More ultrafilters with Galvin property

Moti Gitik*

July 16, 2023

Abstract

We present a method of constructing models with Q-point ultrafilters which have a Galvin property but are not sums of P-points. This answers a question of Tom Benhamou [1].

1 Some general facts

Our basic setting will be the following:
Let W be a κ-complete ultrafilter over $\kappa, U=\left\{X \subseteq \kappa \mid \kappa \in j_{W}(X)\right\}$ and $k: M_{U} \rightarrow M_{W}$ the corresponding embedding. Let $\kappa_{1}=j_{U}(\kappa)$. Suppose that $\kappa_{1}=[i d]_{W}$ and $\kappa_{1}=\operatorname{crit}(k)$.

The following lemma is well known:
Lemma $1.1 W \supseteq C u b_{\kappa}$.
Lemma 1.2 Suppose that $\left\{A_{\alpha} \mid \alpha<\kappa\right\} \subseteq W$ and $\bigcap_{\alpha<\kappa} A_{\alpha} \in W$.
Then for every $B \in j_{U}\left(\left\{A_{\alpha} \mid \alpha<\kappa\right\}\right), \kappa_{1} \in k(B)$.
Proof. Follows from elementarity and since $j_{W}=k \circ j_{U}$.

Lemma 1.3 For every $B \in j_{U}{ }^{\prime \prime} W, \kappa_{1} \in k(B)$.
Proof. Let $B=j_{U}(A)$, for some $A \in W$. Then

$$
\kappa_{1} \in j_{W}(A)=k\left(j_{U}(A)\right)=k(B) .
$$

[^0]Lemma 1.4 There is $B \in j_{U}(W)$ such that $\kappa_{1} \notin k(B)$.
Proof. Let $f: \kappa \rightarrow \kappa$ be a function that represents κ in M_{W}, i.e. $j_{W}(f)\left(\kappa_{1}\right)=\kappa$. It is a regressive function which is not constant on a set in W. Then, for every $\eta<\kappa$,

$$
A_{\eta}=\{\nu \in X \mid f(\nu) \neq \eta\} \in W
$$

Let

$$
\left\langle A_{\eta}^{1} \mid \eta<\kappa_{1}\right\rangle=k\left(\left\langle A_{\eta} \mid \eta<\kappa\right\rangle\right) .
$$

Then, $\kappa_{1} \notin k\left(A_{\kappa}^{1}\right)$, since $j_{W}(f)\left(\kappa_{1}\right)=\kappa$.

The next lemma will be crucial for our further constructions.
Lemma 1.5 Suppose that $\left\{A_{\alpha} \mid \alpha<\kappa^{+}\right\},\left\{B_{\alpha} \mid \alpha<\kappa^{+}\right\} \subseteq W$ are such that

1. $\left\{A_{\alpha} \mid \alpha<\kappa^{+}\right\} \subseteq U$;
2. for every $A \in j_{U}\left(\left\{A_{\alpha} \mid \alpha<\kappa^{+}\right\}\right), \kappa_{1} \in k(A)$;
3. for every $B \in j_{U}\left(\left\{B_{\alpha} \mid \alpha<\kappa^{+}\right\}\right), \kappa_{1} \in k(B)$.

Then there is $I \subseteq \kappa^{+},|I|=\kappa$ such that

1. $\bigcap_{\alpha \in I} A_{\alpha} \in U \cap W$,
2. $\bigcap_{\alpha \in I} B_{\alpha} \in W$.

Proof. We repeat basically the Galvin proof simultaneously for $\left\{A_{\alpha} \mid \alpha<\kappa^{+}\right\}$and $\left\{B_{\alpha} \mid\right.$ $\left.\alpha<\kappa^{+}\right\}$.

Thus, define

$$
H_{\alpha \xi}=\left\{\beta<\kappa^{+} \mid A_{\alpha} \cap \xi=A_{\beta} \cap \xi \text { and } B_{\alpha} \cap \xi=B_{\beta} \cap \xi\right\}
$$

for every $\alpha<\kappa^{+}, \xi<\kappa$.
Then, as in the Galvin proof, there will be $\alpha^{*}<\kappa^{+}$such that for every $\xi<\kappa,\left|H_{\alpha^{*} \xi}\right|=\kappa^{+}$.
Define by induction a sequence $\left\langle\eta_{\xi} \mid \xi<\kappa\right\rangle$ such that

$$
\eta_{\xi} \in H_{\alpha^{*} \xi+1} \backslash\left\{\eta_{\xi^{\prime}} \mid \xi^{\prime}<\xi\right\} .
$$

Set $I=\left\{\eta_{\xi} \mid \xi<\kappa\right\}$. Let us argue that such I is as desired.
Apply j_{U} and continue the inductive definition of the sequence $\left\langle\eta_{\xi} \mid \xi<\kappa\right\rangle$ in M_{U}. Let $\left\langle\eta_{\xi}^{1} \mid \xi<\kappa_{1}\right\rangle$ be the resulting sequence. Denote $j_{U}\left(\left\{A_{\alpha} \mid \alpha<\kappa^{+}\right\}\right)$by $\left\{A_{\alpha}^{1} \mid \alpha<j_{U}\left(\kappa^{+}\right)\right\}$ and $j_{U}\left(\left\{B_{\alpha} \mid \alpha<\kappa^{+}\right\}\right)$by $\left\{B_{\alpha}^{1} \mid \alpha<j_{U}\left(\kappa^{+}\right)\right\}$.
Then, by the first assumptions of the lemma, $\kappa \in A_{\alpha}^{1}$, for every $\alpha \in j_{U}^{\prime \prime} \kappa^{+}$. In particular, $\kappa \in A_{\eta_{\xi}^{1}}^{1}$, for every $\xi<\kappa$.
For every $\xi, \kappa \leq \xi<\kappa_{1}$ we will have $A_{\eta_{\xi}^{1}}^{1} \cap \xi+1=A_{j_{U}\left(\alpha^{*}\right)}^{1} \cap \xi+1$.
We have, $\kappa \in j_{U}\left(A_{\alpha^{*}}\right)$, and so, $\kappa \in j_{U}\left(A_{\alpha^{*}}\right) \cap \xi+1=A_{\eta_{\xi}^{1}}^{1} \cap \xi+1$.
So, $\kappa \in A_{\eta_{\xi}^{1}}^{1}$, for every $\xi<\kappa_{1}$, and then,

$$
\kappa \in \bigcap_{\xi<\kappa_{1}} A_{\eta_{\xi}^{1}}^{1}=j_{U}\left(\bigcap_{\xi<\kappa} A_{\eta_{\xi}}\right) .
$$

Hence, $\bigcap_{\xi<\kappa} A_{\eta_{\xi}} \in U$.
By the second and the third assumptions of the lemma, $\kappa_{1} \in k\left(A_{\eta_{\xi}^{1}}^{1}\right)$ and $\kappa_{1} \in k\left(B_{\eta_{\xi}^{1}}^{1}\right)$, for every $\xi<\kappa_{1}$.
Apply k and continue the inductive definition of the sequence $\left\langle\eta_{\xi}^{1} \mid \xi<\kappa_{1}\right\rangle$ in M_{W}. Let $\left\langle\eta_{\xi}^{2} \mid \xi<\kappa_{2}\right\rangle$ be the resulting sequence. Then for every $\xi, \kappa_{1} \leq \xi<\kappa_{2}$ we will have $A_{\eta_{\xi}^{2}}^{2} \cap \xi+1=A_{j_{W}\left(\alpha^{*}\right)}^{2} \cap \xi+1$ and $B_{\eta_{\xi}^{2}}^{2} \cap \xi+1=B_{j_{W}\left(\alpha^{*}\right)}^{2} \cap \xi+1$,
where $\left\langle A_{\eta_{\xi}^{1}}^{2} \mid \xi<\kappa_{2}\right\rangle=j_{W}\left(\left\langle A_{\eta_{\xi}} \mid \xi<\kappa\right\rangle\right.$ and $\left\langle B_{\eta_{\xi}^{1}}^{2} \mid \xi<\kappa_{2}\right\rangle=j_{W}\left(\left\langle B_{\eta_{\xi}} \mid \xi<\kappa\right\rangle\right.$.
We have $A_{j_{W}\left(\alpha^{*}\right)}^{2}=j_{W}\left(A_{\alpha^{*}}\right)$ and $A_{\alpha^{*}} \in W$. The same holds with $B_{\alpha^{*}}$. Hence, $\kappa_{1} \in j_{W}\left(A_{\alpha^{*}}\right)$, and so, $\kappa_{1} \in j_{W}\left(A_{\alpha^{*}}\right) \cap \xi+1=A_{\eta_{\xi}^{2}}^{2} \cap \xi+1$.
So, $\kappa_{1} \in A_{\eta_{\xi}^{2}}^{2}$, for every $\xi<\kappa_{2}$, and then,

$$
\kappa_{1} \in \bigcap_{\xi<\kappa_{2}} A_{\eta_{\xi}^{2}}^{2}=j_{W}\left(\bigcap_{\xi<k} A_{\eta_{\xi}}\right) .
$$

The same is true with B 's instead of A 's.
Hence, $\bigcap_{\xi<\kappa} A_{\eta_{\xi}} \in W$ and $\bigcap_{\xi<\kappa} B_{\eta_{\xi}} \in W$.

The next lemma is a slight generalization of 1.5 .
Lemma 1.6 Suppose that $\left\{A_{\alpha n} \mid \alpha<\kappa^{+}, n<n^{*}\right\},\left\{B_{\alpha, m} \mid \alpha<\kappa^{+}, m<m^{*}\right\} \subseteq W$, for some $n^{*}, m^{*}<\omega$, are such that, for every $n<n^{*}, m<m^{*}$,

1. $\left\{A_{\alpha n} \mid \alpha<\kappa^{+}\right\} \subseteq U$;
2. for every $A \in j_{U}\left(\left\{A_{\alpha n} \mid \alpha<\kappa^{+}\right\}\right), \kappa_{1} \in k(A)$;
3. for every $B \in j_{U}\left(\left\{B_{\alpha m} \mid \alpha<\kappa^{+}\right\}\right), \kappa_{1} \in k(B)$.

Then there is $I \subseteq \kappa^{+},|I|=\kappa$ such that, for every $n<n^{*}, m<m^{*}$,

1. $\bigcap_{\alpha \in I} A_{\alpha n} \in U \cap W$,
2. $\bigcap_{\alpha \in I} B_{\alpha m} \in W$.

Proof. Similar to those of 1.5 only define $H_{\alpha \xi}$ as follows:

$$
H_{\alpha \xi}=\left\{\beta<\kappa^{+} \mid \forall n<n^{*}\left(A_{\alpha n} \cap \xi=A_{\beta n} \cap \xi\right) \text { and } \forall m<m^{*}\left(B_{\alpha m} \cap \xi=B_{\beta m} \cap \xi\right)\right\},
$$ for every $\alpha<\kappa^{+}, \xi<\kappa$.

The next lemma follows from Lemma 1.5.
Lemma 1.7 Suppose that there are a family $D \subseteq W$ and a normal filter $\mathcal{V} \subseteq W$ such that

1. for every $A \in W$ there is $B \in D$ which is contained in $A \bmod \mathcal{V}$,
2. for every $C \in j_{U}(D), \kappa_{1} \in k(C)$.

Then W has the Galvin property.

2 Construction

Assume GCH and let κ be a measurable cardinal. Let U be a normal ultrafilter over κ.
Define an Easton support iteration

$$
\left\langle P_{\alpha},{\underset{\sim}{~}}_{\beta} \mid \alpha \leq \kappa+1, \beta \leq \kappa\right\rangle .
$$

Let $\underset{\sim}{Q_{\beta}}$ be trivial unless β is an inaccessible cardinal.
If $\beta<\kappa$ is an inaccessible cardinal then set $Q_{\beta}=\operatorname{Cohen}(\beta)$.
Let G be generic subset of $P_{\kappa+1}$. The embedding $j_{U}: V \rightarrow M_{U}$ extends to $j^{*}: V[G] \rightarrow$ $M_{U}\left[G^{*}\right]$ in a standard fashion.
Set

$$
U^{*}=\left\{X \subseteq \kappa \mid \kappa \in j^{*}(X)\right\}
$$

Then

1. $U^{*} \supseteq U$,
2. $j_{U^{*}}=j^{*}$
3. $M_{U^{*}}=M_{U}\left[G^{*}\right]$.

We have $j_{U}(P)=P_{\kappa+1} * P_{\left(\kappa, j_{U}(\kappa)\right]}$.
Consider now $U \times U$. We have that Denote $j_{U}(\kappa)$ by κ_{1} and $j_{U \times U}(\kappa)=j_{j_{U}(U)}\left(\kappa_{1}\right)$ by κ_{2}. Then $j_{j_{U}(U)}: M_{U} \rightarrow M_{U \times U}$ and κ_{1} is its critical point.

Extend, in $V[G], j_{U \times U}$ to $j^{* *}: V[G] \rightarrow M_{U \times U}\left[G^{* *}\right]$ as follows:
Set $G^{* *} \cap P_{\kappa_{1}+1}=G^{*}$. Continue to define $G^{* *} \cap P_{\left(\kappa_{1}, j_{U \times U}(\kappa)\right)}$ in the standard fashion in order to insure that $j^{* *}$ is $j_{U^{*} \times U^{*}}$.
The main issue will be to define a Cohen function $f_{\kappa_{2}}$, where $\kappa_{2}=j_{U \times U}(\kappa)$.
Set $f_{\kappa_{2}} \upharpoonright \kappa_{1}=f_{\kappa_{1}}$. Also, set $f_{\kappa_{2}}\left(\kappa_{1}\right)=\kappa$. This will insure U^{*} will be the normal ultrafilter Rudin-Keisler below the one which we will define.
Namely, define the continuation of $f_{\kappa_{2}}$ arbitrary, but meeting the relevant dense sets.
Then, in $V[G]$, let

$$
W=\left\{X \subseteq \kappa \mid \kappa_{1} \in j^{* *}(X)\right\} .
$$

Then W is a κ-complete ultrafilter over κ and $j_{W}=j^{* *}$.
Also, $k=j_{j_{U}(U)}: M_{U} \rightarrow M_{U \times U}$ extends to $k^{*}: M_{U}\left[G^{*}\right] \rightarrow M_{U \times U}\left[G^{* *}\right]$.
Lemma 2.1 $W \not{ }_{R-K} U^{*}$.

Proof. This follows since W includes $C u b_{\kappa}$ and $f_{\kappa_{2}}$ is a regressive function which is not constant $\bmod W$. Actually, it projects W to U^{*}.

The main issue thus will be to choose such W which is not a product, but still has a Galvin property $\operatorname{Gal}\left(W, \kappa, \kappa^{+}\right)$.

Proceed as follows.
Fix in V an enumeration $\left\langle\underset{\sim}{\underset{\sim}{D}}{ }_{i} \mid i<\kappa^{+}\right\rangle$of all dense open subsets of $\operatorname{Cohen}\left(\kappa_{2}\right)$ of $M_{U \times U}\left[G^{* *} \cap j_{U \times U}\left(P_{\kappa}\right)\right]$.

We define a master condition sequence $\left\langle\underset{\sim}{s}{ }_{i} \mid i<\kappa^{+}\right\rangle$as follows: if $i<\kappa^{+}$and $\underset{\sim}{\underset{\sim}{s}} i$ is defined, then let $\underset{\sim}{S}{ }_{i+1}$ be an element of $\underset{\sim}{\underset{\sim}{D}}{ }_{i+1}$ which is stronger than $\underset{\sim}{\underset{\sim}{S}}{ }^{i}$ and $\operatorname{dom}\left({\underset{\sim}{s}}_{i+1}\right)$ is of the form $j_{U \times U}(h)\left(\kappa_{1}\right)$, for some $h: \kappa \rightarrow \kappa$, i.e. depends only on the second coordinate. Also require that it strictly includes those of $\underset{\sim}{s}$.

This is possible since for every $g:[\kappa]^{2} \rightarrow \kappa$ there is $g^{\prime}: \kappa \rightarrow \kappa$ such that for every $\alpha<\beta<\kappa, g(\alpha, \beta)<g^{\prime}(\beta)$. Just define $g^{\prime}(\beta)=\bigcup_{\alpha<\beta} g(\alpha, \beta)+1$.

If i is a limit ordinal of cofinality $<\kappa$, then set $\underset{\sim}{\mathcal{S}_{i}^{\prime}}=\bigcup_{i^{\prime}<i}{\underset{\sim}{S}}_{i^{\prime}}$ and then let $\underset{\sim}{\underset{\sim}{s}}{ }_{i}$ be an element of $\underset{\sim}{\underset{\sim}{D}}$ which is stronger than ${\underset{\sim}{s}}_{i}^{\prime}$ and $\operatorname{dom}\left(\underset{\sim}{s}{ }_{i}\right)$ is of the form $j_{U \times U}(h)\left(\kappa_{1}\right)$, for some $h: \kappa \rightarrow \kappa$, i.e. depends only on the second coordinate.
Finally, let us deal with the main case when i is a limit ordinal of cofinality κ.
We set first $\underset{\sim}{s_{i}^{\prime}}=\bigcup_{i^{\prime}<i}{\underset{\sim}{S}}_{i^{\prime}}$.
For every $\alpha<i$, pick a function $t_{\alpha}: \kappa \times \kappa \rightarrow V_{\kappa}, t_{\alpha}(\mu, \nu) \in \operatorname{Cohen}(\kappa)$, in V, which represents $\underset{\sim}{\mathcal{S}}{ }_{\alpha}$ in the ultrapower $M_{U \times U}$. Also, we can assume that $\operatorname{dom}\left(t_{\alpha}\right)(\mu, \nu)$ depends only on ν. We have, for every $\alpha<\beta<i$,

$$
\begin{gathered}
\left\{(\mu, \nu) \in[\kappa]^{2} \mid t_{\alpha+1}(\mu, \nu) \upharpoonright \operatorname{dom}\left(t_{\alpha}(\mu, \nu)\right)=t_{\alpha}(\mu, \nu),\right. \\
\left.\operatorname{dom}\left(t_{\alpha+1}(\mu, \nu)\right)>\operatorname{dom}\left(t_{\alpha}(\mu, \nu)\right)\right\} \in U \times U,
\end{gathered}
$$

and so,

$$
\begin{gathered}
\left\{\mu<\kappa \mid\left\{\nu<\kappa \mid t_{\alpha+1}(\mu, \nu) \upharpoonright \operatorname{dom}\left(t_{\alpha}(\mu, \nu)\right)=t_{\alpha}(\mu, \nu),\right.\right. \\
\left.\left.\operatorname{dom}\left(t_{\alpha+1}(\mu, \nu)\right)>\operatorname{dom}\left(t_{\alpha}(\mu, \nu)\right)\right\} \in U\right\} \in U .
\end{gathered}
$$

Using the dependence on the second coordinate only, we may assume that for every $\mu<\kappa$,

$$
\left\{\nu<\kappa \mid t_{\alpha+1}(\mu, \nu) \upharpoonright \operatorname{dom}\left(t_{\alpha}(\mu, \nu)\right)=t_{\alpha}(\mu, \nu), \operatorname{dom}\left(t_{\alpha+1}(\mu, \nu)\right)>\operatorname{dom}\left(t_{\alpha}(\mu, \nu)\right)\right\} \in U .
$$

Set $\left\langle t_{\alpha}^{1} \mid \alpha<\kappa_{1}\right\rangle=j_{U}\left(\left\langle t_{\alpha} \mid \alpha<\kappa\right\rangle\right)$. Then, in M_{U}, for every $\mu<\kappa_{1}$,

$$
\left\{\nu<\kappa_{1} \mid t_{\alpha+1}^{1} \upharpoonright \operatorname{dom}\left(t_{\alpha}^{1}(\mu, \nu)\right)=t_{\alpha}^{1}(\mu, \nu), \operatorname{dom}\left(t_{\alpha+1}^{1}(\mu, \nu)\right)>\operatorname{dom}\left(t_{\alpha}^{1}(\mu, \nu)\right)\right\} \in j_{U}(U)
$$

In particular, for $\mu=\kappa$,

$$
\left\{\nu<\kappa_{1} \mid t_{\alpha+1}^{1} \upharpoonright \operatorname{dom}\left(t_{\alpha}^{1}(\kappa, \nu)\right)=t_{\alpha}^{1}(\kappa, \nu), \operatorname{dom}\left(t_{\alpha+1}^{1}(\kappa, \nu)\right)>\operatorname{dom}\left(t_{\alpha}^{1}(\kappa, \nu)\right)\right\} \in j_{U}(U) .
$$

Apply k and move to $M_{U \times U}$. Let $\left\langle t_{\alpha}^{2} \mid \alpha<\kappa_{2}\right\rangle=k\left(\left\langle t_{\alpha}^{1} \mid \alpha<\kappa_{1}\right\rangle\right)$. Then, in $M_{U \times U}$,

$$
t_{\alpha+1}^{2}\left(\kappa, \kappa_{1}\right) \upharpoonright \operatorname{dom}\left(t_{\alpha}^{2}\left(\kappa, \kappa_{1}\right)\right)=t_{\alpha}^{2}\left(\kappa, \kappa_{1}\right), \operatorname{dom}\left(t_{\alpha+1}^{2}\left(\kappa, \kappa_{1}\right)\right)>\operatorname{dom}\left(t_{\alpha}^{2}\left(\kappa, \kappa_{1}\right)\right) .
$$

Consider $\left\langle t_{\alpha}^{2} \mid \alpha<\kappa_{1}\right\rangle$. They are compatible. Take an upper bound for them in D_{i} and set it to be s_{i}.

The above construction allows to satisfy conditions of Lemma 1.5. Thus define

$$
B_{\alpha}=\left\{(\mu, \nu) \in[\kappa]^{2} \mid t_{\alpha}(\mu, \nu) \in G \cap \operatorname{Cohen}(\kappa)\right\} .
$$

Set $\left\langle B_{\alpha}^{1} \mid \alpha<\kappa_{1}\right\rangle=j^{*}\left(\left\langle B_{\alpha} \mid \alpha<\kappa\right\rangle\right)$.
Then, by elementarity of j^{*},

$$
B_{\alpha}^{1}=\left\{(\mu, \nu) \in\left[\kappa_{1}\right]^{2} \mid t_{\alpha}^{1}(\mu, \nu) \in G^{*} \cap \operatorname{Cohen}\left(\kappa_{1}\right)\right\} .
$$

Then $\left(\kappa, \kappa_{1}\right) \in k\left(B_{\alpha}^{1}\right)$, for every $\alpha<\kappa_{1}$.
This completes the definition of the master condition sequence, and so, $G^{* *}$ and $f_{\kappa_{2}}$. Define W using it in the usual fashion.

Remember that W not supposed be a sum. However, we think that W as defined above is indeed a sum.
Let assume that $f_{\kappa_{2}}$, and so, $G^{* *}$ are in $M_{U}\left[G^{*}\right]$.
We redefine $f_{\kappa_{2}}$ in order to prevent this, but still to keep the Galvin property.
Do the following:
at each limit stage i of cofinality κ such that i is of the form $\delta+\kappa$, for some $\delta \geq \kappa$, we replace the values on $\operatorname{dom}\left(s_{i}\right) \backslash \bigcup_{i^{\prime}<i} \operatorname{dom}\left(s_{i^{\prime}}\right)$ from 1 to 0 and 0 to 1 .

The rest is kept unchanged, only in the previous construction of s_{i} 's we take care that such switches between 0's and 1's still keep conditions in the corresponding dense sets from the list.

Denote the resulting Cohen function by $\tilde{f}_{\kappa_{2}}$.
Lemma 2.2 $\tilde{f}_{\kappa_{2}}$ cannot be in $M_{U}\left[G^{*}\right]$.
Proof. Otherwise, compare $\tilde{f}_{\kappa_{2}}$ with $f_{\kappa_{2}}$. It will decode a cofinal in κ_{2} sequence of order type κ^{+}, which is impossible since the cofinality of κ_{2} in M_{U} is $\kappa_{1}^{+}>\kappa^{+}$.

Let $G^{* * *}=\left(G^{* *} \cap P_{\kappa_{2}}\right) * \tilde{f}_{\kappa_{2}}$. Define \tilde{W} using $G^{* * *}$.
We would like now to argue that \tilde{W} satisfies the conditions of Lemma 1.5, and so the Galvin property.

Let us specify relevant subsets of \tilde{W}.
First we deal with elements of $P_{\kappa_{2}}$.
For every $r \in P_{\kappa_{2}}$ pick a function $h_{r}:[\kappa]^{2} \rightarrow P_{\kappa}$ (in V) which represents $r \bmod U \times U$, i.e., $r=\left(j_{U \times U}\left(h_{r}\right)\right)\left(\kappa, \kappa_{1}\right)$. Set

$$
C_{r}=\left\{(\mu, \nu) \in[\kappa]^{2} \mid h_{r}(\mu, \nu) \in G \cap P_{\kappa}\right\} .
$$

Lemma $2.3 j_{\tilde{W}} \upharpoonright V\left[G \cap P_{\kappa}\right]=j_{U^{*} \times U^{*}} \upharpoonright V\left[G \cap P_{\kappa}\right]$ and $k^{*} \upharpoonright M_{U}\left[G^{*} \cap P_{\kappa_{1}}\right]=k_{\tilde{W}} \upharpoonright M_{U}\left[G^{*} \cap P_{\kappa_{1}}\right]$, where $k_{\tilde{W}}: M_{U^{*}} \rightarrow M_{\tilde{W}}$ is the canonical embedding.

Proof. This holds, since the ultrapowers $M_{U \times U}\left[G^{* *}\right]$ by $U^{*} \times U^{*}$ and $M_{U \times U}\left[G^{* *} \cap P_{\kappa_{2}}, \tilde{f}_{\kappa_{2}}\right]$ by \tilde{W} agree about generic set up to the final step, i.e. where the Cohen function is added to κ_{2}.

Lemma 2.4 $U^{*} \cap V\left[G \cap P_{\kappa}\right]=\tilde{W} \cap V\left[G \cap P_{\kappa}\right]$.

Proof. $A \in U^{*} \cap V\left[G \cap P_{\kappa}\right]$ iff $j_{U^{*}}(A) \in j_{U^{*}} \upharpoonright M_{U}\left[G^{*} \cap P_{\kappa_{1}}\right]$ iff $\kappa_{1} \in k^{*} \upharpoonright M_{U}\left[G^{*} \cap P_{\kappa_{1}}\right]\left(j_{U^{*}}(A)\right)$ iff $\kappa_{1} \in j_{U^{*} \times U^{*}} \upharpoonright V\left[G \cap P_{\kappa}\right](A)$. By the previous lemma this is the same as $\kappa_{1} \in j_{\tilde{W}} \upharpoonright$ $V\left[G \cap P_{k}\right](A)$. So we are done.

The next lemma follows from Lemma 2.4:
Lemma 2.5 If $A \in \tilde{W} \cap V\left[G \cap P_{\kappa}\right]$, then both κ and κ_{1} are in $j_{\tilde{W}}(A)$.
Lemma 2.6 If $X \in j_{U^{*}}\left(U^{*} \cap V\left[G \cap P_{\kappa}\right]\right)$, then κ_{1} is in $k_{\tilde{W}}(X)$.
Proof. By elementarity, $X \in j_{U^{*}}\left(U^{*}\right) \cap M_{U}\left[G^{*} \cap P_{\kappa_{1}}\right]$. Then, $\kappa_{1} \in k^{*}(X)$, since $X \in j_{U^{*}}\left(U^{*}\right)$. By Lemma 2.3, $k^{*}(X)=k_{\tilde{W}}(X)$, since $X \in M_{U}\left[G^{*} \cap P_{\kappa_{1}}\right]$.

Lemma 2.7 \tilde{W} satisfies the Galvin property.
Proof. Let $A \in \tilde{W}$ and $\underset{\sim}{A}$ be a name of it. Consider $x=\left\|\kappa_{1} \in j_{U \times U}\left({\underset{\sim}{A}}_{\alpha}^{A}\right)\right\|$. By the definition of \tilde{W}, there are some $\left\langle r, s_{\alpha}\right\rangle \in\left(G^{* *} \cap P_{\kappa_{2}}\right) * \operatorname{Cohen}\left(\kappa_{2}\right)$ (in $M_{U \times U}$) which are stronger than x (in the forcing sense, or alternatively, less than x in the corresponding Boolean algebra), where $\alpha<\kappa^{+}$and s_{α} is from the master condition sequence.
Split r into $\left\langle r_{1}, r_{2}\right\rangle$, where $r_{1} \in P_{\kappa_{1}+1}, r_{2} \in P_{\kappa_{2}} / P_{\kappa_{1}+1}$.
Pick in V functions $h_{r_{1}}$ and $h_{r_{2}}$ which represent r_{1} and r_{2} in the ultrapower.
We can assume that $h_{r_{1}}$ is a function of the first coordinate only and, using $>\kappa_{1}$ completeness, $h_{r_{2}}$ is a function of the second coordinate only.
Strengthening if necessary, pick some $i(\alpha)<\kappa^{+}$such that

1. $i(\alpha)>\alpha$,
2. $\operatorname{cof}(i(\alpha))=\kappa$,
3. $i(\alpha)$ is not of the form $\delta+\kappa$, for some $\delta \geq \kappa$,

Then, in particular, $s_{i(\alpha)} \geq s_{\alpha}$.
Let $B_{i(\alpha)}$ denotes the set in \tilde{W} defined by $s_{i(\alpha)}$, i.e.

$$
B_{i(\alpha)}=\left\{(\mu, \nu) \in[\kappa]^{2} \mid t_{\alpha}(\mu, \nu) \in G \cap \text { Cohen }(\kappa)\right\} .
$$

Let

$$
E_{r_{1}}=\left\{\mu<\kappa \mid h_{r_{1}}(\mu) \in G \cap P_{\kappa}\right\}
$$

and

$$
E_{r_{2}}=\left\{\nu<\kappa \mid h_{r_{2}}(\nu) \in G \cap P_{(\nu, \kappa)}\right\} .
$$

Now, there is a set $C_{A}^{\prime} \in U \times U$ such that
if $(\mu, \nu) \in C_{A}^{\prime} \cap B_{i(\alpha)}, \mu \in E_{r_{1}}, \nu \in E_{r_{2}}$, then $\nu \in A$.
Note that U is a normal ultrafilter in V, so C_{A}^{\prime} can be picked to be of the form $\left[C_{A}\right]^{2}$, for some $C_{A} \in U$.
Shrink $B_{i(\alpha)}$ to the following set in \tilde{W} :

$$
B_{i(\alpha)}^{\prime}=\left\{\nu<\kappa \mid\left(f_{\kappa}(\nu), \nu\right) \in B_{i(\alpha)},\right\} .
$$

Set

$$
F_{A}=\left\{\nu<\kappa \mid f_{\kappa}(\nu) \in C_{A} \cap E_{r_{1}}\right\} .
$$

Clearly, both $B_{i(\alpha)}^{\prime}$ and F_{A} are in \tilde{W}.
Note that $U \subseteq \tilde{W}$ and $E_{r_{2}} \in \tilde{W}$. Hence, $C_{A} \cap B_{i(\alpha)}^{\prime} \cap F_{A} \cap E_{r_{2}} \in \tilde{W}$. So, if $\nu \in C_{A} \cap B_{i(\alpha)}^{\prime} \cap F_{A} \cap E_{r_{2}}$, then $\nu \in A$.

We specified sets $C_{A}, E_{r_{1}}, E_{r_{2}}, B_{i(\alpha)}$ for every $A \in \tilde{W}$.
Note that $C_{A}, E_{r_{1}}, E_{r_{2}} \in U^{*} \cap \tilde{W}$, and so, by Lemma 2.4, $\kappa, \kappa_{1} \in j_{\tilde{W}}\left(C_{A}\right)$ and $\kappa, \kappa_{1} \in j_{\tilde{W}}\left(E_{r_{1}}\right)$.
Denote $E_{r_{1}}$ by $E_{A 1}, E_{r_{2}}$ by $E_{A 2}$ and $B_{i(\alpha)^{\prime}}$ by B_{A}.
Now, we are ready to show the Galvin property of \tilde{W}.
Let $\left\{A_{\gamma} \mid \gamma<\kappa^{+}\right\} \subseteq \tilde{W}$. For every $\gamma<\kappa^{+}$, we pick $C_{A_{\gamma}}, E_{A_{\gamma} 1}, E_{A_{\gamma} 2}, B_{A_{\gamma}}$, as above. Apply Lemmas 1.5, 1.6 to the families $\left\{C_{A_{\gamma}} \mid \gamma<\kappa^{+}\right\},\left\{E_{A_{\gamma} 1} \mid \gamma<\kappa^{+}\right\},\left\{E_{A_{\gamma} 2} \mid \gamma<\kappa^{+}\right\}$and $\left\{B_{A_{\gamma}} \mid \gamma<\kappa^{+}\right\}$.
Then there will be $I \subseteq \kappa^{+},|I|=\kappa$ such that

1. $\bigcap_{\gamma \in I} C_{A_{\gamma}} \in U \cap W$,
2. $\bigcap_{\gamma \in I} E_{A_{\gamma} 1} \in U \cap W$,
3. $\bigcap_{\gamma \in I} E_{A_{\gamma} 2} \in U \cap W$,
4. $\bigcap_{\gamma \in I} B_{A_{\gamma}} \in W$.

Set

$$
F=\left\{\nu<\kappa \mid f_{\kappa}(\nu) \in \bigcap_{\gamma \in I} C_{A_{\gamma}} \cap \bigcap_{\gamma \in I} E_{A_{\gamma} 1}\right\} .
$$

Then for every $\alpha \in I$, if $\nu \in \bigcap_{\gamma \in I} C_{A_{\gamma}} \cap \bigcap_{\gamma \in I} B_{A_{\gamma}} \cap F \cap \bigcap_{\gamma \in I} E_{A_{\gamma} 2}$, then $\nu \in A_{\alpha}$. We have $\bigcap_{\gamma \in I} C_{A_{\gamma}} \cap \bigcap_{\gamma \in I} B_{A_{\gamma}} \cap F \cap \bigcap_{\gamma \in I} E_{A_{\gamma} 2} \in \tilde{W}$, so this completes the proof.

Remark 2.8 The idea used in the construction above works for variety of other forcing notions. The crucial point was a domination of functions $h(x, y)$ by functions $g(y)$ of the second variable.

3 Additional examples of non-Galvin ultrafilters

We show here that basic forcings over a measurable κ which preserve measurability, add non-Galvin ultrafilters extending Cub_{κ}.

Assume GCH and let κ be a measurable cardinal. Let U be a normal ultrafilter over κ. We will deal with $j_{U}: V \rightarrow M_{U}, j_{U \times U}: V \rightarrow M_{U \times U}, j_{j_{U}(U)}: M_{U} \rightarrow M_{j_{U}(U)}=M_{U \times U}$. Denote j_{U} by j_{1}, M_{U} by $M_{1}, j_{U}(\kappa)$ by $\kappa_{1}, j_{U \times U}$ by $j_{2}, M_{U \times U}$ by $M_{2}, j_{U \times U}(\kappa)=\kappa_{2}$ and $j_{j_{U}(U)}$ by k.

Let

$$
\left\langle P_{\alpha},{\underset{\sim}{\beta}}_{\beta} \mid \alpha \leq \kappa+1, \beta \leq \kappa\right\rangle
$$

be an Easton support iteration of Cohen forcings $\operatorname{Cohen}(\beta)$ which add a Cohen function $g_{\beta}: \beta \rightarrow 2$ to every regular $\beta \leq \kappa$. Let G be a generic subset of $P_{\kappa+1}$.

Then the embeddings j_{1}, j_{2}, k extend to $j_{1}^{*}: V[G] \rightarrow M_{1}\left[G_{1}\right], j_{2}^{*}: V[G] \rightarrow M_{2}\left[G_{2}\right]$, $k^{*}: M_{1}\left[G_{1}\right] \rightarrow M_{2}\left[G_{2}\right]$.

Fix, in V, an increasing cofinal in κ_{1} sequence $\left\langle\eta_{\alpha} \mid \alpha<\kappa^{+}\right\rangle$and a sequence of functions $\left\langle f_{\alpha} \mid \alpha<\kappa^{+}\right\rangle$from κ to κ such that $\left[f_{\alpha}\right]_{U}=\eta_{\alpha}$, for every $\alpha<\kappa^{+}$.
Now, in $V[G]$, for every $\alpha<\kappa^{+}$, define

$$
A_{\alpha}=\left\{\nu<\kappa \mid g_{\kappa}\left(f_{\alpha}(\nu)\right)=1\right\}
$$

Now we would like to define a κ-complete ultrafilter W over κ which extends $U, C u b_{\kappa}$ and such that the sets $\left\{A_{\alpha} \mid \alpha<\kappa^{+}\right\}$witness that W is not Galvin.
The argument will be very similar to those of 2.6 of [2].

First we change $g_{\kappa_{1}}$ by setting the values on each η_{α} to 1 . Let $g_{\kappa_{1}}^{\prime}$ be the resulting function. Then the choice of η_{α} 's insure that $g_{\kappa_{1}}^{\prime}$ is still generic over $M_{1}\left[G_{1} \cap P_{\kappa_{1}}\right]$. Denote $G_{1}^{\prime}=G_{1} \cap P_{\kappa_{1}} * g_{\kappa_{1}}^{\prime}$ and let $j_{1}^{\prime}: V[G] \rightarrow M_{1}\left[G_{1}^{\prime}\right]$ be the corresponding embedding.
We will have as a result that $\kappa \in j_{1}^{\prime}\left(A_{\alpha}\right)$, for every $\alpha<\kappa^{+}$.
Apply now k and move to M_{2}. k extends naturally to $k^{\prime}: M_{1}\left[G_{1}^{\prime}\right] \rightarrow M_{2}\left[G_{2}^{\prime}\right]$.
Let us change same values of $g_{\kappa_{2}}^{\prime}$.
Let

$$
\left\langle\eta_{\gamma}^{1} \mid \gamma<j_{1}\left(\kappa^{+}\right)\right\rangle=j_{1}\left(\left\langle\eta_{\gamma} \mid \gamma<\kappa^{+}\right\rangle\right) .
$$

Then by elementarity, $\left\langle\eta_{\gamma}^{1} \mid \gamma<j_{1}\left(\kappa^{+}\right)\right\rangle$will be a cofinal sequence in κ_{2} in M_{1}. Let

$$
\left\langle f_{\gamma}^{1} \mid \gamma<j_{1}\left(\kappa^{+}\right)\right\rangle=j_{1}\left(\left\langle f_{\gamma} \mid \gamma<\kappa^{+}\right\rangle\right) .
$$

Then, f_{γ}^{1} will represent, $\bmod j_{1}(U), \eta_{\gamma}^{1}$ in M_{1}.
Set

$$
\left\langle f_{\gamma}^{2} \mid \gamma<j_{2}\left(\kappa^{+}\right)\right\rangle=j_{2}\left(\left\langle f_{\gamma} \mid \gamma<\kappa^{+}\right\rangle\right)=k\left(\left\langle f_{\gamma}^{1} \mid \gamma<j_{1}\left(\kappa^{+}\right)\right\rangle\right) .
$$

Then, whenever $\gamma<\delta<j_{1}\left(\kappa^{+}\right)$,

$$
f_{k(\gamma)}^{2}\left(\kappa_{1}\right)=k\left(f_{\gamma}^{1}\right)\left(\kappa_{1}\right)=\eta_{\gamma}^{1}<\eta_{\delta}^{1}=k\left(f_{\delta}^{1}\right)\left(\kappa_{1}\right)=f_{k(\delta)}^{2}\left(\kappa_{1}\right) .
$$

We change the value of $g_{\kappa_{2}}^{\prime}\left(f_{j_{2}(\alpha)}^{2}\left(\kappa_{1}\right)\right)$ to 1 , for every $\alpha<\kappa^{+}$. In addition, change $g_{\kappa_{2}}^{\prime}\left(f_{k(\gamma)}^{2}\left(\kappa_{1}\right)\right)$ to 0 , for every $\gamma \in j_{1}\left(\kappa^{+}\right) \backslash j_{1}^{\prime \prime} \kappa^{+}$.
Let $g_{\kappa_{2}}^{*}$ denotes the resulting function. As in 2.6 of [2], $g_{\kappa_{1}}^{\prime}$ is still generic over $M_{2}\left[G_{2}^{\prime} \cap P_{\kappa_{2}}\right]$. Denote $G_{2}^{*}=G_{2} \cap P_{\kappa_{2}} * g_{\kappa_{2}}^{*}$ and let $j_{2}^{*}: V[G] \rightarrow M_{2}\left[G_{2}^{*}\right], k^{*}: M_{1}\left[G_{1}^{\prime}\right] \rightarrow M_{2}\left[G_{2}^{*}\right]$ be the corresponding embeddings.
We will have as a result that $\kappa_{1} \in j_{2}^{*}\left(A_{\alpha}\right)$, for every $\alpha<\kappa^{+}$and $\kappa_{1} \notin k^{*}\left(A_{\gamma}^{1}\right)$, for every $\gamma \in j_{1}\left(\kappa^{+}\right) \backslash j_{1}^{\prime \prime} \kappa^{+}$, where $\left\langle A_{\gamma}^{1} \mid \gamma<j_{1}\left(\kappa^{+}\right)\right\rangle=j_{1}^{\prime}\left(\left\langle A_{\alpha} \mid \alpha<\kappa^{+}\right\rangle\right)$.
Thius hold, since by elementarity,

$$
j_{2}^{*}\left(A_{\alpha}\right)=\left\{\nu<\kappa_{2} \mid g_{\kappa_{2}}^{*}\left(f_{j_{2}(\alpha)}^{2}(\nu)\right)=1\right\},
$$

for every $\alpha<\kappa^{+}$and

$$
k^{*}\left(A_{\gamma}^{1}\right)=\left\{\nu<\kappa_{2} \mid g_{\kappa_{2}}^{*}\left(f_{k(\gamma)}^{2}(\nu)\right)=1\right\},
$$

for every $\gamma \in j_{1}\left(\kappa^{+}\right)$.
Set

$$
W=\left\{X \subseteq \kappa \mid \kappa_{1} \in j_{2}^{*}(X)\right\}
$$

and

$$
U^{*}=\left\{X \subseteq \kappa \mid \kappa \in j_{2}^{*}(X)\right\} .
$$

Then $W>_{R-K} U^{*}$ both extend $U, W \supseteq C u b_{\kappa}$ and U^{*} is normal. Moreover, W is non-Galvin witnessed by $\left\{A_{\alpha} \mid \alpha<\kappa^{+}\right\} \subseteq U^{*}$.

Similar constructions can be used with iterations of other forcing notions. What is needed is possibilities to extend the elementary embeddings j_{1}, j_{2}, k and β-closure of iterants Q_{β}.

References

[1] T. Benhamou, Saturation properties of ultrafilters in canonical inner models.
[2] T. Benhamou and M. Gitik, On Cohen and Prikry forcing notions,

[^0]: *We are grateful to Tom Benhamou and Eilon Bilinski for their questions, remarks and suggestions. The work was partially supported by ISF grant No. 882/22.

