Intermediate Models of Magidor-Radin Forcing-Part I

Tom Benhamou and Moti Gitik*

October 12, 2020

Abstract

We continue the work done in [3],[1]. We prove that for every set A in a MagidorRadin generic extension using a coherent sequence such that $o^{\vec{U}}(\kappa)<\kappa$, there is a subset C^{\prime} of the Magidor club such that $V[A]=V\left[C^{\prime}\right]$. Also we classify all intermediate $Z F C$ transitive models $V \subseteq M \subseteq V[G]$.

1 Introduction

In this paper we consider the version of Magidor-Radin forcing for $o^{\vec{U}}(\kappa) \leq \kappa$, but prove results for $o^{\vec{U}}(\kappa)<\kappa$. Section (2), will also be relevant to the forcing in Part II.

In [1], we assumed that $o^{\vec{U}}(\kappa)<\delta_{0}:=\min \left(\alpha \mid 0<o^{\vec{U}}(\alpha)\right)$. When we let $o^{\vec{U}}(\kappa) \geq \delta_{0}$, we might loss completness for some of the pairs in a condition p. For example, if $p=$ $\left\langle\left\langle\delta_{0}, A_{0}\right\rangle,\left\langle\kappa, A_{1}\right\rangle\right\rangle$, we wont be able to take in account all the measures on κ, since there are δ_{0} many of them and only δ_{0}-completness. The proof is by induction on κ. We will be to split $\mathbb{M}[\vec{U}]$ to the part below $o^{\vec{U}}(\kappa)$ and above it, then some but not all of the arguments of [1] generalizes.

The main result we obtain in this paper is:
Theorem 1.1 Let \vec{U} be a coherent sequence such that $o^{\vec{U}}(\kappa)<\kappa$. Then for every V-generic filter $G \subseteq \mathbb{M}[\vec{U}]$, and every $A \in V[G]$, there is $C^{\prime} \subseteq C_{G}$ such that $V[A]=V\left[C^{\prime}\right]$.

[^0]In the theorem, C_{G} denotes the generic Magidor-Radin club derived from G.
Note that the classification we had in [1] for models of the form $V\left[C^{\prime}\right]$, do not extend, even if $o^{\vec{U}}(\kappa)=\delta_{0}$.

Example 1.2 Consider C_{G} such that $C_{G}(\omega)=\delta_{0}$ and $o^{\vec{U}}(\kappa)=\delta_{0}$. Then in $V[G]$ we have the following sequence $C^{\prime}=\left\langle C_{G}\left(C_{G}(n)\right) \mid n<\omega\right\rangle$ of points of the generic C_{G} which is determine by the first Prikry sequence at δ_{0}.

Then $I\left(C^{\prime}, C_{G}\right)=\left\langle C_{G}(n) \mid n<\omega\right\rangle \notin V$, where $I(X, Y)$ is the indices of $X \subseteq Y$ in the increasing enumeration of Y.

The forcing $\mathbb{M}_{I}[\vec{U}]$ which was defined in $[1]$, is no longer defined in V since $I \notin V$.
In this case, we will add points to C^{\prime}, which are simply $\left\langle C_{G}(n) \mid n<\omega\right\rangle$, then the forcing will be a two step iteration. The first will be to add the Prikry sequence $\left\langle C_{G}(n)\right|$ $n<\omega\rangle$, then the second will be a Diagonal Prikry forcing adding point from the measures $\left\langle U\left(\kappa, C_{G}(n)\right) \mid n<\omega\right\rangle$, which is of the form $M_{I}[\vec{U}]$.

Generally, we will define forcing $\mathbb{M}_{f}[\vec{U}]$, which are not subforcing of $\mathbb{M}[\vec{U}]$, but are a natural diagonal generalization of $\mathbb{M}[\vec{U}]$ and a bit closer to Magidor's original formulation in [5].

The classification of models is given by the following theorem:
Theorem 1.3 Assume that for every $\alpha<\kappa, o^{\vec{U}}(\alpha)<\alpha$. Then for every V-generic filter $G \subseteq \mathbb{M}[\vec{U}]$ and every transitive $Z F C$ intermediate model $V \subseteq M \subseteq V[G]$, there is a closed subset $C_{\text {fin }} \subseteq C_{G}$ such that:

$$
\text { 1. } M=V\left[C_{f i n}\right] .
$$

2. There is a finite iteration $\mathbb{M}_{f_{1}}[\vec{U}] * \underset{\mathbb{M}_{f_{2}}}{ }[\vec{U}] \ldots * \mathbb{M}_{f_{n}}[\vec{U}]$, and a V-generic H^{*} filter for $\mathbb{M}_{f_{1}}[\vec{U}] * \underset{\sim}{\mathbb{M}_{f_{2}}}[\vec{U}] \ldots * \mathbb{M}_{\sim}^{f_{n}}[\vec{U}]$ such that $V\left[H^{*}\right]=V\left[C_{\text {fin }}\right]=M$.

2 Basic Definitions and Preliminaries

We will follow the description of Magidor forcing as presented in [2].
Let $\vec{U}=\left\langle U(\alpha, \beta) \mid \alpha \leq \kappa, \beta<o^{\vec{U}}(\alpha)\right\rangle$ be a coherent sequence. For every $\alpha \leq \kappa$, denote

$$
\cap \vec{U}(\alpha)=\bigcap_{i<o \vec{U}(\alpha)} U(\alpha, i)
$$

Definition 2.1 $\mathbb{M}[\vec{U}]$ consist of elements p of the form $p=\left\langle t_{1}, \ldots, t_{n},\langle\kappa, B\rangle\right\rangle$. For every $1 \leq i \leq n, t_{i}$ is either an ordinal κ_{i} if $o^{\vec{U}}\left(\kappa_{i}\right)=0$ or a pair $\left\langle\kappa_{i}, B_{i}\right\rangle$ if $o^{\vec{U}}\left(\kappa_{i}\right)>0$.

1. $B \in \cap \vec{U}(\kappa), \min (B)>\kappa_{n}$.
2. For every $1 \leq i \leq n$.
(a) $\left\langle\kappa_{1}, \ldots, \kappa_{n}\right\rangle \in[\kappa]^{<\omega}$ (increasing finite sequence below κ).
(b) $B_{i} \in \cap \vec{U}\left(\kappa_{i}\right)$.
(c) $\min \left(B_{i}\right)>\kappa_{i-1}(i>1)$.

Definition 2.2 For $p=\left\langle t_{1}, t_{2}, \ldots, t_{n},\langle\kappa, B\rangle\right\rangle, q=\left\langle s_{1}, \ldots, s_{m},\langle\kappa, C\rangle\right\rangle \in \mathbb{M}[\vec{U}]$, define $p \leq q$ (q extends p) iff:

1. $n \leq m$.
2. $B \supseteq C$.
3. $\exists 1 \leq i_{1}<\ldots<i_{n} \leq m$ such that for every $1 \leq j \leq m$:
(a) If $\exists 1 \leq r \leq n$ such that $i_{r}=j$ then $\kappa\left(t_{r}\right)=\kappa\left(s_{i_{r}}\right)$ and $C\left(s_{i_{r}}\right) \subseteq B\left(t_{r}\right)$.
(b) Otherwise $\exists 1 \leq r \leq n+1$ such that $i_{r-1}<j<i_{r}$ then
i. $\kappa\left(s_{j}\right) \in B\left(t_{r}\right)$.
ii. $B\left(s_{j}\right) \subseteq B\left(t_{r}\right) \cap \kappa\left(s_{j}\right)$.
iii. $o^{\vec{U}}\left(s_{j}\right)<o^{\vec{U}}\left(t_{r}\right)$.

We also use " p directly extends q ", $p \leq^{*} q$ if:

1. $p \leq q$
2. $n=m$

Let us add some notation, for a pair $t=\langle\alpha, X\rangle$ we denote by $\kappa(t)=\alpha, B(t)=X$. If $t=\alpha$ is an ordinal then $\kappa(t)=\alpha$ and $B(t)=\emptyset$.

For a condition $p=\left\langle t_{1}, \ldots, t_{n},\langle\kappa, B\rangle\right\rangle \in \mathbb{M}[\vec{U}]$ we denote $n=l(p), p_{i}=t_{i}, B_{i}(p)=B\left(t_{i}\right)$ and $\kappa_{i}(p)=\kappa\left(t_{i}\right)$ for any $1 \leq i \leq l(p), t_{l(p)+1}=\langle\kappa, B\rangle, t_{0}=0$. Also denote

$$
\kappa(p)=\left\{\kappa_{i}(p) \mid i \leq l(p)\right\} \text { and } B(p)=\bigcup_{i \leq l(p)+1} B_{i}(p)
$$

Remark 2.3 Condition 3.b.iii is not essential, since the set

$$
\left\{p \in \mathbb{M}[\vec{U}] \mid \forall i \leq l(p)+1 . \forall \alpha \in B_{i}(p) . o^{\vec{U}}(\alpha)<o^{\vec{U}}\left(\kappa_{i}(p)\right)\right\}
$$

is a dense subset of $\mathbb{M}[\vec{U}]$ and the order between any two elements of this dense subsets automatically satisfy 3 .b.iii.

Definition 2.4 Let $p \in \mathbb{M}[\vec{U}]$. For every $i \leq l(p)+1$, and $\alpha \in B_{i}(p)$ with $o^{\vec{U}}(\alpha)>0$, define

$$
p^{\complement}\langle\alpha\rangle=\left\langle p_{1}, \ldots, p_{i-1},\left\langle\alpha, B_{i}(p) \cap \alpha\right\rangle,\left\langle\kappa_{i}(p), B_{i}(p) \backslash(\alpha+1)\right\rangle, p_{i+1}, \ldots, p_{l(p)+1}\right\rangle
$$

If ${ }_{O}(\alpha)=0$, define

$$
p^{\complement}\langle\alpha\rangle=\left\langle p_{1}, \ldots, p_{i-1}, \alpha,\left\langle\kappa_{i}(p), B_{i}(p) \backslash(\alpha+1)\right\rangle, \ldots, p_{l(p)+1}\right\rangle
$$

For $\left\langle\alpha_{1}, \ldots, \alpha_{n}\right\rangle \in[\kappa]^{<\omega}$ define recursively,

$$
p^{\complement}\left\langle\alpha_{1}, \ldots, \alpha_{n}\right\rangle=\left(p^{\complement}\left\langle\alpha_{1}, \ldots, \alpha_{n-1}\right\rangle\right) \frown\left\langle\alpha_{n}\right\rangle
$$

Proposition 2.5 Let $p \in \mathbb{M}[\vec{U}]$. If $p^{\frown} \vec{\alpha} \in \mathbb{M}[\vec{U}]$, then it is the minimal extension of p with stem

$$
\kappa(p) \cup\left\{\vec{\alpha}_{1}, \ldots, \vec{\alpha}_{|\vec{\alpha}|}\right\}
$$

Moreover, $p^{\frown} \vec{\alpha} \in \mathbb{M}[\vec{U}]$ iff for every $i \leq|\vec{\alpha}|$ there is $j \leq l(p)$ such that:

1. $\vec{\alpha}_{i} \in\left(\kappa_{j}(p), \kappa_{j+1}(p)\right)$.
2. $o^{\vec{U}}\left(\vec{\alpha}_{i}\right)<o^{\vec{U}}\left(\kappa_{j+1}\right)$.
3. $B_{j+1}(p) \cap \vec{\alpha}_{i} \in \cap \vec{U}\left(\vec{\alpha}_{i}\right)$.

Note that if we add a pair of the form $\langle\alpha, B \cap \alpha\rangle$ then in $B \cap \alpha$ there might be many ordinals which are irrelevant to the forcing. Namely, ordinals β with $o^{\vec{U}}(\beta) \geq o^{\vec{U}}(\alpha)$, such ordinals cannot be added to the sequence.

Definition 2.6 Let $p \in \mathbb{M}[\vec{U}]$, define for every $i \leq l(p)$

$$
p \upharpoonright \kappa_{i}(p)=\left\langle p_{1}, \ldots, p_{i}\right\rangle \text { and } p \upharpoonright\left(\kappa_{i}(p), \kappa\right)=\left\langle p_{i+1}, \ldots, p_{l(p)+1}\right\rangle
$$

Also, for λ with $o^{\vec{U}}(\lambda)>0$ define

$$
\begin{aligned}
\mathbb{M}[\vec{U}] \upharpoonright \lambda & =\{p \upharpoonright \lambda \mid p \in \mathbb{M}[\vec{U}] \text { and } \lambda \text { apears in } p\} \\
\mathbb{M}[\vec{U}] \upharpoonright(\lambda, \kappa) & =\{p \upharpoonright(\lambda, \kappa) \mid p \in \mathbb{M}[\vec{U}] \text { and } \lambda \text { apears in } p\}
\end{aligned}
$$

Note that $\mathbb{M}[\vec{U}] \upharpoonright \lambda$ is just Magidor forcing on λ and $\mathbb{M}[\vec{U}] \upharpoonright(\lambda, \kappa)$ is a subset of $\mathbb{M}[\vec{U}]$. The following decomposition is straight forward.

Proposition 2.7 Let $p \in \mathbb{M}[\vec{U}]$ and $\langle\lambda, B\rangle$ a pair in p. Then

$$
\mathbb{M}[\vec{U}] / p \simeq(\mathbb{M}[\vec{U}] \upharpoonright \lambda) /(p \upharpoonright \lambda) \times(\mathbb{M}[\vec{U}] \upharpoonright(\lambda, \kappa)) /(p \upharpoonright(\lambda, \kappa))
$$

Proposition 2.8 Let $p \in \mathbb{M}[\vec{U}]$ and $\langle\lambda, B\rangle$ a pair in p. Then the order \leq^{*} in the forcing $(\mathbb{M}[\vec{U}] \upharpoonright(\lambda, \kappa)) /(p \upharpoonright(\lambda, \kappa))$ is δ-directed where $\delta=\min \left(\nu>\lambda \mid o^{\vec{U}}(\nu)>0\right)$. Meaning that for every $X \subseteq \mathbb{M}[\vec{U}] \upharpoonright(\lambda, \kappa)$ such that $|X|<\delta$ and for every $q \in X, p \leq^{*} q$, there is an \leq^{*}-upper bound for X.

Lemma 2.9 $\mathbb{M}[\vec{U}]$ satisfy k^{+}-c.c.

The following is known as the Prikry condition:
Lemma $2.10 \mathbb{M}[\vec{U}]$ satisfy the Prikry condition i.e. for any statement in the forcing language σ and any $p \in \mathbb{M}[\vec{U}]$ there is $p \leq^{*} p^{*}$ such that $p^{*} \| \sigma$ i.e. either $p^{*} \Vdash \sigma$ or $p \Vdash \neg \sigma$.

The next lemma can be found in [5]:
Lemma 2.11 Let $G \subseteq \mathbb{M}[\vec{U}]$ be generic and suppose that $A \in V[G]$ is such that $A \subseteq V_{\alpha}$. Let $p \in G$ and $\langle\lambda, B\rangle$ a pair in p such that $\alpha<\lambda$, then $A \in V[G \upharpoonright \lambda]$.

Proof. Consider the decomposition $2.7 p=\langle q, r\rangle$, where $q \in \mathbb{M}[\vec{U}] \upharpoonright \lambda$ and $r \in \mathbb{M}[\vec{U}] \upharpoonright(\lambda, \kappa)$ Work in $V[G \upharpoonright \lambda]$, Let $\underset{\sim}{A}$ be a $\mathbb{M}[\vec{U}] \upharpoonright(\lambda, \kappa)$-name for A. For every $x \in V_{\alpha}$ use the Prikry condition 2.10, to find $r \leq^{*} r_{x}$ such that r_{x} decide the statement $r \in \underset{\sim}{A}$. By definition of λ and proposition 2.14 , the forcing $\mathbb{M}[\vec{U}] \upharpoonright(\lambda, \kappa)$ is $\left|V_{\alpha}\right|^{+}$-directed with the \leq^{*} order. Hence there is $r \leq^{*} r^{*}$ such that $p_{x} \leq^{*} p^{*}$ for every $x \in V_{\alpha}$. By density, we can find such $r^{*} \in G \upharpoonright(\lambda, \kappa)$. It follows that $A=\left\{x \in V_{\alpha} \mid r^{*} \Vdash x \in \underset{\sim}{A}\right\}$ is definable in $V[G \upharpoonright \lambda]$.

Corollary $2.12 \mathbb{M}[\vec{U}]$ preserves all cardinals.
Definition 2.13 Let $G \subseteq \mathbb{M}[\vec{U}]$ be generic, define the Magidor club

$$
C_{G}=\{\nu \mid \exists A \exists p \in G \text { s.t. }\langle\nu, A\rangle \in p\}
$$

We will abuse notation by sometimes considering C_{G} as a the canonical enumeration of the set C_{G}. The set C_{G} is closed and unbounded in κ, therefore, the order type of C_{G} determines the cofinality of κ in $V[G]$. The next propositions can be found in [2].

Proposition 2.14 Let $G \subseteq \mathbb{M}[\vec{U}]$ be generic. Then G can be reconstructed from C_{G} as follows

$$
G=\left\{p \in \mathbb{M}[\vec{U}] \mid\left(\kappa(p) \subseteq C_{G}\right) \wedge\left(C_{G} \backslash \kappa(p) \subseteq B(p)\right)\right\}
$$

In particular $V[G]=V\left[C_{G}\right]$.
Proposition 2.15 Let $G \subseteq \mathbb{M}[\vec{U}]$ be generic.

1. C_{G} is a club at κ.
2. For every $\delta \in C_{G}, o^{\vec{U}}(\delta)>0$ iff $\delta \in \operatorname{Lim}\left(C_{G}\right)$.
3. For every $\delta \in \operatorname{Lim}\left(C_{G}\right)$, and every $A \in \cap \vec{U}(\delta)$, there is $\xi<\delta$ such that $C_{G} \backslash \xi \subseteq A$.
4. If $\left\langle\delta_{i} \mid i<\theta\right\rangle$ is an increasing sequence of elements of C_{G}, let $\delta^{*}=\sup _{i<\theta} \delta_{i}$, then $o^{\vec{U}}\left(\delta^{*}\right) \geq \lim \sup _{i<\theta} o^{\vec{U}}\left(\delta_{i}\right)+1 .{ }^{1}$
5. Let $\delta \in \operatorname{Lim}\left(C_{G}\right)$ and let A be a positive set, $A \in(\cap \vec{U}(\delta))^{+}$. i.e. $\kappa \backslash A \notin \cap \vec{U}(\kappa) .{ }^{2}$ Then, $\sup \left(A \cap C_{G}\right)=\delta$.
6. If $A \subseteq V_{\alpha}$, then $A \in V\left[C_{G} \cap \lambda\right]$, where $\lambda=\max \left(\operatorname{Lim}\left(C_{G}\right) \cap \alpha+1\right)$.
7. For every V-regular cardinal α, if $c f^{V[G]}(\alpha)<\alpha$ then $\alpha \in \operatorname{Lim}\left(C_{G}\right)$.

Proof. (1), (2), (3) can be found in [2].
To see (4), use closure of C_{G}, and find $q \in G$ such that δ^{*} appears in q. Since there are only finitely many ordinals in q, there is some $i<\theta$ such that for every $j>i, \delta_{j}$ does not appear in q. By 2.2, since every such δ_{j} appear in some $q_{j} \in G$ which is compatible with q, $o^{\vec{U}}\left(\delta_{j}\right)<o^{\vec{U}}\left(\delta^{*}\right)$. Hence

$$
\limsup _{j<\theta} o^{\vec{U}}\left(\delta_{j}\right)+1 \leq \sup \left(\limsup _{i<j<\theta} o^{\vec{U}}\left(\delta_{j}\right)+1 \leq o^{\vec{U}}\left(\delta^{*}\right)\right.
$$

For (5), let $\rho<\delta$. Each condition p, such that $\delta=\kappa_{i}(p)$ for some $i \leq l(p)+1$, must satisfy that $\sup \left(A \cap B_{i}(p)\right)=\delta$. Hence we can extend p using an element of $A \cap B_{i}(p)$ above ρ. By density, $\sup \left(A \cap C_{G}\right) \geq \rho$. Since ρ is general, $\sup \left(A \cap C_{G}\right)=\delta$.
(6) is a direct corollary of 2.11. As for (7), assume that $c f^{V[G]}(\alpha)<\alpha$, and let $X \subseteq \alpha$ be a club such that $\operatorname{otp}(X)=c f^{V[G]}(\alpha)$. Then $X \in V[G] \backslash V$. Let $\lambda=\max \left(\operatorname{Lim}\left(C_{G}\right) \cap \alpha+1\right)$, then $\lambda \leq \alpha$. By (6), $X \in V\left[C_{G} \cap \lambda\right]$. Toward a contradiction, assume that $\lambda<\alpha$, The the forcing $\mathbb{M}[\vec{U}] \upharpoonright \lambda$ is α-c.c., but $c f^{V\left[C_{G} \cap \lambda\right]}(\alpha)<\alpha$, contradiction.

The Mathias-like criteria for Magidor forcing is due to Mitchell [6]:

[^1]Theorem 2.16 Let U be a coherent sequence and assume that $c: \alpha \rightarrow \kappa$ is an increasing function. Then c is $\mathbb{M}[\vec{U}]$ generic iff:

1. c is continuous.
2. $c \upharpoonright \beta$ is $\mathbb{M}[\vec{U} \upharpoonright \beta]$ generic for every $\beta \in \operatorname{Lim}(\alpha)$.
3. $X \in \cap \vec{U}(\kappa)$ iff $\exists \beta<\kappa c \backslash \beta \subseteq X$.

An equivalent formulation of the Mathias criteria is to require that for every $\beta \in \operatorname{Lim}(\alpha)$, and for every $X \in \cap \vec{U}(c(\beta))$, there is $\xi<\beta$ such that $c^{\prime \prime}(\xi, \beta) \subseteq X$.

For an additional proof of 2.16 , We refer the reader to the last section, where we define a forcing notion $\mathbb{M}_{f}[\vec{U}]$, which generalizes $\mathbb{M}[\vec{U}]$, and prove in 5.9 a Mathias-like criteria for it.

Proposition 2.17 Let $G \subseteq \mathbb{M}[\vec{U}]$ be V-generic filter and C_{G} the corresponding Magidor sequence. Let $p \in G$, then for every $i \leq l(p)+1$

1. If $o^{\vec{U}}\left(\kappa_{i}(p)\right) \leq \kappa_{i}(p)$,

$$
\operatorname{otp}\left(\left[\kappa_{i-1}(p), \kappa_{i}(p)\right) \cap C_{G}\right)=\omega^{o^{\vec{U}}\left(\kappa_{i}(p)\right)}
$$

2. If $o^{\vec{U}}\left(\kappa_{i}(p)\right) \geq \kappa_{i}(p)$, then

$$
\operatorname{otp}\left(\left[\kappa_{i-1}(p), \kappa_{i}(p)\right) \cap C_{G}\right)=\kappa_{i}(p)
$$

Proof. we prove (1) by induction on $\kappa_{i}(p)$. If $\kappa_{i}(p)=0$, then $C_{G} \cap\left[\kappa_{i-1}(p), \kappa_{i}(p)\right)=\left\{\kappa_{i-1}(p)\right\}$. Hence

$$
\operatorname{otp}\left(C_{G} \cap\left[\kappa_{i-1}(p), \kappa_{i}(p)\right)\right)=1=\omega^{0}=\omega^{o^{\vec{U}}\left(\kappa_{i}(p)\right)}
$$

Assume the lemma holds for any $\delta<\kappa_{i}(p)$. If $o^{\vec{U}}\left(\kappa_{i}(p)\right)=\alpha+1 \leq \kappa_{i}(p)$, then the set $X=\left\{\beta<\kappa_{i}(p) \mid o^{\vec{U}}(\beta)=\alpha\right\} \in U\left(\kappa_{i}(p), \alpha\right)$, hence by proposition 2.15,

$$
\sup \left(X \cap C_{G} \cap\left[\kappa_{i-1}(p), \kappa_{i}(p)\right)\right)=\kappa_{i}(p)
$$

We claim that $\operatorname{otp}\left(X \cap C_{G} \cap\left[\kappa_{i-1}(p), \kappa_{i}(p)\right)=\omega\right.$. Otherwise, let $\rho<\kappa_{i}(p)$ be such that ρ is a limit point of $X \cap C_{G} \cap\left[\kappa_{i-1}(p), \kappa_{i}(p)\right)$. Again by proposition 2.15,

$$
o^{\vec{U}}(\rho) \geq \lim \sup \left(o^{\vec{U}}(\xi) \mid \xi \in X \cap C_{G} \cap\left[\kappa_{i-1}(p), \kappa_{i}(p)\right)\right)=\alpha+1
$$

Contradicting 2.2. Let $\left\langle\delta_{n} \mid n<\omega\right\rangle$ be the increasing enumeration of $X \cap C_{G} \cap\left[\kappa_{i-1}(p), \kappa_{i}(p)\right)$. By induction hypothesis, for every $n<\omega, \operatorname{otp}\left(C_{G} \cap\left[\delta_{n}, \delta_{n+1}\right)\right)=\omega^{\alpha}$. Hence,

$$
\operatorname{otp}\left(C_{G} \cap\left[\kappa_{i-1}(p), \kappa_{i}(p)\right)=\omega^{\alpha+1}\right.
$$

For limit $o^{\vec{U}}\left(\kappa_{i}(p)\right)$, use proposition 2.15.5, to see that the sequence $\left\langle\delta_{\alpha} \mid \alpha<o^{\vec{U}}\left(\kappa_{i}(p)\right)\right\rangle$ where

$$
\delta_{\alpha}=\min \left(\rho \in C_{G} \cap\left[\kappa_{i-1}(p), \kappa_{i}(p)\right) \mid o^{\vec{U}}(\rho)=\alpha\right)
$$

is well defined. $x=\sup \left(\delta_{\alpha} \mid \alpha<\theta\right) \leq \kappa_{i}(p)$ is an element of C_{G}, and by proposition 2.15.4, $o^{\vec{U}}(x) \geq o^{\vec{U}}\left(\kappa_{i}(p)\right)$, hence $x=\kappa_{i}(p)$. For every $\alpha<o^{\vec{U}}\left(\kappa_{i}(p)\right)$, otp $\left(C_{G} \cap\left[\kappa_{i}(p), \delta_{\alpha}\right)\right)=\omega^{\alpha}$, since $p^{\curvearrowleft}\left\langle\delta_{\alpha}\right\rangle \in G$ and by induction hypothesis. It follows that $\operatorname{otp}\left(C_{G} \cap\left[\kappa_{i-1}(p), \kappa_{i}(p)\right)=\sup _{\alpha<o^{\vec{U}}\left(\kappa_{i}(p)\right)}\left(\operatorname{otp}\left(C_{G} \cap\left[\kappa_{i-1}(p), \delta_{\alpha}\right)\right)=\sup _{\alpha<o^{\vec{U}}\left(\kappa_{i}(p)\right)} \omega^{\alpha}=\omega^{o^{\vec{U}}\left(\kappa_{i}(p)\right)}\right.\right.$

For (2), use (1), and the limit stage to conclude that if $o^{\vec{U}}\left(\kappa_{i}(p)\right)=\kappa_{i}(p)$, then

$$
\operatorname{otp}\left(C_{G} \cap\left[\kappa_{i-1}(p), \kappa_{i}(p)\right)=\kappa_{i}(p)\right.
$$

If $o^{\vec{U}}\left(\kappa_{i}(p)\right)>\kappa_{i}(p)$, then $\left.\left\{\alpha<\kappa_{i}(p)\right) \mid o^{\vec{U}}(\alpha)=\alpha\right\} \in U\left(\kappa_{i}(p), \kappa_{i}(p)\right)$, hence by proposition 2.15, there are unboundedly many $\alpha \in C_{G} \cap\left[\kappa_{i-1}(p), \kappa_{i}(p)\right)=: Y$ such that ${ }^{\vec{U}}(\alpha)=\alpha$. Hence

$$
\kappa_{i}(p)=\sup (Y)=\sup \left(o \operatorname{tp}\left(C_{G} \cap\left[\kappa_{i-1}(p), \alpha\right) \mid \alpha \in Y\right) \leq \kappa_{i}(p)\right.
$$

So equality holds.
Proposition 2.17 suggest a connection between the index in C_{G} of ordinals appearing in p and Cantor normal form.

Definition 2.18 Let $p \in G$. For each $i \leq l(p)$ define

$$
\gamma_{i}(p)=\sum_{j=1}^{i} \omega^{o^{\vec{U}}\left(\kappa_{j}(p)\right)}
$$

Corollary 2.19 Let G be $\mathbb{M}[\vec{U}]$-generic and C_{G} the corresponding Magidor sequence. Let $p \in G$, then for every $1 \leq i \leq l(p)$

$$
p \Vdash{\underset{\sim}{C}}_{G}\left(\gamma_{i}(p)\right)=\kappa\left(t_{i}\right)
$$

Proof. This is directly from 2.17.
For more details and basic properties of Magidor forcing see [5],[2] or [1].
We are going to handle subsequences of the generic club, the following simple definition will turn out being usefull.

Definition 2.20 Let X, X^{\prime} be sets of ordinals such that $X^{\prime} \subseteq X \subseteq O n$. Let $\alpha=\operatorname{otp}(X, \in)$ be the order type of X and $\phi: \alpha \rightarrow X$ be the order isomorphism witnessing it. The indices of X^{\prime} in X are

$$
I\left(X^{\prime}, X\right)=\phi^{-1^{\prime \prime}} X^{\prime}=\left\{\beta<\alpha \mid \phi(\beta) \in X^{\prime}\right\}
$$

In the last part of the proof we will need the definition of quotient forcing.
Definition 2.21 Let $\underset{\sim}{C^{\prime}}$ be a $\mathbb{M}[\vec{U}]$-name such that $\underset{\sim}{C_{G}^{\prime}}=C^{\prime}$. Define $\mathbb{P}_{C^{\prime}}$, the complete subalgebra of $R O(\mathbb{M}[\vec{U}])$ generated by the conditions $X=\left\{\left\|\alpha \in C_{\sim}^{\prime}\right\| \mid \alpha<\kappa\right\}$.

By $[4,15.42], V\left[C^{\prime}\right]=V[H]$ for some V-generic filter H of $\mathbb{P}_{C^{\prime}}$. In fact

$$
C^{\prime}=\left\{\alpha<\kappa\| \| \alpha \in{\underset{\sim}{C}}^{\prime} \| \in X \cap H\right\}
$$

Definition 2.22 Define the function $\pi: \mathbb{M}[\vec{U}] \rightarrow \mathbb{P}_{C^{\prime}}$ by

$$
\pi(p)=\inf \left(b \in \mathbb{P}_{C_{C^{\prime}}} \mid b \geq p\right)
$$

It not hard to check that π is a projection i.e.

1. π is order preserving.
2. $\forall p \in \mathbb{M}[\vec{U}] \forall \pi(p) \leq q \exists p^{\prime} \geq p . \pi\left(p^{\prime}\right) \geq q$.
3. $\operatorname{Im}(\pi)$ is dense in $\mathbb{P}_{\mathcal{C}^{\prime}}$.

Definition 2.23 Let $\pi: \mathbb{P} \rightarrow \mathbb{Q}$ be any projection, let $H \subseteq \mathbb{Q}$ be V-generic, define

$$
\mathbb{P} / H=\pi^{-1^{\prime \prime}} H
$$

We abuse notation by defining $\mathbb{M}[\vec{U}] / C^{\prime}=\mathbb{M}[\vec{U}] / H$, where H is some generic for $\mathbb{P}_{C^{\prime}}$ such that $V[H]=V\left[C^{\prime}\right]$. It is known that if G is $V\left[C^{\prime}\right]$-generic for $\mathbb{M}[\vec{U}] / C^{\prime}$ then G is V generic for $\mathbb{M}[\vec{U}]$ and $\pi^{\prime \prime} G=H$, hence $V[G]=V\left[C^{\prime}\right][G]$.

3 Magidor forcing with $o^{\vec{U}}(\kappa) \leq \kappa$

Proposition 3.1 Assume that $o^{\vec{U}}(\kappa) \leq \kappa$. Let $G \subseteq \mathbb{M}[\vec{U}]$ be a V-generic filter, and let $p \in G$. Then $\operatorname{otp}\left(C_{G} \cap\left(\kappa_{l(p)}(p), \kappa\right)\right)=\omega^{\overrightarrow{o^{U}}(\kappa)}$. Hence, $c f^{V[G]}(\kappa)=c f^{V[G]}\left(\omega^{o^{\vec{U}}(\kappa)}\right)$.

Corollary 3.2 1. If $o^{\vec{U}}(\kappa)<\kappa$, then κ is singular in $V[G]$.
2. If $o^{\vec{U}}(\kappa)=\kappa$, then $c f^{V[G]}(\kappa)=\omega$.

Proof. (1) is direct from proposition 3.1. For (2), The set $E=\left\{\alpha<\kappa \mid o^{\vec{U}}(\alpha)<\alpha\right\} \in \cap \vec{U}(\kappa)$. Hence, by proposition 2.15 find $\rho<\kappa$ such that $C_{G} \backslash \rho \subseteq E$. In $V[G]$ consider the sequence: $\alpha_{0}=\min \left(C_{G} \backslash \rho\right)$, then $\alpha_{n+1}=C_{G}\left(\alpha_{n}\right)$. This is a well defined sequence of ordinals below κ since $\operatorname{otp}\left(C_{G}\right)=\kappa$. Also, since $\left\{\alpha<\kappa \mid \omega^{\alpha}=\alpha\right\} \in \cap \vec{U}(\kappa)$, there is $n<\omega$, such that for every $m \geq n, o^{\vec{U}}\left(\alpha_{m+1}\right)=\alpha_{m}$.

To see that $\alpha^{*}:=\sup _{n<\omega} \alpha_{n}=\kappa$, assume otherwise, then by closure of $C_{G}, \alpha^{*} \in C_{G}$. Also $\alpha^{*}>\rho$, hence $o^{\vec{U}}\left(\alpha^{*}\right)<\alpha^{*}$. By proposition 2.15.4,

$$
o^{\vec{U}}\left(\alpha^{*}\right) \geq \limsup _{n<\omega} o^{\vec{U}}\left(\alpha_{n}\right)+1=\sup _{n<\omega} \alpha_{n}=\alpha^{*}
$$

contradiction.
If $o^{\vec{U}}(\kappa) \leq \kappa$. We can decompose every set $A \in \cap \vec{U}(\kappa)$ in a very canonical way:
Proposition 3.3 Assume that $o^{\vec{U}}(\kappa) \leq \kappa$. Let $A \in \cap \vec{U}(\kappa)$.

1. For every $i<\kappa$ define $A_{i}=\left\{\nu \in A \mid o^{\vec{U}}(\nu)=i\right\}$. Then $A=\biguplus_{i<\kappa} A_{i}$ and $A_{i} \in U(\kappa, i)$.
2. There exists $A^{*} \subseteq A$ such that:
(a) $A^{*} \in \cap \vec{U}(\kappa)$
(b) For every $0<j<o^{\vec{U}}(\kappa)$ and $\alpha \in A_{j}^{*}, A^{*} \cap \alpha \in \cap \vec{U}(\alpha)$.

Proof. 1. Note that $X_{i}:=\left\{\nu<\kappa \mid o^{\vec{U}}(\nu)=i\right\} \in U(\kappa, i)$ and $A_{i}=X_{i} \cap A \in U(\kappa, i)$. Moreover, every $\alpha<\kappa$ must satisfy $o^{\vec{U}}(\alpha)<\kappa$, since there are at most $2^{2^{\alpha}}<\kappa$ measures on α.
2. For any $i<o^{\vec{U}}(\kappa)$,

$$
U l t(V, U(\kappa, j)) \models A=j_{U(\kappa, j)}(A) \cap \kappa \in \bigcap_{i<j} U(\kappa, i)
$$

Coherency of the sequence imply that $A^{\prime}:=\{\alpha<\kappa \mid A \cap \alpha \in \cap \vec{U}(\alpha)\} \in U(\kappa, j)$, this is for every $j<o^{\vec{U}}(\kappa)$.
Define inductively $A^{(0)}=A, A^{(n+1)}=A^{\prime(n)}$. By definition, $\forall \alpha \in A_{j}^{(n+1)}, A^{(n)} \cap \alpha \in \cap \vec{U}(\alpha)$. Define $A^{*}=\bigcap_{n<\omega} A^{(n)} \in \cap \vec{U}(\kappa)$, this set has the required property.

3.1 Extention Type

Definition 3.4 Let $p \in \mathbb{M}[\vec{U}]$. Define

1. For every $i \leq l(p)+1$, let $B_{i, j}(p)=B_{i}(p) \cap X_{j}$, where $X_{j}:=\left\{\alpha<\kappa \mid \overrightarrow{o^{\prime}}(\alpha)=j\right\}$ are the sets defined in 3.3.
2. $E x(p)=\prod_{i=1}^{l(p)+1}\left[o^{\vec{U}}\left(\kappa_{i}(p)\right)\right]^{[<\omega]}\left([\lambda]^{[<\omega]}\right.$ is the set of finite, not necessarily increasing sequences in λ).
3. If $X \in E x(p)$, then X is of the form $\left\langle X_{1}, \ldots, X_{n+1}\right\rangle$. Denote $x_{i, j}$, the j-th element of X_{i}, for $1 \leq j \leq\left|X_{i}\right|$ and $m c(X)$ is the last element of X.
4. Let $X \in E x(p)$, then

$$
\vec{\alpha}=\left\langle\overrightarrow{\alpha_{1}}, \ldots, \alpha_{l(\vec{p})+1}\right\rangle \in \prod_{i=1}^{l(p)+1\left|X_{i}\right|} \prod_{j=1} B_{i, x_{i, j}}(p)=: X(p)
$$

call X an extension-type of p and $\vec{\alpha}$ is of type X, note that $\vec{\alpha}$ is an increasing sequence of ordinals.

The idea of extension types is simply to classify extensions of p according to the measures from which the ordinals added to the stem of p are chosen. Note that if $o^{\vec{U}}(\kappa)=\lambda<\kappa$ then there is a bound on the number of extension types, $|E x(p)|<\min \left(\nu>\lambda \mid o^{\vec{U}}(\nu)>0\right)$.

By proposition 3.3 any $p \in \mathbb{M}[\vec{U}]$ can be extended to $p \leq^{*} p^{*}$ such that for every $X \in$ $E x(p)$ and any $\vec{\alpha} \in X(p), p^{-} \vec{\alpha} \in \mathbb{M}[\vec{U}]$. Let us move to this dense subset of $\mathbb{M}[\vec{U}]$.

Proposition 3.5 Let $p \in \mathbb{M}[\vec{U}]$ be any condition and $p \leq q \in \mathbb{M}[\vec{U}]$. Then there exists unique $X \in E x(p)$ and $\vec{\alpha} \in X(p)$ such that $p \curvearrowleft \vec{\alpha} \leq^{*} q$. Moreover, for every $X \in E x(p)$ the set $\left\{p^{\complement} \vec{\alpha} \mid \vec{\alpha} \in X(p)\right\}$ form a maximal antichain above p.

Proof. The first part is trivial. We will prove that $\left\{p^{\wedge} \vec{\alpha} \mid \vec{\alpha} \in X(p)\right\}$ form a antichain above p, by induction on $|X|$. For $|X|=1$, we merely have some $X(p)=B_{i, \xi}(p) \in U\left(\kappa_{i}(p), \xi\right)$. To see it is an antichain, let $\beta_{1}<\beta_{2}$ are in $X(p)$. Toward a contradiction, assume that $p^{\wedge} \beta_{1}, p^{\curvearrowleft} \beta_{2} \leq q$, then β_{1} appear in a pair in q and is added between $\kappa_{i-1}(p)$ and β_{2}, so by definition 2.2, it must be that $\xi=o^{\vec{U}}\left(\beta_{1}\right)<o^{\vec{U}}\left(\beta_{2}\right)=\xi$ contradiction.

To see it is maximal, fix $q \geq p$ and let $\vec{\alpha}$ be such that $p^{\frown} \vec{\alpha} \leq^{*} q$. Consider the type of $\vec{\alpha}$,

$$
Y \in E x(p)
$$

, then $\vec{\alpha} \in Y(p)$. In Y_{i} let j be the minimal such that $y_{i, j} \geq \xi$. If $y_{i, j}=\xi$ then $q \geq p^{\curvearrowleft}\left\langle\alpha_{i, j}\right\rangle \in$ $X(p)$ and we are done. Otherwise, $y_{i, j}>\xi$, then one of the pairs in q is of the form $\left\langle\alpha_{i, j}, B\right\rangle$ where $B \in \cap \vec{U}\left(\alpha_{i, j}\right)$ and $B \subseteq B_{i}(p)$. Any $\alpha \in B \cap B_{i, \xi}(p)$, will satisfy that $p^{\complement}\langle\alpha\rangle \in X(p)$ and $p^{\complement}\langle\alpha\rangle, q \leq q^{\curvearrowleft}\langle\alpha\rangle$.

Assume that the claim holds for n, and let $X \in E x(p)$ be such that $|X|=n+1$. Let $\vec{\alpha}, \vec{\beta} \in X(p)$ be distinct, if for some $x_{i, j} \neq m c(X)$ we have $\alpha_{i, j} \neq \beta_{i, j}$ apply the induction to $X \backslash m c(X)$ to see that $p^{\complement} \vec{\alpha} \backslash \alpha^{*}, p^{\complement} \vec{\beta} \backslash \beta^{*}$ are incompatible, hence $p^{\complement} \vec{\alpha}, p^{\complement} \vec{\beta}$ are incompatible. If $\vec{\alpha} \backslash \alpha^{*}=\vec{\beta} \backslash \beta^{*}$, then $\alpha^{*} \neq \beta^{*}$ and by the case $n=1$ we are done. To see it is maximal, let $q \geq p$ apply the induction to $X \backslash m c(X)$ to find $\vec{\alpha} \in[X \backslash m c(X)](p)$ such that $p^{\curvearrowleft} \vec{\alpha}$ is compatible with q and let q^{\prime} be a common extension. Again by the case $n=1$, there is $\langle\alpha\rangle \in m c(X)\left(p^{\frown} \vec{\alpha}\right)$ such that $p^{\frown} \vec{\alpha}^{\wedge}\langle\alpha\rangle$ and q^{\prime} are compatible.

Definition 3.6 Let U_{1}, \ldots, U_{n} be ultrafilters on a $\kappa_{1} \leq \ldots \leq \kappa_{n}$ respectively, define recursively the ultrafilter $\prod_{i=1}^{n} U_{i}$ over $\prod_{i=1}^{n} \kappa_{i}$, as follows: for $B \subseteq \prod_{i=1}^{n} \kappa_{i}$

$$
B \in \prod_{i=1}^{n} U_{i} \leftrightarrow\left\{\alpha_{1}<\kappa_{1} \mid B_{\alpha_{1}} \in \prod_{i=2}^{n} U_{i}\right\} \in U_{1}
$$

where $B_{\alpha}=B \cap\left(\{\alpha\} \times \prod_{i=2}^{n} \kappa_{i}\right)$.
Proposition 3.7 If U_{1}, \ldots, U_{n} are normal θ-complete ultrafilter, then $\prod_{i=1}^{n} U_{i}$ is generated by sets of the form $A_{1} \times \ldots \times A_{n}$ (increasing sequences of the product) such that $A_{i} \in U_{i}$.

Proof. Directly from the definition of normality.
Every $X \in E x(p)$ defines an ultrafilter

$$
\vec{U}(X, p)=\prod_{i=1}^{n+1} \prod_{j=1}^{\left|X_{i}\right|} U\left(\kappa_{i}(p), x_{i, j}\right)
$$

Note that $X(p) \in \vec{U}(X, p)$ by the definition of the product. Fix an extension type X of p, every extension of p of type X correspond to some element in the set $X(p)$ which is just a product of large sets.

Let us state here some combinatorical properties, the proof can be found in [1].
Lemma 3.8 Let $\kappa_{1} \leq \kappa_{2} \leq \ldots \leq \kappa_{n}$ be a non descending finite sequence of measurable cardinals and let U_{1}, \ldots, U_{n} be normal measures ${ }^{3}$ over them respectively. Assume $F: \prod_{i=1}^{n} A_{i} \longrightarrow$

[^2]ν where $\nu<\kappa_{1}$ and $A_{i} \in U_{i}$. Then there exists $H_{i} \subseteq A_{i}, H_{i} \in U_{i}$ such that $\prod_{i=1}^{n} H_{i}$ is homogeneous for F i.e. $\left|\operatorname{Im}\left(F \upharpoonright \prod_{i=1}^{n} H_{i}\right)\right|=1$.

Let $F: \prod_{i=1}^{n} A_{i} \rightarrow X$ be a function, and $I \subseteq\{1, \ldots, n\}$. Let

$$
\left(\prod_{i=1}^{n} A_{i}\right)_{I}=\left\{\vec{\alpha} \upharpoonright I \mid \vec{\alpha} \in \prod_{i=1}^{n} A_{i}\right\}
$$

For $\vec{\alpha}^{\prime} \in\left(\prod_{i=1}^{n} A_{i}\right)_{I}$, define $F_{I}\left(\vec{\alpha}^{\prime}\right)=F(\vec{\alpha})$ where $\vec{\alpha} \upharpoonright I=\vec{\alpha}^{\prime}$. With no further assumption, F_{I} is not a well define function.

Lemma 3.9 Let $\kappa_{1} \leq \kappa_{2} \leq \ldots \leq \kappa_{n}$ be a non descending finite sequence of measurable cardinals and let U_{1}, \ldots, U_{n} be normal measures over them respectively. Assume $F: \prod_{i=1}^{n} A_{i} \longrightarrow$ B where B is any set, and $A_{i} \in U_{i}$. Then there exists $H_{i} \subseteq A_{i}, H_{i} \in U_{i}$ and set $I \subseteq\{1, \ldots, n\}$ such that $F_{I} \upharpoonright\left(\prod_{i=1}^{n} H_{i}\right)_{I}:\left(\prod_{i=1}^{n} H_{i}\right)_{I} \rightarrow B$ is well defined and injective.

Definition 3.10 Let $F: \prod_{i=1}^{n} A_{i} \rightarrow X$ be a function. An important coordinate is an index $r \in\{1, \ldots, n\}$, such that for every $\vec{\alpha}, \vec{\beta} \in \prod_{i=1}^{n} A_{i}, F(\vec{\alpha})=F(\vec{\beta}) \rightarrow \vec{\alpha}(r)=\vec{\beta}(r)$.

Proposition 3.9 insures the existence of a set I of important coordinates, such that I is ideal in the sense that removing any coordinate defect definition of F_{I} as a function, and any coordinate outside of I is redundant.

We will need here another property that does not appear in [1].
Lemma 3.11 Let $\kappa_{1} \leq \kappa_{2} \leq \ldots \leq \kappa_{n}$ and $\theta_{1} \leq \theta_{2} \ldots \leq \theta_{m}$ be a non descending finite sequences of measurable cardinals with coresponding normal measures $U_{1}, \ldots, U_{n}, W_{1}, \ldots, W_{m}$. Let

$$
F: \prod_{i=1}^{n} A_{i} \rightarrow X, G: \prod_{j=1}^{m} B_{j} \rightarrow X
$$

be functions such that X is any set, $A_{i} \in U_{i}$ and $B_{j} \in W_{j}$. Assume that $I \subseteq\{1, \ldots, n\}$ and $J \subseteq\{1, \ldots, m\}$ are sets of important coordinates for F, G respectively obtained by lemma 3.9. Then there exists $A_{i}^{\prime} \in U_{i}$ and $B_{j}^{\prime} \in W_{j}$. such that one of the following holds

1. $\operatorname{Im}\left(F \upharpoonright \prod_{i=1}^{n} A_{i}^{\prime}\right) \cap \operatorname{Im}\left(G \upharpoonright \prod_{j=1}^{m} B_{j}^{\prime}\right)=\emptyset$.
2. $\left(\prod_{i=1}^{n} A_{j}^{\prime}\right)_{I}=\left(\prod_{j=1}^{m} B_{j}^{\prime}\right)_{J}$ and $F_{I} \upharpoonright\left(\prod_{i=1}^{n} A_{i}^{\prime}\right)_{I}=G_{J} \upharpoonright\left(\prod_{j=1}^{m} B_{j}^{\prime}\right)_{J}$.

Proof. Fix F, G. without loss of generality, assume that $\kappa_{1} \leq \theta_{1}$. If $\kappa_{1}<\theta_{1}$ shrink the sets so that $\min \left(B_{1}\right)>\kappa_{1}$. By induction on $\langle n, m\rangle \in \mathbb{N}_{+}^{2}$.

Case 1: Assume that $n=m=1$, define

$$
H_{1}: A_{1} \times B_{1} \rightarrow\{0,1\}, \quad H(\alpha, \beta)=1 \Leftrightarrow F(\alpha)=G(\beta)
$$

By 3.8, shrink A_{1}, B_{1} to $A_{1}^{\prime}, B_{1}^{\prime}$ so that H_{1} are constant with colors c_{1}. If $c_{1}=1$ by fixing α we see that G is constant on B_{1}^{\prime} with some value γ. It follows that $J=\emptyset$. Also F is constant since for every $\alpha \in A_{1}^{\prime}$ we can take $\beta>\alpha$ and $F(\alpha)=G(\beta)=\gamma$. Hence $I=\emptyset$ and $F_{\emptyset} \upharpoonright\left(A_{1}^{\prime}\right)_{\emptyset}=G_{\emptyset} \upharpoonright\left(B_{1}^{\prime}\right)_{\emptyset}=\{\langle \rangle\}$. Assume that $c_{1}=0$, then for every $\alpha \in A_{1}, \beta \in B_{1}$ if $\alpha<\beta$ then $H_{1}(\alpha, \beta)=0$, this suffices for the case $\kappa_{1}<\theta_{1}$. If $\kappa_{1}=\theta_{1}$, define

$$
H_{2}: B_{1} \times A_{1} \rightarrow\{0,1\} \quad H_{2}(\beta, \alpha)=1 \Leftrightarrow F(\alpha)=G(\beta)
$$

Again shrink the sets so that H_{2} is constantly $c_{2} \in\{0,1\}$. The case $c_{2}=1$ is similar to $c_{1}=1$. Assume that $c_{2}=0$, hence if $\beta<\alpha$ then $H_{2}(\beta, \alpha)=0$, it follows that $F(\alpha) \neq G(\beta)$. If $U_{1} \neq W_{1}$ then we are done since we can separate $A_{1}^{\prime}, B_{1}^{\prime}$ and conclude that

$$
\operatorname{Im}\left(F \upharpoonright A_{1}^{\prime}\right) \cap \operatorname{Im}\left(G \upharpoonright B_{1}^{\prime}\right)=\emptyset
$$

If $U_{1}=W_{1}$ then define

$$
H_{3}: A_{1}^{\prime} \cap B_{1}^{\prime} \rightarrow\{0,1\}, \quad H_{3}(\alpha)=1 \Leftrightarrow F(\alpha)=G(\alpha)
$$

Again by 3.8 we can assume that H_{3} is constant on A^{*}, if that constant is 1 then we have $F \upharpoonright A^{*}=G \upharpoonright A^{*}$ (in particular $I=J=\{1\}$ and $\left.F_{I} \upharpoonright\left(A^{*}\right)_{I}=G_{J} \upharpoonright\left(A^{*}\right)_{J}\right)$ otherwise,

$$
\operatorname{Im}\left(F \upharpoonright A^{*}\right) \cap \operatorname{Im}\left(G \upharpoonright A^{*}\right)=\emptyset
$$

Case 2: Assume $\langle n, m\rangle>_{L E X}\langle 1,1\rangle$ If $n=1$, define

$$
H_{1}: A_{1} \times \prod_{j=1}^{m} B_{j} \rightarrow\{0,1\}, \quad H_{1}(\alpha, \vec{\beta})=1 \Leftrightarrow F(\alpha)=G(\vec{\beta})
$$

Shrink the sets so that H_{1} is constantly c_{1}. As before, if $c_{1}=1$ then F, G are constant on large sets, thus $I=J=\emptyset$ and we are done. Assume that $c_{1}=0$. If $n>1$, for $\alpha \in A_{1}$ define the functions

$$
F_{\alpha}: \prod_{i=2}^{n} A_{i} \backslash(\alpha+1) \rightarrow X, \quad F_{\alpha}(\vec{\alpha})=F(\alpha, \vec{\alpha})
$$

By the induction hypothesis applied to F_{α}, G and $I \backslash\{1\}, J$, we obtain

$$
A_{i}^{\alpha} \in U_{i} \text { for } 2 \leq i \leq n, \quad B_{j}^{\alpha} \in W_{j} \text { for } 1 \leq j \leq m
$$

such that one of the following holds:

1. $\left(\prod_{i=2}^{n} A_{i}^{\alpha}\right)_{I \backslash\{1\}}=\left(\prod_{j=1}^{m} B_{j}^{\alpha}\right)_{J}$, and $\left(F_{\alpha}\right)_{I \backslash\{1\}} \upharpoonright\left(\prod_{i=2}^{n} A_{i}^{\alpha}\right)_{I \backslash\{1\}}=G_{J} \upharpoonright\left(\prod_{j=1}^{m} B_{j}^{\alpha}\right)_{J}$.
2. $\operatorname{Im}\left(F_{\alpha} \upharpoonright \prod_{i=2}^{n} A_{i}^{\alpha}\right) \cap \operatorname{Im}\left(G \upharpoonright \prod_{j=1}^{m} B_{j}^{\alpha}\right)=\emptyset$.

Denote by $i_{\alpha} \in\{1,2\}$ the relevant case. There is $A_{1}^{\prime} \subseteq A_{1}, A_{1}^{\prime} \in U_{1}$, and $i^{*} \in\{1,2\}$ such that for every $\alpha \in A_{1}^{\prime}, i_{\alpha}=i^{*}$. Let

$$
A_{i}^{\prime}=\underset{\alpha \in A_{1}}{\Delta} A_{i}^{\alpha}, B_{j}^{\prime}=\underset{\alpha \in A_{1}}{\Delta} B_{j}^{\alpha} \text { (Since } \theta_{1} \geq \kappa_{1} \text { we can take the diagonal intersection) }
$$

If $i^{*}=1$, then $\left(\prod_{i=2}^{n} A_{i}^{\alpha}\right)_{I \backslash\{1\}}=\left(\prod_{j=1}^{m} B_{j}^{\alpha}\right)_{J}$, denote by $I \backslash\{1\}=\left\{i_{1}, \ldots, i_{k}\right\}, J=\left\{j_{1}, \ldots, j_{k}\right\}$. Then necessarily, $U_{i_{r}}=W_{j_{r}}$ for every $1 \leq r \leq k$. Define

$$
A_{i_{r}}^{*}=B_{j_{r}}^{*}:=A_{i_{r}}^{\prime} \cap B_{j_{r}}^{\prime}
$$

If $i \notin I$ or $j \notin J$ then keep $A_{i}^{*}=A_{i}^{\prime}$ and $B_{j}^{*}=B_{j}^{\prime}$. Then $\left(\prod_{i=1}^{n} A_{i}^{*}\right)_{I \backslash\{1\}}=\left(\prod_{j=1}^{m} B_{j}^{\prime}\right)_{J}$. Let $\alpha, \alpha^{\prime} \in A_{1}^{\prime}, \vec{\alpha} \in \prod_{i=2}^{n} A_{i}^{\prime}$ with $\min (\vec{\alpha})>\alpha, \alpha^{\prime}$, then

$$
F_{\alpha}(\vec{\alpha})=\left(F_{\alpha}\right)_{I \backslash\{1\}}(\vec{\alpha} \upharpoonright I)=G_{J}(\vec{\alpha} \upharpoonright I)=\left(F_{\alpha^{\prime}}\right)_{I \backslash\{1\}}(\vec{\alpha} \upharpoonright I)=F_{\alpha^{\prime}}(\vec{\alpha})
$$

From this it follows that $1 \notin I$ and $F_{I}=F_{I \backslash\{1\}}=G_{J}$. Assume $i^{*}=2$. If $\theta_{1}=\kappa_{1}$, we repeat the same process, if $m=1$ we define H_{2} as above, if $c_{2}=1$ again we are done, so we assume that $c_{2}=0$. If $m>1$ we use G_{β} and fix F, denoting j_{β} the relevant case, shrink the sets so that j^{*} is constant. In case $j^{*}=1$ the proof is the same as $i^{*}=1$. So we assume that $i^{*}=j^{*}=2$, meaning that for every $\langle\alpha, \vec{\alpha}\rangle \in \prod_{i=1}^{n} A_{i}^{\prime}$ and every $\langle\beta, \vec{\beta}\rangle \in \prod_{j=1}^{m} B_{j}^{\prime}$ if $\alpha<\beta$ then $\langle\beta, \vec{\beta}\rangle \in \prod_{j=1}^{m} B_{j}^{\alpha}$ and by $i^{*}=2$ (or $c_{1}=0$ if $n=1$)

$$
F(\alpha, \vec{\alpha})=F_{\alpha}(\vec{\alpha}) \neq G(\beta, \vec{\beta})
$$

Similarly, if $\beta<\alpha$ then $\langle\alpha, \vec{\alpha}\rangle \in \prod_{i=1}^{n} A_{i}^{\beta}$ and by $j^{*}=2$ (or $c_{2}=0$), $F(\alpha, \vec{\alpha}) \neq G(\beta, \vec{\beta})$. Hence we are left with the case $\alpha=\beta$.

Case 2a: Assume that $U_{1} \neq W_{1}$ Then we can just shrink the sets $A_{1}^{\prime}, B_{1}^{\prime}$ so that $A_{1}^{\prime} \cap B_{1}^{\prime}=\emptyset$. Together with the construction of case 2 , conclude that

$$
\operatorname{Im}\left(F \upharpoonright \prod_{i=1}^{n} A_{i}^{\prime}\right) \cap \operatorname{Im}\left(G \upharpoonright \prod_{j=1}^{m} B_{j}^{\prime}\right)=\emptyset
$$

Case 2b: Assume that $U_{1}=W_{1}$, then we shrink the sets so that $A_{1}^{\prime}=B_{1}^{\prime}$. If $n=1$ (the case $m=1$ is similar) let

$$
T_{1}: A_{1}^{\prime} \times \prod_{j=2}^{m} B_{j}^{\prime} \rightarrow\{0,1\}, \quad T_{1}(\alpha, \vec{\beta})=1 \Leftrightarrow F(\alpha)=G(\alpha, \vec{\beta})
$$

We shrink A_{1}^{\prime} and B_{j}^{\prime} so that T_{1} is constantly d_{1}. If $d_{1}=0$ then we have eliminated the possibility of $\alpha=\beta$ and $F(\alpha)=G(\beta, \vec{\beta})$ and so we are done again we conclude that

$$
\operatorname{Im}\left(F \upharpoonright \prod_{i=1}^{n} A_{i}^{\prime}\right) \cap \operatorname{Im}\left(G \upharpoonright \prod_{j=1}^{m} B_{j}^{\prime}\right)=\emptyset
$$

If $d_{1}=1$ then $F \upharpoonright A_{1}^{\prime}=G_{\{1\}} \upharpoonright\left(A_{1}^{\prime} \times \prod_{j=2}^{m} B_{j}^{\prime}\right)_{\{1\}}$. In particular $J \subseteq\{1\}$, it follows that $F_{I} \upharpoonright\left(A_{1}^{\prime}\right)_{I}=G_{J} \upharpoonright\left(A_{1}^{\prime} \times \prod_{j=2}^{m} B_{j}^{\prime}\right)_{J}$. If $n, m>1$, for every $\alpha \in A_{1}^{\prime}$ we apply the induction hypothesis to the functions F_{α}, G_{α}, this time denoting the cases by r^{*}. If $r^{*}=2$, then we have eliminated the possibility of $F(\alpha, \vec{\alpha})=G(\alpha, \vec{\beta})$, together with $i^{*}=2, j^{*}=2$ we are done. Finally, assume $r^{*}=1$, namely that for

$$
I^{*}:=I \backslash\{1\} \subseteq\{2, \ldots, n\}, J^{*}:=J \backslash\{1\} \subseteq\{2, \ldots, m\}
$$

We have

$$
\left(\prod_{i=2}^{n} A_{i}^{\prime}\right)_{I^{*}}=\left(\prod_{j=2}^{m} B_{j}^{\prime}\right)_{J^{*}} \text { and }\left(F_{\alpha}\right)_{I^{*}} \upharpoonright\left(\prod_{i=2}^{n} A_{i}^{\prime}\right)_{I^{*}}=\left(G_{\alpha}\right)_{J^{*}} \upharpoonright\left(\prod_{j=2}^{m} B_{j}^{\prime}\right)_{J^{*}}
$$

Since $A_{1}^{\prime}=B_{1}^{\prime}$ it follows that

$$
\begin{equation*}
\left(\prod_{i=1}^{n} A_{i}^{\prime}\right)_{I^{*} \cup\{1\}}=\left(\prod_{j=1}^{m} B_{j}^{\prime}\right)_{\in J^{*} \cup\{1\}} \text { and }\left(F_{\alpha}\right)_{I^{*} \cup\{1\}} \upharpoonright\left(\prod_{i=2}^{n} A_{i}^{\prime}\right)_{I^{*}}=\left(G_{\alpha}\right)_{J^{*}} \upharpoonright\left(\prod_{j=2}^{m} B_{j}^{\prime}\right)_{J^{*} \cup\{1\}} \tag{*}
\end{equation*}
$$

Since if $\langle\alpha\rangle^{\wedge} \vec{\alpha} \in\left(\prod_{i=1}^{n} A_{i}^{\prime}\right)_{I}$,

$$
F_{I^{*} \cup\{1\}}(\alpha, \vec{\alpha})=\left(F_{\alpha}\right)_{I^{*}}(\vec{\alpha})=\left(G_{\alpha}\right)_{J^{*}}(\vec{\alpha})=G_{J^{*} \cup\{1\}}(\alpha, \vec{\alpha})
$$

We claim that $1 \in I$ if and only if $1 \in J$. By symmetry, it suffices to prom one implication, for example, if $1 \in I$, then $I=I^{*} \cup\{1\}$, take $\vec{\alpha} \upharpoonright I, \vec{\alpha}^{\prime} \upharpoonright I \in\left(\prod_{i=1}^{n} A_{i}^{\prime}\right)_{I}$ which differs only at the first coordinate, therefore $F(\vec{\alpha}) \neq F\left(\vec{\alpha}^{\prime}\right)$. By $(*)$, there are $\vec{\beta}, \vec{\beta}^{\prime} \in \prod_{i=1}^{m} B_{i}^{\prime}$ such that

$$
\vec{\beta} \upharpoonright\left(J^{*} \cup\{1\}\right)=\vec{\alpha} \upharpoonright I \text { and } \vec{\beta}^{\prime} \upharpoonright\left(J^{*} \cup\{1\}\right)=\vec{\alpha}^{\prime} \upharpoonright I
$$

It follows that from $(*)$ that $G(\vec{\beta})=F(\vec{\alpha}) \neq F\left(\vec{\alpha}^{\prime}\right)=G\left(\vec{\beta}^{\prime}\right)$, therefore $1 \in J$.
In any case, $F_{I} \upharpoonright\left(\prod_{i=1}^{n} A_{i}^{\prime}\right)_{I}=G_{J} \upharpoonright\left(\prod_{i=1}^{m} B_{i}^{\prime}\right)_{J}$.

4 The main result

Let us turn to prove the main result (theorem 1.1) for Magidor forcing with $o^{\vec{U}}(\kappa)<\kappa$. The proof presented here is based on what was done in [1] and before that in [3], it is a proof by induction of κ.

4.1 Short Sequences

In this section we prove the theorem for sets A of small cardinality.
Proposition 4.1 Let $p \in \mathbb{M}[\vec{U}]$ be any condition, X an extension type of p. For every $\vec{\alpha} \in X(p)$ let $p_{\vec{\alpha}} \geq^{*} p \subset \vec{\alpha}$. Then there exists $p \leq^{*} p^{*}$ such that for every $\vec{\beta} \in X\left(p^{*}\right)$, every $p^{*} \frown \vec{\beta} \leq q$ is compatible with $p_{\vec{\beta}}$.

Proof. By induction of $|X| . X=\langle\xi\rangle$, then $\vec{U}(X, p)=U\left(\kappa_{i}(p), \xi\right)$ and $X(p)=B_{i, \xi}(p)$. For each $\beta \in B_{i, \xi}(p)$

$$
p_{\beta}=\left\langle\left\langle\kappa_{1}(p), A_{1}^{\beta}\right\rangle, \ldots,\left\langle\kappa_{i-1}(p), A_{i-1}^{\beta}\right\rangle,\left\langle\beta, B_{\beta}\right\rangle,\left\langle\kappa_{i}(p), A_{i}^{\beta}\right\rangle, \ldots,\left\langle\kappa, A_{\beta}\right\rangle\right\rangle
$$

For $j>i$ let $A_{j}^{*}=\cap_{\beta \in B_{i, \xi}(p)} A_{j}^{\beta}$. For $j<i$ we can find A_{j}^{*} and shrink $B_{i, \xi}(p)$ to E_{ξ} so that for every $\beta \in E_{\xi}$ and $j<i A_{j}^{\beta}=A_{j}^{*}$. For i, first let $E=\Delta_{\alpha \in B_{i, \xi}(p)} A_{i}^{\beta}$. By ineffability of $\kappa_{i}(p)$ we can find $A_{\xi}^{*} \subseteq E_{\xi}$ and a set $B^{*} \subseteq \kappa_{i}(p)$ such that for every $\beta \in A_{\xi}^{*} B^{*} \cap \beta=B_{\beta}$. Claim that $B^{*} \in U\left(\kappa_{i}(p), \gamma\right)$ for every $\gamma<\xi$,

$$
U l t\left(V, U\left(\kappa_{i}(p), \xi\right)\right) \models B^{*}=j_{U\left(\kappa_{i}(p), j\right)}\left(B^{*}\right) \cap \kappa_{i}(p)
$$

and since

$$
\left\{\beta<\kappa \mid B^{*} \cap \beta \in \cap \vec{U}(\beta)\right\} \in U\left(\kappa_{i}(p), \xi\right)
$$

it follows that $B^{*} \in \cap j_{U\left(\kappa_{i}(p), \xi\right)}(\vec{U})\left(\kappa_{i}(p)\right)$. By coherency $B^{*} \in \cap_{\gamma<\xi} U\left(\kappa_{i}(p), \gamma\right)$. Define

$$
A_{i}^{*}=B^{*} \uplus A_{\xi}^{*} \uplus\left(\cup_{\xi<i} E_{i}\right) \in \cap \vec{U}\left(\kappa_{i}(p)\right)
$$

Let $q \geq p^{*} \beta$ and suppose that $q \geq^{*}\left(p^{*} \sim \beta\right) \frown \vec{\gamma}$. Then every $\gamma \in \vec{\gamma}$ such that $\gamma>\beta$ belong to some $A_{j}^{*} \backslash \beta$ for $j \geq i$, and by the definition of these sets $\gamma \in A_{j}^{\beta}$. If $\gamma<\kappa_{i-1}$ then also $\gamma \in A_{j}^{*}$ for some $j<i$. Since $\beta \in E_{\xi}$ it follows that $A_{j}^{\beta}=A_{j}^{*}$ so $\gamma \in A_{j}^{\beta}$. For $\gamma \in\left(\kappa_{i-1}, \beta\right)$, by definition of the order we have $o^{\vec{U}}(\gamma)<o^{\vec{U}}(\beta)=\xi$ and therefore $\gamma \in A_{i, \eta}^{*} \cap \beta$ for some $\eta<\xi$, but

$$
A_{i, \eta}^{*} \cap \beta \subseteq B^{*} \cap \beta=B_{\beta}
$$

it follows that q, p_{β} are compatible. For general X, fix $\min (\vec{\beta})=\beta$. Apply the induction hypothesis to $p^{\complement} \beta$ and $p_{\vec{\beta}}$ to find $p_{\beta}^{*} \geq^{*} p^{\complement} \beta$. Next apply the case $n=1$ to p_{β}^{*} and p, find $p^{*} \geq p$. Let $q \geq p^{*} \frown \vec{\beta}$ and denote $\beta=\min (\vec{\beta})$ then q is compatible with p_{β}^{*} thus let $q^{\prime} \geq q, p_{\beta}^{*}$. Since $q^{\prime} \geq p_{\beta}^{*}$ and $q^{\prime} \geq p^{*} \frown \vec{\beta}$ it follows that $q^{\prime} \geq p_{\beta}^{*-} \vec{\beta}$. Therefore there is $q^{\prime \prime} \geq q^{\prime}, p_{\vec{\beta}}$.

Lemma 4.2 Let $\lambda<\kappa, p \in \mathbb{M}[\vec{U}] \upharpoonright(\lambda, \kappa), q \in \mathbb{M}[\vec{U}] \upharpoonright \lambda$ and $X \in E x(p)$. Also. let $\underset{\sim}{x}$ be an ordinal $\mathbb{M}[\vec{U}]$-name. There is $p \leq^{*} p^{*}$ such that

$$
\text { If } \exists \vec{\alpha} \in X\left(p^{*}\right) \exists p^{\prime} \geq^{*} p^{*} \vec{\alpha}\left\langle q, p^{\prime}\right\rangle \| \underset{\sim}{x} \quad \text { Then } \forall \vec{\alpha} \in X\left(p^{*}\right)\left\langle q, p^{* \subset} \vec{\alpha}\right\rangle \| x
$$

Proof. Fix p, λ, q, X as in the lemma. Consider the set

$$
B_{0}=\left\{\vec{\beta} \in X(p) \mid \exists p^{\prime *} \geq p^{-} \vec{\beta} \text { s.t. }\left\langle q, p^{\prime}\right\rangle| | x\right\}
$$

One and only one of B_{0} and $X(p) \backslash B_{0}$ is in $\vec{U}(X, P)$. Denote this set by A^{\prime}. By proposition 3.7, we can find $A_{i, j}^{\prime} \in U\left(\alpha_{i}, x_{i, j}\right)$ such that $\prod_{i=1}^{l(p)+1} \prod_{j=1}^{\left|X_{i}\right|} A_{i, j}^{\prime} \subseteq A^{\prime}$, let $p \leq^{*} p^{\prime}$ be the condition obtained by shrinking $B_{i, j}(p)$ to $A_{i, j}^{\prime}$ so that $X\left(p^{\prime}\right)=\prod_{i=1}^{n+1} \prod_{j=1}^{\left|X_{i}\right|} A_{i, j}^{\prime}$. If

$$
\exists \vec{\beta} \in X\left(p^{\prime}\right) \exists p^{\prime \prime *} \geq p^{\prime} \frown \vec{\beta}\left\langle q, p^{\prime \prime}\right\rangle \| \underset{\sim}{x}
$$

Then $\vec{\beta} \in B_{0} \cap A^{\prime}$ and therefore $B_{0}=A^{\prime}$, we conclude that

$$
\forall \vec{\beta} \in X\left(p^{\prime}\right) \exists p_{\vec{\beta}}^{*} \geq p^{\prime} \frown \vec{\beta}\left\langle q, p_{\vec{\beta}}\right\rangle \| \underset{\sim}{x}
$$

By proposition 4.1 we can amalgamate all these $p_{\vec{\beta}}$ to find $p^{\prime} \leq^{*} p^{*}$ such that for every $\vec{\beta} \in X\left(p^{*}\right), p^{*-} \vec{\beta}$ decides $\underset{\sim}{x}$, then p^{*} is as wanted.

Lemma 4.3 Consider the decomposition of 2.7 at some $\lambda \geq o^{\vec{U}}(\kappa)$ and let $\underset{\sim}{x}$ be $a \mathbb{M}[\vec{U}]-$ name for an ordinal. Then for every $p \in \mathbb{M}[\vec{U}] \upharpoonright(\lambda, \kappa)$, there exists $p \leq^{*} p^{*}$ such that for every $X \in E x(p)$ and $q \in \mathbb{M}[\vec{U}] \upharpoonright \lambda$ the following holds:

$$
\text { If } \exists \vec{\alpha} \in X\left(p^{*}\right) \exists p^{\prime} \geq^{*} p^{*} \vec{\alpha}\left\langle q, p^{\prime}\right\rangle \| \underset{\sim}{x} \text { Then } \forall \vec{\alpha} \in X\left(p^{*}\right)\left\langle q, p^{* \subset} \vec{\alpha}\right\rangle \| \underset{\sim}{x}
$$

Proof. Fix $q \in \mathbb{M}[\vec{U}] \upharpoonright \lambda$ and and $X \in E x(p)$. Use 4.2, to find $p \leq^{*} p_{q, X}$ such that

$$
\text { If } \exists \vec{\alpha} \in X\left(p_{q, X}\right) \exists p^{\prime} \geq^{*}\left(p_{q, X}\right) \frown \vec{\alpha} \text { s.t. }\left\langle q, p^{\prime}\right\rangle \| \underset{\sim}{x} \text { Then } \forall \vec{\alpha} \in X\left(p_{q, X}\right)\left\langle q,\left(p_{q, X}\right) \frown \vec{\alpha}\right\rangle \| \underset{\sim}{x}
$$

By the definition of λ, the forcing $\mathbb{M}[\vec{U}] \upharpoonright(\lambda, \kappa)$ is $\leq^{*}-\max \left(|\operatorname{Ex}(p)|^{+},|\mathbb{M}[\vec{U}] \upharpoonright \lambda|^{+}\right)$-directed. Hence we can find $p \leq^{*} p^{*}$ so that for every $X, q, p_{q, X} \leq^{*} p^{*}$.

Lemma 4.4 Let $A \in V[G]$ be a set of ordinals such that $|A|<\kappa$. Then there exists $C^{\prime} \subseteq C_{G}$ such that $V[A]=V\left[C^{\prime}\right]$.

Proof. Assume that $|A|=\lambda^{\prime}<\kappa$ and let $\delta=\max \left(\lambda^{\prime}\right.$, otp $\left.\left(C_{G}\right)\right)<\kappa$. Split $\mathbb{M}[\vec{U}]$ as in proposition 2.7. Find $p \in G$ such that some $\delta \leq \lambda$ appears in p. The generic G also splits to $G=G_{1} \times G_{2}$ where G_{1} is the generic for Magidor forcing below λ and G_{2} above it. Let $\left\langle{\underset{\sim}{a}}_{i} \mid i<\lambda^{\prime}\right\rangle$ be a $\mathbb{M}[\vec{U}]$-name for A in V and $p \in \mathbb{M}[\vec{U}] \upharpoonright(\lambda, \kappa)$. For every $i<\lambda^{\prime}$ find $p \leq^{*} p_{i}$ as in lemma 4.3, such that for every $q \in \mathbb{M}[\vec{U}] \upharpoonright \lambda$ and $X \in E x(p)$ we have:

$$
\text { If } \exists \vec{\alpha} \in X\left(p_{i}\right) \exists p_{i} \widehat{\alpha} \leq^{*} p^{\prime}\left\langle q, p^{\prime}\right\rangle \| \underset{\sim}{a}{ }_{i} \text { Then } \forall \vec{\alpha} \in X\left(p_{i}\right)\left\langle q, \widetilde{p_{i}} \vec{\alpha}\right\rangle \| \underset{\sim}{a}{ }_{i}(*)
$$

Since we have λ^{\prime}-closure for \leq^{*} we can find $p_{i} \leq^{*} p_{*}$. Next, for every $i<\lambda^{\prime}$, fix a maximal anti chain $Z_{i} \subseteq \mathbb{M}[\vec{U}] \upharpoonright \lambda$ such that for every $q \in Z_{i}$ there is an extension type $X_{q, i}$ for which
$\forall \vec{\alpha} \in \underset{p_{*}}{\ulcorner } X_{q, i}\left\langle q, p_{*}^{\complement} \vec{\alpha}\right\rangle \|{\underset{i}{a}}_{a}$, these anti chains can be found using $\left(^{*}\right)$ and Zorn's lemma. Recall the sets $X_{q, i}\left(p_{*}\right)$ is a product of large sets. Define $F_{q, i}: X_{q, i}\left(p_{*}\right) \rightarrow O n$ by

$$
F_{q, i}(\vec{\alpha})=\gamma \quad \Leftrightarrow \quad\left\langle q, \underset{p_{*}^{-}}{\frown}\right\rangle \Vdash{\underset{\sim}{a}}_{i}=\check{\gamma}
$$

By lemma 3.9 we can assume that there are important coordinates

$$
I_{q, i} \subseteq\left\{1, \ldots, \operatorname{dom}\left(X_{q, i}\left(p_{*}\right)\right)\right\}
$$

Fix $i<\lambda^{\prime}$, for every $q, q^{\prime} \in Z_{i}$ we apply lemma 3.11 to the functions $F_{q, i}, F_{q, i^{\prime}}$ and find $p_{*} \leq^{*} p_{q, q^{\prime}}$ for which one of the following holds:

1. $\operatorname{Im}\left(F_{q, i} \upharpoonright A\left(X_{q, i}, p_{q, q^{\prime}}\right)\right) \cap \operatorname{Im}\left(F_{q^{\prime}, i} \upharpoonright A\left(X_{q^{\prime}, i}, p_{q, q^{\prime}}\right)\right)=\emptyset$
2. $\left(F_{q, i}\right)_{I_{q, i}} \upharpoonright\left(A\left(X_{q, i}, p_{q, q^{\prime}}\right)\right)_{I_{q, i}}=\left(F_{q^{\prime}, i}\right)_{I_{q^{\prime}, i}} \upharpoonright\left(A\left(X_{q^{\prime}, i}, p_{q, q^{\prime}}\right)\right)_{I_{q^{\prime}, i}}$

Finally find p^{*} such that for every $q, q^{\prime}, p_{q, q^{\prime}} \leq^{*} p^{*}$. By density, there is such $p^{*} \in G_{2}$. We use $F_{q, i}$ to translate information from C_{G} to A and vice versa, distinguishing from [1] this translation is made in $V\left[G_{1}\right]$ rather then V : For every $i<\lambda^{\prime}, G_{1} \cap Z_{i}=\left\{q_{i}\right\}$. Use lemma 3.5, to find $D_{i} \in X_{q_{i}, i}\left(p^{*}\right)$ be such that $p^{* \subset} D_{i} \in G_{2}$, define $C_{i}=D_{i} \upharpoonright I_{q_{i}, i}$ and let $C^{\prime}=\bigcup_{i<o^{\vec{U}}(\kappa)} C_{i}$. Define as in 2.20, $I\left(C_{i}, C^{\prime}\right) \in[\operatorname{otp}(\kappa)]^{<\omega}, \operatorname{since} \operatorname{otp}\left(C^{\prime}\right) \leq \operatorname{otp}\left(C_{G}\right) \leq \lambda$ and $V\left[G_{2}\right]$ does not add sequences to λ we have that $\left\langle I\left(C_{i}, C^{\prime}\right) \mid i<\lambda^{\prime}\right\rangle \in V\left[G_{1}\right]$. It follows that

$$
\left(V\left[G_{1}\right]\right)[A]=\left(V\left[G_{1}\right]\right)\left[\left\langle C_{i} \mid i<\lambda^{\prime}\right\rangle\right]=\left(V\left[G_{1}\right]\right)\left[C^{\prime}\right]
$$

In fact let us prove that $\left\langle C_{i} \mid i<\lambda^{\prime}\right\rangle \in V[A]$. Indeed, define in $V[A]$ the sets

$$
M_{i}=\left\{q \in Z_{i} \mid a_{i} \in \operatorname{Im}\left(F_{q, i}\right)\right\}
$$

then, for any $q, q^{\prime} \in M_{i} a_{i} \in \operatorname{Im}\left(F_{q_{i}}\right) \cap \operatorname{Im}\left(F_{q^{\prime}, i}\right) \neq \emptyset$. Hence 2 must hold for $F_{q, i}, F_{q^{\prime}, i}$ i.e.

$$
\left(F_{q, i}\right)_{I_{q, i}} \upharpoonright\left(X_{q, i}\left(p^{*}\right)\right)_{I_{q, i}}=\left(F_{q^{\prime}, i}\right)_{I_{q^{\prime}, i}} \upharpoonright\left(X_{q^{\prime}, i}\left(p^{*}\right)\right)_{I_{q^{\prime}, i}}
$$

This means that no matter how we pick $q_{i}^{\prime} \in M_{i}$, we will end up with the same function $\left(F_{q_{i}^{\prime}, i}\right)_{I_{q_{i}^{\prime}, i}} \upharpoonright\left(X_{q_{i}^{\prime}, i}\left(p^{*}\right)\right)_{I_{q_{i}^{\prime}, i}}$. In $V[A]$, choose any $q_{i}^{\prime} \in M_{i}$ and let $D_{i}^{\prime} \in F_{q_{i}^{\prime}, i}^{-1}\left(a_{i}\right), C_{i}^{\prime}=D_{i} \upharpoonright I_{q_{i}^{\prime}, i}$. Since $q_{i}, q_{i}^{\prime} \in M_{i}$ we have $C_{i}=C_{i}^{\prime}$, hence $\left\langle C_{i} \mid i<\lambda^{\prime}\right\rangle \in V[A]$. We still have to determine what information A uses in the part of G_{1}, namely, $\left\{q_{i}^{\prime} \mid i<\lambda^{\prime}\right\},\left\langle I\left(C_{i}, C^{\prime}\right) \mid i<\lambda^{\prime}\right\rangle \in V[A]$. This sets can be coded as a subset of ordinals below $\left(2^{\lambda}\right)^{+}$, therefore,

$$
\left\{q_{i}^{\prime} \mid i<\lambda^{\prime}\right\},\left\langle I\left(C_{i}, C^{\prime}\right) \mid i<\lambda^{\prime}\right\rangle \in V\left[G_{1}\right]
$$

By the induction hypothesis, we can find $C^{\prime \prime} \subseteq C_{G_{1}}$ such that

$$
V\left[\left\{q_{i}^{\prime} \mid i<\lambda^{\prime}\right\},\left\langle I\left(C_{i}, C^{\prime}\right) \mid i<\lambda^{\prime}\right\rangle\right]=V\left[C^{\prime \prime}\right]
$$

Since all the information needed to restore A is coded in $C^{\prime} \uplus C^{\prime \prime}$, it is clear that $V[A]=$ $V\left[C^{\prime \prime} \uplus C^{\prime}\right]$.

4.2 General Subsets of κ

Assume that $A \in V[G]$ such that $A \subseteq \kappa$. For some A 's, the proof is similar to the one in [1] works. This proof relays on the following lemma:

Lemma 4.5 Assume that $o^{\vec{U}}(\kappa)<\kappa$ and let $A \in V[G], \sup (A)=\kappa$. Assume that $\exists C^{*} \subseteq C_{G}$ such that

1. $C^{*} \in V[A]$ and $\forall \alpha<\kappa A \cap \alpha \in V\left[C^{*}\right]$
2. $c f^{V[A]}(\kappa)<\kappa$

Then $\exists C^{\prime} \subseteq C_{G}$ such that $V[A]=V\left[C^{\prime}\right]$.

Proof. Let $\left\langle\alpha_{i} \mid i<\lambda\right\rangle \in V[A]$ be cofinal in κ. Since $\left|C^{*}\right|<\kappa$, by 4.4, we can find $C^{\prime \prime} \subseteq C_{G}$ such that

$$
V\left[C^{\prime \prime}\right]=V\left[C^{\prime},\left\langle\alpha_{i} \mid i<\lambda\right\rangle\right] \subseteq V[A]
$$

In $V\left[C^{\prime \prime}\right]$ choose for every i, a bijection $\pi_{i}: 2^{\alpha_{i}} \rightarrow P^{V\left[C^{\prime \prime}\right]}\left(\alpha_{i}\right)$. Since $A \cap \alpha_{i} \in V\left[C^{\prime \prime}\right]$ there is δ_{i} such that $\pi_{i}\left(\delta_{i}\right)=A \cap \alpha_{i}$. Finally let $C^{\prime} \subseteq C_{G}$ such that

$$
V\left[C^{\prime}\right]=V\left[C^{\prime \prime},\left\langle\delta_{i} \mid i<\lambda\right\rangle\right]
$$

We claim that $V[A]=V\left[C^{\prime}\right]$. Obviously, $C^{\prime} \in V[A]$, for the other direction,

$$
\left\langle A \cap \alpha_{i} \mid i<\lambda\right\rangle=\left\langle\pi_{i}\left(\delta_{i}\right) \mid i<\lambda\right\rangle \in V\left[C^{\prime}\right]
$$

Thus $A \in V\left[C^{\prime}\right]$.
Definition 4.6 We say that $A \cap \alpha$ stabilizes, if

$$
\exists \alpha^{*}<\kappa . \forall \alpha<\kappa . A \cap \alpha \in V\left[A \cap \alpha^{*}\right]
$$

First we deal with A 's such that $A \cap \alpha$ does not stabilize.
Lemma 4.7 Assume $o^{\vec{U}}(\kappa)<\kappa$, $A \subseteq \kappa$ unbounded in κ such that $A \cap \alpha$ does not stabilizes, then there is $C^{\prime} \subseteq C_{G}$ such that $V\left[C^{\prime}\right]=V[A]$.

Proof. Work in $V[A]$, define the sequence $\left\langle\alpha_{\xi} \mid \xi<\theta\right\rangle$:

$$
\alpha_{0}=\min (\alpha \mid V[A \cap \alpha] \supsetneq V)
$$

Assume that $\left\langle\alpha_{\xi} \mid \xi<\lambda\right\rangle$ has been defined and for every $\xi, \alpha_{\xi}<\kappa$. If $\lambda=\xi+1$ then set

$$
\alpha_{\lambda}=\min \left(\alpha \mid V[A \cap \alpha] \supsetneq V\left[A \cap \alpha_{\xi}\right]\right)
$$

If $\alpha_{\lambda}=\kappa$, then α_{λ} satisfies that

$$
\forall \alpha<\kappa \quad A \cap \alpha \in V\left[A \cap \alpha_{\xi}\right]
$$

Thus $A \cap \alpha$ stabilizes which by our assumption is a contradiction. If λ is limit, define

$$
\alpha_{\lambda}=\sup \left(\alpha_{\xi} \mid \xi<\lambda\right)
$$

if $\alpha_{\lambda}=\kappa$ define $\theta=\lambda$ and stop. The sequence $\left\langle\alpha_{\xi} \mid \xi<\theta\right\rangle \in V[A]$ is a continues, increasing unbounded sequence in κ. Therefore, $c f^{V[A]}(\kappa)=c f^{V[A]}(\theta)$. Let us argue that $\theta<\kappa$. Work in $V[G]$, for every $\xi<\theta$ pick $C_{\xi} \subseteq C_{G}$ such that $V\left[A \cap \alpha_{\xi}\right]=V\left[C_{\xi}\right]$. The map $\xi \mapsto C_{\xi}$ is injective from θ to $P\left(C_{G}\right)$, by the definition of α_{ξ} 's. Since $o^{\vec{U}}(\kappa)<\kappa,\left|C_{G}\right|<\kappa$, and κ stays strong limit in the genenic extension. Therefore

$$
\theta \leq\left|P\left(C_{G}\right)\right|=2^{\left|C_{G}\right|}<\kappa
$$

Hence κ changes cofinality in $V[A]$, according to lemma 4.5, it remains to find C^{*}. Denote $\lambda=\left|C_{G}\right|$ and work in $V[A]$, for every $\xi<\theta, C_{\xi} \in V[A]$ (Although the sequence $\left\langle C_{\xi} \mid \xi<\theta\right\rangle$ may not be in $V[A]) . C_{\xi}$ witnesses that

$$
\exists d_{\xi} \subseteq \kappa .\left|d_{\xi}\right| \leq \lambda \text { and } V\left[A \cap \alpha_{\xi}\right]=V\left[d_{\xi}\right]
$$

Fix $d=\left\langle d_{\xi} \mid \xi<\theta\right\rangle \in V[A]$. It follows that d can be coded as a subset of κ of cardinality $\leq \lambda \cdot \theta<\kappa$. Finally, by 4.4 , there exists $C^{*} \subseteq C_{G}$ such that $V\left[C^{*}\right]=V[d] \subseteq V[A]$ so

$$
\forall \alpha<\kappa . A \cap \alpha \in V\left[d_{\xi}\right] \subseteq V\left[C^{*}\right]
$$

Next we assume that $A \cap \alpha$ stabilizes on some $\alpha^{*}<\kappa$. By lemma 4.4 There exists $C^{*} \subseteq C_{G}$ such that $V\left[A \cap \alpha^{*}\right]=V\left[C^{*}\right]$, if $A \in V\left[C^{*}\right]$ then we are done, assume that $A \notin V\left[C^{*}\right]$. To apply 4.5 , it remains to prove that $c f^{V[A]}(\kappa)<\kappa$. The subsequence C^{*} must be bounded, denote $\kappa_{1}=\sup \left(C^{*}\right)<\kappa$ and $\kappa^{*}=\max \left(\kappa_{1}, \operatorname{otp}\left(C_{G}\right)\right)$. Find $p \in G$ that decides the value of κ^{*} and assume that κ^{*} appear in p (otherwise take some ordinal above it). As in lemma 2.7 we split

$$
\mathbb{M}[\vec{U}] / p \simeq\left(\mathbb{M}[\vec{U}] \upharpoonright \kappa^{*}\right) /\left(p \upharpoonright \kappa^{*}\right) \times\left(\mathbb{M}[\vec{U}] \upharpoonright\left(\kappa^{*}, \kappa\right)\right) /\left(p \upharpoonright\left(\kappa^{*}, \kappa\right)\right)
$$

There is a subforcing \mathbb{P} of $R O\left(\left(\mathbb{M}[\vec{U}] \upharpoonright \kappa^{*}\right) /\left(p \upharpoonright \kappa^{*}\right)\right.$ such that $V\left[C^{*}\right]$ is a generic for \mathbb{P}. Let

$$
\mathbb{Q}=\left[\left(\mathbb{M}[\vec{U}] \upharpoonright \kappa^{*}\right) /\left(p \upharpoonright \kappa^{*}\right)\right] / C^{*}
$$

be the quotient forcing completing \mathbb{P} to $\left(\mathbb{M}[\vec{U}] \upharpoonright \kappa^{*}\right) /\left(p \upharpoonright \kappa^{*}\right)$. Finally note that G is generic over $V\left[C^{*}\right]$ for

$$
\mathbb{S}=\mathbb{Q} \times\left(\mathbb{M}[\vec{U}] \upharpoonright\left(\kappa^{*}, \kappa\right)\right) /\left(p \upharpoonright\left(\kappa^{*}, \kappa\right)\right)
$$

Lemma $4.8 c f^{V[A]}(\kappa)<\kappa$

Proof. Let $G=G_{1} \times G_{2}$ be the decomposition such that G_{1} is generic for \mathbb{Q} above $V\left[C^{*}\right]$ and G_{2} is $\mathbb{M}[\vec{U}] \upharpoonright\left(\kappa^{*}, \kappa\right)$ generic over $V\left[C^{*}\right]\left[G_{1}\right]$. Let $\underset{\sim}{A}$ be a \mathbb{S}-name for A in $V\left[C^{*}\right]$. and $\left\langle q_{0}, p_{0}\right\rangle \in G$ such that

$$
\left.\left\langle q_{0}, p_{0}\right\rangle \Vdash " \forall \alpha<\kappa \underset{\sim}{A} \cap \alpha \text { is old" (i.e. in } V\left[C^{*}\right]\right)
$$

Proceed by a density argument in $\left.\mathbb{M}[\vec{U}] \upharpoonright\left(\kappa^{*}, \kappa\right)\right) / p \upharpoonright\left(\kappa^{*}, \kappa\right)$, let $p_{0} \leq p$, as in 4.4 find $p \leq^{*} p^{*}$ such that for all $q_{0} \leq q \in \mathbb{Q}$ and $X \in \operatorname{Ex}\left(p^{*}\right)$:

$$
\exists \vec{\alpha}^{\wedge}\langle\alpha\rangle \in X\left(p^{*}\right) \exists p^{\prime} \geq^{*} p^{* \frown} \vec{\alpha}^{\wedge}\langle\alpha\rangle\left\langle q, p^{\prime}\right\rangle \| \underset{\sim}{A} \cap \alpha \Rightarrow \forall \vec{\alpha}^{\wedge}\langle\alpha\rangle \in X\left(p^{*}\right)\left\langle q, p^{*} \vec{\alpha}^{\wedge}\langle\alpha\rangle \| \underset{\sim}{A} \cap \alpha\right.
$$

Denote the consequent by $(*)_{X, q}$, since $\underset{\sim}{A} \cap \alpha$ is forced to be old, we will find Many q, X for which $(*)_{q, X}$ holds. For such q, X, for every $\vec{\alpha}^{\wedge}\langle\alpha\rangle \in X\left(p^{*}\right)$ define the value forced for $\underset{\sim}{A} \cap \alpha$ by $a(q, \vec{\alpha}, \alpha)$. Fix q, X such that $(*)_{q, X}$ holds. Assume that the maximal measure which appears in X is $U\left(\kappa_{i}(p), m c(X)\right)$ and fix $\vec{\alpha} \in(X \backslash\{m c(X)\})\left(p^{*}\right)$. For every $\alpha \in B_{i, m c(X)}(p) \backslash \max (\vec{\alpha})$ the set $a(q, \vec{\alpha}, \alpha) \subseteq \alpha$ is defined. By ineffability, we can shrink $B_{i, \operatorname{mc}(X)}(p)$ to $A_{i, \operatorname{mc}(X)}^{q, \vec{\alpha}}$ and find a set $A(q, \vec{\alpha}) \subseteq \kappa_{i}(p)$ such that for every $\alpha \in A_{i, m c(X)}^{q, \vec{\alpha}}, A(q, \vec{\alpha}) \cap \alpha=a(q, \vec{\alpha}, \alpha)$ define

$$
A_{i, m c(X)}^{\prime}=\Delta \Delta_{\vec{\alpha}, q} A_{i, m c(X)}^{q, \vec{\alpha}}
$$

Let $p^{*} \leq^{*} p^{\prime}$ be the condition obtained by shrinking to those sets. p^{\prime} has the property that whenever $(*)_{q, X}$ holds for some $q \in \mathbb{Q}$ and $X \in E x\left(p^{\prime}\right)$, there exists sets $A(q, \vec{\alpha})$ for $\vec{\alpha} \in X \backslash\{m c(X)\}$ such that for every $\vec{\alpha}^{\wedge}\langle\alpha\rangle \in X\left(p^{\prime}\right), A(q, \vec{\alpha}) \cap \alpha=a(q, \vec{\alpha}, \alpha)$. By density there is such $p^{\prime} \in G_{2}$.

Work $V[A]$, for every $\vec{\alpha}$ and q, if $A(q, \vec{\alpha})$ is defined, let

$$
\eta(q, \vec{\alpha})=\min (A \Delta A(q, \vec{\alpha}))
$$

otherwise $\eta(q, \vec{\alpha})=0 . \eta(q, \vec{\alpha})$ is well defined since $A \notin V\left[C^{*}\right]$ and $A \in V\left[C^{*}\right]$. Also let

$$
\eta(\vec{\alpha})=\sup (\eta(q, \vec{\alpha}) \mid q \in \mathbb{Q})
$$

If $\eta(\vec{\alpha})=\kappa$ then we are done (since $|\mathbb{Q}|<\kappa$). Define a sequence in $V[A]: \alpha_{0}=\kappa^{*}$. Fix $\xi<\operatorname{otp}\left(C_{G}\right)$ and assume that $\left\langle\alpha_{i} \mid i<\xi\right\rangle$ is defined. At limit stages take

$$
\alpha_{\xi}=\sup \left(\alpha_{i} \mid i<\xi\right)+1
$$

Assume that $\xi=\lambda+1$ and let

$$
\alpha_{\xi}=\sup \left(\eta(\vec{\alpha})+1 \mid \vec{\alpha} \in\left[\alpha_{\lambda}\right]^{<\omega}\right)
$$

If at some point we reach κ we are done. If not, let us prove by induction on ξ that $C_{G}(\xi)<\alpha_{\xi}$ which will indicate that the sequence α_{ξ} is unbounded in κ. At limit ξ we have $C_{G}(\xi)=\sup \left(C_{G}(\beta) \mid \beta<\xi\right)$ since the Magidor sequence is a club. By the definition of the sequence α_{ξ} and the induction hypothesis, $\alpha_{\xi}>C_{G}(\xi)$. If $\xi=\lambda+1$, use corollary 2.19 to find $\vec{\alpha}, \alpha$ and q such that

$$
\left\langle q, p^{\prime} \frown \vec{\alpha}^{\wedge}\langle\alpha\rangle\right\rangle \Vdash \check{\alpha}={\underset{\sim}{c}}_{G}(\check{\xi})
$$

Fix any $q^{\prime} \geq q$, and split the forcing at α so that $\left\langle q^{\prime}, p^{\prime}-\vec{\alpha}, \alpha\right\rangle=\left\langle q^{\prime}, r_{1}, r_{2}\right\rangle$ where $r_{1} \in \mathbb{M}[\vec{U}] \upharpoonright$ $\left(k^{*}, \alpha\right)$ and $r_{2} \in \mathbb{M}[\vec{U}] \upharpoonright(\alpha, \kappa)$. Let H_{1} be some generic up to α with $\left\langle q, r_{1}\right\rangle \in H_{1}$ and work in $V\left[C^{*}\right]\left[H_{1}\right]$, the name $\underset{\sim}{A}$ has a natural interpretation in $V\left[C^{*}\right]\left[H_{1}\right]$ as a $\mathbb{M}[\vec{U}] \upharpoonright(\alpha, \kappa)$-name, $(\underset{\sim}{A})_{H_{1}}$. Use the fact that $\mathbb{M}[\vec{U}] \upharpoonright \alpha$ is \leq^{*}-closed and the prikry condition to find $r_{2} \leq^{*} r_{2}^{\prime}$ and X such that

$$
r_{2}^{\prime} \Vdash_{\mathbb{M}[\vec{U}] \mid(\alpha, \kappa)}(\underset{\sim}{A})_{G_{1}} \cap \alpha=X
$$

since it is forced that A sim is old, $X \in V\left[C^{*}\right]$ and therefore we can find $\left\langle q^{\prime \prime}, r_{1}^{\prime}\right\rangle \geq\left\langle q^{\prime}, r_{1}\right\rangle$ such that

$$
\left\langle q^{\prime \prime}, r_{1}^{\prime}\right\rangle \Vdash " r_{2}^{\prime} \Vdash \underset{\sim}{A} \cap \alpha=X " \Rightarrow\left\langle q^{\prime \prime}, r_{1}^{\prime}, r_{2}^{\prime}\right\rangle \Vdash \underset{\sim}{A} \cap \alpha=X
$$

and $\vec{\alpha}, \alpha$ such that

$$
\left\langle q^{\prime}, p^{* *} \vec{\alpha}^{\wedge}\langle\alpha\rangle\right\rangle \| \underset{\sim}{A} \cap \check{\alpha}
$$

but then $\left\langle r_{1}^{\prime}, r_{2}^{\prime}\right\rangle$ is of the form $p^{\prime-} \vec{\beta}, \alpha \leq^{*} p^{\prime \prime}$ for some $\vec{\beta}$. Let X be the extension type of $\vec{\beta}, \alpha$, by definition of $p^{\prime},(*)_{q^{\prime \prime}, X}$ holds. Use density to find a q^{*} in the generic of \mathbb{Q} such that for some X that decides the ξ th element of $C_{G},(*)_{X, q^{*}}$ holds. The set $\left\{p^{\prime} \sim \vec{\gamma} \mid \gamma \in X\right\}$ is a maximal antichain according to proposition 3.5 , so let $\vec{C}, C_{G}(\xi)$ be the extension of p^{\prime} of type X in C_{G}. By the construction of q^{*} and $p^{* *}$ we have that

$$
\left\langle q^{*}, p^{\prime}\left\lceil\left\langle\vec{C}, C_{G}(\xi)\right\rangle \Vdash \underset{\sim}{A} \cap C_{G}^{\check{(}}(\xi)=A\left(q^{*}, \vec{C}\right) \cap C_{G}(\xi)\right.\right.
$$

Since $(\underset{\sim}{A})_{G}=A, A\left(q^{*}, \vec{C}\right) \cap C_{G}(\xi)=A \cap C_{G}(\xi)$ (otherwise we would've found compatible conditions forcing contradictory information). This imply that

$$
\eta\left(q^{*}, \vec{C}\right) \geq C_{G}(\xi)
$$

By the induction hypothesis $\alpha_{\lambda}>C_{G}(\lambda)$ and $\vec{C} \subseteq C_{G}(\lambda)$ thus $\vec{C} \in\left[\alpha_{\lambda}\right]^{<\omega}$ thus

$$
\alpha_{\xi}>\sup \left(\eta(\vec{\alpha}) \mid \vec{\alpha} \in\left[\alpha_{\lambda}\right]^{<\omega}\right) \geq \eta(\vec{C}) \geq \eta\left(q^{*}, \vec{C}\right) \geq C_{G}(\xi)
$$

This proves that $\left\langle\alpha_{\xi} \mid \xi<\operatorname{otp}\left(C_{G}\right)<\kappa\right\rangle \in V[A]$ is cofinal in κ indicating $c f^{V[A]}(\kappa)<\kappa$.
Thus we have proven the result for any subset of κ.
Corollary 4.9 Let $A \in V[G]$ be a set of ordinals, such that $|A|=\kappa$ then there is $C^{\prime} \subseteq C_{G}$ such that $V[A]=V\left[C^{\prime}\right]$.

Proof. By κ^{+}-c.c. of $\mathbb{M}[\vec{U}]$, there is $B \in V,|B|=k$ such that $A \subseteq B$. Fix in $V \phi: \kappa \rightarrow B$ a bijection and let $B^{\prime}=\phi^{-1^{\prime \prime}} A$. then $B^{\prime} \subseteq \kappa$. By the theorem for subsets of κ there is $C^{\prime} \subseteq C_{G}$ such that $V\left[C^{\prime}\right]=V\left[B^{\prime}\right]=V[A]$.

4.3 general sets of ordinals

In [1], we gave an explicit formulation of subforcings of $\mathbb{M}[\vec{U}]$ using the indices of subsequences of C_{G}. In the larger framework of this paper, these indices might not be in V. By example 1.2 , subforcing of the Magidor forcing can be an iteration of Magidor type forcing.

Lemma 4.10 Let $A \in V[G]$ be such that $A \subseteq \kappa^{+}$. Then there is $C^{*} \subseteq C_{G}$ closed such that

1. $\exists \alpha^{*}<\kappa^{+}$such that $C^{*} \in V\left[A \cap \alpha^{*}\right] \subseteq V[A]$.
2. $\forall \alpha<\kappa^{+} A \cap \alpha \in V\left[C^{*}\right]$.

Proof. Work in $V[G]$, for every $\alpha<\kappa^{+}$find subsequences $C_{\alpha} \subseteq C_{G}$ such that

$$
V\left[C_{\alpha}\right]=V[A \cap \alpha]
$$

using corollary 4.9. The function $\alpha \mapsto C_{\alpha}$ has range $P\left(C_{G}\right)$ and domain κ^{+}which is regular in $V[G]$, and since $o^{\vec{U}}(\kappa)<\kappa$ then $\left|P\left(C_{G}\right)\right|<\kappa^{+}$. Therefore there exist $E \subseteq \kappa^{+}$unbounded in κ^{+}and $\alpha^{*}<\kappa^{+}$such that for every $\alpha \in E, C_{\alpha}=C_{\alpha^{*}}$. Set $C^{*}=C_{\alpha^{*}}$, By lemma 4.12 we may assume that C^{*} is closed. Note that for every $\alpha<\kappa$ there is $\beta \in E$ such that $\beta>\alpha$ therefore

$$
A \cap \alpha=(A \cap \beta) \cap \alpha \in V[A \cap \beta]=V\left[C^{*}\right]
$$

Lemma 4.11 Let C^{*} be as in the last lemma. If there is $\alpha<\kappa$ such that $A \in V\left[C_{G} \cap \alpha\right]\left[C^{*}\right]$ then $V[A]=V\left[C^{*}\right]$.

Proof. Consider the quotient forcing $\mathbb{M}[\vec{U}] / C^{*} \subseteq \mathbb{M}[\vec{U}]$ completing $V\left[C^{*}\right]$ to $V\left[C^{*}\right][G]$. Then the forcing

$$
\mathbb{Q}=\left(\mathbb{M}[\vec{U}] / C^{*}\right) \upharpoonright \alpha
$$

completes $V\left[C^{*}\right]$ to $V\left[C^{*}\right]\left[C_{G} \cap \alpha\right]$ and $|\mathbb{Q}|<\kappa$. By the assumption, $A \in V\left[C^{*}\right]\left[C_{G} \cap \alpha\right]$, and for every $\alpha<\kappa^{+}, A \cap \alpha \in V\left[C^{*}\right]$. Let $\underset{\sim}{A} \in V\left[C^{*}\right]$ be a \mathbb{Q}-name for A and $q \in G \upharpoonright \alpha$ be any condition such that

$$
q \Vdash \forall \alpha<\kappa^{+}, \underset{\sim}{A} \cap \alpha \in V\left[C^{*}\right]
$$

In $V\left[C^{*}\right]$, for every $\alpha<\kappa^{+}$find $q_{\alpha} \geq q$ such that $q_{\alpha} \|_{\mathbb{Q}} A \cap \alpha$, there is $q^{*} \geq q$ and $E \subseteq \kappa^{+}$of cardinality κ^{+}such that for very $\alpha \in E, q_{\alpha}=q^{*}$. By density, find such $q^{*} \in G \upharpoonright \alpha$ in the generic. In $v\left[C^{*}\right]$, consider the set

$$
B=\left\{X \subseteq \kappa^{+} \mid \exists \alpha q^{*} \Vdash X=\underset{\sim}{A} \cap \alpha=X\right\}
$$

Let us argue that $\cup B=A$. Let $X \in B$ then there is $\alpha<\kappa^{+}$such that $q^{*} \Vdash X=\underset{\sim}{A} \cap \alpha$ then $X=A \cap \alpha \subseteq A$, thus, $\cup B \subseteq A$. Let $\gamma \in A$, there is $\alpha \in E$ such that $\gamma<\alpha$, by the definition of E there is $X \subseteq \alpha$ such that $q^{*} \Vdash \underset{\sim}{A} \cap \alpha=X$ it must be that $X=A \cap \alpha$ otherwise would have found compatible conditions forcing contradictory information. but the $\gamma \in A \cap \alpha=X \subseteq \cup B$. We conclude that $A=\cup B \in V\left[C^{*}\right]$.

Eventually we will prove that there is $\alpha<\kappa$ such that $A \in V\left[C_{G} \cap \alpha\right]\left[C^{*}\right]$ and by the last lemma we will be done.

We would like to change C^{*} so that it is closed. We can do that above $\alpha_{0}:=\operatorname{otp}\left(C_{G}\right)$:
Lemma 4.12 $V\left[C_{G} \cap \alpha_{0}\right]\left[C l\left(C^{*}\right)\right]=V\left[C_{G} \cap \alpha_{0}\right]\left[C^{*}\right] .{ }^{4}$

Proof. Consider $I\left(C^{*}, C l\left(C^{*}\right)\right) \subseteq \operatorname{otp}\left(C_{G}\right)$, by proposition 2.15.5, $I\left(C^{*}, C l\left(C^{*}\right)\right) \in V\left[C_{G} \cap \alpha_{0}\right]$. Thus $V\left[C_{G} \cap \alpha_{0}\right]\left[C^{*}\right]=V\left[C_{G} \cap \alpha_{0}\right]\left[C l\left(C^{*}\right)\right]$.

Work in $V\left[C_{G} \cap \alpha_{0}\right]$, since $C^{*} \cap \alpha_{0} \in V\left[C_{G} \cap \alpha_{0}\right]$, we can assume $\min \left(C^{*}\right)>\alpha_{0}$. Since $I=I\left(C^{*}, C_{G} \backslash \alpha_{0}\right) \subseteq \operatorname{otp}\left(C_{G}\right)$, it follows that $I \in V\left[C_{G} \cap \alpha_{0}\right]$. Let $N=V\left[C_{G} \cap \alpha_{0}\right]$, consider the coherent sequence

$$
\vec{W}=\vec{U}^{*} \upharpoonright\left(\alpha_{0}, \kappa\right]=\left\langle U^{*}(\beta, \delta) \mid \delta<o^{\vec{U}}(\beta), \alpha_{0}<\delta<\kappa\right\rangle
$$

where $U^{*}(\beta, \delta)$ is the ultrafilter generated by $U(\beta, \delta)$ in N. Also denote $G^{*}=G \upharpoonright\left(\alpha_{0}, \kappa\right)$.
Proposition $4.13 N\left[G^{*}\right]$ is a $\mathbb{M}[\vec{W}]$ generic extension of N.

Proof. Let us argue that the Mathias criteria holds. Let $X \in \cap \vec{W}(\delta)$ where $\delta \in \operatorname{Lim}\left(C_{G^{*}}\right)$. By definition of \vec{W}, for every $i<o^{\vec{W}}(\delta)$, there is $X_{i} \in U(\delta, i)$, such that $X_{i} \subseteq X$. The choice of X_{i} 's is done in N and the sequence $\left\langle X_{i} \mid i<o^{\vec{U}}(\delta)\right\rangle$ might not be in V. Fortunately, $\mathbb{M}[\vec{U}] \upharpoonright \alpha_{0}$ is α_{0}^{+}-c.c. and $\alpha_{0}^{+}<\delta$, so in V, we can find sets

$$
E_{i}:=\left\{X_{i, j} \mid j \leq \alpha_{0}\right\} \subseteq U(\delta, i)
$$

such that $X_{i} \in E_{i}$ By δ-completness of $U(\delta, i)$, the set $X_{i}^{*}:=\cap E_{i} \in U(\delta, i)$ and $X_{i}^{*} \subseteq X_{i} \subseteq$ X. Note that $X^{*}:=\cup_{i<o \vec{U}(\delta)} X_{i}^{*} \in \cap \vec{U}(\delta)$ and therefore by genericity of G there is $\xi<\delta$ such that

$$
C_{G} \cap(\xi, \delta) \subseteq X^{*} \subseteq X
$$

Hence $C_{G^{*}} \cap\left(\max \left(\alpha_{0}, \xi\right), \delta\right) \subseteq X$.

[^3]Note that $o^{\vec{W}}(\kappa)<\min \left(\nu \mid o^{\vec{W}}(\nu)=1\right)$ and $I\left(C^{*}, C\right) \in N$, which is the situation dealt with in [1]. We state here the main results and definitions and refer the reader to [1] for the proofs:

We will define a Magidor type forcing that produces the sequence C^{*} above N. Thinking of C^{*} as a function with domain I, we would like to have a function similar to $\gamma\left(t_{i}, p\right)$ which tells us the coordinate we unveil. Given any sequence of pairs, $p=\left\langle t_{1}, \ldots, t_{n}, t_{n+1}\right\rangle$, define ${ }^{5}$

$$
I\left(t_{1}, p\right)=\min \left(j \in I \mid o_{L}(j)=o^{\vec{W}}\left(t_{i}\right)\right)
$$

then recursively,

$$
I\left(t_{i}, p\right)=\min \left(j \in I \backslash I\left(t_{i-1}, p\right)+1 \mid o_{L}(j)=o^{\vec{W}}\left(t_{i}\right)\right)
$$

It is tacitly assumed that $\left\{j \in I \backslash I\left(t_{i-1}, p\right)+1 \mid o_{L}(j)=o^{\vec{W}}\left(t_{i}\right)\right\} \neq \emptyset$. If at some point of the inductive definition we obtain \emptyset, leave $I\left(t_{i}, p\right)$ undefined, we will ignore such conditions p anyway.

Definition 4.14 The conditions of $\mathbb{M}_{I}[\vec{W}]$ are of the form $p=\left\langle t_{1}, \ldots, t_{n+1}\right\rangle$ such that:

1. I is defined on p.
2. $\kappa\left(t_{1}\right)<\ldots<\kappa\left(t_{n}\right)<\kappa\left(t_{n+1}\right)=\kappa$
3. For $i=1, \ldots, n+1$
(a) If $I\left(t_{i}, p\right) \in \operatorname{Succ}(I)$
i. $t_{i}=\kappa\left(t_{i}\right)$
ii. $I\left(t_{i-1}, p\right)$ is the predecessor of $I\left(t_{i}, p\right)$ in I
iii. $I\left(t_{i-1}, p\right)+\sum_{i=1}^{m} \omega^{\gamma_{i}}=I\left(t_{i}, p\right)$ is the Cantor normal form difference, then

$$
Y\left(\gamma_{1}\right) \times \ldots \times Y\left(\gamma_{m-1}\right) \bigcap\left[\left(\kappa\left(t_{i-1}\right), \kappa\left(t_{i}\right)\right)\right]^{<\omega} \neq \emptyset
$$

where $Y(\gamma)=\left\{\alpha<\kappa \mid o^{\vec{U}}(\alpha)=\gamma\right\}$
(b) If $I\left(t_{i}, p\right) \in \operatorname{Lim}(I)$
i. $\left.t_{i}=\left\langle\kappa\left(t_{i}\right), B\left(t_{i}\right)\right\rangle, B\left(t_{i}\right) \in \bigcap_{\xi<o \vec{W}} U\left(t_{i}\right), \xi\right)$
ii. $I\left(t_{i-1}, p\right)+\omega^{o^{\vec{W}}\left(t_{i}\right)}=I\left(t_{i}, p\right)$. (i.e. there are no elements of higher order then $o^{\vec{W}}\left(t_{i}\right)$ to add in the interval $\left(\kappa\left(t_{i-1}\right), \kappa\left(t_{i}\right)\right)$.
iii. $\min \left(B\left(t_{i}\right)\right)>\kappa\left(t_{i-1}\right)$

[^4]Definition 4.15 Let $p=\left\langle t_{1}, \ldots, t_{n}, t_{n+1}\right\rangle, q=\left\langle s_{1}, \ldots, s_{m}, s_{m+1}\right\rangle \in \mathbb{M}_{I}[\vec{W}]$ be two conditions. Define $\left\langle t_{1}, \ldots, t_{n}, t_{n+1}\right\rangle \leq_{I}\left\langle s_{1}, \ldots, s_{m}, s_{m+1}\right\rangle$ iff $\exists 1 \leq i_{1}<\ldots<i_{n} \leq m<i_{n+1}=m+1$ such that

1. For every $1 \leq r \leq n \kappa\left(t_{r}\right)=\kappa\left(s_{i_{r}}\right)$ and $B\left(s_{i_{r}}\right) \subseteq B\left(t_{r}\right)$
2. For $i_{k}<j<i_{k+1}$
(a) $\kappa\left(s_{j}\right) \in B\left(t_{k+1}\right)$
(b) If $I\left(s_{j}, q\right) \in \operatorname{Succ}(I)$ then

$$
\left[\left(\kappa\left(s_{j-1}\right), \kappa\left(s_{j}\right)\right)\right]^{<\omega} \cap B\left(t_{k+1}, \gamma_{1}\right) \times \ldots \times B\left(t_{k+1}, \gamma_{k-1}\right) \neq \emptyset
$$

where $I\left(s_{i-1}, q\right)+\sum_{i=1}^{k} \omega^{\gamma_{i}}=I\left(s_{i}, q\right)$ (Cantor normal form difference)
(c) If $I\left(s_{j}, q\right) \in \operatorname{Lim}(I)$ then $B\left(s_{j}\right) \subseteq B\left(t_{k+1}\right) \cap \kappa\left(s_{j}\right)$

Lemma 4.16 Let $G_{I} \subseteq \mathbb{M}_{I}[\vec{W}]$ be N-generic, define

$$
C_{I}=\bigcup\left\{\left\{\kappa\left(t_{i}\right) \mid i=1, \ldots, n\right\} \mid\left\langle t_{1}, \ldots, t_{n}, t_{n+1}\right\rangle \in G_{I}\right\}
$$

Then $N\left[G_{I}\right]=N\left[C_{I}\right]$
Lemma 4.17 There is a projection $\pi: \mathbb{M}[\vec{W}] \rightarrow \mathbb{M}_{I}[\vec{W}]$.
Corollary 4.18 Let $C \subseteq C_{G}$ be closed, Assume that $I=I\left(C, C_{G}\right) \in N$ and consider $\pi_{I}, \mathbb{M}_{I}[\vec{W}]$, then $N\left[G_{I}\right]=N[C]$ where $G_{I}=\pi^{\prime \prime} G \subseteq \mathbb{M}_{I}[\vec{W}]$.

Lemma 4.19 Let $G^{*} \subseteq \mathbb{M}[\vec{W}]$ be N-generic filter. Then the forcing $\mathbb{M}[\vec{W}] / G_{I}$ satisfies $\kappa^{+}-$c.c. in $N\left[G^{*}\right]$.

Theorem 4.20 $A \in N\left[C^{*}\right]$.

Proof. Let $I=I\left(C l\left(C^{*}\right), C_{G}\right)$. Then

$$
I, \mathbb{M}_{I}[\vec{W}], \pi_{I} \in N
$$

Let G_{I} be the generic induced for $\mathbb{M}_{I}[\vec{W}]$ from G, it follows that $\mathbb{M}[\vec{W}] / G_{I}$ is defined in N. Toward a contradiction, assume that $A \notin N\left[C^{*}\right]$. By lemma 4.12, $N\left[C^{*}\right]=N\left[C l\left(C^{*}\right)\right]$, hence $A \notin N\left[C l\left(C^{*}\right)\right]$. Let $\underset{\sim}{A}$ be a name for A in $\mathbb{M}[\vec{U}] / G_{I}$ where $\pi_{I}^{\prime \prime} G=G_{I}$. Work in $N\left[G_{I}\right]$, by corollary 4.18, $N\left[G_{I}\right]=N\left[C l\left(C^{*}\right)\right]$. For every $\alpha<\kappa^{+}$define

$$
X_{\alpha}=\{B \subseteq \alpha \mid\|A \cap \alpha=B\| \neq 0\}
$$

where the truth value is taken in $R O\left(\mathbb{M}[\vec{W}] / G_{I}\right)$ - the complete boolean algebra of regular open sets for $\mathbb{M}[\vec{W}] / G_{I}$. Different B 's in X_{α} yield incompatible conditions of $\mathbb{M}[\vec{W}] / G_{I}$ and we have κ^{+}-c.c by lemma 4.19 thus

$$
\forall \alpha<\kappa^{+}\left|X_{\alpha}\right| \leq \kappa
$$

For every $B \in X_{\alpha}$ define

$$
b(B)=\|A \cap \alpha=B\|
$$

Assume that $B^{\prime} \in X_{\beta}$ and $\alpha \leq \beta$ then $B=B^{\prime} \cap \alpha \in X_{\alpha}$. Moreover $b\left(B^{\prime}\right) \leq_{B} b(B)$ (we Switch to boolean algebra notation $p \leq_{B} q$ means p extends q). Note that for such B, B^{\prime} if $b\left(B^{\prime}\right)<_{B} b(B)$, then there is

$$
0<p \leq_{B}\left(b(B) \backslash b\left(B^{\prime}\right)\right) \leq_{B} b(B)
$$

Therefore

$$
p \cap b\left(B^{\prime}\right) \leq_{B}\left(b(B) \backslash b\left(B^{\prime}\right)\right) \cap b\left(B^{\prime}\right)=0
$$

meaning $p \perp b\left(B^{\prime}\right)$. Work in $N\left[G^{*}\right]$, denote $A_{\alpha}=A \cap \alpha$. Recall that

$$
\forall \alpha<\kappa^{+} A_{\alpha} \in N\left[C l\left(C^{*}\right)\right]=N\left[G_{I}\right]
$$

 some $\gamma^{*}<\kappa^{+}$on which the sequence stabilizes, define

$$
A^{\prime}=\bigcup\left\{B \subseteq \kappa^{+} \mid \exists \alpha b\left(A_{\gamma^{*}}\right) \Vdash \underset{\sim}{A} \cap \alpha=B\right\} \in N\left[C l\left(C^{*}\right)\right]
$$

Claim that $A^{\prime}=A$, notice that if $B, B^{\prime}, \alpha, \alpha^{\prime}$ are such that

$$
b\left(A_{\gamma^{*}}\right) \Vdash \underset{\sim}{A} \cap \alpha=B, \quad b\left(A_{\gamma^{*}}\right) \Vdash \underset{\sim}{A} \cap \alpha^{\prime}=B^{\prime}
$$

WLOG $\alpha \leq \alpha^{\prime}$ then we must have $B^{\prime} \cap \alpha=B$ otherwise, the non zero condition $b\left(A_{\gamma^{*}}\right)$ would force contradictory information. Consequently, for every $\xi<\kappa^{+}$there exists $\xi<\gamma<\kappa^{+}$ such that

$$
b\left(A_{\gamma^{*}}\right) \Vdash \underset{\sim}{A} \cap \gamma=A \cap \gamma
$$

hence $A^{\prime} \cap \gamma=A \cap \gamma$. This is a contradiction to $A \notin N\left[C l\left(C^{*}\right)\right]$. We conclude that he sequence $\left\langle b\left(A_{\alpha}\right) \mid \alpha<\kappa^{+}\right\rangle$does not stabilize. By regularity of κ^{+}, there exists a subsequence

$$
\left\langle b\left(A_{i_{\alpha}}\right) \mid \alpha<\kappa^{+}\right\rangle
$$

which is strictly decreasing. Use the observation we made to find $p_{\alpha} \leq_{B} b\left(A_{i_{\alpha}}\right)$ such that $p_{\alpha} \perp b\left(A_{i_{\alpha+1}}\right)$. Since $b\left(A_{i_{\alpha}}\right)$ are decreasing, for any $\beta>\alpha p_{\alpha} \perp b\left(A_{i_{\beta}}\right)$ thus $p_{\alpha} \perp p_{\beta}$. This shows that $\left\langle p_{\alpha} \mid \alpha<\kappa^{+}\right\rangle \in N\left[G^{*}\right]$ is an antichain of size κ^{+}which contradicts Lemma 4.19.

Sets of ordinals above κ^{+}: By induction on $\sup (A)=\lambda>\kappa^{+}$. It suffices to assume that λ is a cardinal.
case1: $c f^{V[G]}(\lambda)>\kappa$, the arguments for κ^{+}works.
case2: $c f^{V[G]}(\lambda) \leq \kappa$ and since κ is singular in $V[G]$ then $c f^{V[G]}(\lambda)<\kappa$. Since $\mathbb{M}[\vec{U}]$ satisfies $\kappa^{+}-c . c$. we must have that $\nu:=c f^{V}(\lambda) \leq \kappa$. Fix

$$
\left\langle\gamma_{i} \mid i<\nu\right\rangle \in V
$$

cofinal in λ. Work in $V[A]$, for every $i<\nu$ find $d_{i} \subseteq \kappa$ such that $V\left[d_{i}\right]=V\left[A \cap \gamma_{i}\right]$. By induction, there exists $C^{*} \subseteq C_{G}$ such that $V\left[\left\langle d_{i} \mid i<\nu\right\rangle\right]=V\left[C^{*}\right]$, therefore

1. $\forall i<\nu A \cap \gamma_{i} \in V\left[C^{*}\right]$
2. $C^{*} \in V[A]$

Work in $V\left[C^{*}\right]$, for $i<\nu$ fix

$$
\left\langle X_{i, \delta} \mid \delta<2^{\gamma_{i}}\right\rangle=P\left(\gamma_{i}\right)
$$

then we can code $A \cap \gamma_{i}$ by some δ_{i} such that $X_{i, \delta_{i}}=A \cap \gamma_{i}$. By 4.9, we can find $C^{\prime \prime} \subseteq C_{G}$ such that

$$
V\left[C^{\prime \prime}\right]=V\left[\left\langle\delta_{i} \mid i<\nu\right\rangle\right]
$$

Finally we can find $C^{\prime} \subseteq C_{G}$ such that $V\left[C^{\prime}\right]=V\left[C^{*}, C^{\prime \prime}\right]$, it follows that $V[A]=V\left[C^{\prime}\right]$.

5 Classification of Intermediate Models

Let $G \subseteq \mathbb{M}[\vec{U}]$ be a V-generic filter. Assume that for every $\alpha \leq \kappa$, $o^{\vec{U}}(\alpha)<\alpha$. Let M be a transitive $Z F C$ model such that $V \subseteq M \subseteq V[G]$. We would like to prove it is a generic extension of a "Magidor-like" forcing which we will define shortly. First, by [4], there is a set $A \in V[G]$ such that $V[A]=M$. By the results so far, there is $C^{\prime} \subseteq C_{G}$ such that $M=V[A]=V\left[C^{\prime}\right]$.

Proposition 5.1 Let $C, D \subseteq C_{G}$, then there is E, such that $C \cup D \subseteq E \subseteq C_{G} \cap \sup (C \cup D)$. such that $V[C, D]=V[E]$.

Proof. By induction on $\sup (C \cup D)$. If $\sup (C \cup D) \leq C_{G}(\omega)$ then $|C|,|D| \leq \aleph_{0}$, we can take $E=C \cup D$, and

$$
I(C, C \cup D), I(D, C \cup D) \subseteq \omega_{1}
$$

and there fore in V. In the general case, consider $I(C, C \cup D), I(D, C \cup D)$. Since

$$
o^{\vec{U}}(\sup (C \cup D))<\sup (C \cup D)
$$

it follows that

$$
\operatorname{otp}(C \cup D) \leq \operatorname{otp}\left(C_{G} \cap \sup (C \cup D)\right)<\sup (C \cup D)
$$

Denote by $\lambda=\operatorname{otp}\left(C_{G} \cap \sup (C \cup D)\right)$. By theorem 1.1, there is $F \subseteq C_{G} \cap \lambda$, such that

$$
V[I(C, C \cup D), I(D, C \cup D)]=V[F]
$$

We apply the induction hypothesis to $F,(C \cup D) \cap \lambda$ and find $E_{*} \subseteq \lambda$ such that

$$
V\left[E_{*}\right]=V[F,(C \cup D) \cap \lambda]
$$

Let $E=E_{*} \cup(D \cup C) \backslash \lambda$, then $E \in V[C, D]$ as the union of two sets in $V[C, D]$. In $V[E]$ we can find

$$
E_{*}=E \cap \lambda \text { and }(D \cup C) \backslash \lambda=E \backslash \lambda
$$

Thus $F,(C \cup D) \cap \lambda \in V[E]$ and therefore also

$$
D \cup C, I(C, C \cup D), I(D, C \cup D) \in V[E]
$$

It follows that $C, D \in V[E]$.
Corollary 5.2 For every $C^{\prime} \subseteq C_{G}$ there is $C^{*} \subseteq C_{G} \cap \sup \left(C^{\prime}\right)$, such that C^{*} is closed and $V\left[C^{\prime}\right]=V\left[C^{*}\right]$.

Proof. Again we go by induction on $\sup \left(C^{\prime}\right)$. If $\sup \left(C^{\prime}\right)=C_{G}(\omega)$ then $C^{*}=C^{\prime}$ is already closed. For general C^{\prime}, consider $C^{\prime} \subseteq C l\left(C^{\prime}\right)^{6}$, then $I\left(C^{\prime}, C l\left(C^{\prime}\right)\right)$ is bounded by some $\nu<\sup \left(C^{\prime}\right)$. So there is $D \subseteq C_{G} \cap \nu$ such that $V[D]=V\left[I\left(C^{\prime}, C l\left(C^{\prime}\right)\right)\right]$. By the last proposition, we can find E such that

$$
D \cup C l\left(C^{\prime}\right) \cap \nu \subseteq E \subseteq C_{G} \cap \nu
$$

and $V[E]=V\left[D, C l\left(C^{\prime}\right)\right]$. By the induction hypothesis there is a closed E_{*}, such that $E \subseteq E^{*} \subseteq C_{G} \cap \nu$ such that $V[E]=V\left[E_{*}\right]$. Finally, let

$$
C^{*}=E_{*} \cup\left\{\sup \left(E_{*}\right)\right\} \cup C l\left(C^{\prime}\right) \backslash \nu
$$

Then $C^{*} \in V\left[C^{\prime}\right]$, and also $C l\left(C^{\prime}\right)$ and $I\left(C^{\prime}, C l\left(C^{\prime}\right)\right)$ can be constructed in $V\left[C^{*}\right]$ so $C^{\prime} \in$ $V\left[C^{*}\right]$. Obviously, C^{*} is closed, hence, C^{*} is as desired.

Definition 5.3 Let $\lambda<\kappa$ be any ordinal. A function $f: \lambda \rightarrow \kappa$ is said to be suitable for κ, if for every limit δ^{7}

$$
\underset{\alpha<\delta}{\limsup } f(\alpha)+1 \leq f(\delta)
$$

[^5]Proposition 5.4 If $C^{*} \subseteq C_{G}$ is a closed subset, let $\lambda+1=\operatorname{otp}\left(C^{*} \cup\left\{\sup \left(C^{*}\right)\right\}\right)$, and $\left\langle c_{i}^{*} \mid i \leq \lambda\right\rangle$ be the increasing continuous enumeration of C^{*}, then then function $f: \lambda+1 \rightarrow \kappa$, defined by $f(i)=o^{\vec{U}}\left(c_{i}^{*}\right)$ is suitable.

Proof. Let $\delta<\lambda+1$ be limit, then $c_{\delta}^{*} \in \operatorname{Lim}\left(C_{G} \cup\{\kappa\}\right)$ and therefore, there is $\xi<c_{\delta}^{*}$ such that for every $x \in C_{G} \cap\left(\xi, c_{\delta}^{*}\right), o^{\vec{U}}(x)<o^{\vec{U}}\left(c_{\delta}^{*}\right)$. Let $\rho<\delta$ be such that $\xi<c_{i}^{*}<c_{\delta}^{*}$ for every $\rho<i<\delta$, then $\sup _{\rho<i<\delta} O^{\vec{U}}\left(c_{i}^{*}\right)+1 \leq o^{\vec{U}}\left(c_{\delta}^{*}\right)$. Thus also

$$
\min \left(\left\{\sup _{\alpha<i<\delta} O^{\vec{U}}\left(c_{i}^{*}\right)+1 \mid \alpha<\delta\right\}\right) \leq o^{\vec{U}}\left(c_{\delta}^{*}\right)
$$

We would like to define $\mathbb{M}_{f}[\vec{U}]$ for some suitable f, to be the forcing which construct a continuous sequence with orders as prescribed by f.

Definition 5.5 Let $f: \lambda+1 \rightarrow \kappa$ be suitable for κ, define the forcing $\mathbb{M}_{f}[\vec{U}]$, the conditions are functions F, such that:

1. F is finite partial function, with $\operatorname{Dom}(F) \subseteq \lambda+1$. such that $\lambda \in \operatorname{Dom}(F)$.
2. For every $i \in \operatorname{Dom}(F) \cap \operatorname{Lim}(\lambda+1)$:
(a) $F(i)=\left\langle\kappa_{i}^{(F)}, A_{i}^{(F)}\right\rangle$.
(b) $o^{\vec{U}}\left(\kappa_{i}^{(F)}\right)=f(i)$.
(c) $A_{i}^{(F)} \in \cap \vec{U}\left(\kappa_{i}\right)$.
(d) Let $j=\max (\operatorname{Dom}(F) \cap i)$ or $j=-1$ if $i=\min (\operatorname{Dom}(F))$, then for every $j<k<i, f(k)<f(i)$.
3. For every $i \in \operatorname{Dom}(F) \backslash \operatorname{Lim}(\lambda)$
(a) $F(i)=\kappa_{i}^{(F)}$.
(b) $o^{\vec{U}}\left(\kappa_{i}^{(F)}\right)=f(i)$.
(c) $i-1 \in \operatorname{Dom}(F)$.
4. The map $i \mapsto \kappa_{i}^{(F)}$ is increasing.

Definition 5.6 The order of $\mathbb{M}_{f}[\vec{U}]$ is defined as follows $F \leq G$ iff

1. $\operatorname{Dom}(F) \subseteq \operatorname{Dom}(G)$.
2. For every $i \in \operatorname{Dom}(G)$, let $j=\min (\operatorname{Dom}(F) \backslash i)$.
(a) If $i \in \operatorname{Dom}(F)$, then $\kappa_{i}^{(F)}=\kappa_{i}^{(G)}$, and $A_{i}^{(G)} \subseteq A_{i}^{(F)}$.
(b) If $i \notin \operatorname{Dom}(F)$, then $\kappa_{i}^{(G)} \in A_{j}^{(F)}$, and $A_{i}^{(G)} \subseteq A_{j}^{(F)}$.

A straight forward verification shows that
Proposition 5.7 $\mathbb{M}_{f}[\vec{U}]$ is a forcing notion.

Note that if $f: \kappa+1 \rightarrow \kappa$, defined by $f(\alpha)=o_{L}(\alpha)$ (see footnote 5). Then $\mathbb{M}_{f}[\vec{U}]$ is isomorphic to $\mathbb{M}[\vec{U}] .{ }^{8}$

Similar to $\mathbb{M}[\vec{U}]$, we have a decomposition $A_{i}^{(F)}=\biguplus_{j<o^{\vec{U}}\left(\kappa_{i}^{(F)}\right)} A_{i, j}^{(F)}$. Also we have the notation $F^{\curlywedge} \vec{\alpha}$ which we generalize from $\mathbb{M}[\vec{U}]$.

Proposition 5.8 Let $H \subseteq \mathbb{M}_{f}[\vec{U}]$ be a V-generic filter. Let

$$
C_{H}^{*}=\left\{\kappa_{i}^{(F)} \mid i \in \operatorname{Dom}(F), F \in H\right\}
$$

Then

1. $\operatorname{otp}\left(C_{H}^{*}\right)=\lambda+1$ and C_{H}^{*} is continuous.
2. For every $i<\lambda, o^{\vec{U}}\left(C_{H}^{*}(i)\right)=f(i)$.
3. $V\left[C_{H}^{*}\right]=V[H]$.
4. For every $\delta \in \operatorname{Lim}(\lambda)$, and every $A \in \cap \vec{U}(\delta)$, there is $\xi<\delta$ such that $C^{*} \cap(\xi, \delta) \subseteq A$.
5. For every $\rho<\lambda, H \upharpoonright \rho:=\{F \upharpoonright \rho \mid F \in H\}$ is V-generic for $\mathbb{M}_{f \upharpoonright \rho}[\vec{U}]$.

Proof. To see (1), let us argue by induction on $i<\lambda$ The set

$$
E_{i}=\left\{F \in \mathbb{M}_{f}[\vec{U}] \mid i \in \operatorname{Dom}(F)\right\}
$$

is dense. Let $F \in \mathbb{M}_{f}[\vec{U}]$, if $i \in \operatorname{Dom}(F)$ we are done. Otherwise, let

$$
j_{M}:=\min (\operatorname{Dom}(F) \backslash i)>i>\max (\operatorname{Dom}(F) \cap i)=: j_{m}
$$

By condition 3, $j_{M} \in \operatorname{Lim}(\lambda+1)$. Split into two cases. First, if i is successor, then we can find $F \leq G$ such that $i-1 \in \operatorname{Dom}(G)$ by induction hypothesis. by condition 2.d and 2.b,

[^6]$f(i)<o^{\vec{U}}\left(\kappa_{j_{M}}^{(F)}\right)$. By condition 2.c, we can find $\alpha \in A_{j_{M}}^{(F)}$ such that $\alpha>\kappa_{j_{m}}^{i}, o^{\vec{U}}(\alpha)=f(i)$ and $A_{j_{M}}^{(F)} \cap \alpha \in \cap \vec{U}(\alpha)$. Then
$$
G^{\prime}=G \cup\left\{\left\langle i,\left\langle\alpha, A_{j_{M}}^{(F)} \cap \alpha\right\rangle\right\rangle\right\}
$$
is as wanted. If i is limit, since f is suitable, there is $i^{\prime}<i$, such that for every $i^{\prime}<k<i$, $f(k)<f(i)$. Again by induction, find $F \leq G$ such that $i^{\prime} \in \operatorname{Dom}(G)$. Then the desired G^{\prime} is construct as in successor step. Denote by F_{H}, the function with domain $\lambda+1$, and $F_{H}(i)=\gamma$, be the unique γ such that for some $F \in H, i \in \operatorname{Dom}(F)$ and $\kappa_{i}^{(F)}=\gamma$. Then it is clear that F_{H} is order preserving and $1-1$ from λ To C_{H}^{*}. By the same argument as for $\mathbb{M}[\vec{U}]$, we conclude also that F_{H} is continuous.

For (2), note that $C_{H}^{*}(i)=F_{H}(i)$, thus there is a condition $F \in H$ such that $F(i)=C_{H}^{*}(i)$. Hence $o^{\vec{U}}\left(C_{H}^{*}(i)\right)=f(i)$ by the definition of condition in $\mathbb{M}_{f}[\vec{U}]$.

For (3), as for $\mathbb{M}[\vec{U}]$, we note that H can be defined in terms of C_{H}^{*} as the filter $H_{C_{H}^{*}}$ of all the conditions $F \in \mathbb{M}_{f}[\vec{U}]$ such that for every $i \leq \lambda$,

1. If $i \in \operatorname{Dom}(F)$, then $\kappa_{i}^{(F)}=C_{H}^{*}(i)$.
2. If $i \notin \operatorname{Dom}(F)$, then $C_{H}^{*}(i) \in \underset{i \in \operatorname{Dom}(F)}{\cup} A_{i}^{(F)}$.
(4) is again the standard density argument given for $\mathbb{M}[\vec{U}]$.

As for (5), note that the restriction function $\phi: \mathbb{M}_{f}[\vec{U}] \rightarrow \mathbb{M}_{f \upharpoonright \rho}[\vec{U}]$ is a projection of forcings which suffices o conclude (5).

The following theorem is a Mathias criteria for $\mathbb{M}_{f}[\vec{U}]$.
Theorem 5.9 Let $f: \lambda \rightarrow \kappa$ be suitable, and let $C \subseteq \kappa$ be such that:

1. $\operatorname{otp}(C)=\lambda$ and C is continuous.
2. For every $i<\lambda$, $o^{\vec{U}}\left(C_{i}\right)=f(i)$.
3. For every $\delta \in \operatorname{Lim}(\lambda)$, and every $A \in \cap \vec{U}\left(C_{\delta}\right)$, there is $\xi<\delta$ such that $C \cap(\xi, \delta) \subseteq A$.

Then There is a generic H for $\mathbb{M}_{f}[\vec{U}]$ such that $C_{H}^{*}=C$.

Proof.
Define H_{C} to consist of all the conditions $\langle F, A\rangle$ such that for every $i \in \operatorname{Dom}(F)$:

1. $F(i)=(C)_{i}$.
2. $C \backslash\left\{\kappa_{i}^{(F)} \mid i \in \operatorname{Dom}(F)\right\} \subseteq \bigcup_{i \in \operatorname{Dom}(F)} A_{i}^{(F)}$.

We prove by induction on $\sup (C)=\kappa$ that H_{C} is V-generic. Assume for every $\rho<\kappa$ and any suitable function $g: \lambda \rightarrow \rho$, every C^{\prime} satisfying (1)-(3) the definition of $H_{C^{\prime}}$ is generic. Let f, C as in the theorem. For every $\delta<\kappa$, by definition, $H_{C} \upharpoonright \delta=H_{C \backslash \delta}$. Hence by the induction hypothesis $H_{C} \upharpoonright \delta$ is generic. Obviously condition (1) insures that $C_{H_{C}}^{*}=C$. Also it is a straight forward verification that H_{C} is a filter. Let D be a dense open subset of $\mathbb{M}_{f}[\vec{U}]$.

Claim 1 For every $F \in \mathbb{M}_{f}[\vec{U}]$, there is $F \leq G_{F}$ such that

1. $\max (\operatorname{Dom}(F) \cap \lambda))=\max \left(\operatorname{Dom}\left(G_{F}\right) \cap \lambda\right)$.
2. There is are $i_{1}^{(F)}<\ldots<i_{k}^{(F)}$ such that every $\left\langle\alpha_{1}, \ldots, \alpha_{k}\right\rangle \in \prod_{i=1}^{k} A_{\lambda, i}^{(F)}, G_{F}^{\wedge}\left\langle\alpha_{1}, . ., \alpha_{n}\right\rangle \in$ D.

Proof. For every $i_{1}<\ldots<i_{k}<o^{\vec{U}}(\kappa)$ and every $F \leq G$ such that

$$
\max (\operatorname{Dom}(F) \cap \lambda)=\max (\operatorname{Dom}(G) \cap \lambda \text { and } G(\lambda)=F(\lambda)
$$

consider the set

$$
B=\left\{\vec{\alpha} \in \prod_{j=1}^{k} A_{\lambda, i_{j}}^{(F)} \mid \exists R . G^{\curvearrowright} \vec{\alpha} \leq^{*} R \in D\right\}
$$

Then

$$
B \in \prod_{j=1}^{k} U\left(\kappa, i_{j}\right) \quad \vee \prod_{j=1}^{k} A_{\lambda, i_{j}}^{(F)} \backslash B \in \prod_{j=1}^{k} U\left(\kappa, i_{j}\right)
$$

Denote this set by B^{\prime}. Find $B_{i_{j}} \in U\left(\kappa, i_{j}\right)$ such that $\prod_{j=1}^{k} B_{i_{j}} \subseteq B^{\prime}$. Let $A_{G, i_{1}, . ., i_{n}}^{*}$ be the set obtained by shrinking $A_{\lambda, i_{j}}^{(F)}$ to $B_{i_{j}}$. Since $o^{\vec{U}}(\kappa)<\kappa$ the possibilities for G and i_{1}, \ldots, i_{n} is less than κ. So by κ-completness

$$
A^{*}=\cap_{G, i_{1}, . ., i_{n}} A_{G, i_{1}, \ldots, i_{n}}^{*} \in \cap \vec{U}(\kappa)
$$

Let $F \leq^{*} F^{*}$ be the condition obtained by shrinking $A_{\lambda}^{(F)}$ to A^{*}. By density, there is $G \geq F$ such that $G \in D$. So there is $\vec{\alpha} \in\left[A^{*}\right]^{<\omega}$ such that

$$
\left(G \upharpoonright \operatorname { m a x } (\operatorname { D o m } (F) \cap \lambda) \cup \left\{\left\langle\lambda,\left\langle\kappa, A^{*}\right\}\right)^{\wedge} \vec{\alpha} \leq^{*} G\right.\right.
$$

Hence for every $\vec{\beta}$ from the mesures of $\vec{\alpha}$, there is

$$
G_{\vec{\beta}} \geq^{*}\left(G \upharpoonright \operatorname { m a x } (\operatorname { D o m } (F) \cap \lambda) \cup \left\{\left\langle\lambda,\left\langle\kappa, A^{*}\right\}\right)^{\wedge} \vec{\beta}\right.\right.
$$

in D. Amalgamate all the $G_{\vec{\beta}}$'s to a single G^{*}. Then G^{*} is as wanted.
For every F, pick G_{F} and A_{F}. Let $A^{*}=\Delta_{F} A_{F}$. There is $\xi<\kappa$ such that $C \cap(\xi, \kappa) \subseteq A^{*}$. Let F be a function in H_{C} such that for some $i \in \operatorname{Dom}(F), F(i)>\xi$. To see that there is such a condition, pick any $\delta \in C \backslash \xi$. Use the induction hypothesis, and find $F \in X_{C}$ such that $F \upharpoonright \delta \in H_{C} \upharpoonright \delta$.

By the claim, The set

$$
E=\left\{F \in \mathbb{M}_{f \mid \xi}[\vec{U}] \mid \exists i_{1}<\ldots<i_{k} . \forall \vec{\alpha} \in \prod_{j=1}^{k} A_{i_{j}}^{*} . G_{F}^{\sim} \vec{\alpha} \in D\right\}
$$

is dense. Find $G^{*} \in H_{C} \upharpoonright \xi \cap E$. We can find in the upper part $c_{1}<c_{2}, \ldots<c_{n} \in C \cap A^{*}$ such that $c_{j} \in A_{i_{j}}^{*}$. Thus

$$
\left(G^{*} \cup\left\{\left\langle\lambda,\left\langle\kappa, A^{*}\right\rangle\right\rangle\right\}\right)^{\wedge}\left\langle c_{1}, . ., c_{n}\right\rangle \in H_{C} \cap D
$$

And H_{C} is generic.
Theorem 5.10 Let $G \subseteq \mathbb{M}[\vec{U}]$ be generic and let $C^{*} \subseteq C_{G}$ be any closed subset. Let f be the suitable function derived from C^{*}. If $f \in V$, then there is a generic H for $\mathbb{M}_{f}[\vec{U}]$ such that $C_{H}^{*}=C^{*}$.

Proof. since C_{G} satisfy the Mathias criteria, also does C^{*}.
We will now prove that any transitive $Z F C$ intermediate model $V \subseteq M \subseteq V[G]$ is a generic extension of a finite iteration of the form

$$
\mathbb{M}_{f_{1}}[\vec{U}] * \mathbb{M}_{f_{2}}[\vec{U}] \ldots * \mathbb{M}_{f_{n}}[\vec{U}]
$$

We start with $M=V\left[C^{\prime}\right]$, then find a closed C^{*} such that $V\left[C^{\prime}\right]=V\left[C^{*}\right]$. Let $\lambda_{0}=\kappa$, recursively define $\lambda_{i+1}=\operatorname{otp}\left(C_{G} \cap \lambda_{i}\right)<\lambda_{i}$. After finitely man steps we reach $\lambda_{n} \leq C_{G}(\omega)$, denote $\kappa_{i}=\lambda_{n-i}$. Consider

$$
\left\langle o^{\vec{U}}(x) \mid x \in C * \cap\left(\kappa_{n-1}, \kappa_{n}\right)\right\rangle
$$

This is added by a generic $E \subseteq C_{G} \cap \kappa_{n-1}$ Find a closed $C_{n-1}^{*} \in V\left[C^{*}\right]$ such that $V\left[C_{n-1}^{*}\right]=$ $V\left[E, C^{*} \cap \kappa_{n-1}\right]$. Now consider

$$
\left\langle o^{\vec{U}}(x) \mid x \in C_{n-1}^{*} \cap\left(\kappa_{n-2}, \kappa_{n-1}\right)\right\rangle
$$

There is a closed generic $C_{n-2}^{*} \in V\left[C_{n-1}^{*}\right]$ such that

$$
V\left[C_{n-2}^{*}\right]=V\left[C_{n-1}^{*},\left\langle o^{\vec{U}}(x) \mid x \in C_{n-1}^{*} \cap\left(\kappa_{n-2}, \kappa_{n-1}\right)\right\rangle\right]
$$

In a similar fashion we find after finitely many steps, $\left\langle o^{\vec{U}}(x) \mid x \in C_{0}^{*}\right\rangle \in V$. Define

$$
C_{f i n}=C_{0}^{*} \cup\left(C_{1}^{*} \backslash \kappa_{0}\right) \cup\left(C_{2}^{*} \backslash \kappa_{1}\right) \ldots .\left(C^{*} \backslash \kappa_{n-1}\right)
$$

Then $C_{f i n}^{*}$ is a closed, and have the property that for every $i \leq n$,

$$
\left\langle o^{\vec{U}}(x) \mid x \in C_{f i n}^{*} \cap\left[\kappa_{i-1}, \kappa_{i}\right)\right\rangle \in V\left[C_{f i n}^{*} \cap \kappa_{i-1}\right]
$$

Also $V\left[C_{f i n}^{*}\right]=V\left[C^{*}\right]=M$.
Theorem 5.11 Let f_{i} be the derived suitable function from o $\vec{U}^{\prime \prime}\left[C_{f i n}^{*} \cap\left(\kappa_{i-1}, \kappa_{i}\right)\right]$. Then:

1. $f_{i} \in V\left[C_{f i n}^{*} \cap \kappa_{i-1}\right]$. Therefore $\mathbb{M}_{f_{i}}[\vec{U}]$ is defined in $V\left[C_{f i n}^{*} \cap \kappa_{i-1}\right]$
2. There is a $V\left[C_{\text {fin }}^{*} \cap \kappa_{i-1}\right]$-generic filter $H \subseteq \mathbb{M}_{f_{i}}[\vec{U}]$ such that

$$
V\left[C_{f i n}^{*} \cap \kappa_{i-1}\right][H]=V\left[C_{f i n}^{*} \cap \kappa_{i-1}\right]\left[C_{f i n}^{*} \cap\left[\kappa_{i-1}, \kappa_{i}\right)\right]=V\left[C_{f i n}^{*} \cap \kappa_{i}\right]
$$

3. Let $\underset{\sim}{f} f_{i}$ be a $\left(\mathbb{M}_{f_{1}}[\vec{U}] * \mathbb{M}_{f_{2}}[\vec{U}] \ldots * \mathbb{M}_{f_{i-1}}[\vec{U}]\right)$-name for f_{i}, then there is a V-generic H^{*} for $\mathbb{M}_{f_{1}}[\vec{U}] * \underset{\sim}{\mathbb{M}_{f_{2}}}[\vec{U}] \ldots * \underset{\sim}{\mathbb{M}_{f_{n}}}[\vec{U}]$ such that $V\left[H^{*}\right]=V\left[C_{\text {fin }}^{*}\right]=M$.

Proof. (1) is clear by the construction of $C_{\text {fin }}$, and the fact that f_{i} is definable from $\vec{U}^{\overrightarrow{U^{\prime \prime}}}\left[C_{f i n}^{*} \cap\right.$ $\left.\left(\kappa_{i-1}, \kappa_{i}\right)\right]$.

For (2), we use theorem 5.10.
(3) follows by (2) and by the definition of iteration.

References

[1] Tom Benhamou and Moti Gitik, Sets in Prikry and Magidor Generic Extesions, subbmited to APAL (2016), arXiv:2009.12774.
[2] Moti Gitik, Prikry-Type Forcings, pp. 1351-1447, Springer Netherlands, Dordrecht, 2010.
[3] Moti Gitik, Vladimir Kanovei, and Peter Koepke, Intermediate Models of Prikry Generic Extensions, Pre Print (2010), http://www.math.tau.ac.il/ gitik/spr-kn.pdf.
[4] Thomas Jech, Set Theory, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003, The third millennium edition, revised and expanded. MR 1940513
[5] Menachem Magidor, Changing the Cofinality of Cardinals, Fundamenta Mathematicae 99 (1978), 61-71.
[6] William Mitchell, How Weak is a Closed Unbounded Filter?, stud. logic foundation math. 108 (1982), 209-230.

[^0]: *The work of the second author was partially supported by ISF grant No.1216/18.

[^1]: ${ }^{1}$ For a sequence of ordinals $\left\langle\rho_{j} \mid j<\gamma\right\rangle$, $\lim \sup _{j<\gamma} \rho_{j}=\min \left(\sup _{i<j<\gamma} \rho_{j} \mid i<\gamma\right)$.
 ${ }^{2}$ Equivalently, if there is some $i<o^{\vec{U}}(\kappa)$ such that $A \in U(\kappa, i)$.

[^2]: ${ }^{3} \mathrm{~A}$ measure over a measurable cardinal λ is a λ-complete non trivial ultrafilter over λ.

[^3]: ${ }^{4}$ For a set of ordinals $X, C l(X)=X \cup \operatorname{Lim}(X)\{\xi \mid \xi \in X \vee \sup (X \cap \xi)=\xi$

[^4]: ${ }^{5}$ For an ordinal α, denote by $o_{L}(\alpha)=\gamma$ if the cantor normal form of $\alpha=\sum_{i=1}^{n} \omega^{\gamma_{i}} m_{i}$ and $\gamma=\gamma_{n}$.

[^5]: ${ }^{6}$ For $A \subseteq O n, C l(A)=\{\alpha \mid \sup (A \cap \alpha)=\alpha\} \cup A$
 ${ }^{7}$ For a sequence of ordinals $\left\langle x_{i} \mid i<\rho\right\rangle$, define $\lim \sup _{i<\rho} x_{i}=\min \left(\left\{\sup _{\alpha<i<\rho} x_{i} \mid \alpha<\rho\right\}\right)$

[^6]: ${ }^{8}$ Compare with proposition 2.19

