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Abstract

Answering a question of Pereira we show that it is possible to have a model violating
the Singular Cardinal Hypothesis without a tree-like continuous scale.

1 Introduction.

Let us recall some relevant basic definitions of the Shelah PCF -theory. We refer to Shelah’s

book [5] or to Abraham, Magidor handbook article [1] for detailed presentation.

Let A be a set of regular cardinals with min(A) > |A| and I an ideal over A. A sequence

f = 〈fα | α < λ〉 of functions in
∏

A is called a scale witnessing a true cofinality λ iff

• α < β implies fα <I fβ

• for every f ∈ ∏
A there is α < λ such that f <I fα.

A function f ∈ ∏
A is called an exact upper bound modulo I of a <I-increasing sequence

of functions 〈fα | α < δ〉 in
∏

A iff

• fα <I f for every α < δ

• if g <I f , then for some α < δ we have g <I fα.

∗We are grateful to Luis Pereira for asking an interesting question and his comments on the paper. We
would like to thank to the referee of the paper for his comments and corrections.
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A scale f = 〈fα | α < λ〉 is continuous at a limit ordinal δ < λ if when there exists

an exact upper bound of 〈fα | α < δ〉 then fδ is such an exact upper bound. A scale is

continuous iff it is continuous at every limit ordinal.

Let 〈κn | n < ω〉 be an increasing sequence of regular cardinals. A scale f = 〈fα | α < λ〉
in

∏
n<ω κn is called a tree-like scale iff for every n < ω and α < β < λ

• fα(n) = fβ(n) implies fα ¹ n = fβ ¹ n.

Luis Pereira [4] asked the following question:

Suppose that κ is a strong limit cardinal of cofinality ω, 2κ = λ > κ+. Does it necessary

exist a continuous tree-like scale witnessing this?

In [4] Pereira constructed models having such scales. He showed that an existence contin-

uous tree-like implies the PCF conjecture for intervals and suggested that probably always

there are continuous tree-like scales.

The purpose of this note will be to give a negative answer to Pereira’s question.

2 The model

We will show that models constructed in [3] do not have continuous tree-like scales. Namely,

the Extender Based Prikry forcing does not add continuous tree-like scales.

Let us briefly review the basic settings and the definition of the Extender Based Prikry

forcing. We refer to [3] or to the handbook article [2](Section 3) for a detailed presentation.

Let V be a GCH-model with a cardinal κ carrying an extender E such that

• if j : V → M 'Ult(V,E) is the corresponding elementary embedding, then M ⊇ Vκ+2.

For each α < κ++ define a κ-complete ultrafilter Uα over κ by setting X ∈ Uα iff α ∈ j(X).

Clearly, Uκ is a normal ultrafilter and each Uα for α < κ is trivial.

Define a partial ordering ≤E on κ++:

α ≤E β iff α ≤ β and for some f ∈ κκ, j(f)(β) = α.

For each α ≤E β a projection πβα of Uβ onto Uα was chosen. It satisfies the following:

j(πβα)(β) = α.

The projection πβκ to the normal ultrafilter Uκ does not depend on β (i.e. πβκ = πβ′κ, for

any β′, κ ≤ β′ < κ++). For each ν < κ we denote πβκ(ν) by ν0. A sequence 〈ν0, ..., νn〉 is
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called a ◦-increasing sequence iff (ν0)
0 < ... < (νn)0. We say that an ordinal ν is permitted

to a sequence 〈ν0, ..., νn〉 iff ν0 > (νn)0.

Denote by P(E) the Extender Based Prikry forcing with E.

It consists of all elements the elements p of the form

{〈γ, pγ〉 | γ ∈ g\{max(g)}} ∪ {〈max(g), pmax(g), T 〉}, where

(1) g ⊆ κ++ of cardinality ≤ κ which has a maximal element in ≤E-ordering and κ ∈ g.

Further let us denote g by supp(p), max(g) by mc(p), T by T p, and pmax(g) by pmc (mc

for the maximal coordinate).

(2) for γ ∈ g pγ is a finite ◦-increasing sequence of ordinals < κ.

(3) T is a tree with a trunk pmc consisting of ◦-increasing sequences. All the splittings in

T are required to be on sets in Umc(p), i.e. for every η ∈ T , if η ≥T pmc then the set

SucT (η) = {ν < κ | η_〈ν〉 ∈ T} ∈ Umc(p) .

Also require that for η1 ≥T η2 ≥T pmc

SucT (η1) ⊆ SucT (η2) .

(4) For every γ ∈ g, πmc(p),γ(max(pmc)) is not permitted for pγ.

(5) For every ν ∈ SucT (pmc)

|{γ ∈ g | ν is permitted for pγ}| ≤ ν0

(6) πmc(p),κ projects pmc onto pκ,

in particular, pmc and pκ are of the same length.

Let p, q ∈ P(E). We say that p extends q(p ≥ q) if

(1) supp(p) ⊇ supp(q).

(2) for every γ ∈ supp(q) pγ is an end-extension of qγ.

(3) pmc(q) ∈ T q.

(4) for every γ ∈ supp(q)
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pγ\qγ = πmc(q),γ “((pmc(q)\qmc(q)) ¹ (length (pmc)\(i + 1)) where i ∈ dom(pmc(q)) is the

largest such that pmc(q)(i) is not permitted for qγ.

(5) πmc(p),mc(q) projects T p
pmc into T q

qmc .

(6) for every γ ∈ supp(q), for every ν ∈ SucT p(pmc) if ν is permitted for pγ, then

πmc(p),γ(ν) = πmc(q),γ(πmc(p),mc(q)(ν)) .

If t ∈ T q, then we denote by (q)t the extension of q obtained by adding t to qmc, projecting

it to the rest of coordinates according to the rules above and replacing T q by {s ∈ T q |
s extends t}.

Let p, q ∈ P(E). We say that p is direct extension of q(p ≥∗ q) if

(1) p ≥ q, and

(2) for every γ ∈ supp(q) pγ = qγ.

Let us warm up with the following statement that appears implicitly in [3], [2] and will

be essential further for understanding the way of combining conditions together.

Proposition 2.1 Suppose q ∈ P(E), a ⊆ κ++ \ supp(q), |a| ≤ κ and 〈dγ | γ ∈ a〉 is a

sequence of finite ◦-increasing sequences. Let α < κ++ be ≤E-above every ordinal in supp(q)∪
a. Then there is p ≥∗ q such that

1. mc(p) = α,

2. supp(p) = supp(q) ∪ a ∪ {α},

3. for each γ ∈ a, pγ is an end-extension of dγ.

Proof. Suppose that |a| = κ. Let 〈γi | i < κ〉 be an enumeration of a. Pick an increasing

sequence of inaccessible cardinals 〈ρi | i < κ〉 such that ρ0 > max(qmc) and ρi > max(dγi),

for each i < κ. Set eγi = dγi_ρi, for each i < κ.

Now we are ready to define p. Set mc(p) = α, supp(p) = supp(q) ∪ a and let pmc be a ◦-

increasing sequence which projects onto qmc by πα,mc(q). Define pγ = qγ, for each γ ∈ supp(q)

and pγ = eγ, for each γ ∈ a. Set T0 to be the inverse image of T q by πα,mc(q). Then

{〈γ, pγ〉 | γ ∈ supp(p)\{α}} ∪ {〈α, pα, T0〉} ∈ P(E). It is not necessarily an extension of q,

due to the item 6 of the definition of the extension. In order to repair this, let us shrink the
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tree T0 a little.

Denote SucT0(p
α) by A. For ν ∈ A set

Bν = {γ ∈ supp(q) | γ 6= mc(q) and ν is permitted for qγ} .

Then |Bν | ≤ ν0, since πα,mc(q)(ν) ∈ SucT q(qmc), ν0 = πακ(ν) =

πmc(q),κ(παmc(q)(ν)), and q being in P(E) satisfies condition (5) of the definition of P(E).

Clearly, for ν, δ ∈ A, if ν0 = δ0 then Bν = Bδ, and if ν0 > δ0 then Bν ⊇ Bδ. Also, if

ν ∈ A and ν0 is a limit point of {δ0 | δ ∈ A}, then Bν =
⋃{Bδ | δ ∈ A and δ0 < ν0}. So

the sequence 〈Bν | ν ∈ A〉 is increasing and continuous (according to the ν0’s). Obviously,⋃{Bν | ν ∈ A} = supp(q)\{mc(q)}. Let 〈ξi | i < κ〉 be an enumeration of supp(q)\{mc(q)}
such that for every ν ∈ A

Bν ⊆ {ξi | i < ν0} .

Now pick for every i ∈ A a set Ci ⊆ A, with Ci ∈ Uα so that for every ν ∈ Ci παξi
(ν) =

πmc(q),ξi
(πα,mc(q)(ν)). Let C = A_∆∗

i<κCi := {ν ∈ A | ∀i < ν0(ν ∈ Ci)}. Then C ∈ Uα.

Now define T p to be the tree obtained from T0 by intersecting every level of T0 with C.

Set p = {〈γ, pγ〉 | γ ∈ supp(p)\{α}} ∪ {〈α, pα, T p〉}. Let us show that condition (6) of the

definition of the order on P(E) is now satisfied. Suppose γ ∈ supp(q). If γ = mc(q), then

everything is trivial. Assume that γ ∈ supp(q)\{mc(q)}. Then for some i0 < κ γ = ξi0 .

Suppose that some ν ∈ C is permitted for qγ. Then ξi0 = γ ∈ Bν . Since Bν ⊆ {ξi | i < ν0},
i0 < ν0. Then ν ∈ Ci0 . Hence

παξi0
(ν) = πmc(q),ξi0

(πα,mc(q)(ν)) .

So condition (6) is satisfied by p. Hence, p ≥∗ q.

¤
Remark. If, for every ν ∈ SucT p(pα), |{γ ∈ a | ν is permitted for dγ}| ≤ ν0 (i.e. (5)

of the definition of P(E) is satisfied by dγ’s), then there is no need to extend dγ’s to eγ’s.

We will use the following property of the forcing P(E) (see Lemmas 3.12, 3.14 of [2] for

a proof):

Proposition 2.2 Let µ < κ, q ∈ P(E) and h∼ is a name of a function from µ to ordinals.

Then there is a direct extension p = {〈γ, pγ〉 | γ ∈ supp(p) \ {mc(p)}}∪{〈mc(p), pmc(p), T p〉}
of q so that for every α < µ there is a level k(α) of T p such that for any t ∈ T p from the

level k(α), (p)t||h∼(α).
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Let G be a generic subset. For each α, κ ≤ α < κ++ we denote the set
⋃{pα | p ∈ G} by

Gα.

Then V [G] satisfies the following:

• GCH holds below κ

• all the cardinals of V are preserved

• κ changes its cofinality to ω (and it is the only one that changes cofinality)

• 2κ = κ++

• for every α, κ ≤ α < κ++ the sequence Gα is a Prikry sequence for Uα

• for every α, κ ≤ α < κ++ for all but finitely many n < ω the n-th element Gα(n) of

Gα is below (Gκ(n))++

• for every α, β, κ ≤ α < β < κ++ for all but finitely many n < ω we have Gα(n) <

Gβ(n). Further we denote this simply by Gα <∗ Gβ.

Let us denote Gκ(n) by ηn. We may assume that Gα ∈ ∏
n<ω η++

n , for every α, κ ≤ α <

κ++. Just change the finitely many values that fall outside to zero.

We move the indexes of Gα’s in order to start from 0 rather than from κ. Thus set f0 =

Gκ, f1 = Gκ+1, etc.

Let us prove the following additional property:

Proposition 2.3 〈fα | α < κ++〉 is a continuous scale in
∏

n<ω η++
n mod finite.

Proof. Set fκ++(n) = η++
n . Let δ ≤ κ++ be a limit ordinal of uncountable cofinality. We

need to show that fδ is an exact upper bound of 〈fα | α < δ〉. Suppose g ∈ ∏
n<ω η++

n and

g <∗ fδ. Turn to V . Let g∼ be a name of g and suppose that the weakest condition forces

“g∼ <∗ f∼δ”.

Assume for simplicity that it forces

“∀n < ω g∼(n) < f∼δ(n)”.

Otherwise just work above an m from which on we have this inequality.

By 2.2 there is a condition of the form p ∪ {〈β, ∅, S〉} so that:
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for each n < ω there will be a level k(n) of S such that for any t from this level of S

(p ∪ {〈β, ∅, S〉})t||g∼(n).

By shrinking S if necessary, we can assume that there is no m < k(n) and a subtree S ′ of S

such that for some t ∈ S ′ from the level m

(p ∪ {〈β, ∅, S ′〉})t||g∼(n).

Without loss of generality we may assume that δ ∈ supp(p) and in particular δ <E β.

Suppose for simplicity that pδ is the empty sequence.

Also, shrinking S if necessary, assume that every element of S is permitted to pδ. Then for

every t ∈ S we will have

(p ∪ {〈β, ∅, S〉})t||f∼δ ¹ |t| = πβ,δ“t.

Let us argue that for every n < ω, k(n) ≤ n. Fix n < ω. Let t ∈ S and t = 〈t(1), ..., t(n)〉.
Then

(p ∪ {〈β, ∅, S〉})t‖ η∼n = (t(n))0.

Hence,

(p ∪ {〈β, ∅, S〉})t‖ g∼(n) < (t(n)0)++.

Now, once the number of possible values of g∼(n) is bounded below κ it is easy to find a

subtree S ′ of S such that

(p ∪ {〈β, ∅, S ′〉})t||g∼(n).

But by the assumptions we made above, this is possible only when k(n) ≤ n.

Now k(n) ≤ n, for each n < ω, implies that for any t ∈ S

(p ∪ {〈β, ∅, S〉})t||g∼ ¹ |t|.

The weakest condition forces ”g∼ <∗ f∼δ”, hence

(p ∪ {〈β, ∅, S〉})t‖ ∀n < |t| g∼(n) < πβδ(t(n)),

for any t ∈ S. Define functions g′ and f ′ on S ′ as follows:

g′(t) = 〈ν0, ..., ν|t|−1〉 iff ∀n < |t| (p ∪ {〈β, ∅, S〉})t‖ g∼(n) = νn〉
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and

f ′(t) = 〈πβδ(t(0)), ..., πβδ(t(|t| − 1))〉.
By shrinking S to some S ′ if necessary, we can assume that cof(f ′(t)(k)) = cof(δ), if

cof(δ) < κ and cof(f ′(t)(k)) = ((t(k))0)+, if cof(δ) = κ+, for each k < |t|.
Let us split the proof into two cases according to the cofinality of δ.

Case 1. cof(δ) = κ+.

For each t ∈ S ′ the set SucS′(t) ∈ Uβ. Define functions g′t, f
′
t on this set as follows:

g′t(ν) = g′(taν) and f ′t(ν) = f ′(taν). Then in M we will have

j(g′t)(β) < j(f ′t)(β) = j(πβδ)(β) = δ.

Note that the total number of t’s in S ′ is κ. We assumed that cof(δ) = κ+. Hence there will

be α < δ such that

α > j(g′t)(β),

for every t ∈ S ′. Extend now the condition p∪{〈β, ∅, S ′〉} by adding α to its support. Then

the resulting condition will force “g∼ <∗ fα∼”.

Case 2. cof(δ) < κ.

Let µ = cof(δ). Then, by the assumptions made, ω < µ < κ. Fix a cofinal sequence

〈δξ | ξ < µ〉 in δ. Extend the condition p ∪ {〈β, ∅, S ′〉} if necessary, to insure that the set

{δξ | ξ < µ} is contained in the support. Assume that it is already the case. For each ξ < µ

and t ∈ S ′ set f ′ξ(t) = 〈πβδξ
(t(0)), ..., πβδξ

(t(|t| − 1))〉.
We can now easily shrink S ′ level by level to S ′′ and insure the following:

• for each level n there is ξn < µ such that for every t from this level we have g′(t) < f ′ξn
(t).

Pick some ξ∗ < µ such that for every n < ω ξn < ξ∗. Then the following will easily hold:

p ∪ {〈β, ∅, S ′′〉}‖ g∼ <∗ fξ∗∼ .

¤

Proposition 2.4 In V [G] there is no continuous tree-like scale of the length κ++ in any∏
A modulo an ideal I.
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Proof. Suppose otherwise. The only product of cardinals below κ which produces scales of

the length κ++ is
∏

n<ω η++
n . So we can assume without loss of generality that there is a

tree-like continuous scale 〈tα | α < κ++〉 in
∏

n<ω η++
n . Suppose for simplicity that it is a

scale mod finite.

Now using the uniqueness of an exact upper bound and 2.3, we obtain a club C ⊆ κ++

such that for each α ∈ C of uncountable cofinality tα(n) = fα(n), for all but finitely many n’s.

The forcing P satisfies κ++-c.c. So, we can assume that C ∈ V and the weakest condition

forces the above. Work now in V

Set C ′ = {α ∈ C | cof(α) 6∈ {ω, κ}}.
For each α ∈ C ′ pick a condition pα and a number nα such that

pα‖ ∀m > nα t∼α(m) = f∼α(m).

Without loss of generality we can assume that α ∈ supp(pα).

Consider the set {supp(pα) | α ∈ C ′}. This a set of κ++ subsets of κ++ each of cardinality

at most κ. Form a ∆-system. Let S ⊆ C ′ be stationary and such that

• {supp(pα) | α ∈ S} is a ∆-system

• all nα’s with α ∈ S are the same.

Let n∗ denotes the common value of nα’s for α ∈ S. Denote the kernel of the ∆-system by

S̃. We can assume that supp(pα) ∩ α = S̃.

Pick some ξ < κ++ such that ξ >E α for every α ∈ S̃. Note that it is possible since the

set S̃ has cardinality at most κ. Now, for each α ∈ S we pick α∗ >E ξ, mc(pα). Extend

every pα(α ∈ S) to a condition p∗α by adding α∗ as a maximal coordinate (i.e. supp(p∗α) =

supp(pα) ∪ {α∗})and by shrinking πα∗α“T p∗α ⊆ T pα in order to insure the following:

(*) if for some γ ∈ S̃ ν is addable to pγ
α, then πα∗γ(ν) = πξγ(πα∗ξ(ν)).

We can assume the following, by shrinking S more, if necessary, and using that 2κ = κ+

in V :

1. min(S) > sup(S̃)

2. for each α, β ∈ S and γ ∈ S̃ we have pγ
α = pγ

β

3. the trees of p∗α’s for α ∈ S are the same (but not the maximal coordinates)

4. for every α, β ∈ S we have πα∗α = πβ∗β
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5. for every α, β ∈ S and γ ∈ S̃ ∪ {ξ} the projections πα∗γ and πβ∗γ are the same.

Let T be this common tree. Denote by A the first splitting level of T , i.e.

A = SucT (p∗mc
α ) = SucT (p∗mc

β ).

Again, by shrinking if necessary, let us assume that the finite sequences for the normal

measure as well as those for the maximal coordinates are the same. Extending conditions if

necessary (but without changing their supports) we can assume the lengths of these sequences

are at least n∗. Denote their length by n′.

Now fix two different members α, β of S which are generators of the extender E. Recall that

an ordinal τ is called a generator of E, if for each k < ω, µ1, ..., µk < τ and f : [κ]k → κ

j(f)(µ1, ..., µk) 6= τ . Clearly, the set of generators of E contains a club in κ++. So, there are

such α, β in S.

Claim 1 There are two different elements ν, ν ′ of A such that

1. (ν)0 = (ν ′)0

2. πα∗ξ(ν) = πα∗ξ(ν
′) (the same with α∗ replaced by β∗, since πα∗ξ = πβ∗ξ)

3. πα∗α(ν) 6= πβ∗β(ν ′).

Proof. Suppose otherwise. Then for each ν 6= ν ′ in A we have πα∗ξ(ν) = πα∗ξ(ν
′) implies

πα∗α(ν) = πβ∗β(ν ′). Then also πα∗α(ν) = πα∗α(ν ′), since πα∗α = πβ∗β. This allows us to

define a function h on πα∗ξ“A as follows:

h(τ) = χ if for some ν ∈ A, πα∗ξ(ν) = τ and πα∗α(ν) = χ.

Now, in M (the ultrapower by E) we will have j(h)(ξ) = α, since j(πα∗ξ)(α
∗) = ξ and

j(πα∗α)(α∗) = α. This is impossible since α is a generator and ξ < α. Contradiction.

¤ of the claim.

Pick now two different elements ν, ν ′ of A which satisfy the statement of the claim. Denote

πα∗α(ν) by τ and πβ∗β(ν ′) = πα∗α(ν ′) by τ ′.

Extend p∗α to qα and p∗β to qβ by adding ν and ν ′ respectively (we add them to the maximal

coordinates of the conditions and then project to the permitted coordinates). Note that for

each γ ∈ S̃ we will have qγ
α = qγ

β . It follows from the condition 2 of Claim 1 and the condition
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(*) above.

Then

qα‖ f∼α(n′) = τ

and

qβ‖ f∼β(n′) = τ ′.

Pick now any ρ ∈ A above both ν and ν ′. Set ζ = πα∗α(ρ) = πβ∗β(ρ). Extend qα to rα

and qβ to rβ by adding ρ. Then

rα‖ f∼α(n′) = τ, f∼α(n′ + 1) = ζ

and

rβ‖ f∼β(n′) = τ ′, f∼α(n′ + 1) = ζ.

Let us find a common extension s of rα and rβ.

Pick some µ above both mc(rα) = α∗ and mc(rβ) = β∗ in the order of the extender E. Let

B ∈ Uµ be such that πµ,mc(rα)“B ⊆ A\ρ + 1 and πµ,mc(rβ)“B ⊆ A\ρ + 1. Combine rα and rβ

together into a condition s with the maximal coordinate µ and the set of measure one B.

Now,

s‖ t∼α(n′ + 1) = t∼β(n′ + 1), t∼α(n′) 6= t∼β(n′).

Contradiction.

¤

3 Some generalizations.

1. It is possible to replace κ++ by any regular λ > κ+. The only little change will be needed

in the proof of 2.4 once dealing with the kernel of the ∆-system. The kernel has cardinality

at most κ. So the number of generators that it can cover is again at most κ. Hence we can

shrink the set S in order to avoid them all.

Another way is to take increasing subsequences of the length κ++ of both tα’s and fα’s and

to deal with them only.

2. It is possible to move the construction to ℵω. Thus, combine the present arguments with

those of [2], Section 4.

3. Luis Pereira introduced the following weakening of the notion of a tree-like scale.

Let t̄ = 〈tα | α < λ〉 be a scale in a product
∏

n<ω κn of regular cardinals below κ. For each

n < m < ω and α < κ set

t̄n,m(α) = {tδ(n) | tδ(m) = α}.
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A scale t̄ is called essentially tree-like iff for every n < m < ω and α < κ the set t̄n,m(α) is a

nonstationary subset of κn.

Pereira asked whether a continuous essentially tree-like scale always exists, provided that κ

is a strong limit of cofinality ω and 2κ = λ > κ+.

Let us show that the arguments of the previous section can be extended to provide a negative

answer.

Proposition 3.1 In V [G] there is no continuous essentially tree-like scale of the length κ++

in any
∏

A modulo an ideal I.

Proof. The proof is similar to those of 2.4. Here instead of putting two condition together

we will need to combine infinitely many. The main point will be a more careful choice of

generators.

Let us prove first two lemmas.

Lemma 3.2 The following set contains a club:

{α < κ++ | ∀X ∈ Uα the set {β < κ++ | X ∈ Uβ} is stationary }.

Proof. Suppose otherwise. Let S ⊆ κ++ be a stationary set so that for every α ∈ S there

are Xα ∈ Uα and a club Cα ⊂ κ++\α + 1 such that Xα 6∈ Uβ, for each β ∈ Cα. Set

C = ∆α∈SCα.

Recall that 2κ = κ+. Hence there are X∗ ⊆ κ and a stationary S∗ ⊆ S ∩ C such that for

each α ∈ S∗ we have Xα = X∗. Pick two elements α < β of S∗. Then β ∈ C implies β ∈ Cα.

So, Xα 6∈ Uβ. But Xα = X∗ = Xβ and Xβ ∈ Uβ. Contradiction.

¤ of the lemma.

Set C = {α < κ++ | ∀X ∈ Uα the set {β < κ++ | X ∈ Uβ} is stationary }.

Lemma 3.3 Let α ∈ C. Then for every set X ∈ Uα there is a set Y ∈ Uα, Y ⊆ X such that

for every ν ∈ Y the set

{ν ′ < ((ν)0)++ | ν ′ ∈ X}
is a stationary subset of ((ν)0)++.
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Proof. Let X ∈ Uα. The set Z := {β < κ++ | X ∈ Uβ} is stationary, by the choice of C.

Remember that X ∈ Uβ implies β ∈ j(X). So, j(X) ∩ κ++ ⊇ Z. In particular, in M , we

can conclude that j(X) ∩ κ++ is stationary. Reflecting this down we obtain that the set

{ν < κ | X ∩ (ν0)++ is a stationary subset of (ν0)++}

is in Uα.

¤ of the lemma.

Now we are ready to fill in the missing point.

Preserve the notation of 2.4.

Without loss of generality we may assume that S ⊆ C, otherwise just replace it by S ∩ C.

Let α ∈ S. By Lemma 3.3, there is η < κ such that the following set

D = {πα∗α(ν) | ν ∈ A, (ν)0 = η}

is a stationary subset of η++.

We have min(S) > ξ, so by shrinking A if necessary, it is possible to assume that ν ∈ A

implies πα∗α(ν) > πα∗ξ(ν).

For each τ ∈ D pick the least ντ ∈ A with πα∗α(ντ ) = τ . Define a regressive function h on

D by setting h(τ) = πα∗ξ(ντ ). There is a stationary D′ ⊆ D on which h is constant.

Now continue as in 2.4 only instead of two different points α, β in S let us use η++ many.

Thus, let 〈ατ | τ ∈ D′〉 be an increasing sequence of elements of S. For each τ ∈ D′ we

extend p∗ατ
to qατ by adding ντ to the maximal coordinate. As in 2.4, the following will hold:

1. for each γ ∈ S̃, τ, τ ′ ∈ D′ qγ
ατ

= qγ
ατ ′

2. for each τ ∈ D′ qατ‖ f∼ατ (n
′) = τ

Pick now any ρ ∈ A above all ντ , τ ∈ D′. Set ζ = πα∗ατ (ρ), for some (any) τ ∈ D′.

Extend each qατ (τ ∈ D′) to rατ by adding ρ to the maximal coordinate. Then, for every

τ ∈ D′ we will have the following:

rατ‖ f∼ατ (n
′) = τ, f∼ατ (n

′ + 1) = ζ.

Find now a common extension s of all rατ ’s (τ ∈ D′). Thus, pick some µ which is above

all ατ , τ ∈ D′ in the order <E of the extender E. Let B ∈ Uµ be such that πµ,mc(rατ )“B ⊆
A\ρ + 1. Combine all rατ ’s together into a condition s with the maximal coordinate µ and

the set of measure one B. Note that it is possible by the condition 1 above, since there is a
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full agreement about the projections to the common part.

Now, for any two different elements τ, τ ′ ∈ D′ we will have

s‖ t∼ατ (n
′ + 1) = t∼ατ ′ (n

′ + 1), t∼ατ (n
′) 6= t∼ατ ′ (n

′).

Finally note that no new bounded subsets are added to κ in the generic extension. Hence

D′ remains stationary. So, 〈tα | α < κ++〉 is not essentially tree-like. Contradiction.

¤
4. The crucial ordinals α of 2.4, 3.1 on which tree-like property breaks down have

generally cofinality κ+. The reason is that they are elements of the set S which forms a

∆-system.

Pereira asked whether it is possible to break the tree-like property on ordinals of cofinality

below κ. Let us show that a little modification of the constructions above allows to do this.

Proposition 3.4 Let 〈tα | α < κ++〉 be a continuous scale in V [G]. Then for every regular

uncountable cardinal η < κ there are α, β < κ++ of cofinality η and n < ω such that

tα(n) 6= tβ(n) but tα(n + 1) = tβ(n + 1).

Remark 3.5 A similar statement is true once dealing with essentially tree-like scales.

Proof. The only product of cardinals below κ which produces scales of the length κ++ is∏
n<ω η++

n . So, 〈tα | α < κ++〉 is a scale in
∏

n<ω η++
n . Suppose for simplicity that it is a

scale mod finite.

By uniqueness of exact upper bounds and 2.3, we obtain a club C ⊆ κ++ such that for

each α ∈ C of uncountable cofinality tα(n) = fα(n), for all but finitely many n’s. The forcing

P satisfies κ++-c.c. So, we can assume that C ∈ V and the weakest condition forces the

above. Work in V .

For each α < κ++ let α̃ be the first element of C above α of cofinality η. For each α < κ++

pick a condition pα and a number nα such that

pα‖ ∀m > nα t∼α̃(m) = f∼α̃(m).

Without loss of generality we can assume that α̃ ∈ supp(pα). Continue as in 2.4 and form a

∆-system.

The rest of the argument repeats those of 2.4 only instead of dealing with α-th coordinates

(i.e. pα , f∼α and t∼α) we deal with α̃-th (i.e. pα̃ , f∼α̃ and t∼α̃).

¤
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