More on uniform ultrafilters over a singular cardinal.

Moti Gitik *

February 7, 2019

Abstract

We would like to show some additional results related to character of uniform ultrafilters over a singular cardinal and the ultrafilter number.

1 Some general observation.

Let us start with few simple well known observation:

Proposition 1.1 Suppose that U, W are two ultrafilters and $U \ge_{R-K} W$. Then $ch(U) \ge ch(W)$.

Proof. Let π be a projection of U to W. Let \mathcal{U} be a generating family for U. Then

$$\mathcal{W} = \{ \pi'' A \mid A \in \mathcal{U} \}$$

will be a generating family for W.

The following follows:

Corollary 1.2 Suppose that U is an ultrafilter over μ , $W \leq_{R-K} U$ and $ch(W) = 2^{\mu}$. Then $ch(U) = 2^{\mu}$, as well.

Proposition 1.3 Suppose that $U = F - \lim_{i \in I} U_i$ for an ultrafilter F over I and ultrafilters $U_i, i \in I$. Suppose that $\langle U_i \mid i \in I \rangle$ are F-discrease, i.e. there are $X \in F$ and disjoint sets $\langle A_i \mid i \in X \rangle$

^{*}The research was partially supported by Israel Science Foundation Grant no. 1216/18.

such that $A_i \in U_i$, for every $i \in X$. Assume that for almost every (mod F) $i \in I$, $U_i \ge_{R-K} W_i$. Let $W = F - \lim_{i \in I} W_i$. Then $U \ge_{R-K} W$.

Proof. Let $X \in F$ and disjoint sets $\langle A_i \mid i \in X \rangle$ such that $A_i \in U_i$, for every $i \in X$. Assume, in addition, that for every $i \in X$, $U_i \geq_{R-K} W_i$. Set $A = \bigcup_{i \in X} A_i$. Then, clearly, $A \in U$. For every $i \in X$, fix a projection π_i of U_i to W_i . Set $\pi = \bigcup_{i \in X} \pi_i$. Then π projects U to W. \Box

In sixties C. Chang and J. Keisler formulated the following notions:

Definition 1.4 Let U be an ultrafilter on a set I.

- 1. U is called (κ, λ) regular iff there is subset of U of cardinality λ such that any κ -members of it have empty intersection.
- 2. U is called λ -descendingly incomplete iff there are $\{X_{\alpha} \mid \alpha < \lambda\} \subseteq U$ such that $\alpha < \beta \rightarrow X_{\alpha} \supseteq X_{\beta}$ and $\bigcup_{\alpha < \lambda} X_{\alpha} = \emptyset$.
- 3. U is λ -decomposable iff there is a partition of I into disjoint sets $\langle I_{\alpha} \mid \alpha < \lambda \rangle$, so that whenever $S \subseteq \lambda$ and $|S| < \lambda$, $\bigcup_{\alpha \in S} I_{\alpha} \notin U$.

This subject was intensively investigated see for example [2],[9],[10],[11]. Let state some known propositions which are relevant for us here:

Proposition 1.5 U is λ -decomposable, then U is λ -descendingly incomplete. If λ is regular, then the converse holds as well.

Proposition 1.6 An ultrafilter U over I is λ -decomposable iff it Rudin-Keisler above a uniform ultrafilter over λ .

Proposition 1.7 If U is (κ, λ) -regular ultrafilter and ν is a regular cardinal so that $\kappa \leq \nu \leq \lambda$, then U is ν -descendingly incomplete, and so, ν -decompossible.

Proof. Let $\{X_{\alpha} \mid \alpha < \lambda\} \subseteq U$ be a family such that the intersection of any κ -members of it is empty.

Set $Y_{\gamma} = \bigcup \{ X_{\alpha} \mid \gamma \leq \alpha < \nu \}$. Then each $Y_{\gamma} \in U$ and $\beta < \gamma < \nu \rightarrow Y_{\beta} \supseteq Y_{\gamma}$. We have

$$\bigcap_{\gamma < \nu} Y_{\gamma} = \bigcap_{\gamma < \nu} \bigcup \{ X_{\alpha} \mid \gamma \le \alpha < \nu \} = \bigcup \{ \bigcap_{\alpha < \nu} X_{f(\alpha)} \mid f : \nu \to \nu \text{ and } \forall \alpha < \nu(f(\alpha) \ge \alpha) \}.$$

The last union is the union of empty sets , by regularity of ν and $\kappa \leq \nu$. Hence, $\bigcap_{\gamma < \nu} Y_{\gamma} = \emptyset$.

The following corollaries follows now:

Corollary 1.8 Let U be a (κ, λ) -regular ultrafilter. Then for every regular $\nu, \kappa \leq \nu \leq \lambda$, $ch(U) \geq \mathfrak{u}_{\nu}$.

Corollary 1.9 Let U be an ultrafilter over μ which is a (κ, λ) -regular. Suppose that for some regular $\nu, \kappa \leq \nu \leq \lambda$, $\mathfrak{u}_{\nu} = 2^{\mu}$. Then $ch(U) = 2^{\mu}$.

2 Strongly uniform ultrafilters.

Let us define some strengthening of uniformity of an ultrafilter over a singular cardinal.

Definition 2.1 Suppose that κ is a singular cardinal of cofinality η and D is a uniform ultrafilter over κ ..

(a) Let $\vec{\tau} = \langle \tau_{\alpha} \mid \alpha < \eta \rangle$ be an increasing sequence of regular cardinals converging to κ . Let F be an uniform ultrafilter over η .

D is called $(\vec{\tau}, F)$ -uniform iff for every $A \in D$,

 $\{\alpha < \eta \mid |A \cap \tau_{\alpha}| = \tau_{\alpha}\} \in F.$

(b) D is called *strongly uniform* iff D is $(\vec{\tau}, F)$ -uniform for some $(\vec{\tau}, F)$, as in (a).

Define the corresponding ultrafilter numbers:

Definition 2.2 (a) Let $(\vec{\tau}, F)$ be as above. $\mathfrak{u}(\kappa, \vec{\tau}, F) = \min(\{\operatorname{ch}(D) \mid D \text{ is } (\vec{\tau}, F) - \operatorname{uniform }).$ (b) $\mathfrak{u}^{str}(\kappa) = \min(\{\operatorname{ch}(D) \mid D \text{ is strongly uniform ultrafilter over }\kappa).$ Clearly, $\mathfrak{u}(\kappa) \leq \mathfrak{u}^{str}(\kappa).$ **Proposition 2.3** Suppose that κ is a singular cardinal of cofinality η . Let $\langle \kappa_{\alpha} \mid \alpha < \eta \rangle$ be an increasing sequence of cardinals converging to κ . Suppose that δ is a regular cardinal such that

- 1. $\kappa < \delta \leq 2^{\kappa}$
- 2. there is an increasing sequence of regular cardinals $\vec{\delta} = \langle \delta_{\alpha} \mid \alpha < \eta \rangle$ such that
 - (a) $\kappa_{\alpha} < \delta_{\alpha} \leq \kappa_{\alpha+1} < \delta_{\alpha+1}$, for every $\alpha < \eta$,
 - (b) $\operatorname{tcf}(\prod_{\alpha < \eta} \delta_{\alpha}, <_F) = \delta$, for some ultrafilter F on η which extends the filter of cobounded subsets of η ,

Let D be a $(\vec{\delta}, F)$ -uniform ultrafilter over κ . Then $\operatorname{ch}(D) \geq \delta$.

Proof. Let us argue that $ch(D) \ge \delta$.

Suppose otherwise. Let \mathcal{W} be a generating family for D of cardinality less than δ .

Let $\langle f_{\xi} | \xi < \delta \rangle$ be a scale witnessing $\operatorname{tcf}(\prod_{\alpha < \eta} \delta_{\alpha}, <_F) = \delta$. For every $\xi < \delta$ and $i < \eta$ set $A_{\xi i} = \delta_i \setminus f_{\xi}(i)$. Let $A_{\xi} = \bigcup_{i < \eta} A_{\xi i}$. Then, $A_{\xi} \in D$, since otherwise $B := \kappa \setminus A_{\xi} \in D$ and, so, by $(\vec{\delta}, F)$ -uniformity, the set

$$X := \{ i < \eta \mid |B \cap \delta_i| = \delta_i \} \in F.$$

But, each δ_i is a regular cardinal, hence, if $i \in X$, then $B \cap \delta_i$ is unbounded in δ_i . In particular, $(B \cap \delta_i) \cap A_{\xi i} \neq \emptyset$. Which is impossible, since B is a complement of $A_{\xi} \supseteq A_{\xi i}$.

We assumed that $|\mathcal{W}| < \delta$, so there is a single $A \in \mathcal{W}$ such that for δ -many ξ 's we have $A \subseteq^* A_{\xi}$.

Set $A_i = A \cap \delta_i$, for every $i < \eta$.

Without loss of generality, using $(\vec{\delta}, F)$ -uniformity, we can assume that $|A_i| = \delta_i$, for every $i < \eta$. Define, for every $i < \eta$, ρ_i to be the κ_i -th element of A_i .

Then there is $\xi^* < \delta$ such that for every $\xi, \xi^* \leq \xi < \delta$, the set

$$\{i < \eta \mid f_{\xi}(i) > \rho_i\} \in F.$$

Now we pick any $\xi, \xi^* \leq \xi < \delta$ with $A \subseteq^* A\xi$. Then, for most (mod F) *i*'s, $|A_i \setminus A_{\xi i}| \geq \kappa_i$. Hence, $|A \setminus A_{\xi}| = \kappa$, which is impossible. Contradiction.

Let present an other condition that prevents the character of being too small.

Proposition 2.4 Suppose that κ is a singular cardinal of cofinality η . Let $\langle \kappa_{\alpha} \mid \alpha < \eta \rangle$ be an increasing sequence of cardinals converging to κ . Suppose that δ is a regular cardinal such that

1. $\kappa < \delta \leq 2^{\kappa}$

- 2. there is an increasing sequences of regular cardinals $\vec{\tau} = \langle \tau_{\alpha} \mid \alpha < \eta \rangle$ such that
 - (a) $\kappa_{\alpha} \leq \tau_{\alpha} < 2^{\tau_{\alpha}} < \kappa_{\alpha+1}$, for every $\alpha < \eta$,
 - (b) $\operatorname{tcf}(\prod_{\alpha < \eta} \delta_{\alpha}, <_F) = \delta$, where $\delta_{\alpha} = 2^{\tau_{\alpha}}$ and F is an ultrafilter on η which extends the filter of co-bounded subsets of η ,
 - (c) $\mathfrak{r}(\tau_{\alpha}) = \delta_{\alpha}$ (non-splitting number), i.e. whenever $S \subseteq [\tau_{\alpha}]^{\tau_{\alpha}}$ of cardinality $< \delta_{\alpha}$, then there is $a \in [\tau_{\alpha}]^{\tau_{\alpha}}$ such that for every $s \in S$, $|s \cap a| = |s \setminus a| = \tau_{\alpha}$. The meaning is that a splits s. In particular, if $2^{\tau_{\alpha}} = \tau_{\alpha}^{+}$, then $\mathfrak{r}(\tau_{\alpha}) = \tau_{\alpha}^{+} = \delta_{\alpha}$.

Let D be a $(\vec{\tau}, F)$ -uniform ultrafilter over κ . Then $ch(D) \geq \delta$.

Proof. Let us argue that $ch(D) \ge \delta$.

Suppose otherwise. Let \mathcal{W} be a generating family for D of cardinality less than δ .

Let $i < \eta$. Using $\mathfrak{s}(\tau_i) = \delta_i = 2^{\tau_i}$, we define a sequence $\langle A_{i\beta} | \beta < \delta_i \rangle$ of subsets of τ_i such that

- 1. for every $a \in [\tau_i]^{\tau_i}$ there is $\beta < \delta_i$ with $a = A_{i\beta}$,
- 2. each set $A_{i\beta}$ appears δ_i -many times in the sequence,
- 3. for every $\beta < \delta_i$ there is $\gamma, \beta \leq \gamma < \delta_i$ such that $A_{i\gamma}$ splits $\langle A_{i\beta'} | \beta' < \beta \rangle$.

Let $\langle f_{\xi} | \xi < \delta \rangle$ be a scale witnessing $\operatorname{tcf}(\prod_{\alpha < \eta} \delta_{\alpha}, <_F) = \delta$. Let $\langle B_{\zeta} | \zeta < \rho < \delta \rangle$ be an enumeration of \mathcal{W} . For every $\zeta < \rho$ and $i < \eta$ set $B_{\zeta i} = B_{\zeta} \cap \tau_i$. Then there is $X_{\zeta} \in F$ such that for every $i \in X_{\zeta}, |B_{\zeta i}| = \tau_i$. Pick $\alpha_{\zeta i} < \delta_i$ to be such that $B_{\zeta i} = A_{i\alpha_{\zeta i}}$.

Define a function $g_{\zeta} \in \prod_{i < \eta} \delta_i$ by setting $g_{\zeta}(i) = \alpha_{\zeta i}$, if $i \in X_{\zeta}$ and $g_{\zeta}(i) = 0$, otherwise. Consider $\langle g_{\zeta} | \zeta < \rho \rangle$. We have $\rho < \delta$ and $\langle f_{\xi} | \xi < \delta \rangle$ a scale in $(\prod_{\alpha < \eta} \delta_{\alpha}, <_F)$. Consider $\langle g_{\zeta} | \zeta < \rho \rangle$. We have $\rho < \delta$ and $\langle f_{\xi} | \xi < \delta \rangle$ a scale in $(\prod_{\alpha < \eta} \delta_{\alpha}, <_F)$. So, there is $\xi^* < \delta$, such that for every $\zeta < \rho$, the set

$$Z = \{ i < \eta \mid g_{\zeta}(i) < f_{\xi^*}(i) \} \in F.$$

Suppose for simplicity that $Z = \eta$. Let $i < \eta$. Consider the sequence $\langle A_{i\beta} | \beta < f_{\xi^*}(i) \rangle$. We have $\mathfrak{s}(\tau_i) = \delta_i > f_{\xi^*}(i)$, so there is $\gamma_i < \delta_i$ such that $A_{i\gamma_i}$ splits $\langle A_{i\beta} | \beta < f_{\xi^*}(i) \rangle$. Let $\overline{A}_{i\gamma_i}$ denotes $\kappa_i \setminus (A_{i\gamma_i} \cup \delta_{i-1})$. Set $A = \bigcup_{i < \eta} A_{i\gamma_i}$ and $\overline{A} = \bigcup_{i < \eta} \overline{A}_{i\gamma_i}$. D is an ultrafilter, hence $A \in D$ or $\overline{A} \in D$. Suppose, for example, that $A \in D$. Then there is $\zeta < \rho$ such that $B_{\zeta} \subseteq^* A$. We have $A \cap B_{\zeta} \in D$, and so, by $(\overline{\tau}, F)$ -uniformity, the set

$$X = \{ i < \omega \mid A \cap B_{\zeta} \cap \tau_i \text{ is unbounded in } \tau_i \}$$

is infinite. Clearly, $X \subseteq X_{\zeta}$.

Now, $|B_{\zeta} \setminus A| < \kappa$ will imply that for all but boundedly many $i \in X$, $B_{\zeta i} = B_{\zeta} \cap \tau_i \subseteq^* A \cap \tau_i$. This is impossible, since $B_{\zeta i}$ appears in $\langle A_{i\beta} | \beta < f_{\xi^*}(i) \rangle$ and $A_{i\gamma_i}$ splits this family, for every $i < \eta$.

Contradiction.

3 On character of uniform ultrafilters of the form $F - \lim_{\alpha < \eta} U_{\alpha}$.

Let us combine now regularity properties with the results of the previous section in order to produce lower bounds on the characters of ultrafilters of the form $F - \lim_{\alpha < \eta} U_{\alpha}$ over singular cardinals.

Proposition 3.1 Suppose that κ is a singular cardinal of cofinality η . Let $\langle \kappa_{\alpha} \mid \alpha < \eta \rangle$ be an increasing sequence of cardinals converging to κ . Suppose that δ is a regular cardinal such that

1.
$$\kappa < \delta \leq 2^{\kappa}$$

- 2. there is an increasing sequence of regular cardinals $\langle \delta_{\alpha} \mid \alpha < \eta \rangle$ such that
 - (a) $\kappa_{\alpha} < \delta_{\alpha} \leq \kappa_{\alpha+1}$, for every $\alpha < \eta$,
 - (b) $\operatorname{tcf}(\prod_{\alpha < \eta} \delta_{\alpha}, <_F) = \delta$, for some ultrafilter F on η which extends the filter of cobounded subsets of η ,

Suppose that $U = F - \lim \langle U_{\alpha} \mid \alpha < \eta \rangle$ is such that for every $\alpha < \eta$

- 1. U_{α} is a uniform ultrafilter over a cardinal μ_{α} ,
- 2. $\delta_{\alpha} \leq \mu_{\alpha} < \kappa_{\alpha+1}$,
- 3. U_{α} is $(\delta_{\alpha}, \mu_{\alpha})$ -regular or just δ_{α} -decompossible.

Then U is a uniform ultrafilter over κ and $ch(U) \geq \delta$.

Proof. Let $\alpha < \eta$. By Proposition 1.7, U_{α} is δ_{α} -decompossible. Then, by Proposition 1.6, $U_{\alpha} \geq_{R-K} D_{\alpha}$, for some uniform ultrafilter D_{α} over δ_{α} . Set $D = F - \lim \langle D_{\alpha} \mid \alpha < \eta \rangle$. Then, by Proposition 1.3, $U \geq_{R-K} D$ and by Proposition 2.3, $\operatorname{ch}(D) \geq \delta$. Now, by Proposition 1.1, $\operatorname{ch}(U) \geq \delta$. \Box

The next proposition is similar:

Proposition 3.2 Suppose that κ is a singular cardinal of cofinality η . Let $\langle \kappa_{\alpha} \mid \alpha < \eta \rangle$ be an increasing sequence of cardinals converging to κ . Suppose that δ is a regular cardinal such that

- 1. $\kappa < \delta \leq 2^{\kappa}$
- 2. there is an increasing sequences of regular cardinals $\langle \tau_{\alpha} \mid \alpha < \eta \rangle$ such that
 - (a) $\kappa_{\alpha} \leq \tau_{\alpha} < 2^{\tau_{\alpha}} < \kappa_{\alpha+1}$, for every $\alpha < \eta$,
 - (b) $\operatorname{tcf}(\prod_{\alpha < \eta} \delta_{\alpha}, <_F) = \delta$, where $\delta_{\alpha} = 2^{\tau_{\alpha}}$ and F is an ultrafilter on η which extends the filter of co-bounded subsets of η ,
 - (c) $\mathbf{r}(\tau_{\alpha}) = \delta_{\alpha}$. In particular, if $2^{\tau_{\alpha}} = \tau_{\alpha}^{+}$, then $\mathbf{r}(\tau_{\alpha}) = \tau_{\alpha}^{+} = \delta_{\alpha}$.

Suppose that $U = F - \lim \langle U_{\alpha} \mid \alpha < \eta \rangle$ is such that for every $\alpha < \eta$

1. U_{α} is a uniform ultrafilter over a cardinal μ_{α} ,

- 2. $\delta_{\alpha} \leq \mu_{\alpha} < \kappa_{\alpha+1}$,
- 3. U_{α} is $(\tau_{\alpha}, \mu_{\alpha})$ -regular or just τ_{α} -decompossible.

Then U is a uniform ultrafilter over κ and $ch(U) \geq \delta$.

Proof. Let $\alpha < \eta$. By Proposition 1.7, U_{α} is δ_{α} -decompossible. Then, by Proposition 1.6, $U_{\alpha} \geq_{R-K} D_{\alpha}$, for some uniform ultrafilter D_{α} over τ_{α} . Set $D = F - \lim \langle D_{\alpha} \mid \alpha < \eta \rangle$. Then, by Proposition 1.3, $U \geq_{R-K} D$ and by Proposition 2.4, $\operatorname{ch}(D) \geq \delta$. Now, by Proposition 1.1, $\operatorname{ch}(U) \geq \delta$. \Box

Corollary 3.3 Let κ, U, δ be as in Propositions 3.1 or 3.2. Suppose that $\delta = 2^{\kappa}$. Then $ch(U) = 2^{\kappa}$.

Assume as above that κ is a singular cardinal of cofinality η . Define now a cardinal invariant of κ which corresponds to ultrafilters of the form $F - \lim \langle U_{\alpha} \mid \alpha < \eta \rangle$.

Definition 3.4 Let $\mathfrak{u}'(\kappa)$ be the smallest possible cardinality of ch(U), such that U is a uniform ultrafilter over κ of a form $F - \lim \langle U_{\alpha} \mid \alpha < \eta \rangle$, where F is a uniform ultrafilter over η and U_{α} is a uniform ultrafilter over a regular cardinal $< \kappa$, for every $\alpha < \eta$.

Clearly, $\mathfrak{u}(\kappa) \leq \mathfrak{u}^{str}(\kappa) \leq \mathfrak{u}'(\kappa)$. Note that in models of [3], [4], $\mathfrak{u}(\kappa) = \mathfrak{u}^{str}(\kappa) = \mathfrak{u}'(\kappa) = \kappa^+$. However, κ in this models is limit of measurables. In [5], a model with $\mathfrak{u}(\aleph_{\omega}) = \aleph_{\omega+1} < 2^{\aleph_{\omega}}$ was constructed. It turns out that $\mathfrak{u}(\kappa) = \mathfrak{u}^{str}(\kappa) < \mathfrak{u}'(\kappa)$ in this model. Namely, the following always holds:

Proposition 3.5 Assume that \aleph_{ω} is a strong limit cardinal and $2^{\aleph_{\omega}} < \aleph_{\omega_1}$. Then $\mathfrak{u}'(\aleph_{\omega}) = 2^{\aleph_{\omega}}$.

Proof. If $2^{\aleph_{\omega}} = \aleph_{\omega+1}$, then the statement is obvious.

So, suppose that $2^{\aleph_{\omega}} > \aleph_{\omega+1}$.

Then $2^{\aleph_{\omega}}$ is a regular cardinal, since $2^{\aleph_{\omega}} < \aleph_{\omega_4}$, by S. Shelah [13] and by König, $\operatorname{cof}(2^{\aleph_{\omega}}) > \aleph_{\omega}$. Again, by S. Shelah [13], Ch.IX, 1.8,1.9 there is an increasing sequence $\langle n_i | i < \omega \rangle$ such that

$$\operatorname{tcf}(\prod_{i<\omega}\aleph_{n_i}, <_{co-finite}) = 2^{\aleph_\omega}.$$

Let now $U = F - \lim \langle U_i | i < \omega \rangle$ be as in Definition 3.4. Suppose that U_i is a uniform ultrafilter over \aleph_{m_i} , for every $i < \omega$. Let $i < \omega$. By K. Kunen and K. Prikry [10], U_i is \aleph_k -descendingly incomplete for every $k \leq m_i$. Now we can apply Proposition 3.1 and to conclude that $\mathfrak{u}'(\aleph_{\omega}) = 2^{\aleph_{\omega}}$.

Remark 3.6 It is possible to strengthen 3.5 a bit and to relax the requirement on \aleph_{ω} being a strong limit, since here $U = F - \lim \langle U_i \mid i < \omega \rangle$ implies that $U \ge_{R-K} F$, and so, by 1.1, $\operatorname{ch}(U) \ge \operatorname{ch}(F)$.

4 On character of uniform ultrafilters of the form $F - \lim_{\alpha < \eta} U_{\alpha}$, square principles and inner models.

The following crucial observation was made by D. Donder [1]:

Theorem 4.1 (Donder)

Let $\kappa > \omega$ be regular and assume that $\Box(\kappa)$ holds. Then every uniform ultrafilter U on κ is (ω, τ) -regular for every $\tau < \kappa$.

Let us combine this with the results of the previous section.

Proposition 4.2 Suppose that κ is a singular cardinal of cofinality η . Let $\langle \kappa_{\alpha} \mid \alpha < \eta \rangle$ be an increasing sequence of cardinals converging to κ . Suppose that δ is a regular cardinal such that

- 1. $\kappa < \delta \leq 2^{\kappa}$
- 2. there is an increasing sequence of regular cardinals $\langle \delta_{\alpha} \mid \alpha < \eta \rangle$ such that
 - (a) $\kappa_{\alpha} < \delta_{\alpha} \leq \kappa_{\alpha+1}$, for every $\alpha < \eta$,
 - (b) $\operatorname{tcf}(\prod_{\alpha < \eta} \delta_{\alpha}, <_F) = \delta$, for some ultrafilter F on η which extends the filter of cobounded subsets of η ,

Suppose that $U = F - \lim \langle U_{\alpha} \mid \alpha < \eta \rangle$ is such that for every $\alpha < \eta$

- 1. U_{α} is a uniform ultrafilter over a cardinal μ_{α} ,
- 2. $\delta_{\alpha} \leq \mu_{\alpha} < \kappa_{\alpha+1}$,

3. $\Box(\mu_{\alpha})$ holds.

Then U is a uniform ultrafilter over κ and $ch(U) \geq \delta$.

Proof. We have μ_{α} is not weakly compact cardinal in \mathcal{K} , so $\Box(\mu_{\alpha})$ holds in \mathcal{K} , by E. Schimmerling and M. Zeman [15].

In addition $(\mu_{\alpha}^{+})^{\mathcal{K}} = \mu_{\alpha}^{+}$, hence the sequence which witnesses $\Box(\mu_{\alpha})$ in \mathcal{K} will witness it in V, as well.

By 4.1, U_{α} will be (ω, μ_{α}) -regular. Now, 3.1 applies.

Similarly, using 3.2:

Proposition 4.3 Suppose that κ is a singular cardinal of cofinality η . Let $\langle \kappa_{\alpha} \mid \alpha < \eta \rangle$ be an increasing sequence of cardinals converging to κ . Suppose that δ is a regular cardinal such that

1. $\kappa < \delta \leq 2^{\kappa}$

- 2. there is an increasing sequences of regular cardinals $\langle \tau_{\alpha} \mid \alpha < \eta \rangle$ such that
 - (a) $\kappa_{\alpha} \leq \tau_{\alpha} < 2^{\tau_{\alpha}} < \kappa_{\alpha+1}$, for every $\alpha < \eta$,
 - (b) $\operatorname{tcf}(\prod_{\alpha < \eta} \delta_{\alpha}, <_F) = \delta$, where $\delta_{\alpha} = 2^{\tau_{\alpha}}$ and F is an ultrafilter on η which extends the filter of co-bounded subsets of η ,
 - (c) $\mathfrak{r}(\tau_{\alpha}) = \delta_{\alpha}$. In particular, if $2^{\tau_{\alpha}} = \tau_{\alpha}^{+}$, then $\mathfrak{r}(\tau_{\alpha}) = \tau_{\alpha}^{+} = \delta_{\alpha}$.

Suppose that $U = F - \lim \langle U_{\alpha} \mid \alpha < \eta \rangle$ is such that for every $\alpha < \eta$

1. U_{α} is a uniform ultrafilter over a cardinal μ_{α} ,

- 2. $\delta_{\alpha} \leq \mu_{\alpha} < \kappa_{\alpha+1}$,
- 3. $\Box(\mu_{\alpha})$ holds.

Then U is a uniform ultrafilter over κ and $ch(U) \geq \delta$.

Corollary 4.4 Let κ be a singular cardinal of cofinality η . Suppose that there is an increasing sequence of regular cardinals $\langle \delta_{\alpha} | \alpha < \eta \rangle$ such that

1. $\kappa = \bigcup_{\alpha < \eta} \delta_{\alpha}$,

2. $\operatorname{tcf}(\prod_{\alpha < \eta} \delta_{\alpha}, <_{J^{bd}}) = 2^{\kappa}$, where J^{bd} is the ideal of all bounded subsets of η ,

Suppose that $U = F - \lim \langle U_{\alpha} | \alpha < \eta \rangle$, for some ultrafilter F over η which includes all co-bounded subsets of η , is such that for every $\alpha < \eta$

- 1. U_{α} is a uniform ultrafilter over a cardinal μ_{α} ,
- 2. $\delta_{\alpha} \leq \mu_{\alpha} < \kappa_{\alpha+1}$,
- 3. $\Box(\mu_{\alpha})$ holds.

Then U is a uniform ultrafilter over κ and $ch(U) = 2^{\kappa}$.

Assume now that there is no inner model with a Woodin cardinal and then use the core model \mathcal{K} of R. Jensen and J. Steel [8].

Even under a weaker assumption that there is now inner model with class many strong cardinals, which handled by R. Schindler [12], there are plenty overlapping extenders relevant for consistency results of [3],[4].

By results of E. Schimmerling, M. Zeman [15] and M. Zeman [17], \Box_{κ} holds in \mathcal{K} for every κ and $\Box(\kappa)$ holds in \mathcal{K} for every regular $\kappa > \omega$ which is not weakly compact. In particular, if $\kappa^+ = (\kappa^+)^{\mathcal{K}}$, then \Box_{κ} holds.

E. Schimmerling proved in [14] that if both $\Box(\kappa)$ and \Box_{κ} fail and $\kappa \geq 2^{\aleph_0}$, then there is an inner model with Woodin cardinal (and more). He showed also that if κ is a limit cardinal and $\kappa^+ > (\kappa^+)^{\mathcal{K}}$, then $\Box(\kappa)$ (see 5.1.1, 4.7 of [14]).

5 A remark on $\mathfrak{r}(\kappa)$.

Note that if U is a uniform ultrafilter over κ and \mathcal{W} is its bases, then \mathcal{W} is a non-splitting family. Namely, if $B \in [\kappa]^{\kappa}$, then B does not split \mathcal{W} , since $B \in U$ or $\kappa \setminus B \in U$, and so contains a member of \mathcal{W} .

This implies that $\mathfrak{r}(\kappa) \leq \mathfrak{u}(\kappa)$.

We have seen in the previous section that $\mathfrak{u}'(\kappa)$ is related to $\Box(\tau)$'s below κ . Failure of such square principle implies weak compactness in the core model of the corresponding cardinal.

On the other hand T. Suzuki [16] observed that:

a regular uncountable cardinal τ is a weakly compact iff $\mathfrak{s}(\tau) \geq \tau^+$, where $\mathfrak{s}(\tau)$ a splitting number of τ is

 $\min\{|S| \mid S \subseteq [\tau]^{\tau}, \text{ for every} x \in [\tau]^{\tau} \text{ there is } s \in S, |x \cap s| = |x \setminus s| = \tau\}.$

The next proposition indicates the connection of $\mathfrak{r}(\kappa)$ to weak compactness below.

Proposition 5.1 Suppose that κ is a singular cardinal of cofinality η . Let $\langle \kappa_{\alpha} \mid \alpha < \eta \rangle$ be an increasing sequence of cardinals converging to κ . Suppose that δ is a regular cardinal such that

1. $\kappa < \delta \leq 2^{\kappa}$

- 2. there is an increasing sequences of regular cardinals $\langle \tau_{\alpha} \mid \alpha < \eta \rangle$ such that
 - (a) $\kappa_{\alpha} \leq \tau_{\alpha} < 2^{\tau_{\alpha}} < \kappa_{\alpha+1}$, for every $\alpha < \eta$,
 - (b) $\operatorname{tcf}(\prod_{\alpha < \eta} \tau_{\alpha}, <_{J^{bd}}) = \delta$,
 - (c) tcf($\prod_{\alpha < n} \delta_{\alpha}, <_{J^{bd}}$) = δ , where $\delta_{\alpha} = 2^{\tau_{\alpha}}$,
 - (d) $\mathfrak{s}(\tau_{\alpha}) = \delta_{\alpha}$. In particular, τ_{α} must be at least weakly compact here. If $2^{\tau_{\alpha}} = \tau_{\alpha}^{+}$, then we can assume just that τ_{α} is a weakly compact.¹

Then $\mathfrak{r}(\kappa) \leq \delta$.

Proof.

Let $\langle f_{\xi} | \xi < \delta \rangle$ be a scale which witnesses $\operatorname{tcf}(\prod_{\alpha < \eta} \delta_{\alpha}, <_F) = \delta$ and $\langle h_{\zeta} | \zeta < \delta \rangle$ be a scale which witnesses $\operatorname{tcf}(\prod_{\alpha < \eta} \tau_{\alpha}, <_F) = \delta$.

Let $i < \eta$. Fix an enumeration $\langle A^i_\beta | \beta < \delta_\alpha \rangle$ of all subsets of τ_α of cardinality τ_α .

Define a sequence $\langle A_{\alpha} \mid \alpha < \delta \rangle$ of subsets of κ of cardinality κ by induction as follows: Suppose that $\alpha < \delta$ and $A_{\alpha'}$ is defined for every $\alpha' < \alpha$.

Let $i < \eta$. Consider $f_{\alpha}(i)$. It is an ordinal less than δ_i . So, $\langle A^i_{\beta} | \beta < f_{\alpha}(i) \rangle$ is not a splitting family, since $\mathfrak{s}(\tau_i) = \delta_i$. Hence, there is $\beta(\alpha, i), f_{\alpha}(i) < \beta(\alpha, i) < \delta_i$ such that $A^i_{\beta(\alpha,i)}$ cannot be split by any A^i_{β} with $\beta < f_{\alpha}(i)$.

Set $A_{\alpha} = \bigcup_{i < \eta} (A^{i}_{\beta(\alpha,i)} \cap (h_{\alpha}(i), \tau_{i})).$

This completes the induction.

For every $X \subseteq \eta, \alpha, \zeta < \delta$ set

$$A(\alpha, X, \zeta) = \bigcup_{i \in X} (A^i_{\beta(\alpha, i)} \cap (h_{\zeta}(i), \tau_i)).$$

In particular, $A_{\alpha} = A(\alpha, \eta, \alpha)$.

¹Note that in [3], [4], measurability was used instead in order to get an upper bound for $\mathfrak{u}'(\kappa)$.

Consider now

$$Z = \{ A(\alpha, X, \zeta) \mid \alpha, \zeta < \delta, X \subseteq \eta \}.$$

We claim that Z is an unsplittable family.

Suppose otherwise. Then there is $B \subseteq \kappa$, $|B| = \kappa$ such that for every $A \in Z$, both $A \cap B$ and $A \setminus B$ have cardinality κ .

Note first that for unboundedly many $i < \eta$, $|B \cap \tau_i| = \tau_i$. Just otherwise, for all but boundedly many *i*'s, there is $\rho_i < \tau_i$ such that $B \cap \tau_i \subseteq \rho_i$.

Then there is $\alpha < \delta$ such that for all but boundedly many *i*'s, $\rho_i < h_{\alpha}(i)$. Hence, there is $i^* < \eta$ such that for every $i, i^* \leq i < \eta$, $B \cap A_{\alpha} \cap \tau_i \subseteq \tau_{i^*}$.

This is impossible, since $|B \cap A_{\alpha}| = \kappa$.

Assume now for simplicity that for every $i < \eta, |B \cap \tau_i| = \tau_i$.

Then for every $i < \eta$, there is $\beta_i < \delta_i$ such that $B \cap \tau_i = A^i_{\beta_i}$.

Find $\alpha < \delta$ such that for all but boundedly many *i*'s, $f_{\alpha}(i) > \beta_i$.

Again, assume for simplicity that this holds for every $i < \eta$. Recall that by the choice of $A^i_{\beta(\alpha,i)}$, it cannot be split by any A^i_{β} with $\beta < f_{\alpha}(i)$. In particular, by $B \cap \tau_i = A^i_{\beta_i}$.

So, either $A^i_{\beta(\alpha,i)} \cap B \cap \tau_i$ is bounded in τ_i or $A^i_{\beta(\alpha,i)} \setminus (B \cap \tau_i)$ is bounded in τ_i .

Suppose for example that the set

$$X = \{ i < \eta \mid A^i_{\beta(\alpha,i)} \cap B \cap \tau_i \text{ is bounded in } \tau_i \}$$

has cardinality η .

Let for every $i \in X$, $\gamma_i < \tau_i$ be a bound of $A^i_{\beta(\alpha,i)} \cap B \cap \tau_i$. If $i \in \eta \setminus X$, then set $\gamma_i = 0$. There is $\zeta < \delta$ and $i^* < \eta$ such that for every $i, i^* \leq i < \eta$, $h_{\zeta}(i) > \gamma_i$. Then, for every $i \in X \setminus i^*$, $A^i_{\beta(\alpha,i)} \cap B \cap \tau_i \subseteq h_{\zeta}(i)$. But then $A(\alpha, X, \zeta) \cap B \subseteq \tau_{i^*} < \kappa$. Contradiction.

Define $\mathbf{r}^{str}(\kappa)$ to be

 $\min(\{|X| \mid X \text{ is an unsplittable family,})$

such that for some increasing sequence of regular cardinals below κ ,

 $\vec{\tau} = \langle \tau_{\alpha} \mid \alpha < \operatorname{cof}(\kappa), \text{ for every } A \in X, \text{ for unboundedly many } \alpha < \operatorname{cof}(\kappa), |A \cap \tau_{\alpha}| = \tau_{\alpha} \}).$

Clearly, $\kappa^+ \leq \mathfrak{r}(\kappa) \leq \mathfrak{r}^{str}(\kappa)$.

The proposition above actually shows that $\mathfrak{r}^{str}(\kappa) \leq \delta$.

References

- D. Donder, REGULARITY OF ULTRAFILTERS AND THE CORE MODEL, IS-RAEL JOURNAL OF MATHEMATICS, Vol. 63, No. 3, 1988, pp.289-322.
- [2] D. Donder, R. Jensen, B. Koppelberg, Some applications of the core model, in Set Theory and Model Theory, Springer, Lecture Notes in Math., 872, R. Jensen and A. Prestel eds, 1979, pp. 55-97.
- [3] S. Garti and S. Shelah,
- [4] S. Garti, M. Magidor and S. Shelah,
- [5] S. Garti, M. Gitik and S. Shelah, $\mathfrak{u}_{\aleph_{\omega}} < 2^{\aleph_{\omega}}$ from the optimal assumption.
- [6] M. Gitik, The negation of SCH from $o(\kappa) = \kappa^{++}$, APAL,
- M. Gitik, Prikry type forcings, in Handbook of Set Theory, Foreman, Kanamori eds., Springer 2010, vol.2, pp.1351-1447.
- [8] R. Jensen and J. Steel, K without the measurable, J. Symbolic Logic, Volume 78, Issue 3 (2013), 708-734.
- [9] A. Kanamori, Weakly normal filters and irregular ultrafilters, Transactions of AMS, 220, 1976, pp. 393-399.
- [10] K. Kunen and K. Prikry, On descendingly incomplete ultrafilters, J. of Symbolic Logic, vol. 36, Number 4, 1971, pp.650-652.
- [11] P. Lipparini, More results on regular ultrafilters in ZFC.
- [12] R. Schindler, Core model
- [13] S. Shelah, Cardinal Arithmetic,
- [14] E. Schimmerling, Coherent sequences and threads, Advances in Math., 216, 2007, 89-117.
- [15] E. Schimmerling and M. Zeman, Square in Core Models,
- [16] T. Suzuki, About splitting numbers,

[17] M. Zeman, Global Square,