_{3} \quad p \Vdash \kappa \in i_{0 \kappa^{++}}(\underset{\sim}{X})\right\} .
$$

The next lemma is immediate.
Lemma 2.1 F is ∞-semi precipitous ${ }^{4}$ filter with a witnessing forcing $\operatorname{Col}\left(\omega,<\kappa^{++}\right) / G_{1} * G_{2} * G_{3}$ and with a generic embedding which extends $i_{0 \kappa^{++}}$.

[^4]
2.3 Adding clubs

Next we would like to add clubs to sets in F, and then to extensions of F as it was done in Jech-Magidor-Mitchell-Prikry [9], but picking generics over $M_{\kappa^{++}}$using the procedure above. It should be done a bit more carefully in order to keep a resulting generic embedding to extend $i_{0 \kappa^{++}}$. Just note that the set $\left\{\kappa_{\alpha} \mid \alpha<\kappa^{++}\right\}$is a club, so we cannot force a club for example into the set $\left\{\nu<\kappa \mid o^{\vec{U}}(\nu)=0\right\} \in F$ and still to extend $i_{0 \kappa^{+}}$, since for every $\alpha, 0<\alpha<\kappa^{++}, o^{\tilde{M}_{\kappa}++}\left(\kappa_{\alpha}\right)=\alpha>0$.

So let us add clubs only to subsets X of κ in F such that for a final segment of α 's below κ^{++},

$$
0_{\operatorname{Col}\left(\omega,<i_{0 \kappa^{+}+}(\kappa)\right) / G_{1} * G_{2} * G_{3}} \Vdash \kappa_{\alpha} \in i_{0 \kappa^{+}+}(\underset{\sim}{X}) .
$$

Then, in particular, the set $\{\nu<\kappa \mid \nu$ is an accessible ordinal in $V\}$ will be nonstationary.

We would like to arrange a situation where each filter which extends $C u b_{\aleph_{1}}$ concentrates on the set $\left\{\nu<\kappa \mid o^{\vec{U}}(\nu)=0\right\}$. The simplest way to guarantee this is to shoot a club into $\left\{\nu<\kappa \mid o^{\vec{U}}(\nu)=0\right\}$. But doing it will destroy $i_{0 \kappa^{++}}$completely, since $\left\{\kappa_{\alpha} \mid 0<\alpha<\kappa^{++}\right\}$ is a club in κ^{++}and it is disjoint to the image of a club in $\left\{\nu<\kappa \mid o^{\vec{U}}(\nu)=0\right\}$. So adding such a club will change the cofinality of κ^{++}to ω and eventually will produce a normal precipitous filter. An other way is to shoot clubs disjoint from $\left\{\nu<\kappa \mid o^{\vec{U}}(\nu)=1\right\}$, $\left\{\nu<\kappa \mid o^{\vec{U}}(\nu)=2\right\}$ etc., and this way prevent the ground model ultrafilters U_{2}, U_{3}, etc. to have a normal extensions. This works nicely, but unfortunately not for all ground model ultrafilters. Remember that we have a sequence of κ^{++}-many of them. So up-repeat points must be on the sequence, i.e. for some $\alpha<\kappa^{++}$, for every $X \in U_{\alpha}$ there will be $\beta>\alpha$ (even κ^{++}many of them) with $X \in U_{\beta}$. Shooting clubs for them will not work.
The actual approach will be as follows. We add together with blocks F_{α} 's of Cohen functions an additional sequence $\left\langle g_{\alpha} \mid \alpha<\kappa^{++}\right\rangle$of Cohen functions from κ to κ (it is possible just to to use the first function of each block instead). Require that for each $\nu<\kappa$ with $o(\nu)>0$, $g_{\alpha}(\nu)<\nu^{++}$.
Now, as in 2.1, by changing values of generics, we insure that

1. $\left\langle i_{0 \kappa^{++}}\left(g_{\alpha}\right)(\kappa) \mid \alpha<\kappa^{++}\right\rangle$is an increasing sequence,
2. for every $\alpha<\kappa^{++},\left\langle i_{0 \kappa^{++}}\left(g_{\gamma}\right)\left(\kappa_{\alpha}\right) \mid \gamma<o^{\tilde{M}_{\kappa^{++}}}\left(\kappa_{\alpha}\right)\right\rangle$ is an increasing sequence of ordinals below $o^{\tilde{M}_{\kappa}++}\left(\kappa_{\alpha}\right)$.

Now, for every $\gamma<\alpha<\kappa^{++}$, we force clubs into the set

$$
\left\{\nu<\kappa \mid g_{\gamma}(\nu)<g_{\alpha}(\nu)\right\}
$$

and into the complement of the set

$$
\left\{\nu<\kappa \mid o^{\vec{U}}(\nu)>0 \wedge o^{\vec{U}}(\nu) \leq g_{\alpha}(\nu)\right\} .
$$

Note κ is in the image of each of these sets under $i_{0 \kappa^{++}}$, as is κ_{ξ} for sufficiently large $\xi<\kappa^{++}$. We will show further in Lemma 3.1 that this does the job.

Clubs will be added to any set of the form $A \cup\left\{\nu<\kappa \mid o^{\vec{U}}(\nu)>0\right\}$ with $A \in U_{0}$.
Denote by \tilde{F} the extension of F obtained by adding all the clubs.
Let \tilde{V} be a generic extension obtained by this forcing.
Note that a bit nicer (but less intuitive) way to organize the iteration used here will be an inductive definition of an iteration of the length κ^{++}. Thus suppose that at a stage $\alpha<\kappa^{++}$we have a forcing $P_{<\alpha}$ defined with a generic subset $G_{<\alpha}$. Force the α-th block of Cohen functions F_{α}. Now over $V\left[G_{1}, G_{<\alpha}, F_{\alpha}\right]$ we add clubs relevant for the blocks of Cohen functions $\left\langle F_{\gamma} \mid \gamma \leq \alpha\right\rangle$. This will be Q_{α}. Its length is below κ^{++}. Set $P_{<\alpha+1}=P_{<\alpha} * Q_{\alpha}$.

Let us point out the following basic property:
Lemma 2.2 Let $\left\langle\alpha_{n} \mid n<\omega\right\rangle,\left\langle\beta_{n} \mid n<\omega\right\rangle$ be ω-sequences which consist of different elements of κ^{++}and of κ^{+}respectively. Then the following set contains a club

$$
\bigcup_{n<\omega}\left\{\nu<\kappa \mid f_{\alpha_{n} \beta_{n}}(\nu)>f_{\alpha_{n} \beta_{n}+1}(\nu)\right\} .
$$

Proof. By the construction of $f_{i_{0^{\kappa}++}\left(\alpha_{n}\right) i_{0 \kappa}++\left(\beta_{n}\right)}(\kappa)$'s in 2.1.5 and genericity of the collapse there always will be p in a generic object such that for some $n<\omega$

$$
p \Vdash f_{i_{0 \kappa++}\left(\alpha_{n}\right) i_{0 \kappa++}\left(\beta_{n}\right)}(\kappa)>f_{i_{0_{\kappa}++}\left(\alpha_{n}\right) i_{0_{\kappa}++}\left(\beta_{n}+1\right)}(\kappa) .
$$

In general, suppose that we have a sequence $\left\langle A_{\eta} \mid \eta<\kappa^{++}\right\rangle$of \tilde{F}-positive sets. Let $\left\langle p_{\eta} \mid \eta<\kappa^{++}\right\rangle$be a sequence of conditions in $\operatorname{Col}(\omega,<\kappa)$ such that for every $\eta<\kappa^{++}$, $p_{\eta} \Vdash \kappa \in \underset{\sim}{i}\left(A_{\eta}\right)$. Shrink if necessary the sequence $\left\langle p_{\eta} \mid \eta<\kappa^{++}\right\rangle$in order to form a Δ system. If the kernel of it is empty, then for any sequence $\left\langle\eta_{n} \mid n<\omega\right\rangle$ of different ordinals below κ^{++}the set $\bigcup_{n<\omega} A_{\eta_{n}}$ contains a club.
Similarly, if p is a kernel and for some $A \subseteq \kappa$ we have $p=\|\kappa \in \underset{\sim}{i}(\underset{\sim}{A})\|^{\operatorname{Col}\left(\omega,<\kappa^{++}\right)}$, then the set $(\kappa \backslash A) \cup \bigcup_{n<\omega} A_{\eta_{n}}$ contains a club.

3 No normal precipitous ideals

We will prove a slightly more general statement- in \tilde{V} there is no precipitous filter on \aleph_{1} which contains $C u b_{\aleph_{1}}$, i.e. which is a Q-point filter. If the initial ground model had no large cardinals above κ (say $o(\kappa)=\kappa^{++}$but nothing more), then there will be no normal precipitous filters at all.
Suppose otherwise. Let H be a precipitous filter over $\kappa=\aleph_{1}^{\tilde{V}}$ which includes $C u b_{\aleph_{1}}$.
Lemma 3.1 Assume that there is no inner model with a strong cardinal. Then $H \supseteq U_{0}$.
Remark. Here is actually the only place where the core model is used in an essential way. If we restrict ourself initially to filters which extend $C u b_{\aleph_{1}}+\left\{\nu<\kappa \mid o^{\vec{U}}(\nu)=0\right\}$, then no \mathcal{K} is needed.
Proof. Let $G \subseteq H^{+}$be a generic ultrafilter and $j: \tilde{V} \rightarrow N$ be the corresponding generic elementary embedding. Now $j \upharpoonright \mathcal{K}$ is an iterated ultrapower of \mathcal{K}. Let E_{α} be the extender (actually a measure) used to move κ in this iteration. If $\alpha=0$, then we are done. Suppose otherwise. Consider $\delta=(o(\kappa))^{\mathcal{K}^{N}}$. Then $\delta=(o(\kappa))^{\mathcal{K}_{\alpha}}=\alpha$, where $\mathcal{K}_{\alpha}=U l t\left(\mathcal{K}, E_{\alpha}\right)$. Now $\alpha<\left(\kappa^{++}\right)^{\mathcal{K}_{\alpha}}<\left(\kappa^{++}\right)^{\mathcal{K}}=\left(\kappa^{++}\right)^{\tilde{V}}$, since a club was forced into $\left\{\nu<\kappa \mid o(\nu)<\left(\nu^{++}\right)^{\mathcal{K}}\right\}$. Consider now the sequence $\left\langle j\left(g_{\xi}\right)(\kappa) \mid \xi<\left(\kappa^{++}\right)^{\tilde{V}}\right\rangle$. It is an increasing sequence of ordinals of order type $\left(\kappa^{++}\right)^{\tilde{V}}$. But $\delta<\left(\kappa^{++}\right)^{\tilde{V}}$, hence there is $\eta<\left(\kappa^{++}\right)^{\tilde{V}}$ with $\delta \leq j\left(g_{\eta}\right)(\kappa)$. By elementarity, then $\left\{\nu<\kappa \mid o(\nu)>0 \wedge o(\nu) \leq g_{\eta}(\nu)\right\} \in H^{+}$. This is impossible since we added a club into its compliment and $H \supseteq C u b_{\aleph_{1}}$.

Note that if δ (the Mitchell order of κ as computed in the ground model of N) is less than $\left(\kappa^{++}\right)^{\tilde{V}}$, then the argument above still provides the desired conclusion.

By the lemma we have in particular that $\left\{\nu<\kappa \mid o^{\vec{U}}(\nu)=0\right\}$ is in H. Hence $H \supseteq$ $C u b_{\aleph_{1}}+\left\{\nu<\kappa \mid o^{\vec{U}}(\nu)=0\right\}$, since $\tilde{F}+\left\{\nu<\kappa \mid o^{\vec{U}}(\nu)=0\right\}$ is $C u b_{\aleph_{1}}+\left\{\nu<\kappa \mid o^{\vec{U}}(\nu)=0\right\}$. Let us further assume that every $A \in H^{+}$under consideration is automatically a subset of $\left\{\nu<\kappa \mid o^{\vec{U}}(\nu)=0\right\}$.

For each $\alpha<\kappa^{++}$, pick a set $A_{\alpha} \in H^{+}$and an ordinal $\beta_{\alpha}<\kappa^{+}$such that A_{α} forces that $f_{\alpha \beta_{\alpha}}$ represents in the generic ultrapower, the smallest ordinal among the functions in F_{α}, i.e.

$$
A_{\alpha} \Vdash_{H^{+}} \forall \beta<\left(\kappa^{+}\right)^{V} \quad\left[f_{\alpha \beta_{\alpha}}\right]_{\mathcal{E}\left(H^{+}\right)} \leq\left[f_{\alpha \beta}\right]_{\mathcal{L}\left(H^{+}\right)} .
$$

It is tempting to assume that $f_{\alpha \beta_{\alpha}}$ represents κ_{α}, but this need not be true, since functions from lower blocks may represent κ_{α}. Thus $f_{\alpha \beta_{\alpha}}$ will represent κ_{γ} for some $\gamma \geq \alpha$.

Note that at most finitely many of the sets A_{α} 's are in H, since otherwise, by the countable completeness of H, we will have in \tilde{V} a countable sequence $\left\langle\alpha_{n} \mid n<\omega\right\rangle$ with $f_{\alpha_{n} \beta_{\alpha_{n}}}$ being the least function of the block $F_{\alpha_{n}}$. By countable completeness of H then the set

$$
\left\{\nu<\kappa \mid \forall n<\omega \quad f_{\alpha_{n} \beta_{\alpha_{n}}}(\nu) \leq f_{\alpha_{n} \beta_{\alpha_{n}}+1}(\nu)\right\}
$$

is in H. But its complement contains a club, by Lemma 2.2. Contradiction.
We can assume that for every $\alpha<\kappa^{++}$the set A_{α} is not in H. Actually the argument below will not be effected even if some of A_{α} 's are in H.

We will use now the fact that the iteration $P_{<\kappa^{++}}$over $V\left[G_{1}\right]$ (adding blocks of Cohen functions and clubs) satisfies κ^{+}-c.c. So each of A_{α} 's depends only on at most κ-many Cohen functions and clubs.

Let $\alpha<\kappa^{++}$. Consider the characteristic function $\chi_{\alpha}: \kappa \rightarrow 2$ of A_{α}.
There are Cohen functions $\left\{f_{\eta, \xi} \mid\langle\eta, \xi\rangle \in a_{\alpha}\right\}$, clubs $\left\{c_{\eta} \mid \eta \in \operatorname{dom}\left(a_{\alpha}\right)\right\}^{5}$ and a continuous function $t_{\alpha} \in V\left[G_{1}\right]$, such that $\left|a_{\alpha}\right| \leq \kappa$ and $\chi_{\alpha}=t_{\alpha}\left(\left\langle f_{\eta, \xi} \mid\langle\eta, \xi\rangle \in a_{\alpha}\right\rangle,\left\langle\left\{c_{\eta} \mid \eta \in\right.\right.\right.$ $\left.\left.\left.\operatorname{dom}\left(a_{\alpha}\right)\right\}\right\rangle\right)$.
We can assume, by shrinking if necessary, that for some t each $t_{\alpha}=t$, and that $\left\langle\operatorname{dom}\left(a_{\alpha}\right)\right|$ $\left.\alpha<\kappa^{++}\right\rangle$forms a Δ-system.
Now, for every $\alpha<\kappa^{++}$, pick some $\beta_{\alpha}^{*} \in\left(\kappa^{+}\right)^{V} \backslash \operatorname{rng}\left(a_{\alpha}\right) \cup\left\{\beta_{\alpha}\right\}$. Consider the set

$$
B_{\alpha}=\left\{\nu<\kappa \mid o^{\vec{U}}(\nu)>0 \text { or }\left(o^{\vec{U}}(\nu)=0 \text { and } f_{\alpha \beta_{\alpha}^{*}}(\nu)<f_{\alpha \beta_{\alpha}}(\nu)\right)\right\} .
$$

Then B_{α} and even $A_{\alpha} \cap B_{\alpha}$ are \tilde{F}-positive, by the choice of β_{α}^{*}. Recall that we have

$$
H \supseteq \tilde{F}+\left\{\nu<\kappa \mid o^{\vec{U}}(\nu)=0\right\}=C u b_{\aleph_{1}}+\left\{\nu<\kappa \mid o^{\vec{U}}(\nu)=0\right\} .
$$

So each of A_{α} 's is $\tilde{F}+\left\{\nu<\kappa \mid o^{\vec{U}}(\nu)=0\right\}$-positive.
On the other hand the set $A_{\alpha} \cap B_{\alpha}$ is in the ideal dual to H, since A_{α} forces in the forcing with H^{+}) that $f_{\alpha \beta}$ is the least function of the block F_{α}.

Case 1. The kernel of the Δ-system is empty.
For each $\alpha<\kappa^{++}$pick a condition p_{α} in the collapse $\operatorname{Col}\left(\omega,<\kappa^{++}\right)$of the smallest size which forces " $\kappa \in i_{0 \kappa^{+}}\left(\underset{\sim}{A} \cap \underset{\sim}{\mathcal{A}}{ }_{\alpha}\right)$ " which means more explicitly:
$i_{0 \kappa^{++}}(t)\left(\left\langle\underset{\sim}{i}\left(f_{\eta, \xi}\right) \mid\langle\eta, \xi\rangle \in a_{\alpha}\right\rangle,\left\langle\underset{\sim}{i}\left(c_{\eta}\right) \mid \eta \in \operatorname{dom}\left(a_{\alpha}\right)\right\rangle\right)(\kappa)=1$ and $\left.\underset{\sim}{i}\left(f_{\alpha \beta_{\alpha}^{*}}\right)(\kappa)<\underset{\sim}{i}\left(f_{\alpha \beta_{\alpha}}\right)(\kappa)\right)$. The value of $i_{0 \kappa^{++}}(t)\left(\left\langle\underset{\sim}{i}\left(f_{\eta, \xi}\right) \mid\langle\eta, \xi\rangle \in a_{\alpha}\right\rangle,\left\langle\underset{\sim}{i}\left(c_{\eta}\right) \mid \eta \in \operatorname{dom}\left(a_{\alpha}\right)\right\rangle\right)$ on κ depends only on an initial segment of $\left\langle\underset{\sim}{i}\left(f_{\eta, \xi}\right) \mid\langle\eta, \xi\rangle \in a_{\alpha}\right\rangle,\left\langle\underset{\sim}{i}\left(c_{\eta}\right) \mid \eta \in \operatorname{dom}\left(a_{\alpha}\right)\right\rangle$. Assume that p_{α}

[^5]already decides it, i.e. there is $\xi_{\alpha}<\kappa^{++}$such that p_{α} forces " $i_{0 \kappa^{++}}(t)\left(\left\langle\underset{\sim}{i}\left(f_{\eta, \xi}\right) \upharpoonright \xi_{\alpha}\right|\langle\eta, \xi\rangle \in\right.$ $\left.\left.a_{\alpha}\right\rangle,\left\langle\underset{\sim}{i}\left(c_{\eta}\right) \upharpoonright \xi_{\alpha} \mid \eta \in \operatorname{dom}\left(a_{\alpha}\right)\right\rangle\right)(\kappa)=1 "$. Let $S \subseteq \kappa^{++}$such that whenever $\alpha<\alpha^{\prime}$ are in S we have $\xi_{\alpha}<\alpha^{\prime}$.
Now, if $\alpha<\alpha^{\prime}$ are in S, then $\min \left(\operatorname{dom}\left(p_{\alpha^{\prime}}\right)\right)$ is above $\max \left(\operatorname{dom}\left(p_{\alpha}\right)\right)$. This follows from the way of constructing generics from the collapse in 2.1 and Δ-system.

Let $\left\langle\alpha_{n} \mid n<\omega\right\rangle$ be an increasing sequence of elements of S (in \tilde{V}). Then one of $\left\langle p_{\alpha_{n}}\right| n<$ $\omega\rangle$ always will in any generic subset of the collapse. But this means that $\bigcup_{n<\omega} A_{\alpha_{n}} \cap B_{\alpha_{n}} \in$ $\tilde{F}+\{\nu<\kappa \mid \vec{U}(\nu)=0\}=C u b_{\aleph_{1}}+\left\{\nu<\kappa \mid o^{\vec{U}}(\nu)=0\right\}=H$. But remember that $A_{\alpha} \cap B_{\alpha}$ is in the dual to H ideal, for every $\alpha<\kappa^{++}$. This contradicts the σ-completeness of H.

Case 2. The kernel of the Δ-system is not empty.
We may assume that all $\operatorname{rng}\left(a_{\alpha}\right), \alpha<\kappa^{++}$are the same, since there are only κ^{+}many possibilities for them. Pick $\eta<\kappa^{+}$to be an ordinal which includes all the ranges. Assume for simplicity that they are η. Also assume that all β_{α}^{*} are the same and are equal to η.
Let a be the kernel of $\left\langle\operatorname{dom}\left(a_{\alpha}\right) \mid \alpha<\kappa^{++}\right\rangle$. Then $|a| \leq \kappa$. Suppose that $|a|=\kappa$. The case $|a|<\kappa$ is similar. Let $a=\left\{\rho_{\tau} \mid \tau<\kappa\right\}$ be its enumeration in \tilde{V}. Denote $\left\{\rho_{\tau} \mid \tau<\nu\right\}$ by $a \upharpoonright \nu$, for every $\nu<\kappa$.
Now we have

$$
\begin{gathered}
A_{\alpha}=\left\{\nu<\kappa \mid t\left(\left\langle f_{\alpha \beta} \mid \alpha \in a, \beta<\eta\right\rangle,\left\langle c_{\alpha \beta} \mid \alpha \in a, \beta<\eta\right\rangle,\left\langle f_{\alpha \beta} \mid \alpha \in \operatorname{dom}\left(a_{\alpha}\right) \backslash a, \beta<\eta\right\rangle,\right.\right. \\
\left.\left.\left\langle c_{\alpha \beta} \mid \alpha \in \operatorname{dom}\left(a_{\alpha}\right) \backslash a, \beta<\eta\right\rangle\right)(\nu)=1 \wedge o^{\vec{U}}(\nu)=0\right\} .
\end{gathered}
$$

Consider also the following set
$Z=\left\{\nu<\kappa \mid o^{\vec{U}}(\nu)>0\right.$ or $o^{\vec{U}}(\nu)=0$ and there is no Cohens $*$ Clubs generic \vec{f}, \vec{c} such that

$$
\left.t\left(\left\langle f_{\alpha \beta} \mid \alpha \in a, \beta<\eta\right\rangle,\left\langle c_{\alpha \beta} \mid \alpha \in a, \beta<\eta\right\rangle, \vec{f}, \vec{c}\right)(\nu)=1\right\} .
$$

Clearly $A_{\alpha} \cap Z=\emptyset$, for every $\alpha<\kappa^{++}$.
Let B_{α} 's be as above (even we take β_{α}^{*} always to be η). The choice of η insures that $A_{\alpha} \cap B_{\alpha} \in F^{+}$, but clearly not in H^{+}, since on ν 's in $A_{\alpha} \cap B_{\alpha}$ we have $f_{\alpha \eta}(\nu)<f_{\alpha \beta_{\alpha}}(\nu)$. Using κ^{++}c.c. of $\operatorname{Col}\left(\omega,<\kappa^{++}\right)$find $\xi_{\alpha}<\kappa^{++}$such that the weakest condition forces that

$$
\begin{gathered}
\kappa \in i_{0 \kappa^{++}}(Z) \text { or } i_{0 \kappa^{++}}(t)\left(\left\langle i_{0 \kappa^{+}+}\left(f_{\alpha \beta}\right) \upharpoonright \xi_{\alpha} \mid \alpha \in a, \beta<\eta\right\rangle,\left\langle i_{0 \kappa^{++}}\left(c_{\alpha \beta}\right) \upharpoonright \xi_{\alpha} \mid \alpha \in a, \beta<\eta\right\rangle,\right. \\
\left.\left.\left\langle i_{0 \kappa^{+}}\left(f_{\alpha \beta}\right) \upharpoonright \xi_{\alpha} \mid \alpha \in \operatorname{dom}\left(a_{\alpha}\right) \backslash a, \beta<\eta\right\rangle,\left\langle i_{0 \kappa^{+}}\left(c_{\alpha \beta}\right) \upharpoonright \xi_{\alpha} \mid \alpha \in \operatorname{dom}\left(a_{\alpha}\right) \backslash a, \beta<\eta\right\rangle\right)\right)(\kappa)=1 .
\end{gathered}
$$

Find $S \subseteq \kappa^{++}$such that for every $\alpha<\alpha^{\prime}$ in S we have $\xi_{\alpha}<\alpha^{\prime}$. Let $\left\langle\alpha_{n} \mid n<\omega\right\rangle$ be an increasing sequence of elements of S (in \tilde{V}). The construction of generics for blocks of Cohen
functions in 2.1.5 implies then, as in Lemma 2.2, that the set $Z \cup\left(\bigcup_{n<\omega}\left(A_{\alpha_{n}} \cap B_{\alpha_{n}}\right)\right)$ contains a club. This is impossible, since A_{α} 's are H-positive, disjoint to Z, each $A_{\alpha_{n}} \cap B_{\alpha_{n}}$ is in the ideal dual to H and H is countably complete.

4 A construction of a precipitous ideal.

Let show now how to construct a precipitous filter in \tilde{V}.
The basic idea will be to use κ^{++}as an additional generator. We continue the iteration from $M_{\kappa^{++}}$using $i_{0 \kappa^{++}}\left(\left\langle U_{\beta} \mid \beta<\kappa^{++}\right\rangle\right)$. Let $M_{\kappa^{++}}^{2}$ denotes the final model and $i_{0 \kappa^{++}}^{2}: V \rightarrow M_{\kappa^{++}}^{2}$ the corresponding embedding.

Deal now with a two dimensional analog F_{2} of F :

$$
\left.F_{2}=\left\{X \subseteq \kappa^{2} \mid 0_{C o l\left(\omega,<i_{0 \kappa^{+}}^{2}(\kappa)\right) / G_{1} * G_{2} * G_{3}} \Vdash\left\langle\kappa, \kappa^{++}\right\rangle \in \underset{\sim}{i} \underset{0^{++}}{2} \underset{\sim}{X}\right)\right\} .
$$

The crucial difference between F and F_{2} is that F_{2} has anti-chains of size κ^{++}. Thus we have here $\operatorname{Col}\left(\omega,\left\{\kappa^{++}\right\}\right)$. Let $\underset{\sim}{\underset{\sim}{H}}$ be an F_{2}^{+}name of a generic function from ω onto κ^{++}. Fix a maximal antichain of elements $\left\langle A_{\xi} \mid \xi<\kappa^{++}\right\rangle$of F_{2}^{+}which decide $\underset{\sim}{H}(0)$.

Now we turn to a recursive process of extending F_{2} similar to those used in [6] and [2]. Let $\left\langle X_{\alpha} \mid \alpha<\kappa^{++}\right\rangle$be an enumeration of all F_{2}-positive subsets of κ^{2} (in $V\left[G_{0}, G_{1}\right]$).
Start with $n=0$. Define a sequence of ordinals $\left\langle\xi_{\langle\alpha\rangle} \mid \alpha<\kappa^{++}\right\rangle$and filters $\left\langle F_{\langle\alpha\rangle} \mid \alpha<\kappa^{++}\right\rangle$ by recursion as follows. Let $\alpha<\kappa^{++}$.
If there is $\xi<\kappa^{++}$such that $\xi \neq \xi_{\langle\beta\rangle}$, for each $\beta<\alpha$ and $X_{\alpha} \cap A_{\xi} \in F_{2}^{+}$, then let $\xi_{\langle\alpha\rangle}$ be the least such ξ. Extend F_{2} to $F_{2}+X_{\alpha} \cap A_{\xi_{\langle\alpha\rangle}}$. Then pick β_{α}^{0} to be the least $\beta<\kappa^{+}$such that for each $k<\omega, \gamma_{1}, \ldots, \gamma_{k} \in \kappa^{+} \backslash\{\beta\}$ and $t \in \kappa^{k} \kappa \cap V$ the set

$$
\left\{\left\langle\nu_{0}, \nu_{1}\right\rangle \mid f_{\xi_{\langle\alpha\rangle} \beta}\left(\nu_{0}\right)<t\left(f_{\xi_{\langle\alpha\rangle} \gamma_{1}}\left(\nu_{0}\right), \ldots, f_{\xi_{\langle\alpha\rangle} \gamma_{k}}\left(\nu_{0}\right)\right)\right\} \in\left(F_{2}+X_{\alpha} \cap A_{\xi_{\langle\alpha\rangle}}\right)^{+}
$$

Pick β_{α}^{1} to be the least $\beta<\kappa^{+}$such that for each $k<\omega, \gamma_{1}, \ldots, \gamma_{k} \in \kappa^{+} \backslash\{\beta\}$ and $t \in \kappa^{k} \kappa \cap V$ the set

$$
\left\{\left\langle\nu_{0}, \nu_{1}\right\rangle \mid f_{\xi_{\langle\alpha\rangle} \beta}\left(\nu_{1}\right)<t\left(f_{\xi_{\langle\alpha\rangle} \gamma_{1}}\left(\nu_{1}\right), \ldots, f_{\xi_{\langle\alpha\rangle} \gamma_{k}}\left(\nu_{1}\right)\right)\right\} \in\left(F_{2}+X_{\alpha} \cap A_{\left.\xi_{\langle\alpha\rangle}\right)^{+}}\right.
$$

Note that always there are such $\beta_{\alpha}^{0}, \beta_{\alpha}^{1}$, since a single condition in $\operatorname{Col}\left(\omega,<i_{0 \kappa^{+}}^{2}(\kappa)\right) / G_{1} * G_{2} * G_{3}$ decides which of the functions of the $\xi_{\langle\alpha\rangle}$-th block of Cohen functions $\left\langle f_{\xi_{\langle\alpha\rangle} \beta} \mid \beta<\kappa^{+}\right\rangle$is the least. Now let $F_{\langle\alpha\rangle}$ be the \aleph_{1}-complete filter generated by $F_{2}+X_{\alpha} \cap A_{\xi_{\langle\alpha\rangle}}$ together with all the sets $\left\{\left\langle\nu_{0}, \nu_{1}\right\rangle \mid f_{\xi_{\langle\alpha\rangle} \beta_{\alpha}^{0}}\left(\nu_{0}\right)<t\left(f_{\xi_{\langle\alpha\rangle} \gamma_{1}}\left(\nu_{0}\right), \ldots, f_{\xi_{\langle\alpha\rangle} \gamma_{k}}\left(\nu_{0}\right)\right)\right\}$, $\left\{\left\langle\nu_{0}, \nu_{1}\right\rangle \mid f_{\xi_{\langle\alpha\rangle} \beta_{\alpha}^{1}}\left(\nu_{1}\right)<t\left(f_{\xi_{\langle\alpha\rangle} \gamma_{1}}\left(\nu_{1}\right), \ldots, f_{\xi_{\langle\alpha\rangle} \gamma_{k}}\left(\nu_{1}\right)\right)\right\}$

Intuitively, $f_{\xi_{\langle\alpha\rangle} \beta_{\alpha}^{0}}$ is the function corresponding to $\kappa_{\xi_{\langle\alpha\rangle}}$ below $F_{\langle\alpha\rangle} .{ }^{6}$ If there is no ξ as above then we leave $\xi_{\langle\alpha\rangle}$ and $F_{\langle\alpha\rangle}$ undefined.

Note that it is impossible to have some $f_{\xi_{\langle\alpha\rangle} \beta}$ that will correspond to κ^{++}. Suppose for a moment that $f_{\alpha^{*} \beta^{*}}$ is such a function, for some $\alpha^{*}<\kappa^{++}$and $\beta^{*}<\kappa^{+}$. Then for κ^{++} many α 's and $\beta<\kappa^{+}$we will have the set $\left\{\left\langle\nu_{0}, \nu_{1}\right\rangle \in \kappa^{2} \mid f_{0 \beta}\left(\nu_{1}\right) \geq f_{\alpha 0}\left(\nu_{0}\right)\right\}$ in F_{2}^{+}, but now $\left\{\left\langle\nu_{0}, \nu_{1}\right\rangle \in \kappa^{2} \mid f_{0 \beta}\left(\nu_{1}\right) \geq f_{\alpha 0}\left(\nu_{0}\right)\right\}=\left\{\left\langle\nu_{0}, \nu_{1}\right\rangle \in \kappa^{2} \mid f_{0 \beta}\left(f_{\alpha^{*} \beta^{*}}\left(\nu_{0}\right)\right) \geq f_{\alpha 0}\left(\nu_{0}\right)\right\}$ and the complement of the projection of the last set to the first coordinate contains a club for any $\alpha \geq \alpha^{*}+1$.

Note also that for each $\mu<\kappa^{++}, A_{\mu}$ appears in the list $\left\langle X_{\alpha} \mid \alpha<\kappa^{++}\right\rangle$. Hence, $\left\{\xi_{\langle\alpha\rangle} \mid \alpha<\kappa^{++}, \xi_{\langle\alpha\rangle}\right.$ is defined $\}=\kappa^{++}$. In particular each $\kappa_{\mu}(\mu>1)$ has a chance to get a corresponding function.

Set $F(0)=\bigcap\left\{F_{\langle\alpha\rangle} \mid F_{\langle\alpha\rangle}\right.$ is defined $\}$. Denote the corresponding dual ideals by $I_{\langle\alpha\rangle}$ and $I(0)$.

The following lemma follows from the construction (or see [6]):
Lemma 4.1 For each $X \in F_{2}^{+}$, either $X \in F_{\langle\alpha\rangle}$, for some $\alpha<\kappa^{++}$, or the set

$$
\left\{\xi<\kappa^{++} \mid X \cap A_{\xi} \in F_{2}^{+}\right\}
$$

has cardinality at most κ^{+}.
Next we deal with $n=1$.
Let $\alpha<\kappa^{++}$and $F_{\langle\alpha\rangle}$ be defined. We split $\left(\bmod \left(F_{\langle\alpha\rangle}\right) X_{\alpha} \cap A_{\xi_{\alpha}}\right.$ into κ^{++}-many sets which decide $\underset{\sim}{H}\left(n_{\alpha}\right)$, where n_{α} is the least possible that allows κ^{++}-many possible values. Note that such n_{α} exists since otherwise $F_{\langle\alpha\rangle}^{+}$will force that $\underset{\sim}{\underset{\sim}{H}}$ is bounded in κ^{++}, but the filter $F_{\langle\alpha\rangle}$ is obtained from F_{2} basically by deciding the function which corresponds to $\kappa_{\xi_{\langle\alpha\rangle}}$.
Let $\left\langle A_{\alpha \mu} \mid \mu<\kappa^{++}\right\rangle$be a maximal antichain below $X_{\alpha} \cap A_{\xi_{\alpha}}$ in $F_{\langle\alpha\rangle}^{+}$consisting of sets which decide $\underset{\sim}{\underset{\sim}{H}}\left(n_{\alpha}\right)$.
Repeat the procedure above and define $\xi_{\langle\alpha \gamma\rangle}, F_{\langle\alpha \gamma\rangle}$, for $\gamma<\kappa^{++}$.
Thus, if there is $\xi<\kappa^{++}$such that $\xi \neq \xi_{\langle\alpha \beta\rangle}$, for each $\beta<\gamma$ and $X_{\gamma} \cap A_{\alpha \xi} \in F_{\langle\alpha\rangle}^{+}$, then let $\xi_{\langle\alpha \gamma\rangle}$ be the least such ξ. Extend $F_{\langle\alpha\rangle}$ to $F_{\langle\alpha\rangle}+X_{\alpha} \cap A_{\alpha \xi_{\langle\alpha \gamma}}$. Then pick $\beta_{\langle\alpha \gamma\rangle}^{0}$ to be the least $\beta<\kappa^{+}$such that for each $k<\omega, \delta_{1}, \ldots, \delta_{k} \in \kappa^{+} \backslash\{\beta\}$ and $t \in \kappa^{k} \kappa \cap V$ the set

$$
\left\{\left\langle\nu_{0}, \nu_{1}\right\rangle \mid f_{\left.\xi_{\langle\alpha \gamma}\right\rangle}\left(\nu_{0}\right)<t\left(f_{\xi_{\langle\alpha \gamma\rangle} \delta_{1}}\left(\nu_{0}\right), \ldots, f_{\xi_{\langle\alpha\rangle} \delta_{k}}\left(\nu_{0}\right)\right)\right\} \in\left(F_{\langle\alpha\rangle}+X_{\alpha} \cap A_{\alpha \xi_{\langle\alpha \gamma\rangle}}\right)^{+} .
$$

[^6]Pick $\beta_{\langle\alpha \gamma\rangle}^{1}$ to be the least $\beta<\kappa^{+}$such that for each $k<\omega, \delta_{1}, \ldots, \delta_{k} \in \kappa^{+} \backslash\{\beta\}$ and $t \in \kappa^{k} \kappa \cap V$ the set

$$
\left\{\left\langle\nu_{0}, \nu_{1}\right\rangle \mid f_{\xi_{\langle\alpha \gamma} \beta}\left(\nu_{1}\right)<t\left(f_{\xi_{\langle\alpha \gamma\rangle} \delta_{1}}\left(\nu_{1}\right), \ldots, f_{\xi_{\langle\alpha \gamma\rangle} \delta_{k}}\left(\nu_{1}\right)\right)\right\} \in\left(F_{\langle\alpha\rangle}+X_{\alpha} \cap A_{\alpha \xi_{\langle\alpha \gamma\rangle}}\right)^{+} .
$$

Now let $F_{\langle\alpha \gamma\rangle}$ be the \aleph_{1}-complete filter generated by $F_{\langle\alpha\rangle}+X_{\alpha} \cap A_{\alpha \xi_{\langle\alpha \gamma\rangle}}$ together with all the sets $\left\{\left\langle\nu_{0}, \nu_{1}\right\rangle \mid f_{\xi_{\langle\alpha \gamma\rangle} \beta_{\langle\alpha \gamma\rangle}^{0}}\left(\nu_{0}\right)<t\left(f_{\xi_{\langle\alpha \gamma\rangle} \delta_{1}}\left(\nu_{0}\right), \ldots, f_{\xi_{\langle\alpha \gamma\rangle} \delta_{k}}\left(\nu_{0}\right)\right)\right\},\left\{\left\langle\nu_{0}, \nu_{1}\right\rangle \mid f_{\xi_{\langle\alpha \gamma\rangle} \beta_{\langle\alpha \gamma\rangle}^{1}}\left(\nu_{1}\right)<\right.$ $\left.t\left(f_{\xi_{\langle\alpha \gamma\rangle} \delta_{1}}\left(\nu_{1}\right), \ldots, f_{\xi_{\langle\alpha \gamma\rangle} \delta_{k}}\left(\nu_{1}\right)\right)\right\}$.
If there is no ξ as above then we leave $\xi_{\langle\alpha \gamma\rangle}$ and $F_{\langle\alpha \gamma\rangle}$ undefined.
Note that for each $\mu<\kappa^{++}, A_{\alpha \mu}$ appears in the list $\left\langle X_{\tau} \mid \tau<\kappa^{++}\right\rangle$. Hence, $\left\{\xi_{\langle\alpha \gamma\rangle} \mid\right.$ $\gamma<\kappa^{++}, \xi_{\langle\alpha \gamma\rangle}$ is defined $\}=\kappa^{++}$. In particular each $\kappa_{\mu}(\mu>1)$ has a chance to get a corresponding function.

Set $F(1)=\bigcap\left\{F_{\langle\alpha \gamma\rangle} \mid F_{\langle\alpha \gamma\rangle}\right.$ is defined $\}$. Let $I(1)$ be the dual ideal.
The following analog of 4.1 follows from the construction:
Lemma 4.2 Let $\alpha<\kappa^{++}$and $F_{\langle\alpha\rangle}$ be defined. For each $X \in F_{\langle\alpha\rangle}^{+}$, either $X \in F_{\langle\alpha \gamma\rangle}$, for some $\gamma<\kappa^{++}$, or the set

$$
\left\{\xi<\kappa^{++} \mid X \cap A_{\alpha \xi} \in F_{\langle\alpha\rangle}^{+}\right\}
$$

has cardinality at most κ^{+}.
Continue further and define in a similar fashion $F_{\sigma}, I_{\sigma}, F(n), I(n), \sigma \in{ }^{\omega\rangle} \kappa^{++},\left\langle A_{\sigma \sim \xi}\right|$ $\left.\xi<\kappa^{++}\right\rangle, n<\omega$.

We will have the following:
Lemma 4.3 Let $\sigma \in{ }^{\omega>} \kappa^{++}$and F_{σ} be defined. For each $X \in F_{\sigma}^{+}$, either $X \in F_{\sigma \sim \gamma}$, for some $\gamma<\kappa^{++}$, or the set

$$
\left\{\xi<\kappa^{++} \mid X \cap A_{\sigma \neg \xi} \in F_{\sigma}^{+}\right\}
$$

has cardinality at most κ^{+}.
Lemma 4.4 Let $\sigma \in{ }^{\omega>} \kappa^{++}$and F_{σ} be defined. Then $F_{\sigma} \subseteq F(n)^{+}$, for every $n<\omega$.
Proof. The lemma is trivial for every $n \leq|\sigma|$ and follows by the construction of $F(n)$'s for $n>|\sigma|$ (see [6] for similar arguments).

Finally set

$$
F(\omega)=\text { the closure under } \omega \text { intersections of } \bigcup_{n<\omega} F_{n}
$$

and

$$
I(\omega)=\text { the closure under } \omega \text { unions of } \bigcup_{n<\omega} I_{n} \text {. }
$$

The next two lemmas follow easily from the definitions.
Lemma 4.5 $F_{2} \subseteq F(0) \subseteq \ldots \subseteq F(n) \subseteq \ldots \subseteq F(\omega)$ and $I_{2} \subseteq I(0) \subseteq \ldots \subseteq I(n) \subseteq \ldots \subseteq I(\omega)$.

Lemma 4.6

$$
F(\omega)=\left\{X \subseteq \kappa^{2} \mid \exists\left\langle X_{n} \mid n<\omega\right\rangle \forall n<\omega \quad X_{n} \in F(n) \text { and } X=\bigcap_{n<\omega} X_{n}\right\}
$$

and

$$
I(\omega)=\left\{X \subseteq \kappa^{2} \mid \exists\left\langle X_{n} \mid n<\omega\right\rangle \forall n<\omega \quad X_{n} \in I(n) \text { and } X=\bigcup_{n<\omega} X_{n}\right\} .
$$

Lemma 4.7 $I(\omega)$ is a proper κ-complete ideal over κ^{2}.
Proof. Let $\left\langle X_{n} \mid n<\omega\right\rangle$ be a sequence such that $X_{n} \in I(n)$, for every $n<\omega$ and $X=$ $\bigcup_{n<\omega} X_{n}$. Assume that each X_{n} is F_{2}-positive. Consider for every $n<\omega$ the set

$$
Z_{n}=\left\{\xi<\kappa^{++} \mid X_{n} \cap A_{\xi} \in F_{2}^{+}\right\} .
$$

Then, by Lemmas 4.1,4.4 $\left|Z_{n}\right| \leq \kappa^{+}$. Hence $\left|\bigcup_{n<\omega} Z_{n}\right| \leq \kappa^{+}$. Note that

$$
Z:=\left\{\xi<\kappa^{++} \mid X \cap A_{\xi} \in F_{2}^{+}\right\}=\bigcup_{n<\omega} Z_{n}
$$

and so Z has cardinality at most κ^{+}as well.
Pick now any $\xi \in \kappa^{++} \backslash Z$. Then $X \cap A_{\xi} \notin F_{2}^{+}$which implies that $I(\omega)$ is a proper ideal, since, in particular, X never can be κ^{2}.

Lemma 4.8 $X \in F(\omega)^{+}$iff there is $\sigma \in{ }^{\omega>} \kappa^{++}$such that $X \in F_{\sigma}$.

Proof. (\Rightarrow) Let $X \in F(\omega)^{+}$. Suppose that $X \notin F_{\sigma}$, for any $\sigma \in{ }^{\omega>} \kappa^{++}$. Set

$$
Z_{0}=\left\{\xi<\kappa^{++} \mid X \cap A_{\xi} \in F_{2}^{+}\right\} .
$$

By Lemmas 4.1,4.4, $\left|Z_{0}\right| \leq \kappa^{+}$. Then for every $\xi \in Z_{0}$, set

$$
Z_{1 \xi}=\left\{\rho<\kappa^{++} \mid X \cap A_{\xi} \cap A_{\xi \rho} \in F_{\langle\xi\rangle}^{+}\right\}
$$

and

$$
Z_{1}=\bigcup_{\xi \in Z_{0}} Z_{1 \xi} .
$$

Then $\left|Z_{1}\right| \leq \kappa^{+}$, by Lemmas 4.2,4.4.
Similarly define Z_{n}, for each $n<\omega$.
There is $\eta_{0}<\kappa^{++}$such that

$$
X \Vdash_{F_{2}^{+}} \underset{\sim}{H}(0)<\eta_{0},
$$

since $\left|Z_{0}\right| \leq \kappa^{+}$. Similar for each $n<\omega$ there will be $\eta_{n}<\kappa^{++}$such that

$$
X \Vdash_{F_{2}^{+}} \underset{\sim}{H}(n)<\eta_{n} .
$$

But then

$$
X \vdash_{F_{2}^{+}} \operatorname{rng}(\underset{\sim}{H}) \text { is bounded in } \kappa^{++} .
$$

Which is impossible by the choice of $\underset{\sim}{H}$. Contradiction.
(\Leftarrow) The argument repeats those of Lemma 4.7 with F_{2} replaced by F_{σ}.
Let $X \in F_{\sigma}$, for some $\sigma \in{ }^{\omega>} \kappa^{++}$.
Suppose that $X \in I(\omega)$. Let $\left\langle X_{n} \mid n<\omega\right\rangle$ be a sequence such that $X_{n} \in I(n)$, for every $n<\omega$ and $X \subseteq \bigcup_{n<\omega} X_{n}$. Assume that each X_{n} is F_{σ}-positive. Consider for every $n<\omega$ the set

$$
Z_{n}=\left\{\xi<\kappa^{++} \mid X_{n} \cap A_{\sigma \frown \xi} \in F_{\sigma}^{+}\right\} .
$$

Then, by Lemmas 4.3,4.4, $\left|Z_{n}\right| \leq \kappa^{+}$. Hence $\left|\bigcup_{n<\omega} Z_{n}\right| \leq \kappa^{+}$. Note that

$$
Z:=\left\{\xi<\kappa^{++} \mid X \cap A_{\sigma \neg \xi} \in F_{\sigma}^{+}\right\}=\bigcup_{n<\omega} Z_{n}
$$

and so Z has cardinality at most κ^{+}as well.
Pick now any $\xi \in \kappa^{++} \backslash Z$. Then $X \cap A_{\sigma-\xi} \notin F_{\sigma}^{+}$, but this is impossible since $X \in F_{\sigma}$ and $A_{\sigma \neg \xi} \in F_{\sigma}^{+}$. Contradiction.

Lemma 4.9 $F(\omega)$ is a precipitous filter over κ^{2}.
Proof. It is enough to show that for each $X \in F(\omega)^{+}$and $\eta<\kappa^{++}$there is $Y \subseteq X, Y \in F(\omega)^{+}$ deciding which function from $\left\{f_{\eta \beta} \mid \beta<\kappa^{+}\right\}$will be least one (i.e. basically correspond to $\left.\kappa_{\eta}\right)$. By Lemma 4.8 there is $\sigma \in{ }^{\omega>} \kappa^{++}$such that $X \in F_{\sigma}$. Find $\gamma<\kappa^{++}$such that $\xi_{\sigma \sim \gamma}=\eta$. Set $Y=X \cap A_{\sigma \xi_{\sigma \sim \gamma}}$. It will be as desired.

5 Open problems

In conclusion let us state some problems on the subject that remain open.
Question 1. Is the assumption $o(\kappa)=\kappa^{++}$needed for a model with a precipitous ideal on \aleph_{1} but without a normal one?

We think that it is likely to be possible to show that if \aleph_{1} is ∞-semi precipitous with a witnessed forcing satisfying $\aleph_{3}-$ c.c. and with image of \aleph_{1} under the corresponding generic embedding is at least \aleph_{3}, then $o(\kappa)=\kappa^{++}$in an inner model. But probably there is no need to go via a construction of such ∞-semi precipitous.

Question 2. Is it possible to have a GCH model with a precipitous ideal on \aleph_{1} but without a normal one?

By [7] large cardinals not far from $o(\kappa)=\kappa^{++}$are needed for such a model.
Question 3. Is it possible to generalize the present result to cardinals bigger than \aleph_{1} ? Simplest case: Is there a model with a precipitous ideal on \aleph_{2} but without a normal one?

The next question is well known with partial answers given by Schimmerling, Velickovic [13], Woodin [14](8.1 Condensation Principles) and recently by Wu.

Question 4. Is it consistent that there is a supercompact cardinal and \aleph_{1} does not carry a precipitous ideal?

The construction above can be carried out below a supercompact cardinal and so it provides a model with a supercompact and no precipitous filters on \aleph_{1} which extend $C u b_{\aleph_{1}}$ restricted to a stationary set. It is natural so ask the following question:

Question 5. Is it consistent that there is a supercompact cardinal and \aleph_{1} does not carry precipitous filters that are Q-points, i.e. isomorphic to filters which extend $C u b_{\aleph_{1}}$?

References

[1] H.-D. Donder, J.-P. Levinski, Weakly precipitous filters, Israel Journal of Math.,67, 1989, 225-242.
[2] A. Ferber, M.Gitik, On almost precipitous ideals, Archive Math.Logic, 49, 2010, 301328.
[3] M. Gitik, The negation of the singular cardinal hypothesis from $o(\kappa)=\kappa^{++}$, Ann. Pure and App. Logic 43, 1989, 209-234.
[4] M. Gitik, On generic elementary embeddings, JSL 54,1989, 700-707.
[5] M. Gitik, Some pathological examples of precipitous ideals, JSL 73, 2008, 492-511.
[6] M. Gitik, On normal precipitous ideals, Israel Journal of Math., 175,2010,191-219.
[7] M. Gitik and L. Tal, On a strength of no normal precipitous filter, to appear in Archive Math.Logic
[8] T. Jech, Set Theory, The Third Millennium Edition, Springer 2002.
[9] T. Jech, M. Magidor, W. Mitchell, K. Prikry, Precipitous ideals, JSL 45,1980, 1-8.
[10] T. Jech, K. Prikry, On ideals of sets and the power set operation, Bull.Amer. Math. Soc., 82, 1976, no.4, 593-595.
[11] R. Laver, Precipitousness in forcing extensions, Israel Journal of Math., 48, 1984, 97-108.
[12] J.-P. Levinski, These du Troisieme Cycle, University Paris VII, 1980.
[13] E. Schimmerling, B. Velickovic,Collapsing functions, Math. Logic Quart. 50, 2004, 3-8.
[14] H. Woodin, The Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal, de Gruyter Series in Logic and Its Applications 1, de Gruyter 1999.

[^0]: *This work was partially supported by ISF Grant 234/08.
 ${ }^{\dagger}$ We are grateful to the referee of the paper for his suggestions as well as for a long and comprehensive list of corrections.

[^1]: ${ }^{1}$ If F is a filter on a set X and A is F-positive set then $F+A$ denotes the extension of F generated by A, i.e. $F+A=\{B \subseteq X \mid \exists S \in F \quad B \supseteq A \cap S\}$.

[^2]: ${ }^{2}$ This means that we start with $U(\kappa, 0)$ then apply its image and so one ω-many times. At the next stage (i.e. at the stage ω the image of $U(\kappa, 1)$ is applied. Then again the image of $U(\kappa, 0)$ for ω-many steps and at the stage $\omega+\omega$ the image of $U(\kappa, 1)$ is used again and so on. The image of $U(\kappa, 2)$ is applied only after $U(\kappa, 1)$ was used ω-many times etc.

[^3]: ${ }^{3}$ It is (up to an initial segment) the Magidor-Radin generic sequence for κ_{α} in $M_{\alpha+1}$.

[^4]: ${ }^{4}$ We refer to [1] and [2] for this notion. The meaning is that after forcing with $\operatorname{Col}\left(\omega,<\kappa^{++}\right) / G_{1} * G_{2} * G_{3}$ it is possible to extend $i_{0 \kappa^{++}}$to an elementary embedding of $V\left[G, G_{2}, G_{3}\right]$ into a transitive model.

[^5]: ${ }^{5} a_{\alpha}$ is a binary relation, $\operatorname{dom}\left(a_{\alpha}\right)$ refers to the set of its first coordinates and $\operatorname{rng}\left(a_{\alpha}\right)$ refers to the set of its second coordinates.

[^6]: ${ }^{6}$ Actually, it corresponds to some $\kappa_{\gamma} \geq \kappa_{\xi_{\langle\alpha\rangle}}$, by the construction 2.1.5, since we jumped over κ_{τ} 's with $o^{\tilde{M}_{\kappa}++}\left(\kappa_{\tau}\right)=0$. Note that such κ_{τ} 's will be still represented. Thus, for example, if $f_{0 \beta}$ represents κ_{ω}, then the function $\nu \mapsto$ the n-th element of the Prikry sequence of $f_{0 \beta}(\nu)$ will represent κ_{n}, for every $n<\omega$.

