More ultrafilters with Galvin property

Moti Gitik*

July 16, 2023

Abstract

We present a method of constructing models with Q-point ultrafilters which have a Galvin property but are not sums of P-points. This answers a question of Tom Benhamou [1].

1 Some general facts

Our basic setting will be the following:

Let W be a κ -complete ultrafilter over κ , $U = \{X \subseteq \kappa \mid \kappa \in j_W(X)\}$ and $k : M_U \to M_W$ the corresponding embedding. Let $\kappa_1 = j_U(\kappa)$. Suppose that $\kappa_1 = [id]_W$ and $\kappa_1 = \operatorname{crit}(k)$.

The following lemma is well known:

Lemma 1.1 $W \supseteq Cub_{\kappa}$.

Lemma 1.2 Suppose that $\{A_{\alpha} \mid \alpha < \kappa\} \subseteq W$ and $\bigcap_{\alpha < \kappa} A_{\alpha} \in W$. Then for every $B \in j_U(\{A_{\alpha} \mid \alpha < \kappa\}), \kappa_1 \in k(B)$.

Proof. Follows from elementarity and since $j_W = k \circ j_U$.

Lemma 1.3 For every $B \in j_U''W$, $\kappa_1 \in k(B)$.

Proof. Let $B = j_U(A)$, for some $A \in W$. Then

$$\kappa_1 \in j_W(A) = k(j_U(A)) = k(B).$$

^{*}We are grateful to Tom Benhamou and Eilon Bilinski for their questions, remarks and suggestions. The work was partially supported by ISF grant No. 882/22.

Lemma 1.4 There is $B \in j_U(W)$ such that $\kappa_1 \notin k(B)$.

Proof. Let $f : \kappa \to \kappa$ be a function that represents κ in M_W , i.e. $j_W(f)(\kappa_1) = \kappa$. It is a regressive function which is not constant on a set in W. Then, for every $\eta < \kappa$,

$$A_{\eta} = \{ \nu \in X \mid f(\nu) \neq \eta \} \in W.$$

Let

$$\langle A_{\eta}^{1} \mid \eta < \kappa_{1} \rangle = k(\langle A_{\eta} \mid \eta < \kappa \rangle).$$

Then, $\kappa_1 \notin k(A^1_{\kappa})$, since $j_W(f)(\kappa_1) = \kappa$.

The next lemma will be crucial for our further constructions.

Lemma 1.5 Suppose that $\{A_{\alpha} \mid \alpha < \kappa^+\}, \{B_{\alpha} \mid \alpha < \kappa^+\} \subseteq W$ are such that

- 1. $\{A_{\alpha} \mid \alpha < \kappa^+\} \subseteq U;$
- 2. for every $A \in j_U(\{A_\alpha \mid \alpha < \kappa^+\}), \ \kappa_1 \in k(A);$
- 3. for every $B \in j_U(\{B_\alpha \mid \alpha < \kappa^+\}), \kappa_1 \in k(B)$.

Then there is $I \subseteq \kappa^+, |I| = \kappa$ such that

- 1. $\bigcap_{\alpha \in I} A_{\alpha} \in U \cap W$,
- 2. $\bigcap_{\alpha \in I} B_{\alpha} \in W$.

Proof. We repeat basically the Galvin proof simultaneously for $\{A_{\alpha} \mid \alpha < \kappa^+\}$ and $\{B_{\alpha} \mid \alpha < \kappa^+\}$.

Thus, define

$$H_{\alpha\xi} = \{\beta < \kappa^+ \mid A_\alpha \cap \xi = A_\beta \cap \xi \text{ and } B_\alpha \cap \xi = B_\beta \cap \xi\},\$$

for every $\alpha < \kappa^+, \xi < \kappa$.

Then, as in the Galvin proof, there will be $\alpha^* < \kappa^+$ such that for every $\xi < \kappa$, $|H_{\alpha^*\xi}| = \kappa^+$.

Define by induction a sequence $\langle \eta_{\xi} \mid \xi < \kappa \rangle$ such that

$$\eta_{\xi} \in H_{\alpha^*\xi+1} \setminus \{\eta_{\xi'} \mid \xi' < \xi\}.$$

Set $I = \{\eta_{\xi} \mid \xi < \kappa\}$. Let us argue that such I is as desired.

Apply j_U and continue the inductive definition of the sequence $\langle \eta_{\xi} | \xi < \kappa \rangle$ in M_U . Let $\langle \eta_{\xi}^1 | \xi < \kappa_1 \rangle$ be the resulting sequence. Denote $j_U(\{A_{\alpha} | \alpha < \kappa^+\})$ by $\{A_{\alpha}^1 | \alpha < j_U(\kappa^+)\}$ and $j_U(\{B_{\alpha} | \alpha < \kappa^+\})$ by $\{B_{\alpha}^1 | \alpha < j_U(\kappa^+)\}$.

Then, by the first assumptions of the lemma, $\kappa \in A^1_{\alpha}$, for every $\alpha \in j''_U \kappa^+$. In particular, $\kappa \in A^1_{\eta^1_c}$, for every $\xi < \kappa$.

For every $\xi, \kappa \leq \xi < \kappa_1$ we will have $A^1_{\eta^1_{\xi}} \cap \xi + 1 = A^1_{j_U(\alpha^*)} \cap \xi + 1$. We have, $\kappa \in j_U(A_{\alpha^*})$, and so, $\kappa \in j_U(A_{\alpha^*}) \cap \xi + 1 = A^1_{\eta^1_{\xi}} \cap \xi + 1$. So, $\kappa \in A^1_{\eta^1_{\xi}}$, for every $\xi < \kappa_1$, and then,

$$\kappa \in \bigcap_{\xi < \kappa_1} A^1_{\eta^1_{\xi}} = j_U(\bigcap_{\xi < \kappa} A_{\eta_{\xi}}).$$

Hence, $\bigcap_{\xi < \kappa} A_{\eta_{\xi}} \in U$.

By the second and the third assumptions of the lemma, $\kappa_1 \in k(A^1_{\eta^1_{\xi}})$ and $\kappa_1 \in k(B^1_{\eta^1_{\xi}})$, for every $\xi < \kappa_1$.

Apply k and continue the inductive definition of the sequence $\langle \eta_{\xi}^1 | \xi < \kappa_1 \rangle$ in M_W . Let $\langle \eta_{\xi}^2 | \xi < \kappa_2 \rangle$ be the resulting sequence. Then for every $\xi, \kappa_1 \leq \xi < \kappa_2$ we will have $A_{\eta_{\xi}^2}^2 \cap \xi + 1 = A_{j_W(\alpha^*)}^2 \cap \xi + 1$ and $B_{\eta_{\xi}^2}^2 \cap \xi + 1 = B_{j_W(\alpha^*)}^2 \cap \xi + 1$,

where $\langle A_{\eta_{\xi}^{2}}^{2} | \xi < \kappa_{2} \rangle = j_{W}(\langle A_{\eta_{\xi}} | \xi < \kappa \rangle \text{ and } \langle B_{\eta_{\xi}^{1}}^{2} | \xi < \kappa_{2} \rangle = j_{W}(\langle B_{\eta_{\xi}} | \xi < \kappa \rangle).$ We have $A_{j_{W}(\alpha^{*})}^{2} = j_{W}(A_{\alpha^{*}})$ and $A_{\alpha^{*}} \in W$. The same holds with $B_{\alpha^{*}}$. Hence, $\kappa_{1} \in j_{W}(A_{\alpha^{*}})$, and so, $\kappa_{1} \in j_{W}(A_{\alpha^{*}}) \cap \xi + 1 = A_{\eta_{\xi}^{2}}^{2} \cap \xi + 1$. So, $\kappa_{1} \in A_{\eta_{\xi}^{2}}^{2}$, for every $\xi < \kappa_{2}$, and then,

$$\kappa_1 \in \bigcap_{\xi < \kappa_2} A_{\eta_{\xi}}^2 = j_W(\bigcap_{\xi < \kappa} A_{\eta_{\xi}}).$$

The same is true with *B*'s instead of *A*'s. Hence, $\bigcap_{\xi < \kappa} A_{\eta_{\xi}} \in W$ and $\bigcap_{\xi < \kappa} B_{\eta_{\xi}} \in W$.

The next lemma is a slight generalization of 1.5.

Lemma 1.6 Suppose that $\{A_{\alpha n} \mid \alpha < \kappa^+, n < n^*\}, \{B_{\alpha,m} \mid \alpha < \kappa^+, m < m^*\} \subseteq W$, for some $n^*, m^* < \omega$, are such that, for every $n < n^*, m < m^*$,

1. $\{A_{\alpha n} \mid \alpha < \kappa^+\} \subseteq U;$

- 2. for every $A \in j_U(\{A_{\alpha n} \mid \alpha < \kappa^+\}), \ \kappa_1 \in k(A);$
- 3. for every $B \in j_U(\{B_{\alpha m} \mid \alpha < \kappa^+\}), \ \kappa_1 \in k(B)$.

Then there is $I \subseteq \kappa^+, |I| = \kappa$ such that, for every $n < n^*, m < m^*$,

- 1. $\bigcap_{\alpha \in I} A_{\alpha n} \in U \cap W$,
- 2. $\bigcap_{\alpha \in I} B_{\alpha m} \in W.$

Proof. Similar to those of 1.5 only define $H_{\alpha\xi}$ as follows:

$$H_{\alpha\xi} = \{\beta < \kappa^+ \mid \forall n < n^*(A_{\alpha n} \cap \xi = A_{\beta n} \cap \xi) \text{ and } \forall m < m^*(B_{\alpha m} \cap \xi = B_{\beta m} \cap \xi)\},\$$

for every $\alpha < \kappa^+, \xi < \kappa$.

The next lemma follows from Lemma 1.5.

Lemma 1.7 Suppose that there are a family $D \subseteq W$ and a normal filter $\mathcal{V} \subseteq W$ such that

1. for every $A \in W$ there is $B \in D$ which is contained in $A \mod \mathcal{V}$,

2. for every $C \in j_U(D)$, $\kappa_1 \in k(C)$.

Then W has the Galvin property.

2 Construction

Assume GCH and let κ be a measurable cardinal. Let U be a normal ultrafilter over κ .

Define an Easton support iteration

$$\langle P_{\alpha}, Q_{\beta} \mid \alpha \leq \kappa + 1, \beta \leq \kappa \rangle.$$

Let Q_{β} be trivial unless β is an inaccessible cardinal. If $\beta < \kappa$ is an inaccessible cardinal then set $Q_{\beta} = Cohen(\beta)$.

Let G be generic subset of $P_{\kappa+1}$. The embedding $j_U: V \to M_U$ extends to $j^*: V[G] \to M_U[G^*]$ in a standard fashion.

Set

$$U^* = \{ X \subseteq \kappa \mid \kappa \in j^*(X) \}.$$

Then

- 1. $U^* \supseteq U$,
- 2. $j_{U^*} = j^*$
- 3. $M_{U^*} = M_U[G^*].$

We have $j_U(P) = P_{\kappa+1} * P_{(\kappa,j_U(\kappa)]}$.

Consider now $U \times U$. We have that Denote $j_U(\kappa)$ by κ_1 and $j_{U \times U}(\kappa) = j_{j_U(U)}(\kappa_1)$ by κ_2 . Then $j_{j_U(U)} : M_U \to M_{U \times U}$ and κ_1 is its critical point.

Extend, in V[G], $j_{U \times U}$ to $j^{**} : V[G] \to M_{U \times U}[G^{**}]$ as follows:

Set $G^{**} \cap P_{\kappa_1+1} = G^*$. Continue to define $G^{**} \cap P_{(\kappa_1, j_U \times U(\kappa))}$ in the standard fashion in order to insure that j^{**} is $j_{U^* \times U^*}$.

The main issue will be to define a Cohen function f_{κ_2} , where $\kappa_2 = j_{U \times U}(\kappa)$.

Set $f_{\kappa_2} \upharpoonright \kappa_1 = f_{\kappa_1}$. Also, set $f_{\kappa_2}(\kappa_1) = \kappa$. This will insure U^* will be the normal ultrafilter Rudin-Keisler below the one which we will define.

Namely, define the continuation of f_{κ_2} arbitrary, but meeting the relevant dense sets. Then, in V[G], let

$$W = \{ X \subseteq \kappa \mid \kappa_1 \in j^{**}(X) \}.$$

Then W is a κ -complete ultrafilter over κ and $j_W = j^{**}$. Also, $k = j_{j_U(U)} : M_U \to M_{U \times U}$ extends to $k^* : M_U[G^*] \to M_{U \times U}[G^{**}]$.

Lemma 2.1 $W \geq_{R-K} U^*$.

Proof. This follows since W includes Cub_{κ} and f_{κ_2} is a regressive function which is not constant mod W. Actually, it projects W to U^* .

The main issue thus will be to choose such W which is not a product, but still has a Galvin property $Gal(W, \kappa, \kappa^+)$.

Proceed as follows.

Fix in V an enumeration $\langle D_i | i < \kappa^+ \rangle$ of all dense open subsets of $Cohen(\kappa_2)$ of $M_{U \times U}[G^{**} \cap j_{U \times U}(P_{\kappa})].$

We define a master condition sequence $\langle s_i \mid i < \kappa^+ \rangle$ as follows:

if $i < \kappa^+$ and \underline{s}_i is defined, then let \underline{s}_{i+1} be an element of \underline{D}_{i+1} which is stronger than \underline{s}_i and dom (\underline{s}_{i+1}) is of the form $j_{U \times U}(h)(\kappa_1)$, for some $h : \kappa \to \kappa$, i.e. depends only on the second coordinate. Also require that it strictly includes those of \underline{s}_i . This is possible since for every $g : [\kappa]^2 \to \kappa$ there is $g' : \kappa \to \kappa$ such that for every $\alpha < \beta < \kappa, g(\alpha, \beta) < g'(\beta)$. Just define $g'(\beta) = \bigcup_{\alpha < \beta} g(\alpha, \beta) + 1$.

If *i* is a limit ordinal of cofinality $< \kappa$, then set $\underline{s}'_i = \bigcup_{i' < i} \underline{s}_{i'}$ and then let \underline{s}_i be an element of \underline{D}_i which is stronger than \underline{s}'_i and dom (\underline{s}_i) is of the form $j_{U \times U}(h)(\kappa_1)$, for some $h : \kappa \to \kappa$, i.e. depends only on the second coordinate.

Finally, let us deal with the main case when *i* is a limit ordinal of cofinality κ . We set first $\underline{s}'_i = \bigcup_{i' < i} \underline{s}_{i'}$. For every $\alpha < i$, pick a function $t_\alpha : \kappa \times \kappa \to V_\kappa, t_\alpha(\mu, \nu) \in Cohen(\kappa)$, in *V*, which represents

 s_{α} in the ultrapower $M_{U \times U}$. Also, we can assume that $\operatorname{dom}(t_{\alpha})(\mu, \nu)$ depends only on ν . We have, for every $\alpha < \beta < i$,

$$\{(\mu,\nu)\in[\kappa]^2\mid t_{\alpha+1}(\mu,\nu)\restriction \operatorname{dom}(t_{\alpha}(\mu,\nu))=t_{\alpha}(\mu,\nu),$$
$$\operatorname{dom}(t_{\alpha+1}(\mu,\nu))>\operatorname{dom}(t_{\alpha}(\mu,\nu))\}\in U\times U,$$

and so,

$$\{\mu < \kappa \mid \{\nu < \kappa \mid t_{\alpha+1}(\mu,\nu) \upharpoonright \operatorname{dom}(t_{\alpha}(\mu,\nu)) = t_{\alpha}(\mu,\nu), \\ \operatorname{dom}(t_{\alpha+1}(\mu,\nu)) > \operatorname{dom}(t_{\alpha}(\mu,\nu))\} \in U\} \in U.$$

Using the dependence on the second coordinate only, we may assume that for every $\mu < \kappa$,

$$\{\nu < \kappa \mid t_{\alpha+1}(\mu,\nu) \upharpoonright \operatorname{dom}(t_{\alpha}(\mu,\nu)) = t_{\alpha}(\mu,\nu), \operatorname{dom}(t_{\alpha+1}(\mu,\nu)) > \operatorname{dom}(t_{\alpha}(\mu,\nu))\} \in U$$

Set $\langle t_{\alpha}^{1} \mid \alpha < \kappa_{1} \rangle = j_{U}(\langle t_{\alpha} \mid \alpha < \kappa \rangle)$. Then, in M_{U} , for every $\mu < \kappa_{1}$,

$$\{\nu < \kappa_1 \mid t_{\alpha+1}^1 \upharpoonright \operatorname{dom}(t_{\alpha}^1(\mu,\nu)) = t_{\alpha}^1(\mu,\nu), \operatorname{dom}(t_{\alpha+1}^1(\mu,\nu)) > \operatorname{dom}(t_{\alpha}^1(\mu,\nu))\} \in j_U(U).$$

In particular, for $\mu = \kappa$,

$$\{\nu < \kappa_1 \mid t_{\alpha+1}^1 \upharpoonright \operatorname{dom}(t_{\alpha}^1(\kappa,\nu)) = t_{\alpha}^1(\kappa,\nu), \operatorname{dom}(t_{\alpha+1}^1(\kappa,\nu)) > \operatorname{dom}(t_{\alpha}^1(\kappa,\nu))\} \in j_U(U).$$

Apply k and move to $M_{U \times U}$. Let $\langle t_{\alpha}^2 \mid \alpha < \kappa_2 \rangle = k(\langle t_{\alpha}^1 \mid \alpha < \kappa_1 \rangle)$. Then, in $M_{U \times U}$,

$$t_{\alpha+1}^2(\kappa,\kappa_1) \upharpoonright \operatorname{dom}(t_{\alpha}^2(\kappa,\kappa_1)) = t_{\alpha}^2(\kappa,\kappa_1), \operatorname{dom}(t_{\alpha+1}^2(\kappa,\kappa_1)) > \operatorname{dom}(t_{\alpha}^2(\kappa,\kappa_1)).$$

Consider $\langle t_{\alpha}^2 \mid \alpha < \kappa_1 \rangle$. They are compatible. Take an upper bound for them in D_i and set it to be s_i .

The above construction allows to satisfy conditions of Lemma 1.5. Thus define

$$B_{\alpha} = \{ (\mu, \nu) \in [\kappa]^2 \mid t_{\alpha}(\mu, \nu) \in G \cap Cohen(\kappa) \}.$$

Set $\langle B^1_{\alpha} \mid \alpha < \kappa_1 \rangle = j^* (\langle B_{\alpha} \mid \alpha < \kappa \rangle).$ Then, by elementarity of j^* ,

$$B_{\alpha}^{1} = \{(\mu, \nu) \in [\kappa_{1}]^{2} \mid t_{\alpha}^{1}(\mu, \nu) \in G^{*} \cap Cohen(\kappa_{1})\}.$$

Then $(\kappa, \kappa_1) \in k(B^1_{\alpha})$, for every $\alpha < \kappa_1$.

This completes the definition of the master condition sequence, and so, G^{**} and f_{κ_2} . Define W using it in the usual fashion.

Remember that W not supposed be a sum. However, we think that W as defined above is indeed a sum.

Let assume that f_{κ_2} , and so, G^{**} are in $M_U[G^*]$.

We redefine f_{κ_2} in order to prevent this, but still to keep the Galvin property.

Do the following:

at each limit stage i of cofinality κ such that *i* is of the form $\delta + \kappa$, for some $\delta \geq \kappa$, we replace the values on dom $(s_i) \setminus \bigcup_{i' < i} \operatorname{dom}(s_{i'})$ from 1 to 0 and 0 to 1.

The rest is kept unchanged, only in the previous construction of s_i 's we take care that such switches between 0's and 1's still keep conditions in the corresponding dense sets from the list.

Denote the resulting Cohen function by f_{κ_2} .

Lemma 2.2 \tilde{f}_{κ_2} cannot be in $M_U[G^*]$.

Proof. Otherwise, compare \tilde{f}_{κ_2} with f_{κ_2} . It will decode a cofinal in κ_2 sequence of order type κ^+ , which is impossible since the cofinality of κ_2 in M_U is $\kappa_1^+ > \kappa^+$.

Let $G^{***} = (G^{**} \cap P_{\kappa_2}) * \tilde{f}_{\kappa_2}$. Define \tilde{W} using G^{***} .

We would like now to argue that \hat{W} satisfies the conditions of Lemma 1.5, and so the Galvin property.

Let us specify relevant subsets of \tilde{W} .

First we deal with elements of P_{κ_2} .

For every $r \in P_{\kappa_2}$ pick a function $h_r : [\kappa]^2 \to P_{\kappa}$ (in V) which represents $r \mod U \times U$, i.e., $r = (j_{U \times U}(h_r))(\kappa, \kappa_1)$. Set

$$C_r = \{(\mu, \nu) \in [\kappa]^2 \mid h_r(\mu, \nu) \in G \cap P_\kappa\}.$$

Lemma 2.3 $j_{\tilde{W}} \upharpoonright V[G \cap P_{\kappa}] = j_{U^* \times U^*} \upharpoonright V[G \cap P_{\kappa}]$ and $k^* \upharpoonright M_U[G^* \cap P_{\kappa_1}] = k_{\tilde{W}} \upharpoonright M_U[G^* \cap P_{\kappa_1}], \text{ where } k_{\tilde{W}} : M_{U^*} \to M_{\tilde{W}} \text{ is the canonical embedding.}$ Proof. This holds, since the ultrapowers $M_{U\times U}[G^{**}]$ by $U^* \times U^*$ and $M_{U\times U}[G^{**} \cap P_{\kappa_2}, \tilde{f}_{\kappa_2}]$ by \tilde{W} agree about generic set up to the final step, i.e. where the Cohen function is added to κ_2 .

Lemma 2.4 $U^* \cap V[G \cap P_{\kappa}] = \tilde{W} \cap V[G \cap P_{\kappa}].$

Proof. $A \in U^* \cap V[G \cap P_{\kappa}]$ iff $j_{U^*}(A) \in j_{U^*} \upharpoonright M_U[G^* \cap P_{\kappa_1}]$ iff $\kappa_1 \in k^* \upharpoonright M_U[G^* \cap P_{\kappa_1}](j_{U^*}(A))$ iff $\kappa_1 \in j_{U^* \times U^*} \upharpoonright V[G \cap P_{\kappa}](A)$. By the previous lemma this is the same as $\kappa_1 \in j_{\tilde{W}} \upharpoonright V[G \cap P_{\kappa}](A)$. So we are done. \Box

The next lemma follows from Lemma 2.4:

Lemma 2.5 If $A \in \tilde{W} \cap V[G \cap P_{\kappa}]$, then both κ and κ_1 are in $j_{\tilde{W}}(A)$.

Lemma 2.6 If $X \in j_{U^*}(U^* \cap V[G \cap P_{\kappa}])$, then κ_1 is in $k_{\tilde{W}}(X)$.

Proof. By elementarity, $X \in j_{U^*}(U^*) \cap M_U[G^* \cap P_{\kappa_1}]$. Then, $\kappa_1 \in k^*(X)$, since $X \in j_{U^*}(U^*)$. By Lemma 2.3, $k^*(X) = k_{\tilde{W}}(X)$, since $X \in M_U[G^* \cap P_{\kappa_1}]$.

Lemma 2.7 \tilde{W} satisfies the Galvin property.

Proof. Let $A \in \tilde{W}$ and A be a name of it. Consider $x = ||\kappa_1 \in j_{U \times U}(A_{\alpha})||$. By the definition of \tilde{W} , there are some $\langle r, s_{\alpha} \rangle \in (G^{**} \cap P_{\kappa_2}) * Cohen(\kappa_2)$ (in $M_{U \times U}$) which are stronger than x (in the forcing sense, or alternatively, less than x in the corresponding Boolean algebra), where $\alpha < \kappa^+$ and s_{α} is from the master condition sequence.

Split r into $\langle r_1, r_2 \rangle$, where $r_1 \in P_{\kappa_1+1}, r_2 \in P_{\kappa_2}/P_{\kappa_1+1}$.

Pick in V functions h_{r_1} and h_{r_2} which represent r_1 and r_2 in the ultrapower.

We can assume that h_{r_1} is a function of the first coordinate only and, using $> \kappa_1$ completeness, h_{r_2} is a function of the second coordinate only.

Strengthening if necessary, pick some $i(\alpha) < \kappa^+$ such that

- 1. $i(\alpha) > \alpha$,
- 2. $\operatorname{cof}(i(\alpha)) = \kappa$,
- 3. $i(\alpha)$ is not of the form $\delta + \kappa$, for some $\delta \geq \kappa$,

Then, in particular, $s_{i(\alpha)} \ge s_{\alpha}$.

Let $B_{i(\alpha)}$ denotes the set in \tilde{W} defined by $s_{i(\alpha)}$, i.e.

$$B_{i(\alpha)} = \{(\mu, \nu) \in [\kappa]^2 \mid t_\alpha(\mu, \nu) \in G \cap Cohen(\kappa)\}.$$

Let

$$E_{r_1} = \{ \mu < \kappa \mid h_{r_1}(\mu) \in G \cap P_\kappa \}$$

and

$$E_{r_2} = \{ \nu < \kappa \mid h_{r_2}(\nu) \in G \cap P_{(\nu,\kappa)} \}.$$

Now, there is a set $C'_A \in U \times U$ such that

if $(\mu, \nu) \in C'_A \cap B_{i(\alpha)}, \mu \in E_{r_1}, \nu \in E_{r_2}$, then $\nu \in A$.

Note that U is a normal ultrafilter in V, so C'_A can be picked to be of the form $[C_A]^2$, for some $C_A \in U$.

Shrink $B_{i(\alpha)}$ to the following set in W:

$$B'_{i(\alpha)} = \{\nu < \kappa \mid (f_{\kappa}(\nu), \nu) \in B_{i(\alpha)}, \}.$$

 Set

$$F_A = \{ \nu < \kappa \mid f_\kappa(\nu) \in C_A \cap E_{r_1} \}$$

Clearly, both $B'_{i(\alpha)}$ and F_A are in \tilde{W} .

Note that $U \subseteq \tilde{W}$ and $E_{r_2} \in \tilde{W}$. Hence, $C_A \cap B'_{i(\alpha)} \cap F_A \cap E_{r_2} \in \tilde{W}$. So, if $\nu \in C_A \cap B'_{i(\alpha)} \cap F_A \cap E_{r_2}$, then $\nu \in A$.

We specified sets $C_A, E_{r_1}, E_{r_2}, B_{i(\alpha)}$ for every $A \in W$. Note that $C_A, E_{r_1}, E_{r_2} \in U^* \cap \tilde{W}$, and so, by Lemma 2.4, $\kappa, \kappa_1 \in j_{\tilde{W}}(C_A)$ and $\kappa, \kappa_1 \in j_{\tilde{W}}(E_{r_1})$. Denote E_{r_1} by E_{A1}, E_{r_2} by E_{A2} and $B_{i(\alpha)'}$ by B_A .

Now, we are ready to show the Galvin property of \tilde{W} .

Let $\{A_{\gamma} \mid \gamma < \kappa^+\} \subseteq \tilde{W}$. For every $\gamma < \kappa^+$, we pick $C_{A_{\gamma}}, E_{A_{\gamma}1}, E_{A_{\gamma}2}, B_{A_{\gamma}}$, as above. Apply Lemmas 1.5, 1.6 to the families $\{C_{A_{\gamma}} \mid \gamma < \kappa^+\}, \{E_{A_{\gamma}1} \mid \gamma < \kappa^+\}, \{E_{A_{\gamma}2} \mid \gamma < \kappa^+\}$ and $\{B_{A_{\gamma}} \mid \gamma < \kappa^+\}$.

Then there will be $I \subseteq \kappa^+, |I| = \kappa$ such that

- 1. $\bigcap_{\gamma \in I} C_{A_{\gamma}} \in U \cap W$,
- 2. $\bigcap_{\gamma \in I} E_{A_{\gamma}1} \in U \cap W$,

3. $\bigcap_{\gamma \in I} E_{A_{\gamma 2}} \in U \cap W,$

4. $\bigcap_{\gamma \in I} B_{A_{\gamma}} \in W.$

 Set

$$F = \{\nu < \kappa \mid f_{\kappa}(\nu) \in \bigcap_{\gamma \in I} C_{A_{\gamma}} \cap \bigcap_{\gamma \in I} E_{A_{\gamma}1}\}$$

Then for every $\alpha \in I$, if $\nu \in \bigcap_{\gamma \in I} C_{A_{\gamma}} \cap \bigcap_{\gamma \in I} B_{A_{\gamma}} \cap F \cap \bigcap_{\gamma \in I} E_{A_{\gamma}2}$, then $\nu \in A_{\alpha}$. We have $\bigcap_{\gamma \in I} C_{A_{\gamma}} \cap \bigcap_{\gamma \in I} B_{A_{\gamma}} \cap F \cap \bigcap_{\gamma \in I} E_{A_{\gamma}2} \in \tilde{W}$, so this completes the proof. \Box

Remark 2.8 The idea used in the construction above works for variety of other forcing notions. The crucial point was a domination of functions h(x, y) by functions g(y) of the second variable.

3 Additional examples of non-Galvin ultrafilters

We show here that basic forcings over a measurable κ which preserve measurability, add non-Galvin ultrafilters extending Cub_{κ} .

Assume GCH and let κ be a measurable cardinal. Let U be a normal ultrafilter over κ . We will deal with $j_U : V \to M_U, j_{U \times U} : V \to M_{U \times U}, j_{j_U(U)} : M_U \to M_{j_U(U)} = M_{U \times U}$. Denote j_U by j_1, M_U by $M_1, j_U(\kappa)$ by $\kappa_1, j_{U \times U}$ by $j_2, M_{U \times U}$ by $M_2, j_{U \times U}(\kappa) = \kappa_2$ and $j_{j_U(U)}$ by k. Let

$$\langle P_{\alpha}, Q_{\beta} \mid \alpha \leq \kappa + 1, \beta \leq \kappa \rangle$$

be an Easton support iteration of Cohen forcings $Cohen(\beta)$ which add a Cohen function $g_{\beta}: \beta \to 2$ to every regular $\beta \leq \kappa$. Let G be a generic subset of $P_{\kappa+1}$.

Then the embeddings j_1, j_2, k extend to $j_1^* : V[G] \to M_1[G_1], j_2^* : V[G] \to M_2[G_2],$ $k^* : M_1[G_1] \to M_2[G_2].$

Fix, in V, an increasing cofinal in κ_1 sequence $\langle \eta_\alpha \mid \alpha < \kappa^+ \rangle$ and a sequence of functions $\langle f_\alpha \mid \alpha < \kappa^+ \rangle$ from κ to κ such that $[f_\alpha]_U = \eta_\alpha$, for every $\alpha < \kappa^+$. Now, in V[G], for every $\alpha < \kappa^+$, define

$$A_{\alpha} = \{ \nu < \kappa \mid g_{\kappa}(f_{\alpha}(\nu)) = 1 \}.$$

Now we would like to define a κ -complete ultrafilter W over κ which extends U, Cub_{κ} and such that the sets $\{A_{\alpha} \mid \alpha < \kappa^+\}$ witness that W is not Galvin. The argument will be very similar to those of 2.6 of [2]. First we change g_{κ_1} by setting the values on each η_{α} to 1. Let g'_{κ_1} be the resulting function. Then the choice of η_{α} 's insure that g'_{κ_1} is still generic over $M_1[G_1 \cap P_{\kappa_1}]$. Denote $G'_1 = G_1 \cap P_{\kappa_1} * g'_{\kappa_1}$ and let $j'_1 : V[G] \to M_1[G'_1]$ be the corresponding embedding. We will have as a result that $\kappa \in j'_1(A_{\alpha})$, for every $\alpha < \kappa^+$.

Apply now k and move to M_2 . k extends naturally to $k': M_1[G'_1] \to M_2[G'_2]$.

Let us change same values of g'_{κ_2} .

Let

$$\langle \eta_{\gamma}^1 \mid \gamma < j_1(\kappa^+) \rangle = j_1(\langle \eta_{\gamma} \mid \gamma < \kappa^+ \rangle)$$

Then by elementarity, $\langle \eta_{\gamma}^1 | \gamma < j_1(\kappa^+) \rangle$ will be a cofinal sequence in κ_2 in M_1 . Let

$$\langle f_{\gamma}^1 \mid \gamma < j_1(\kappa^+) \rangle = j_1(\langle f_{\gamma} \mid \gamma < \kappa^+ \rangle).$$

Then, f_{γ}^1 will represent, mod $j_1(U)$, η_{γ}^1 in M_1 .

Set

$$\langle f_{\gamma}^2 \mid \gamma < j_2(\kappa^+) \rangle = j_2(\langle f_{\gamma} \mid \gamma < \kappa^+ \rangle) = k(\langle f_{\gamma}^1 \mid \gamma < j_1(\kappa^+) \rangle)$$

Then, whenever $\gamma < \delta < j_1(\kappa^+)$,

$$f_{k(\gamma)}^{2}(\kappa_{1}) = k(f_{\gamma}^{1})(\kappa_{1}) = \eta_{\gamma}^{1} < \eta_{\delta}^{1} = k(f_{\delta}^{1})(\kappa_{1}) = f_{k(\delta)}^{2}(\kappa_{1}).$$

We change the value of $g'_{\kappa_2}(f^2_{j_2(\alpha)}(\kappa_1))$ to 1, for every $\alpha < \kappa^+$. In addition, change $g'_{\kappa_2}(f^2_{k(\gamma)}(\kappa_1))$ to 0, for every $\gamma \in j_1(\kappa^+) \setminus j''_1\kappa^+$.

Let $g_{\kappa_2}^*$ denotes the resulting function. As in 2.6 of [2], g_{κ_1}' is still generic over $M_2[G_2' \cap P_{\kappa_2}]$. Denote $G_2^* = G_2 \cap P_{\kappa_2} * g_{\kappa_2}^*$ and let $j_2^* : V[G] \to M_2[G_2^*], k^* : M_1[G_1'] \to M_2[G_2^*]$ be the corresponding embeddings.

We will have as a result that $\kappa_1 \in j_2^*(A_\alpha)$, for every $\alpha < \kappa^+$ and $\kappa_1 \notin k^*(A_\gamma^1)$, for every $\gamma \in j_1(\kappa^+) \setminus j_1''\kappa^+$, where $\langle A_\gamma^1 | \gamma < j_1(\kappa^+) \rangle = j_1'(\langle A_\alpha | \alpha < \kappa^+ \rangle)$. Thius hold, since by elementarity,

$$j_2^*(A_\alpha) = \{\nu < \kappa_2 \mid g_{\kappa_2}^*(f_{j_2(\alpha)}^2(\nu)) = 1\},\$$

for every $\alpha < \kappa^+$ and

$$k^*(A^1_{\gamma}) = \{\nu < \kappa_2 \mid g^*_{\kappa_2}(f^2_{k(\gamma)}(\nu)) = 1\},\$$

for every $\gamma \in j_1(\kappa^+)$.

Set

$$W = \{ X \subseteq \kappa \mid \kappa_1 \in j_2^*(X) \}$$

and

$$U^* = \{ X \subseteq \kappa \mid \kappa \in j_2^*(X) \}.$$

Then $W >_{R-K} U^*$ both extend $U, W \supseteq Cub_{\kappa}$ and U^* is normal. Moreover, W is non-Galvin witnessed by $\{A_{\alpha} \mid \alpha < \kappa^+\} \subseteq U^*$.

Similar constructions can be used with iterations of other forcing notions. What is needed is possibilities to extend the elementary embeddings j_1, j_2, k and β -closure of iterants Q_{β} .

References

- [1] T. Benhamou, Saturation properties of ultrafilters in canonical inner models.
- [2] T. Benhamou and M. Gitik, On Cohen and Prikry forcing notions,